-
1
-
-
0000890473
-
Transformation of yeast
-
[1] Hinnen, A., Hicks, J.B., Fink, G.R., Transformation of yeast. Proc. Natl. Acad. Sci. U. S. A. 75 (1978), 1929–1933.
-
(1978)
Proc. Natl. Acad. Sci. U. S. A.
, vol.75
, pp. 1929-1933
-
-
Hinnen, A.1
Hicks, J.B.2
Fink, G.R.3
-
2
-
-
0020645054
-
One-step gene disruption in yeast
-
[2] Rothstein, R.J., One-step gene disruption in yeast. Methods Enzymol. 101 (1983), 202–211.
-
(1983)
Methods Enzymol.
, vol.101
, pp. 202-211
-
-
Rothstein, R.J.1
-
3
-
-
0024296027
-
Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes
-
[3] Mansour, S.L., Thomas, K.R., Capecchi, M.R., Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336 (1988), 348–352.
-
(1988)
Nature
, vol.336
, pp. 348-352
-
-
Mansour, S.L.1
Thomas, K.R.2
Capecchi, M.R.3
-
4
-
-
0024118441
-
Homologous integration in mammalian cells without target gene selection
-
[4] Jasin, M., Berg, P., Homologous integration in mammalian cells without target gene selection. Genes Dev. 2 (1988), 1353–1363.
-
(1988)
Genes Dev.
, vol.2
, pp. 1353-1363
-
-
Jasin, M.1
Berg, P.2
-
5
-
-
0022389290
-
Insertion of DNA sequences into the human chromosomal ß-globin locus by homologous recombination
-
[5] Smithies, O., Gregg, R.G., Boggs, S.S., Koralewski, M.A., Kucherlapati, R.S., Insertion of DNA sequences into the human chromosomal ß-globin locus by homologous recombination. Nature 317 (1985), 230–234.
-
(1985)
Nature
, vol.317
, pp. 230-234
-
-
Smithies, O.1
Gregg, R.G.2
Boggs, S.S.3
Koralewski, M.A.4
Kucherlapati, R.S.5
-
6
-
-
19544371373
-
Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century
-
[6] Capecchi, M.R., Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat. Rev. Genet. 6 (2005), 507–512.
-
(2005)
Nat. Rev. Genet.
, vol.6
, pp. 507-512
-
-
Capecchi, M.R.1
-
7
-
-
0000277434
-
Yeast transformation: a model system for the study of recombination
-
[7] Orr-Weaver, T.L., Szostak, J.W., Rothstein, R.J., Yeast transformation: a model system for the study of recombination. Proc. Natl. Acad. Sci. U. S. A. 78 (1981), 6354–6358.
-
(1981)
Proc. Natl. Acad. Sci. U. S. A.
, vol.78
, pp. 6354-6358
-
-
Orr-Weaver, T.L.1
Szostak, J.W.2
Rothstein, R.J.3
-
8
-
-
0020213475
-
Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus
-
[8] Strathern, J.N., Klar, A.J., Hicks, J.B., Abraham, J.A., Ivy, J.M., Nasmyth, K.A., McGill, C., Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus. Cell 31 (1982), 183–192.
-
(1982)
Cell
, vol.31
, pp. 183-192
-
-
Strathern, J.N.1
Klar, A.J.2
Hicks, J.B.3
Abraham, J.A.4
Ivy, J.M.5
Nasmyth, K.A.6
McGill, C.7
-
9
-
-
0022399493
-
An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene
-
[9] Jacquier, A., Dujon, B., An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41 (1985), 383–394.
-
(1985)
Cell
, vol.41
, pp. 383-394
-
-
Jacquier, A.1
Dujon, B.2
-
10
-
-
0021646205
-
Kinetics and intermediates of yeast mitochondrial DNA recombination
-
[10] Zinn, A.R., Butow, R.A., Kinetics and intermediates of yeast mitochondrial DNA recombination. Cold Spring Harb. Symp. Quant. Biol. 49 (1984), 115–121.
-
(1984)
Cold Spring Harb. Symp. Quant. Biol.
, vol.49
, pp. 115-121
-
-
Zinn, A.R.1
Butow, R.A.2
-
11
-
-
0028061666
-
Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease
-
[11] Rouet, P., Smih, F., Jasin, M., Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell Biol. 14 (1994), 8096–8106.
-
(1994)
Mol. Cell Biol.
, vol.14
, pp. 8096-8106
-
-
Rouet, P.1
Smih, F.2
Jasin, M.3
-
12
-
-
84865364870
-
Playing the end game: DNA double-strand break repair pathway choice
-
[12] Chapman, J.R., Taylor, M.R., Boulton, S.J., Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 47 (2012), 497–510.
-
(2012)
Mol. Cell
, vol.47
, pp. 497-510
-
-
Chapman, J.R.1
Taylor, M.R.2
Boulton, S.J.3
-
13
-
-
84926432359
-
Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins
-
[13] Prakash, R., Zhang, Y., Feng, W., Jasin, M., Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb. Perspect. Biol., 7, 2015, a016600.
