-
1
-
-
84878260646
-
TETonic shift: Biological roles of TET proteins in DNA demethylation and transcription
-
Pastor, W. A., Aravind, L. & Rao, A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nature Rev. Mol. Cell Biol. 14, 341-356 (2013).
-
(2013)
Nature Rev. Mol. Cell Biol
, vol.14
, pp. 341-356
-
-
Pastor, W.A.1
Aravind, L.2
Rao, A.3
-
2
-
-
84892763878
-
Reversing DNA methylation: Mechanisms, genomics, and biological functions
-
Wu, H. & Zhang, Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156, 45-68 (2014).
-
(2014)
Cell
, vol.156
, pp. 45-68
-
-
Wu, H.1
Zhang, Y.2
-
3
-
-
66149146320
-
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
-
Tahiliani, M., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930-935 (2009).
-
(2009)
Science
, vol.324
, pp. 930-935
-
-
Tahiliani, M.1
-
4
-
-
79960626636
-
The discovery of5-formylcytosineinembryonic stemcellDNA
-
Pfaffeneder, T., et al. The discovery of5-formylcytosineinembryonic stemcellDNA. Angew. Chem. Int. Ed. Engl. 50, 7008-7012 (2011).
-
(2011)
Angew. Chem. Int. Ed. Engl
, vol.50
, pp. 7008-7012
-
-
Pfaffeneder, T.1
-
5
-
-
80052461558
-
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
-
Ito, S., et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300-1303 (2011).
-
(2011)
Science
, vol.333
, pp. 1300-1303
-
-
Ito, S.1
-
6
-
-
80052495940
-
Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
-
He, Y. F., et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303-1307 (2011).
-
(2011)
Science
, vol.333
, pp. 1303-1307
-
-
He, Y.F.1
-
7
-
-
84876907152
-
Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming
-
Song, C. X., et al. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153, 678-691 (2013).
-
(2013)
Cell
, vol.153
, pp. 678-691
-
-
Song, C.X.1
-
8
-
-
84876946045
-
Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics
-
Shen, L., et al. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153, 692-706 (2013).
-
(2013)
Cell
, vol.153
, pp. 692-706
-
-
Shen, L.1
-
9
-
-
32344450824
-
Genomic DNA methylation: The mark and its mediators
-
Klose, R. J. & Bird, A. P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89-97 (2006).
-
(2006)
Trends Biochem. Sci
, vol.31
, pp. 89-97
-
-
Klose, R.J.1
Bird, A.P.2
-
10
-
-
84869096444
-
DNA methylation and its basic function
-
Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23-38 (2013).
-
(2013)
Neuropsychopharmacology
, vol.38
, pp. 23-38
-
-
Moore, L.D.1
Le, T.2
Fan, G.3
-
11
-
-
84874771985
-
Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives
-
Spruijt, C. G., et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152, 1146-1159 (2013).
-
(2013)
Cell
, vol.152
, pp. 1146-1159
-
-
Spruijt, C.G.1
-
12
-
-
84886035297
-
A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation
-
Iurlaro, M., et al. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol. 14, R119 (2013).
-
(2013)
Genome Biol
, vol.14
, pp. R119
-
-
Iurlaro, M.1
-
13
-
-
84908093905
-
Wilms tumor protein recognizes 5-carboxylcytosine within a specific DNA sequence
-
Hashimoto, H., et al. Wilms tumor protein recognizes 5-carboxylcytosine within a specific DNA sequence. Genes Dev. 28, 2304-2313 (2014).
-
(2014)
Genes Dev
, vol.28
, pp. 2304-2313
-
-
Hashimoto, H.1
-
14
-
-
84864722177
-
5-formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity ofRNA polymerase II transcription
-
Kellinger, M. W., et al. 5-formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity ofRNA polymerase II transcription. Nature Struct. Mol. Biol. 19, 831-833 (2012).
-
(2012)
Nature Struct. Mol. Biol
, vol.19
, pp. 831-833
-
-
Kellinger, M.W.1
-
15
-
-
84869016883
-
Newfunctions forDNAmodifications byTET-JBP
-
Huang, Y. &Rao, A. Newfunctions forDNAmodifications byTET-JBP. Nature Struct. Mol. Biol. 19, 1061-1064 (2012).
