메뉴 건너뛰기




Volumn 523, Issue 7562, 2015, Pages 621-625

Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex

Author keywords

[No Author keywords available]

Indexed keywords

5 CARBOXYCYTOSINE; CARBOXYL GROUP; NUCLEOSIDE TRIPHOSPHATE; RNA POLYMERASE II; UNCLASSIFIED DRUG; 5-CARBOXYLCYTOSINE; 5-FORMYLCYTOSINE; 5-HYDROXYMETHYLCYTOSINE; CYTOSINE; THYMINE DNA GLYCOSYLASE;

EID: 84938411464     PISSN: 00280836     EISSN: 14764687     Source Type: Journal    
DOI: 10.1038/nature14482     Document Type: Article
Times cited : (130)

References (38)
  • 1
    • 84878260646 scopus 로고    scopus 로고
    • TETonic shift: Biological roles of TET proteins in DNA demethylation and transcription
    • Pastor, W. A., Aravind, L. & Rao, A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nature Rev. Mol. Cell Biol. 14, 341-356 (2013).
    • (2013) Nature Rev. Mol. Cell Biol , vol.14 , pp. 341-356
    • Pastor, W.A.1    Aravind, L.2    Rao, A.3
  • 2
    • 84892763878 scopus 로고    scopus 로고
    • Reversing DNA methylation: Mechanisms, genomics, and biological functions
    • Wu, H. & Zhang, Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156, 45-68 (2014).
    • (2014) Cell , vol.156 , pp. 45-68
    • Wu, H.1    Zhang, Y.2
  • 3
    • 66149146320 scopus 로고    scopus 로고
    • Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
    • Tahiliani, M., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930-935 (2009).
    • (2009) Science , vol.324 , pp. 930-935
    • Tahiliani, M.1
  • 4
    • 79960626636 scopus 로고    scopus 로고
    • The discovery of5-formylcytosineinembryonic stemcellDNA
    • Pfaffeneder, T., et al. The discovery of5-formylcytosineinembryonic stemcellDNA. Angew. Chem. Int. Ed. Engl. 50, 7008-7012 (2011).
    • (2011) Angew. Chem. Int. Ed. Engl , vol.50 , pp. 7008-7012
    • Pfaffeneder, T.1
  • 5
    • 80052461558 scopus 로고    scopus 로고
    • Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
    • Ito, S., et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300-1303 (2011).
    • (2011) Science , vol.333 , pp. 1300-1303
    • Ito, S.1
  • 6
    • 80052495940 scopus 로고    scopus 로고
    • Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
    • He, Y. F., et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303-1307 (2011).
    • (2011) Science , vol.333 , pp. 1303-1307
    • He, Y.F.1
  • 7
    • 84876907152 scopus 로고    scopus 로고
    • Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming
    • Song, C. X., et al. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153, 678-691 (2013).
    • (2013) Cell , vol.153 , pp. 678-691
    • Song, C.X.1
  • 8
    • 84876946045 scopus 로고    scopus 로고
    • Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics
    • Shen, L., et al. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153, 692-706 (2013).
    • (2013) Cell , vol.153 , pp. 692-706
    • Shen, L.1
  • 9
    • 32344450824 scopus 로고    scopus 로고
    • Genomic DNA methylation: The mark and its mediators
    • Klose, R. J. & Bird, A. P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89-97 (2006).
    • (2006) Trends Biochem. Sci , vol.31 , pp. 89-97
    • Klose, R.J.1    Bird, A.P.2
  • 10
    • 84869096444 scopus 로고    scopus 로고
    • DNA methylation and its basic function
    • Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23-38 (2013).
    • (2013) Neuropsychopharmacology , vol.38 , pp. 23-38
    • Moore, L.D.1    Le, T.2    Fan, G.3
  • 11
    • 84874771985 scopus 로고    scopus 로고
    • Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives
    • Spruijt, C. G., et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152, 1146-1159 (2013).
    • (2013) Cell , vol.152 , pp. 1146-1159
    • Spruijt, C.G.1
  • 12
    • 84886035297 scopus 로고    scopus 로고
    • A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation
    • Iurlaro, M., et al. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol. 14, R119 (2013).
    • (2013) Genome Biol , vol.14 , pp. R119
    • Iurlaro, M.1
  • 13
    • 84908093905 scopus 로고    scopus 로고
    • Wilms tumor protein recognizes 5-carboxylcytosine within a specific DNA sequence
    • Hashimoto, H., et al. Wilms tumor protein recognizes 5-carboxylcytosine within a specific DNA sequence. Genes Dev. 28, 2304-2313 (2014).