-
(2015)
Cold Spring Harb. Perspect. Biol.
, vol.7
, pp. a016600
-
-
Prakash, R.1
Zhang, Y.2
Feng, W.3
Jasin, M.4
-
14
-
-
84870766296
-
Repair of strand breaks by homologous recombination
-
[14] Jasin, M., Rothstein, R., Repair of strand breaks by homologous recombination. Cold Spring Harb. Perspect. Biol., 5, 2013, a012740.
-
(2013)
Cold Spring Harb. Perspect. Biol.
, vol.5
, pp. a012740
-
-
Jasin, M.1
Rothstein, R.2
-
15
-
-
79952768906
-
Real-time analysis of double-strand DNA break repair by homologous recombination
-
[15] Hicks, W.M., Yamaguchi, M., Haber, J.E., Real-time analysis of double-strand DNA break repair by homologous recombination. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), 3108–3115.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 3108-3115
-
-
Hicks, W.M.1
Yamaguchi, M.2
Haber, J.E.3
-
16
-
-
77649131406
-
Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis
-
[16] Moynahan, M.E., Jasin, M., Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat. Rev. Mol. Cell Biol. 11 (2010), 196–207.
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 196-207
-
-
Moynahan, M.E.1
Jasin, M.2
-
17
-
-
0033966517
-
Regulation of mitotic homeologous recombination in yeast. Functions of mismatch repair and nucleotide excision repair genes
-
[17] Nicholson, A., Hendrix, M., Jinks-Robertson, S., Crouse, G.F., Regulation of mitotic homeologous recombination in yeast. Functions of mismatch repair and nucleotide excision repair genes. Genetics 154 (2000), 133–146.
-
(2000)
Genetics
, vol.154
, pp. 133-146
-
-
Nicholson, A.1
Hendrix, M.2
Jinks-Robertson, S.3
Crouse, G.F.4
-
18
-
-
0035081417
-
Repair of double-strand breaks by homologous recombination in mismatch repair-defective mammalian cells
-
[18] Elliott, B., Jasin, M., Repair of double-strand breaks by homologous recombination in mismatch repair-defective mammalian cells. Mol. Cell Biol. 21 (2001), 2671–2682.
-
(2001)
Mol. Cell Biol.
, vol.21
, pp. 2671-2682
-
-
Elliott, B.1
Jasin, M.2
-
19
-
-
0034461607
-
Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells
-
[19] Richardson, C., Jasin, M., Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells. Mol. Cell Biol. 20 (2000), 9068–9075.
-
(2000)
Mol. Cell Biol.
, vol.20
, pp. 9068-9075
-
-
Richardson, C.1
Jasin, M.2
-
20
-
-
84892743776
-
Break-induced replication repair of damaged forks induces genomic duplications in human cells
-
[20] Costantino, L., Sotiriou, S.K., Rantala, J.K., Magin, S., Mladenov, E., Helleday, T., Haber, J.E., Iliakis, G., Kallioniemi, O.P., Halazonetis, T.D., Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343 (2014), 88–91.
-
(2014)
Science
, vol.343
, pp. 88-91
-
-
Costantino, L.1
Sotiriou, S.K.2
Rantala, J.K.3
Magin, S.4
Mladenov, E.5
Helleday, T.6
Haber, J.E.7
Iliakis, G.8
Kallioniemi, O.P.9
Halazonetis, T.D.10
-
21
-
-
84885866032
-
Pif1 helicase and Poldelta promote recombination-coupled DNA synthesis via bubble migration
-
[21] Wilson, M.A., Kwon, Y., Xu, Y., Chung, W.H., Chi, P., Niu, H., Mayle, R., Chen, X., Malkova, A., Sung, P., Ira, G., Pif1 helicase and Poldelta promote recombination-coupled DNA synthesis via bubble migration. Nature, 2013.
-
(2013)
Nature
-
-
Wilson, M.A.1
Kwon, Y.2
Xu, Y.3
Chung, W.H.4
Chi, P.5
Niu, H.6
Mayle, R.7
Chen, X.8
Malkova, A.9
Sung, P.10
Ira, G.11
-
22
-
-
84885843906
-
Migrating bubble during break-induced replication drives conservative DNA synthesis
-
[22] Saini, N., Ramakrishnan, S., Elango, R., Ayyar, S., Zhang, Y., Deem, A., Ira, G., Haber, J.E., Lobachev, K.S., Malkova, A., Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature 502 (2013), 389–392.
-
(2013)
Nature
, vol.502
, pp. 389-392
-
-
Saini, N.1
Ramakrishnan, S.2
Elango, R.3
Ayyar, S.4
Zhang, Y.5
Deem, A.6
Ira, G.7
Haber, J.E.8
Lobachev, K.S.9
Malkova, A.10
-
23
-
-
34547927220
-
Break-induced replication and telomerase-independent telomere maintenance require Pol32
-
[23] Lydeard, J.R., Jain, S., Yamaguchi, M., Haber, J.E., Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448 (2007), 820–823.
