메뉴 건너뛰기




Volumn 12, Issue 7, 2013, Pages 535-540

Activity and crystal structure of human thymine DNA glycosylase mutant N140A with 5-carboxylcytosine DNA at low pH

Author keywords

5 Carboxylcytosine; DNA 5mC oxidation; DNA modification; Epigenetic regulation; Thymine DNA glycosylase

Indexed keywords

5 CARBOXYLCYTOSINE; CYTOSINE; THYMINE DNA GLYCOSYLASE; UNCLASSIFIED DRUG;

EID: 84878667424     PISSN: 15687864     EISSN: 15687856     Source Type: Journal    
DOI: 10.1016/j.dnarep.2013.04.003     Document Type: Article
Times cited : (28)

References (37)
  • 1
    • 66149123748 scopus 로고    scopus 로고
    • The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain
    • Kriaucionis S., Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009, 324:929-930.
    • (2009) Science , vol.324 , pp. 929-930
    • Kriaucionis, S.1    Heintz, N.2
  • 2
    • 78650826181 scopus 로고    scopus 로고
    • Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates
    • Globisch D., et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS ONE 2010, 5:e15367.
    • (2010) PLoS ONE , vol.5
    • Globisch, D.1
  • 3
    • 84861221693 scopus 로고    scopus 로고
    • Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution
    • Booth M.J., et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 2012, 336:934-937.
    • (2012) Science , vol.336 , pp. 934-937
    • Booth, M.J.1
  • 4
    • 84861990517 scopus 로고    scopus 로고
    • Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome
    • Yu M., et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 2012, 149:1368-1380.
    • (2012) Cell , vol.149 , pp. 1368-1380
    • Yu, M.1
  • 5
    • 84865061978 scopus 로고    scopus 로고
    • Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase
    • Raiber E.A., et al. Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase. Genome Biol. 2012, 13:R69.
    • (2012) Genome Biol. , vol.13
    • Raiber, E.A.1
  • 6
    • 84874267510 scopus 로고    scopus 로고
    • High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells
    • Sun Z., et al. High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells. Cell Rep. 2013, 3:567-576.
    • (2013) Cell Rep. , vol.3 , pp. 567-576
    • Sun, Z.1
  • 7
    • 0023701018 scopus 로고
    • Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases
    • Bestor T., et al. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J. Mol. Biol. 1988, 203:971-983.
    • (1988) J. Mol. Biol. , vol.203 , pp. 971-983
    • Bestor, T.1
  • 8
    • 0031860739 scopus 로고    scopus 로고
    • Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases
    • Okano M., et al. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet. 1998, 19:219-220.
    • (1998) Nat. Genet. , vol.19 , pp. 219-220
    • Okano, M.1
  • 9
    • 66149146320 scopus 로고    scopus 로고
    • Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
    • Tahiliani M., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324:930-935.
    • (2009) Science , vol.324 , pp. 930-935
    • Tahiliani, M.1
  • 10
    • 77956189495 scopus 로고    scopus 로고
    • Role of Tet proteins in 5mC to 5hmC conversion ES-cell self-renewal and inner cell mass specification
    • Ito S., et al. Role of Tet proteins in 5mC to 5hmC conversion ES-cell self-renewal and inner cell mass specification. Nature 2010, 466:1129-1133.
    • (2010) Nature , vol.466 , pp. 1129-1133
    • Ito, S.1
  • 11
    • 80052461558 scopus 로고    scopus 로고
    • Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
    • Ito S., et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011, 333:1300-1303.
    • (2011) Science , vol.333 , pp. 1300-1303
    • Ito, S.1
  • 12
    • 80052495940 scopus 로고    scopus 로고
    • Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
    • He Y.F., et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011, 333:1303-1307.
    • (2011) Science , vol.333 , pp. 1303-1307
    • He, Y.F.1
  • 13
    • 84867230056 scopus 로고    scopus 로고
    • 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary
    • Khare T., et al. 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nat. Struct. Mol. Biol. 2012, 19:1037-1043.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 1037-1043
    • Khare, T.1
  • 14
    • 77954345408 scopus 로고    scopus 로고
    • Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway
    • Hajkova P., et al. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 2010, 329:78-82.
    • (2010) Science , vol.329 , pp. 78-82
    • Hajkova, P.1
  • 15
    • 79955538247 scopus 로고    scopus 로고
    • Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain
    • Guo J.U., et al. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 2011, 145:423-434.
    • (2011) Cell , vol.145 , pp. 423-434
    • Guo, J.U.1
  • 16
    • 79959937861 scopus 로고    scopus 로고
    • Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair
    • Cortellino S., et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 2011, 146:67-79.
    • (2011) Cell , vol.146 , pp. 67-79
    • Cortellino, S.1
  • 17
    • 48249147403 scopus 로고    scopus 로고
    • Crystal structure of human thymine DNA glycosylase bound to DNA elucidates sequence-specific mismatch recognition
    • Maiti A., et al. Crystal structure of human thymine DNA glycosylase bound to DNA elucidates sequence-specific mismatch recognition. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:8890-8895.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 8890-8895
    • Maiti, A.1
  • 18
    • 84861429108 scopus 로고    scopus 로고
    • Lesion processing by a repair enzyme is severely curtailed by residues needed to prevent aberrant activity on undamaged DNA
    • Maiti A., et al. Lesion processing by a repair enzyme is severely curtailed by residues needed to prevent aberrant activity on undamaged DNA. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:8091-8096.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 8091-8096
    • Maiti, A.1
  • 19
    • 84869044795 scopus 로고    scopus 로고
    • Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation
    • Hashimoto H., et al. Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation. Nucleic Acids Res. 2012, 40:10203-10214.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 10203-10214
    • Hashimoto, H.1
  • 20
    • 84862776719 scopus 로고    scopus 로고
    • Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA
    • Zhang L., et al. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat. Chem. Biol. 2012, 8:328-330.
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 328-330
    • Zhang, L.1
  • 21
    • 84875436273 scopus 로고    scopus 로고
    • Selective excision of 5-carboxylcytosine by a thymine DNA glycosylase mutant
    • Hashimoto H., et al. Selective excision of 5-carboxylcytosine by a thymine DNA glycosylase mutant. J. Mol. Biol. 2013, 425:971-976.
    • (2013) J. Mol. Biol. , vol.425 , pp. 971-976
    • Hashimoto, H.1
  • 22
    • 0038414570 scopus 로고    scopus 로고
    • Multiparametric scaling of diffraction intensities
    • Otwinowski Z., et al. Multiparametric scaling of diffraction intensities. Acta Crystallogr. A 2003, 59:228-234.
    • (2003) Acta Crystallogr. A , vol.59 , pp. 228-234
    • Otwinowski, Z.1
  • 24
    • 76449098262 scopus 로고    scopus 로고
    • PHENIX: a comprehensive Python-based system for macromolecular structure solution
    • Adams P.D., et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D: Biol. Crystallogr. 2010, 66:213-221.
    • (2010) Acta Crystallogr. D: Biol. Crystallogr. , vol.66 , pp. 213-221
    • Adams, P.D.1
  • 25
    • 33847673237 scopus 로고    scopus 로고
    • The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal, and repair
    • Hitomi K., et al. The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal, and repair. DNA Repair (Amst) 2007, 6:410-428.
    • (2007) DNA Repair (Amst) , vol.6 , pp. 410-428
    • Hitomi, K.1
  • 26
    • 33644635257 scopus 로고    scopus 로고
    • Toward a detailed understanding of base excision repair enzymes: transition state and mechanistic analyses of N-glycoside hydrolysis and N-glycoside transfer
    • Berti P.J., McCann J.A. Toward a detailed understanding of base excision repair enzymes: transition state and mechanistic analyses of N-glycoside hydrolysis and N-glycoside transfer. Chem. Rev. 2006, 106:506-555.
    • (2006) Chem. Rev. , vol.106 , pp. 506-555
    • Berti, P.J.1    McCann, J.A.2
  • 27
    • 24044460415 scopus 로고    scopus 로고
    • DNA base damage recognition and removal: new twists and grooves
