-
1
-
-
66149123748
-
The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain
-
Kriaucionis S., Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009, 324:929-930.
-
(2009)
Science
, vol.324
, pp. 929-930
-
-
Kriaucionis, S.1
Heintz, N.2
-
2
-
-
78650826181
-
Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates
-
Globisch D., et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS ONE 2010, 5:e15367.
-
(2010)
PLoS ONE
, vol.5
-
-
Globisch, D.1
-
3
-
-
84861221693
-
Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution
-
Booth M.J., et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 2012, 336:934-937.
-
(2012)
Science
, vol.336
, pp. 934-937
-
-
Booth, M.J.1
-
4
-
-
84861990517
-
Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome
-
Yu M., et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 2012, 149:1368-1380.
-
(2012)
Cell
, vol.149
, pp. 1368-1380
-
-
Yu, M.1
-
5
-
-
84865061978
-
Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase
-
Raiber E.A., et al. Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase. Genome Biol. 2012, 13:R69.
-
(2012)
Genome Biol.
, vol.13
-
-
Raiber, E.A.1
-
6
-
-
84874267510
-
High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells
-
Sun Z., et al. High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells. Cell Rep. 2013, 3:567-576.
-
(2013)
Cell Rep.
, vol.3
, pp. 567-576
-
-
Sun, Z.1
-
7
-
-
0023701018
-
Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases
-
Bestor T., et al. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J. Mol. Biol. 1988, 203:971-983.
-
(1988)
J. Mol. Biol.
, vol.203
, pp. 971-983
-
-
Bestor, T.1
-
8
-
-
0031860739
-
Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases
-
Okano M., et al. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet. 1998, 19:219-220.
-
(1998)
Nat. Genet.
, vol.19
, pp. 219-220
-
-
Okano, M.1
-
9
-
-
66149146320
-
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
-
Tahiliani M., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324:930-935.
-
(2009)
Science
, vol.324
, pp. 930-935
-
-
Tahiliani, M.1
-
10
-
-
77956189495
-
Role of Tet proteins in 5mC to 5hmC conversion ES-cell self-renewal and inner cell mass specification
-
Ito S., et al. Role of Tet proteins in 5mC to 5hmC conversion ES-cell self-renewal and inner cell mass specification. Nature 2010, 466:1129-1133.
-
(2010)
Nature
, vol.466
, pp. 1129-1133
-
-
Ito, S.1
-
11
-
-
80052461558
-
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
-
Ito S., et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011, 333:1300-1303.
-
(2011)
Science
, vol.333
, pp. 1300-1303
-
-
Ito, S.1
-
12
-
-
80052495940
-
Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
-
He Y.F., et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011, 333:1303-1307.
-
(2011)
Science
, vol.333
, pp. 1303-1307
-
-
He, Y.F.1
-
13
-
-
84867230056
-
5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary
-
Khare T., et al. 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nat. Struct. Mol. Biol. 2012, 19:1037-1043.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 1037-1043
-
-
Khare, T.1
-
14
-
-
77954345408
-
Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway
-
Hajkova P., et al. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 2010, 329:78-82.
-
(2010)
Science
, vol.329
, pp. 78-82
-
-
Hajkova, P.1
-
15
-
-
79955538247
-
Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain
-
Guo J.U., et al. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 2011, 145:423-434.
-
(2011)
Cell
, vol.145
, pp. 423-434
-
-
Guo, J.U.1
-
16
-
-
79959937861
-
Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair
-
Cortellino S., et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 2011, 146:67-79.
-
(2011)
Cell
, vol.146
, pp. 67-79
-
-
Cortellino, S.1
-
17
-
-
48249147403
-
Crystal structure of human thymine DNA glycosylase bound to DNA elucidates sequence-specific mismatch recognition
-
Maiti A., et al. Crystal structure of human thymine DNA glycosylase bound to DNA elucidates sequence-specific mismatch recognition. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:8890-8895.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 8890-8895
-
-
Maiti, A.1
-
18
-
-
84861429108
-
Lesion processing by a repair enzyme is severely curtailed by residues needed to prevent aberrant activity on undamaged DNA
-
Maiti A., et al. Lesion processing by a repair enzyme is severely curtailed by residues needed to prevent aberrant activity on undamaged DNA. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:8091-8096.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 8091-8096
-
-
Maiti, A.1
-
19
-
-
84869044795
-
Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation
-
Hashimoto H., et al. Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation. Nucleic Acids Res. 2012, 40:10203-10214.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 10203-10214
-
-
Hashimoto, H.1
-
20
-
-
84862776719
-
Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA
-
Zhang L., et al. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat. Chem. Biol. 2012, 8:328-330.
-
(2012)
Nat. Chem. Biol.
, vol.8
, pp. 328-330
-
-
Zhang, L.1
-
21
-
-
84875436273
-
Selective excision of 5-carboxylcytosine by a thymine DNA glycosylase mutant
-
Hashimoto H., et al. Selective excision of 5-carboxylcytosine by a thymine DNA glycosylase mutant. J. Mol. Biol. 2013, 425:971-976.
-
(2013)
J. Mol. Biol.
, vol.425
, pp. 971-976
-
-
Hashimoto, H.1
-
22
-
-
0038414570
-
Multiparametric scaling of diffraction intensities
-
Otwinowski Z., et al. Multiparametric scaling of diffraction intensities. Acta Crystallogr. A 2003, 59:228-234.