-
(2007)
Nature
, vol.448
, pp. 820-823
-
-
Lydeard, J.R.1
Jain, S.2
Yamaguchi, M.3
Haber, J.E.4
-
24
-
-
79952273242
-
Break-induced replication is highly inaccurate
-
[24] Deem, A., Keszthelyi, A., Blackgrove, T., Vayl, A., Coffey, B., Mathur, R., Chabes, A., Malkova, A., Break-induced replication is highly inaccurate. PLoS Biol., 9, 2011, e1000594.
-
(2011)
PLoS Biol.
, vol.9
, pp. e1000594
-
-
Deem, A.1
Keszthelyi, A.2
Blackgrove, T.3
Vayl, A.4
Coffey, B.5
Mathur, R.6
Chabes, A.7
Malkova, A.8
-
25
-
-
34247611513
-
Template switching during break-induced replication
-
[25] Smith, C.E., Llorente, B., Symington, L.S., Template switching during break-induced replication. Nature 447 (2007), 102–105.
-
(2007)
Nature
, vol.447
, pp. 102-105
-
-
Smith, C.E.1
Llorente, B.2
Symington, L.S.3
-
26
-
-
84908431864
-
Chromosome rearrangements via template switching between diverged repeated sequences
-
[26] Anand, R.P., Tsaponina, O., Greenwell, P.W., Lee, C.S., Du, W., Petes, T.D., Haber, J.E., Chromosome rearrangements via template switching between diverged repeated sequences. Genes Dev. 28 (2014), 2394–2406.
-
(2014)
Genes Dev.
, vol.28
, pp. 2394-2406
-
-
Anand, R.P.1
Tsaponina, O.2
Greenwell, P.W.3
Lee, C.S.4
Du, W.5
Petes, T.D.6
Haber, J.E.7
-
27
-
-
77953925453
-
Evolutionary conservation of meiotic DSB proteins: more than just Spo11
-
[27] Cole, F., Keeney, S., Jasin, M., Evolutionary conservation of meiotic DSB proteins: more than just Spo11. Genes Dev. 24 (2010), 1201–1207.
-
(2010)
Genes Dev.
, vol.24
, pp. 1201-1207
-
-
Cole, F.1
Keeney, S.2
Jasin, M.3
-
28
-
-
84977747375
-
Mechanisms of germ line genome instability
-
[28] Kim, S., Peterson, S.E., Jasin, M., Keeney, S., Mechanisms of germ line genome instability. Semin. Cell Dev. Biol., 2016.
-
(2016)
Semin. Cell Dev. Biol.
-
-
Kim, S.1
Peterson, S.E.2
Jasin, M.3
Keeney, S.4
-
29
-
-
84961141360
-
A new light on the meiotic DSB catalytic complex
-
[29] Robert, T., Vrielynck, N., Mezard, C., de Massy, B., Grelon, M., A new light on the meiotic DSB catalytic complex. Semin. Cell Dev. Biol., 2016.
-
(2016)
Semin. Cell Dev. Biol.
-
-
Robert, T.1
Vrielynck, N.2
Mezard, C.3
de Massy, B.4
Grelon, M.5
-
30
-
-
79952295560
-
A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation
-
[30] Pan, J., Sasaki, M., Kniewel, R., Murakami, H., Blitzblau, H.G., Tischfield, S.E., Zhu, X., Neale, M.J., Jasin, M., Socci, N.D., Hochwagen, A., Keeney, S., A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144 (2011), 719–731.
-
(2011)
Cell
, vol.144
, pp. 719-731
-
-
Pan, J.1
Sasaki, M.2
Kniewel, R.3
Murakami, H.4
Blitzblau, H.G.5
Tischfield, S.E.6
Zhu, X.7
Neale, M.J.8
Jasin, M.9
Socci, N.D.10
Hochwagen, A.11
Keeney, S.12
-
31
-
-
84863770992
-
Genetic recombination is directed away from functional genomic elements in mice
-
[31] Brick, K., Smagulova, F., Khil, P., Camerini-Otero, R.D., Petukhova, G.V., Genetic recombination is directed away from functional genomic elements in mice. Nature 485 (2012), 642–645.
-
(2012)
Nature
, vol.485
, pp. 642-645
-
-
Brick, K.1
Smagulova, F.2
Khil, P.3
Camerini-Otero, R.D.4
Petukhova, G.V.5
-
32
-
-
76749170346
-
PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice
-
[32] Baudat, F., Buard, J., Grey, C., Fledel-Alon, A., Ober, C., Przeworski, M., Coop, G., de Massy, B., PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327 (2010), 836–840.