    • (2014) Genes Dev , vol.28 , pp. 2304-2313
    • Hashimoto, H.1
  • 14
    • 84864722177 scopus 로고    scopus 로고
    • 5-formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity ofRNA polymerase II transcription
    • Kellinger, M. W., et al. 5-formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity ofRNA polymerase II transcription. Nature Struct. Mol. Biol. 19, 831-833 (2012).
    • (2012) Nature Struct. Mol. Biol , vol.19 , pp. 831-833
    • Kellinger, M.W.1
  • 15
    • 84869016883 scopus 로고    scopus 로고
    • Newfunctions forDNAmodifications byTET-JBP
    • Huang, Y. &Rao, A. Newfunctions forDNAmodifications byTET-JBP. Nature Struct. Mol. Biol. 19, 1061-1064 (2012).
    • (2012) Nature Struct. Mol. Biol , vol.19 , pp. 1061-1064
    • Huang, Y.1    Rao, A.2
  • 16
    • 0035827346 scopus 로고    scopus 로고
    • Structural basis of transcription: RNA polymerase II at 2.8A° ngstrom resolution
    • Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2. 8A° ngstrom resolution. Science 292, 1863-1876 (2001).
    • (2001) Science , vol.292 , pp. 1863-1876
    • Cramer, P.1    Bushnell, D.A.2    Kornberg, R.D.3
  • 17
    • 33751235874 scopus 로고    scopus 로고
    • Structural basis of transcription: Role of the trigger loop in substrate specificity and catalysis
    • Wang, D., Bushnell, D. A., Westover, K. D., Kaplan, C. D. & Kornberg, R. D. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 127, 941-954 (2006).
    • (2006) Cell , vol.127 , pp. 941-954
    • Wang, D.1    Bushnell, D.A.2    Westover, K.D.3    Kaplan, C.D.4    Kornberg, R.D.5
  • 18
    • 49449102926 scopus 로고    scopus 로고
    • Structural basis of transcription inhibition by a-amanitin and implications for RNA polymerase II translocation
    • Brueckner, F. & Cramer, P. Structural basis of transcription inhibition by a-amanitin and implications for RNA polymerase II translocation. Nature Struct. Mol. Biol. 15, 811-818 (2008).
    • (2008) Nature Struct. Mol. Biol , vol.15 , pp. 811-818
    • Brueckner, F.1    Cramer, P.2
  • 19
    • 84865683794 scopus 로고    scopus 로고
    • Glucosylated hydroxymethyluracil, DNA base J, prevents transcriptional readthrough in Leishmania
    • van Luenen, H. G., et al. Glucosylated hydroxymethyluracil, DNA base J, prevents transcriptional readthrough in Leishmania. Cell 150, 909-921 (2012).
    • (2012) Cell , vol.150 , pp. 909-921
    • Van Luenen, H.G.1
  • 20
    • 84893431558 scopus 로고    scopus 로고
    • Lineage-specific expansions of TET/JBP genes and a new class of DNA transposons shape fungal genomic and epigenetic landscapes
    • Iyer, L. M., et al. Lineage-specific expansions of TET/JBP genes and a new class of DNA transposons shape fungal genomic and epigenetic landscapes. Proc. Natl Acad. Sci. USA 111, 1676-1683 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 1676-1683
    • Iyer, L.M.1
  • 21
    • 0034725870 scopus 로고    scopus 로고
    • A structural model of transcription elongation
    • Korzheva, N., et al. A structural model of transcription elongation. Science 289, 619-625 (2000).
    • (2000) Science , vol.289 , pp. 619-625
    • Korzheva, N.1
  • 22
    • 84901684210 scopus 로고    scopus 로고
    • Milliseconddynamics ofRNA polymerase II translocation at atomic resolution
    • Silva, D. A., et al. Milliseconddynamics ofRNA polymerase II translocation at atomic resolution. Proc. Natl Acad. Sci. USA 111, 7665-7670 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 7665-7670
    • Silva, D.A.1
  • 23
    • 77953112483 scopus 로고    scopus 로고
    • X-ray structure and mechanismof RNA polymerase II stalled at an antineoplastic monofunctional platinum-DNA adduct
    • Wang, D., Zhu, G. Y., Huang, X. H. & Lippard, S. J. X-ray structure and mechanismof RNA polymerase II stalled at an antineoplastic monofunctional platinum-DNA adduct. Proc. Natl Acad. Sci. USA 107, 9584-9589 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 9584-9589
    • Wang, D.1    Zhu, G.Y.2    Huang, X.H.3    Lippard, S.J.4
  • 24
    • 84859710196 scopus 로고    scopus 로고
    • Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage
    • Walmacq, C., et al. Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage. Mol. Cell 46, 18-29 (2012).
    • (2012) Mol. Cell , vol.46 , pp. 18-29
    • Walmacq, C.1
  • 25