-
(2012)
Nature Struct. Mol. Biol
, vol.19
, pp. 1061-1064
-
-
Huang, Y.1
Rao, A.2
-
16
-
-
0035827346
-
Structural basis of transcription: RNA polymerase II at 2.8A° ngstrom resolution
-
Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2. 8A° ngstrom resolution. Science 292, 1863-1876 (2001).
-
(2001)
Science
, vol.292
, pp. 1863-1876
-
-
Cramer, P.1
Bushnell, D.A.2
Kornberg, R.D.3
-
17
-
-
33751235874
-
Structural basis of transcription: Role of the trigger loop in substrate specificity and catalysis
-
Wang, D., Bushnell, D. A., Westover, K. D., Kaplan, C. D. & Kornberg, R. D. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 127, 941-954 (2006).
-
(2006)
Cell
, vol.127
, pp. 941-954
-
-
Wang, D.1
Bushnell, D.A.2
Westover, K.D.3
Kaplan, C.D.4
Kornberg, R.D.5
-
18
-
-
49449102926
-
Structural basis of transcription inhibition by a-amanitin and implications for RNA polymerase II translocation
-
Brueckner, F. & Cramer, P. Structural basis of transcription inhibition by a-amanitin and implications for RNA polymerase II translocation. Nature Struct. Mol. Biol. 15, 811-818 (2008).
-
(2008)
Nature Struct. Mol. Biol
, vol.15
, pp. 811-818
-
-
Brueckner, F.1
Cramer, P.2
-
19
-
-
84865683794
-
Glucosylated hydroxymethyluracil, DNA base J, prevents transcriptional readthrough in Leishmania
-
van Luenen, H. G., et al. Glucosylated hydroxymethyluracil, DNA base J, prevents transcriptional readthrough in Leishmania. Cell 150, 909-921 (2012).
-
(2012)
Cell
, vol.150
, pp. 909-921
-
-
Van Luenen, H.G.1
-
20
-
-
84893431558
-
Lineage-specific expansions of TET/JBP genes and a new class of DNA transposons shape fungal genomic and epigenetic landscapes
-
Iyer, L. M., et al. Lineage-specific expansions of TET/JBP genes and a new class of DNA transposons shape fungal genomic and epigenetic landscapes. Proc. Natl Acad. Sci. USA 111, 1676-1683 (2014).
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 1676-1683
-
-
Iyer, L.M.1
-
21
-
-
0034725870
-
A structural model of transcription elongation
-
Korzheva, N., et al. A structural model of transcription elongation. Science 289, 619-625 (2000).
-
(2000)
Science
, vol.289
, pp. 619-625
-
-
Korzheva, N.1
-
22
-
-
84901684210
-
Milliseconddynamics ofRNA polymerase II translocation at atomic resolution
-
Silva, D. A., et al. Milliseconddynamics ofRNA polymerase II translocation at atomic resolution. Proc. Natl Acad. Sci. USA 111, 7665-7670 (2014).
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 7665-7670
-
-
Silva, D.A.1
-
23
-
-
77953112483
-
X-ray structure and mechanismof RNA polymerase II stalled at an antineoplastic monofunctional platinum-DNA adduct
-
Wang, D., Zhu, G. Y., Huang, X. H. & Lippard, S. J. X-ray structure and mechanismof RNA polymerase II stalled at an antineoplastic monofunctional platinum-DNA adduct. Proc. Natl Acad. Sci. USA 107, 9584-9589 (2010).
-
(2010)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 9584-9589
-
-
Wang, D.1
Zhu, G.Y.2
Huang, X.H.3
Lippard, S.J.4
-
24
-
-
84859710196
-
Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage
-
Walmacq, C., et al. Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage. Mol. Cell 46, 18-29 (2012).
-
(2012)
Mol. Cell
, vol.46
, pp. 18-29
-
-
Walmacq, C.1
-
25
-
-
84873323216
-
Structural basis of transcriptional pausing in bacteria
-
Weixlbaumer, A., Leon, K., Landick, R. & Darst, S. A. Structural basis of transcriptional pausing in bacteria. Cell 152, 431-441 (2013).