-
(2010)
Science
, vol.327
, pp. 836-840
-
-
Baudat, F.1
Buard, J.2
Grey, C.3
Fledel-Alon, A.4
Ober, C.5
Przeworski, M.6
Coop, G.7
de Massy, B.8
-
33
-
-
0037131525
-
Targeted stimulation of meiotic recombination
-
[33] Pecina, A., Smith, K.N., Mezard, C., Murakami, H., Ohta, K., Nicolas, A., Targeted stimulation of meiotic recombination. Cell 111 (2002), 173–184.
-
(2002)
Cell
, vol.111
, pp. 173-184
-
-
Pecina, A.1
Smith, K.N.2
Mezard, C.3
Murakami, H.4
Ohta, K.5
Nicolas, A.6
-
34
-
-
70350787014
-
Modulating and targeting meiotic double-strand breaks in Saccharomyces cerevisiae
-
[34] Nicolas, A., Modulating and targeting meiotic double-strand breaks in Saccharomyces cerevisiae. Methods Mol. Biol. 557 (2009), 27–33.
-
(2009)
Methods Mol. Biol.
, vol.557
, pp. 27-33
-
-
Nicolas, A.1
-
35
-
-
84958073440
-
Re-engineering the zinc fingers of PRDM9 reverses hybrid sterility in mice
-
[35] Davies, B., Hatton, E., Altemose, N., Hussin, J.G., Pratto, F., Zhang, G., Hinch, A.G., Moralli, D., Biggs, D., Diaz, R., Preece, C., Li, R., Bitoun, E., Brick, K., Green, C.M., Camerini-Otero, R.D., Myers, S.R., Donnelly, P., Re-engineering the zinc fingers of PRDM9 reverses hybrid sterility in mice. Nature 530 (2016), 171–176.
-
(2016)
Nature
, vol.530
, pp. 171-176
-
-
Davies, B.1
Hatton, E.2
Altemose, N.3
Hussin, J.G.4
Pratto, F.5
Zhang, G.6
Hinch, A.G.7
Moralli, D.8
Biggs, D.9
Diaz, R.10
Preece, C.11
Li, R.12
Bitoun, E.13
Brick, K.14
Green, C.M.15
Camerini-Otero, R.D.16
Myers, S.R.17
Donnelly, P.18
-
36
-
-
0022976432
-
Nonhomologous recombination in mammalian cells: role for short sequence homologies in the joining reaction
-
[36] Roth, D.B., Wilson, J.H., Nonhomologous recombination in mammalian cells: role for short sequence homologies in the joining reaction. Mol. Cell Biol. 6 (1986), 4295–4304.
-
(1986)
Mol. Cell Biol.
, vol.6
, pp. 4295-4304
-
-
Roth, D.B.1
Wilson, J.H.2
-
37
-
-
0028013486
-
Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events
-
[37] Kramer, K.M., Brock, J.A., Bloom, K., Moore, J.K., Haber, J.E., Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol. Cell Biol. 14 (1994), 1293–1301.
-
(1994)
Mol. Cell Biol.
, vol.14
, pp. 1293-1301
-
-
Kramer, K.M.1
Brock, J.A.2
Bloom, K.3
Moore, J.K.4
Haber, J.E.5
-
38
-
-
0026762509
-
V(D)J recombination in mouse thymocytes: double-strand breaks near T cell receptor delta rearrangement signals
-
[38] Roth, D.B., Nakajima, P.B., Menetski, J.P., Bosma, M.J., Gellert, M., V(D)J recombination in mouse thymocytes: double-strand breaks near T cell receptor delta rearrangement signals. Cell 69 (1992), 41–53.
-
(1992)
Cell
, vol.69
, pp. 41-53
-
-
Roth, D.B.1
Nakajima, P.B.2
Menetski, J.P.3
Bosma, M.J.4
Gellert, M.5
-
39
-
-
3142765336
-
Class-switch recombination: interplay of transcription, DNA deamination and DNA repair
-
[39] Chaudhuri, J., Alt, F.W., Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat. Rev. Immunol. 4 (2004), 541–552.
-
(2004)
Nat. Rev. Immunol.
, vol.4
, pp. 541-552
-
-
Chaudhuri, J.1
Alt, F.W.2
-
40
-
-
0027156278
-
Impairment of V(D)J recombination in double-strand break repair mutants
-
[40] Taccioli, G.E., Rathbun, G., Oltz, E., Stamato, T., Jeggo, P.A., Alt, F.W., Impairment of V(D)J recombination in double-strand break repair mutants. Science 260 (1993), 207–210.
-
(1993)
Science
, vol.260
, pp. 207-210
-
-
Taccioli, G.E.1
Rathbun, G.2
Oltz, E.3
Stamato, T.4
Jeggo, P.A.5
Alt, F.W.6
-
41
-
-
3242879122
-
The mechanism of vertebrate nonhomologous DNA end joining and its role in V(D)J recombination
-
[41] Lieber, M.R., Ma, Y., Pannicke, U., Schwarz, K., The mechanism of vertebrate nonhomologous DNA end joining and its role in V(D)J recombination. DNA Repair (Amst.) 3 (2004), 817–826.
-
(2004)
DNA Repair (Amst.)