    • Huffman J.L., et al. DNA base damage recognition and removal: new twists and grooves. Mutat. Res. 2005, 577:55-76.
    • (2005) Mutat. Res. , vol.577 , pp. 55-76
    • Huffman, J.L.1
  • 28
    • 0029904839 scopus 로고    scopus 로고
    • A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA
    • Slupphaug G., et al. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 1996, 384:87-92.
    • (1996) Nature , vol.384 , pp. 87-92
    • Slupphaug, G.1
  • 29
    • 0032498302 scopus 로고    scopus 로고
    • Crystal structure of a G:T/U mismatch-specific DNA glycosylase: mismatch recognition by complementary-strand interactions
    • Barrett T.E., et al. Crystal structure of a G:T/U mismatch-specific DNA glycosylase: mismatch recognition by complementary-strand interactions. Cell 1998, 92:117-129.
    • (1998) Cell , vol.92 , pp. 117-129
    • Barrett, T.E.1
  • 30
    • 0038771139 scopus 로고    scopus 로고
    • Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1
    • Wibley J.E., et al. Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1. Mol. Cell 2003, 11:1647-1659.
    • (2003) Mol. Cell , vol.11 , pp. 1647-1659
    • Wibley, J.E.1
  • 31
    • 0034721829 scopus 로고    scopus 로고
    • Separating substrate recognition from base hydrolysis in human thymine DNA glycosylase by mutational analysis
    • Hardeland U., et al. Separating substrate recognition from base hydrolysis in human thymine DNA glycosylase by mutational analysis. J. Biol. Chem. 2000, 275:33449-33456.
    • (2000) J. Biol. Chem. , vol.275 , pp. 33449-33456
    • Hardeland, U.1
  • 32
    • 73649103725 scopus 로고    scopus 로고
    • Role of two strictly conserved residues in nucleotide flipping and N-glycosylic bond cleavage by human thymine DNA glycosylase
    • Maiti A., et al. Role of two strictly conserved residues in nucleotide flipping and N-glycosylic bond cleavage by human thymine DNA glycosylase. J. Biol. Chem. 2009, 284:36680-36688.
    • (2009) J. Biol. Chem. , vol.284 , pp. 36680-36688
    • Maiti, A.1
  • 33
    • 0034700259 scopus 로고    scopus 로고
    • Kinetic isotope effect studies of the reaction catalyzed by uracil DNA glycosylase: evidence for an oxocarbenium ion-uracil anion intermediate
    • Werner R.M., Stivers J.T. Kinetic isotope effect studies of the reaction catalyzed by uracil DNA glycosylase: evidence for an oxocarbenium ion-uracil anion intermediate. Biochemistry 2000, 39:14054-14064.
    • (2000) Biochemistry , vol.39 , pp. 14054-14064
    • Werner, R.M.1    Stivers, J.T.2
  • 34
    • 0034601807 scopus 로고    scopus 로고
    • Escherichia coli uracil DNA glycosylase: NMR characterization of the short hydrogen bond from His187 to uracil O2
    • Drohat A.C., Stivers J.T. Escherichia coli uracil DNA glycosylase: NMR characterization of the short hydrogen bond from His187 to uracil O2. Biochemistry 2000, 39:11865-11875.
    • (2000) Biochemistry , vol.39 , pp. 11865-11875
    • Drohat, A.C.1    Stivers, J.T.2
  • 35
    • 84866751142 scopus 로고    scopus 로고
    • How a mismatch repair enzyme balances the needs for efficient lesion processing and minimal action on undamaged DNA
    • Drohat A.C., et al. How a mismatch repair enzyme balances the needs for efficient lesion processing and minimal action on undamaged DNA. Cell Cycle 2012, 11:3345-3346.
    • (2012) Cell Cycle , vol.11 , pp. 3345-3346
    • Drohat, A.C.1
  • 36
    • 84866887356 scopus 로고    scopus 로고
    • Excision of thymine and 5-hydroxymethyluracil by the MBD4 DNA glycosylase domain: structural basis and implications for active DNA demethylation
    • Hashimoto H., et al. Excision of thymine and 5-hydroxymethyluracil by the MBD4 DNA glycosylase domain: structural basis and implications for active DNA demethylation. Nucleic Acids Res. 2012, 40:8276-8284.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 8276-8284
    • Hashimoto, H.1
  • 37
    • 84868153286 scopus 로고    scopus 로고
    • Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA
    • Morera S., et al. Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA. Nucleic Acids Res. 2012, 40:9917-9926.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 9917-9926
    • Morera, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.