-
(2013)
Cell
, vol.152
, pp. 431-441
-
-
Weixlbaumer, A.1
Leon, K.2
Landick, R.3
Darst, S.A.4
-
26
-
-
34548060347
-
RNA polymerase: The most specific damage recognition protein in cellular responses toDNAdamage?
-
Lindsey-Boltz, L. A. & Sancar, A. RNA polymerase: the most specific damage recognition protein in cellular responses toDNAdamage? Proc. Natl Acad. Sci. USA 104, 13213-13214 (2007).
-
(2007)
Proc. Natl Acad. Sci. USA
, vol.104
, pp. 13213-13214
-
-
Lindsey-Boltz, L.A.1
Sancar, A.2
-
27
-
-
56749157389
-
Transcription-coupled DNA repair: Two decades of progress and surprises
-
Hanawalt, P. C. & Spivak, G. Transcription-coupled DNA repair: two decades of progress and surprises. Nature Rev. Mol. Cell Biol. 9, 958-970 (2008).
-
(2008)
Nature Rev. Mol. Cell Biol
, vol.9
, pp. 958-970
-
-
Hanawalt, P.C.1
Spivak, G.2
-
28
-
-
84862776719
-
Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA
-
Zhang, L., et al. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nature Chem. Biol. 8, 328-330 (2012).
-
(2012)
Nature Chem. Biol
, vol.8
, pp. 328-330
-
-
Zhang, L.1
-
29
-
-
79953185674
-
Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43
-
Polymenidou, M., et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nature Neurosci. 14, 459-468 (2011).
-
(2011)
Nature Neurosci
, vol.14
, pp. 459-468
-
-
Polymenidou, M.1
-
30
-
-
26944448202
-
Recognition of RNA polymerase II and transcription bubbles by XPG CSB and TFIIH: Insights for transcription-coupled repair and Cockayne syndrome
-
Sarker, A. H., et al. Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne syndrome. Mol. Cell 20, 187-198 (2005).
-
(2005)
Mol. Cell
, vol.20
, pp. 187-198
-
-
Sarker, A.H.1
-
31
-
-
0031059866
-
Processing of X-ray diffraction data collected in oscillation mode
-
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326 (1997).
-
(1997)
Methods Enzymol
, vol.276
, pp. 307-326
-
-
Otwinowski, Z.1
Minor, W.2
-
32
-
-
13244281317
-
Coot: Model-building tools for molecular graphics
-
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126-2132 (2004).
-
(2004)
Acta Crystallogr. D
, vol.60
, pp. 2126-2132
-
-
Emsley, P.1
Cowtan, K.2
-
33
-
-
76449098262
-
PHENIX: A comprehensive Python-based system for macromolecular structure solution
-
Adams, P. D., et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213-221 (2010).
-
(2010)
Acta Crystallogr. D
, vol.66
, pp. 213-221
-
-
Adams, P.D.1
-
35
-
-
57849109058
-
Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters
-
Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845-1848 (2008).
-
(2008)
Science
, vol.322
, pp. 1845-1848
-
-
Core, L.J.1
Waterfall, J.J.2
Lis, J.T.3
-
36
-
-
79959198166
-
Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA
-
Wang, D., et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474, 390-394 (2011).
-
(2011)
Nature
, vol.474
, pp. 390-394
-
-
Wang, D.1
-
37
-
-
62349130698
-
Ultrafast andmemory-efficient alignment of short DNA sequences to the human genome
-
Langmead, B., Trapnell, C., Pop, M. &Salzberg, S. L. Ultrafast andmemory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
-
(2009)
Genome Biol
, vol.10
, pp. R25
-
-
Langmead, B.1
Trapnell, C.2
Pop, M.3
Salzberg, S.L.4
-
38
-
-
84891771466
-
The UCSC Genome Browser database: 2014 update
-
Karolchik, D., et al. The UCSC Genome Browser database: 2014 update. Nucleic Acids Res. 42, D764-D770 (2014).
-
(2014)
Nucleic Acids Res
, vol.42
, pp. D764-D770
-
-
Karolchik, D.1
|