, vol.3
, pp. 817-826
-
-
Lieber, M.R.1
Ma, Y.2
Pannicke, U.3
Schwarz, K.4
-
42
-
-
0025011134
-
The scid mutation in mice causes a general defect in DNA repair
-
[42] Fulop, G.M., Phillips, R.A., The scid mutation in mice causes a general defect in DNA repair. Nature 347 (1990), 479–482.
-
(1990)
Nature
, vol.347
, pp. 479-482
-
-
Fulop, G.M.1
Phillips, R.A.2
-
43
-
-
84900408873
-
Nonhomologous end joining: a good solution for bad ends
-
[43] Waters, C.A., Strande, N.T., Wyatt, D.W., Pryor, J.M., Ramsden, D.A., Nonhomologous end joining: a good solution for bad ends. DNA Repair (Amst.) 17 (2014), 39–51.
-
(2014)
DNA Repair (Amst.)
, vol.17
, pp. 39-51
-
-
Waters, C.A.1
Strande, N.T.2
Wyatt, D.W.3
Pryor, J.M.4
Ramsden, D.A.5
-
44
-
-
84922384279
-
DNA repair. PAXX a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair
-
[44] Ochi, T., Blackford, A.N., Coates, J., Jhujh, S., Mehmood, S., Tamura, N., Travers, J., Wu, Q., Draviam, V.M., Robinson, C.V., Blundell, T.L., Jackson, S.P., DNA repair. PAXX a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair. Science 347 (2015), 185–188.
-
(2015)
Science
, vol.347
, pp. 185-188
-
-
Ochi, T.1
Blackford, A.N.2
Coates, J.3
Jhujh, S.4
Mehmood, S.5
Tamura, N.6
Travers, J.7
Wu, Q.8
Draviam, V.M.9
Robinson, C.V.10
Blundell, T.L.11
Jackson, S.P.12
-
45
-
-
12844278880
-
Rejoining of DNA double-strand breaks as a function of overhang length
-
[45] Daley, J.M., Wilson, T.E., Rejoining of DNA double-strand breaks as a function of overhang length. Mol. Cell Biol. 25 (2005), 896–906.
-
(2005)
Mol. Cell Biol.
, vol.25
, pp. 896-906
-
-
Daley, J.M.1
Wilson, T.E.2
-
46
-
-
33846002032
-
Evolutionary and functional conservation of the DNA non-homologous end-joining protein, XLF/Cernunnos
-
[46] Hentges, P., Ahnesorg, P., Pitcher, R.S., Bruce, C.K., Kysela, B., Green, A.J., Bianchi, J., Wilson, T.E., Jackson, S.P., Doherty, A.J., Evolutionary and functional conservation of the DNA non-homologous end-joining protein, XLF/Cernunnos. J. Biol. Chem. 281 (2006), 37517–37526.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 37517-37526
-
-
Hentges, P.1
Ahnesorg, P.2
Pitcher, R.S.3
Bruce, C.K.4
Kysela, B.5
Green, A.J.6
Bianchi, J.7
Wilson, T.E.8
Jackson, S.P.9
Doherty, A.J.10
-
47
-
-
0029976325
-
Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae
-
[47] Moore, J.K., Haber, J.E., Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell Biol. 16 (1996), 2164–2173.
-
(1996)
Mol. Cell Biol.
, vol.16
, pp. 2164-2173
-
-
Moore, J.K.1
Haber, J.E.2
-
48
-
-
52949149420
-
Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair
-
[48] Williams, R.S., Moncalian, G., Williams, J.S., Yamada, Y., Limbo, O., Shin, D.S., Groocock, L.M., Cahill, D., Hitomi, C., Guenther, G., Moiani, D., Carney, J.P., Russell, P., Tainer, J.A., Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair. Cell 135 (2008), 97–109.
-
(2008)
Cell
, vol.135
, pp. 97-109
-
-
Williams, R.S.1
Moncalian, G.2
Williams, J.S.3
Yamada, Y.4
Limbo, O.5
Shin, D.S.6
Groocock, L.M.7
Cahill, D.8
Hitomi, C.9
Guenther, G.10
Moiani, D.11
Carney, J.P.12
Russell, P.13
Tainer, J.A.14
-
49
-
-
1942421722
-
RAG proteins shepherd double-strand breaks to a specific pathway suppressing error-prone repair, but RAG nicking initiates homologous recombination
-
[49] Lee, G.S., Neiditch, M.B., Salus, S.S., Roth, D.B., RAG proteins shepherd double-strand breaks to a specific pathway suppressing error-prone repair, but RAG nicking initiates homologous recombination. Cell 117 (2004), 171–184.