-
(2003)
Acta Crystallogr. A
, vol.59
, pp. 228-234
-
-
Otwinowski, Z.1
-
24
-
-
76449098262
-
PHENIX: a comprehensive Python-based system for macromolecular structure solution
-
Adams P.D., et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D: Biol. Crystallogr. 2010, 66:213-221.
-
(2010)
Acta Crystallogr. D: Biol. Crystallogr.
, vol.66
, pp. 213-221
-
-
Adams, P.D.1
-
25
-
-
33847673237
-
The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal, and repair
-
Hitomi K., et al. The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal, and repair. DNA Repair (Amst) 2007, 6:410-428.
-
(2007)
DNA Repair (Amst)
, vol.6
, pp. 410-428
-
-
Hitomi, K.1
-
26
-
-
33644635257
-
Toward a detailed understanding of base excision repair enzymes: transition state and mechanistic analyses of N-glycoside hydrolysis and N-glycoside transfer
-
Berti P.J., McCann J.A. Toward a detailed understanding of base excision repair enzymes: transition state and mechanistic analyses of N-glycoside hydrolysis and N-glycoside transfer. Chem. Rev. 2006, 106:506-555.
-
(2006)
Chem. Rev.
, vol.106
, pp. 506-555
-
-
Berti, P.J.1
McCann, J.A.2
-
27
-
-
24044460415
-
DNA base damage recognition and removal: new twists and grooves
-
Huffman J.L., et al. DNA base damage recognition and removal: new twists and grooves. Mutat. Res. 2005, 577:55-76.
-
(2005)
Mutat. Res.
, vol.577
, pp. 55-76
-
-
Huffman, J.L.1
-
28
-
-
0029904839
-
A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA
-
Slupphaug G., et al. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 1996, 384:87-92.
-
(1996)
Nature
, vol.384
, pp. 87-92
-
-
Slupphaug, G.1
-
29
-
-
0032498302
-
Crystal structure of a G:T/U mismatch-specific DNA glycosylase: mismatch recognition by complementary-strand interactions
-
Barrett T.E., et al. Crystal structure of a G:T/U mismatch-specific DNA glycosylase: mismatch recognition by complementary-strand interactions. Cell 1998, 92:117-129.
-
(1998)
Cell
, vol.92
, pp. 117-129
-
-
Barrett, T.E.1
-
30
-
-
0038771139
-
Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1
-
Wibley J.E., et al. Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1. Mol. Cell 2003, 11:1647-1659.
-
(2003)
Mol. Cell
, vol.11
, pp. 1647-1659
-
-
Wibley, J.E.1
-
31
-
-
0034721829
-
Separating substrate recognition from base hydrolysis in human thymine DNA glycosylase by mutational analysis
-
Hardeland U., et al. Separating substrate recognition from base hydrolysis in human thymine DNA glycosylase by mutational analysis. J. Biol. Chem. 2000, 275:33449-33456.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 33449-33456
-
-
Hardeland, U.1
-
32
-
-
73649103725
-
Role of two strictly conserved residues in nucleotide flipping and N-glycosylic bond cleavage by human thymine DNA glycosylase
-
Maiti A., et al. Role of two strictly conserved residues in nucleotide flipping and N-glycosylic bond cleavage by human thymine DNA glycosylase. J. Biol. Chem. 2009, 284:36680-36688.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 36680-36688
-
-
Maiti, A.1
-
33
-
-
0034700259
-
Kinetic isotope effect studies of the reaction catalyzed by uracil DNA glycosylase: evidence for an oxocarbenium ion-uracil anion intermediate
-
Werner R.M., Stivers J.T. Kinetic isotope effect studies of the reaction catalyzed by uracil DNA glycosylase: evidence for an oxocarbenium ion-uracil anion intermediate. Biochemistry 2000, 39:14054-14064.
-
(2000)
Biochemistry
, vol.39
, pp. 14054-14064
-
-
Werner, R.M.1
Stivers, J.T.2
-
34
-
-
0034601807
-
Escherichia coli uracil DNA glycosylase: NMR characterization of the short hydrogen bond from His187 to uracil O2
-
Drohat A.C., Stivers J.T. Escherichia coli uracil DNA glycosylase: NMR characterization of the short hydrogen bond from His187 to uracil O2. Biochemistry 2000, 39:11865-11875.
-
(2000)
Biochemistry
, vol.39
, pp. 11865-11875
-
-
Drohat, A.C.1
Stivers, J.T.2
-
35
-
-
84866751142
-
How a mismatch repair enzyme balances the needs for efficient lesion processing and minimal action on undamaged DNA
-
Drohat A.C., et al. How a mismatch repair enzyme balances the needs for efficient lesion processing and minimal action on undamaged DNA. Cell Cycle 2012, 11:3345-3346.
-
(2012)
Cell Cycle
, vol.11
, pp. 3345-3346
-
-
Drohat, A.C.1
-
36
-
-
84866887356
-
Excision of thymine and 5-hydroxymethyluracil by the MBD4 DNA glycosylase domain: structural basis and implications for active DNA demethylation
-
Hashimoto H., et al. Excision of thymine and 5-hydroxymethyluracil by the MBD4 DNA glycosylase domain: structural basis and implications for active DNA demethylation. Nucleic Acids Res. 2012, 40:8276-8284.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 8276-8284
-
-
Hashimoto, H.1
-
37
-
-
84868153286
-
Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA
-
Morera S., et al. Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA. Nucleic Acids Res. 2012, 40:9917-9926.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 9917-9926
-
-
Morera, S.1
|