    • 84873323216 scopus 로고    scopus 로고
    • Structural basis of transcriptional pausing in bacteria
    • Weixlbaumer, A., Leon, K., Landick, R. & Darst, S. A. Structural basis of transcriptional pausing in bacteria. Cell 152, 431-441 (2013).
    • (2013) Cell , vol.152 , pp. 431-441
    • Weixlbaumer, A.1    Leon, K.2    Landick, R.3    Darst, S.A.4
  • 26
    • 34548060347 scopus 로고    scopus 로고
    • RNA polymerase: The most specific damage recognition protein in cellular responses toDNAdamage?
    • Lindsey-Boltz, L. A. & Sancar, A. RNA polymerase: the most specific damage recognition protein in cellular responses toDNAdamage? Proc. Natl Acad. Sci. USA 104, 13213-13214 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 13213-13214
    • Lindsey-Boltz, L.A.1    Sancar, A.2
  • 27
    • 56749157389 scopus 로고    scopus 로고
    • Transcription-coupled DNA repair: Two decades of progress and surprises
    • Hanawalt, P. C. & Spivak, G. Transcription-coupled DNA repair: two decades of progress and surprises. Nature Rev. Mol. Cell Biol. 9, 958-970 (2008).
    • (2008) Nature Rev. Mol. Cell Biol , vol.9 , pp. 958-970
    • Hanawalt, P.C.1    Spivak, G.2
  • 28
    • 84862776719 scopus 로고    scopus 로고
    • Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA
    • Zhang, L., et al. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nature Chem. Biol. 8, 328-330 (2012).
    • (2012) Nature Chem. Biol , vol.8 , pp. 328-330
    • Zhang, L.1
  • 29
    • 79953185674 scopus 로고    scopus 로고
    • Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43
    • Polymenidou, M., et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nature Neurosci. 14, 459-468 (2011).
    • (2011) Nature Neurosci , vol.14 , pp. 459-468
    • Polymenidou, M.1
  • 30
    • 26944448202 scopus 로고    scopus 로고
    • Recognition of RNA polymerase II and transcription bubbles by XPG CSB and TFIIH: Insights for transcription-coupled repair and Cockayne syndrome
    • Sarker, A. H., et al. Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne syndrome. Mol. Cell 20, 187-198 (2005).
    • (2005) Mol. Cell , vol.20 , pp. 187-198
    • Sarker, A.H.1
  • 31
    • 0031059866 scopus 로고    scopus 로고
    • Processing of X-ray diffraction data collected in oscillation mode
    • Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326 (1997).
    • (1997) Methods Enzymol , vol.276 , pp. 307-326
    • Otwinowski, Z.1    Minor, W.2
  • 32
    • 13244281317 scopus 로고    scopus 로고
    • Coot: Model-building tools for molecular graphics
    • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126-2132 (2004).
    • (2004) Acta Crystallogr. D , vol.60 , pp. 2126-2132
    • Emsley, P.1    Cowtan, K.2
  • 33
    • 76449098262 scopus 로고    scopus 로고
    • PHENIX: A comprehensive Python-based system for macromolecular structure solution
    • Adams, P. D., et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213-221 (2010).
    • (2010) Acta Crystallogr. D , vol.66 , pp. 213-221
    • Adams, P.D.1
  • 35
    • 57849109058 scopus 로고    scopus 로고
    • Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters
    • Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845-1848 (2008).
    • (2008) Science , vol.322 , pp. 1845-1848
    • Core, L.J.1    Waterfall, J.J.2    Lis, J.T.3
  • 36
    • 79959198166 scopus 로고    scopus 로고
    • Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA
    • Wang, D., et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474, 390-394 (2011).
    • (2011) Nature , vol.474 , pp. 390-394
    • Wang, D.1
  • 37
    • 62349130698 scopus 로고    scopus 로고
    • Ultrafast andmemory-efficient alignment of short DNA sequences to the human genome
    • Langmead, B., Trapnell, C., Pop, M. &Salzberg, S. L. Ultrafast andmemory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
    • (2009) Genome Biol , vol.10 , pp. R25
    • Langmead, B.1    Trapnell, C.2    Pop, M.3    Salzberg, S.L.4
  • 38
    • 84891771466 scopus 로고    scopus 로고
    • The UCSC Genome Browser database: 2014 update
    • Karolchik, D., et al. The UCSC Genome Browser database: 2014 update. Nucleic Acids Res. 42, D764-D770 (2014).
    • (2014) Nucleic Acids Res , vol.42 , pp. D764-D770
    • Karolchik, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.