-
(2004)
Cell
, vol.117
, pp. 171-184
-
-
Lee, G.S.1
Neiditch, M.B.2
Salus, S.S.3
Roth, D.B.4
-
50
-
-
63449084054
-
MRN complex function in the repair of chromosomal Rag-mediated DNA double-strand breaks
-
[50] Helmink, B.A., Bredemeyer, A.L., Lee, B.S., Huang, C.Y., Sharma, G.G., Walker, L.M., Bednarski, J.J., Lee, W.L., Pandita, T.K., Bassing, C.H., Sleckman, B.P., MRN complex function in the repair of chromosomal Rag-mediated DNA double-strand breaks. J. Exp. Med. 206 (2009), 669–679.
-
(2009)
J. Exp. Med.
, vol.206
, pp. 669-679
-
-
Helmink, B.A.1
Bredemeyer, A.L.2
Lee, B.S.3
Huang, C.Y.4
Sharma, G.G.5
Walker, L.M.6
Bednarski, J.J.7
Lee, W.L.8
Pandita, T.K.9
Bassing, C.H.10
Sleckman, B.P.11
-
51
-
-
0042632901
-
Pathways of DNA double-strand break repair during the mammalian cell cycle
-
[51] Rothkamm, K., Kruger, I., Thompson, L.H., Lobrich, M., Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol. Cell Biol. 23 (2003), 5706–5715.
-
(2003)
Mol. Cell Biol.
, vol.23
, pp. 5706-5715
-
-
Rothkamm, K.1
Kruger, I.2
Thompson, L.H.3
Lobrich, M.4
-
52
-
-
0030033061
-
The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination
-
[52] Siede, W., Friedl, A.A., Dianova, I., Eckardt, S.F., Friedberg, E.C., The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics 142 (1996), 91–102.
-
(1996)
Genetics
, vol.142
, pp. 91-102
-
-
Siede, W.1
Friedl, A.A.2
Dianova, I.3
Eckardt, S.F.4
Friedberg, E.C.5
-
53
-
-
84945916597
-
Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway?
-
[53] Sfeir, A., Symington, L.S., Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway?. Trends Biochem. Sci. 40 (2015), 701–714.
-
(2015)
Trends Biochem. Sci.
, vol.40
, pp. 701-714
-
-
Sfeir, A.1
Symington, L.S.2
-
54
-
-
15844385545
-
Ku80-deficient cells exhibit excess degradation of extrachromosomal DNA
-
[54] Liang, F., Jasin, M., Ku80-deficient cells exhibit excess degradation of extrachromosomal DNA. J. Biol. Chem. 271 (1996), 14405–14411.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 14405-14411
-
-
Liang, F.1
Jasin, M.2
-
55
-
-
0029791694
-
Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways
-
[55] Boulton, S.J., Jackson, S.P., Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15 (1996), 5093–5103.
-
(1996)
EMBO J.
, vol.15
, pp. 5093-5103
-
-
Boulton, S.J.1
Jackson, S.P.2
-
56
-
-
0029954821
-
Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae
-
[56] Milne, G.T., Jin, S., Shannon, K.B., Weaver, D.T., Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol. Cell Biol. 16 (1996), 4189–4198.
-
(1996)
Mol. Cell Biol.
, vol.16
, pp. 4189-4198
-
-
Milne, G.T.1
Jin, S.2
Shannon, K.B.3
Weaver, D.T.4
-
57
-
-
77950462986
-
Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation
-
[57] Simsek, D., Jasin, M., Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation. Nat. Struct. Mol. Biol. 17 (2010), 410–416.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 410-416
-
-
Simsek, D.1
Jasin, M.2
-
58
-
-
78650995499
-
An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway
-
[58] Zhang, Y., Jasin, M., An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat. Struct. Mol. Biol. 18 (2011), 80–84.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 80-84
-
-
Zhang, Y.1
Jasin, M.2
-
59
-
-
68249138694
-
Role of Mre11 in chromosomal nonhomologous end joining in mammalian cells
-
[59] Rass, E., Grabarz, A., Plo, I., Gautier, J., Bertrand, P., Lopez, B.S., Role of Mre11 in chromosomal nonhomologous end joining in mammalian cells. Nat. Struct. Mol. Biol. 16 (2009), 819–824.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 819-824
-
-
Rass, E.1
Grabarz, A.2
Plo, I.3
Gautier, J.4
Bertrand, P.5
Lopez, B.S.6
-
60
-
-
84907976219
-
Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining
-
[60] Ghezraoui, H., Piganeau, M., Renouf, B., Renaud, J.B., Sallmyr, A., Ruis, B., Oh, S., Tomkinson, A.E., Hendrickson, E.A., Giovannangeli, C., Jasin, M., Brunet, E., Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining. Mol. Cell 55 (2014), 829–842.
-
(2014)
Mol. Cell
, vol.55
, pp. 829-842
-
-
Ghezraoui, H.1
Piganeau, M.2
Renouf, B.3
Renaud, J.B.4
Sallmyr, A.5
Ruis, B.6
Oh, S.7
Tomkinson, A.E.8
Hendrickson, E.A.9
Giovannangeli, C.10
Jasin, M.11
Brunet, E.12
-
61
-
-
46249131123
-
Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair
-
[61] Bennardo, N., Cheng, A., Huang, N., Stark, J.M., Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet., 4, 2008, e1000110.
-
(2008)
PLoS Genet.
, vol.4
, pp. e1000110
-
-
Bennardo, N.1
Cheng, A.2
Huang, N.3
Stark, J.M.4
-
62
-
-
79959814259
-
DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation
-
[62] Simsek, D., Brunet, E., Wong, S.Y., Katyal, S., Gao, Y., McKinnon, P.J., Lou, J., Zhang, L., Li, J., Rebar, E.J., Gregory, P.D., Holmes, M.C., Jasin, M., DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet., 7, 2011, e1002080.
-
(2011)
PLoS Genet.
, vol.7
, pp. e1002080
-
-
Simsek, D.1
Brunet, E.2
Wong, S.Y.3
Katyal, S.4
Gao, Y.5
McKinnon, P.J.6
Lou, J.7
Zhang, L.8
Li, J.9
Rebar, E.J.10
Gregory, P.D.11
Holmes, M.C.12
Jasin, M.13
-
63
-
-
84923090502
-
Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination
-
[63] Mateos-Gomez, P.A., Gong, F., Nair, N., Miller, K.M., Lazzerini-Denchi, E., Sfeir, A., Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination. Nature 518 (2015), 254–257.
-
(2015)
Nature
, vol.518
, pp. 254-257
-
-
Mateos-Gomez, P.A.1
Gong, F.2
Nair, N.3
Miller, K.M.4
Lazzerini-Denchi, E.5
Sfeir, A.6
-
64
-
-
84860548726
-
Mating-type genes and MAT switching in Saccharomyces cerevisiae
-
[64] Haber, J.E., Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 191 (2012), 33–64.
-
(2012)
Genetics
, vol.191
, pp. 33-64
-
-
Haber, J.E.1
-
65
-
-
0000113348
-
Recognition and cleavage site of the intron-encoded omega transposase
-
[65] Colleaux, L., D'Auriol, L., Galibert, F., Dujon, B., Recognition and cleavage site of the intron-encoded omega transposase. Proc. Natl. Acad. Sci. U. S. A. 85 (1988), 6022–6026.
-
(1988)
Proc. Natl. Acad. Sci. U. S. A.
, vol.85
, pp. 6022-6026
-
-
Colleaux, L.1
D'Auriol, L.2
Galibert, F.3
Dujon, B.4
-
66
-
-
0028237305
-
Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells
-
[66] Rouet, P., Smih, F., Jasin, M., Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 91 (1994), 6064–6068.
-
(1994)
Proc. Natl. Acad. Sci. U. S. A.
, vol.91
, pp. 6064-6068
-
-
Rouet, P.1
Smih, F.2
Jasin, M.3
-
67
-
-
0023058299
-
Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into E. coli as a specific double strand endonuclease
-
[67] Colleaux, L., d'Auriol, L., Betermier, M., Cottarel, G., Jacquier, A., Galibert, F., Dujon, B., Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into E. coli as a specific double strand endonuclease. Cell 44 (1986), 521–533.
-
(1986)
Cell
, vol.44
, pp. 521-533
-
-
Colleaux, L.1
d'Auriol, L.2
Betermier, M.3
Cottarel, G.4
Jacquier, A.5
Galibert, F.6
Dujon, B.7
-
68
-
-
0021646203
-
The product of the HO gene is a nuclease: purification and characterization of the enzyme
-
[68] Kostriken, R., Heffron, F., The product of the HO gene is a nuclease: purification and characterization of the enzyme. Cold Spring Harb. Symp. Quant. Biol. 49 (1984), 89–96.
-
(1984)
Cold Spring Harb. Symp. Quant. Biol.
, vol.49
, pp. 89-96
-
-
Kostriken, R.1
Heffron, F.2
-
69
-
-
0026573892
-
Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus
-
[69] Plessis, A., Perrin, A., Haber, J.E., Dujon, B., Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130 (1992), 451–460.
-
(1992)
Genetics
, vol.130
, pp. 451-460
-
-
Plessis, A.1
Perrin, A.2
Haber, J.E.3
Dujon, B.4
-
70
-
-
0027375105
-
Purification and characterization of VDE, a site-specific endonuclease from the yeast Saccharomyces cerevisiae
-
[70] Gimble, F.S., Thorner, J., Purification and characterization of VDE, a site-specific endonuclease from the yeast Saccharomyces cerevisiae. J. Biol. Chem. 268 (1993), 21844–21853.
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 21844-21853
-
-
Gimble, F.S.1
Thorner, J.2
-
71
-
-
0036287093
-
Homing at an extragenic locus mediated by VDE (PI-SceI) in Saccharomyces cerevisiae
-
[71] Nogami, S., Fukuda, T., Nagai, Y., Yabe, S., Sugiura, M., Mizutani, R., Satow, Y., Anraku, Y., Ohya, Y., Homing at an extragenic locus mediated by VDE (PI-SceI) in Saccharomyces cerevisiae. Yeast 19 (2002), 773–782.
-
(2002)
Yeast
, vol.19
, pp. 773-782
-
-
Nogami, S.1
Fukuda, T.2
Nagai, Y.3
Yabe, S.4
Sugiura, M.5
Mizutani, R.6
Satow, Y.7
Anraku, Y.8
Ohya, Y.9
-
72
-
-
33846705290
-
Evolution and function of HO and VDE endoncucleases in fungi
-
B. Belfort V. Derbyshire B. Stodddard D. Wood Springer Verlag
-
[72] Haber, J.E., Wolfe, K.H., Evolution and function of HO and VDE endoncucleases in fungi. Belfort, B., Derbyshire, V., Stodddard, B., Wood, D., (eds.) Homing Endonucleases and Inteins, 2005, Springer Verlag, 161–175.
-
(2005)
Homing Endonucleases and Inteins
, pp. 161-175
-
-
Haber, J.E.1
Wolfe, K.H.2
-
73
-
-
84885511456
-
Homing Endonucleases and the Yeast Mitochondrial (Locus—A Historical Perspective
-
B. Belfort V. Derbyshire B. Stodddard D. Wood Springer Verlag
-
[73] Dujon, B., Homing Endonucleases and the Yeast Mitochondrial (Locus—A Historical Perspective. Belfort, B., Derbyshire, V., Stodddard, B., Wood, D., (eds.) Homing Endonucleases and Inteins, 2005, Springer Verlag, 11–31.
-
(2005)
Homing Endonucleases and Inteins
, pp. 11-31
-
-
Dujon, B.1
-
74
-
-
65249139484
-
Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-AniI LAGLIDADG homing endonuclease
-
[74] McConnell Smith, A., Takeuchi, R., Pellenz, S., Davis, L., Maizels, N., Monnat, R.J. Jr., Stoddard, B.L., Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-AniI LAGLIDADG homing endonuclease. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 5099–5104.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 5099-5104
-
-
McConnell Smith, A.1
Takeuchi, R.2
Pellenz, S.3
Davis, L.4
Maizels, N.5
Monnat, R.J.6
Stoddard, B.L.7
-
75
-
-
0345120902
-
Generation of highly site-specific DNA double-strand breaks in human cells by the homing endonucleases I-PpoI and I-CreI
-
[75] Monnat, R.J. Jr., Hackmann, A.F., Cantrell, M.A., Generation of highly site-specific DNA double-strand breaks in human cells by the homing endonucleases I-PpoI and I-CreI. Biochem. Biophys. Res. Commun. 255 (1999), 88–93.
-
(1999)
Biochem. Biophys. Res. Commun.
, vol.255
, pp. 88-93
-
-
Monnat, R.J.1
Hackmann, A.F.2
Cantrell, M.A.3
-
76
-
-
77951498531
-
High-resolution profiling of gammaH2AX around DNA double strand breaks in the mammalian genome
-
[76] Iacovoni, J.S., Caron, P., Lassadi, I., Nicolas, E., Massip, L., Trouche, D., Legube, G., High-resolution profiling of gammaH2AX around DNA double strand breaks in the mammalian genome. EMBO J. 29 (2010), 1446–1457.
-
(2010)
EMBO J.
, vol.29
, pp. 1446-1457
-
-
Iacovoni, J.S.1
Caron, P.2
Lassadi, I.3
Nicolas, E.4
Massip, L.5
Trouche, D.6
Legube, G.7
-
77
-
-
43149118801
-
Assessment of protein dynamics and DNA repair following generation of DNA double-strand breaks at defined genomic sites
-
[77] Berkovich, E., Monnat, R.J. Jr., Kastan, M.B., Assessment of protein dynamics and DNA repair following generation of DNA double-strand breaks at defined genomic sites. Nat. Protoc. 3 (2008), 915–922.
-
(2008)
Nat. Protoc.
, vol.3
, pp. 915-922
-
-
Berkovich, E.1
Monnat, R.J.2
Kastan, M.B.3
-
78
-
-
84897990643
-
Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks
-
[78] Aymard, F., Bugler, B., Schmidt, C.K., Guillou, E., Caron, P., Briois, S., Iacovoni, J.S., Daburon, V., Miller, K.M., Jackson, S.P., Legube, G., Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat. Struct. Mol. Biol. 21 (2014), 366–374.
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 366-374
-
-
Aymard, F.1
Bugler, B.2
Schmidt, C.K.3
Guillou, E.4
Caron, P.5
Briois, S.6
Iacovoni, J.S.7
Daburon, V.8
Miller, K.M.9
Jackson, S.P.10
Legube, G.11
-
79
-
-
0020757503
-
Regulation of yeast mating-type interconversion: feedback control of HO gene expression by the mating-type locus
-
[79] Jensen, R., Sprague, G.F., Herskowitz, I., Regulation of yeast mating-type interconversion: feedback control of HO gene expression by the mating-type locus. Proc. Natl. Acad. Sci. U. S. A. 80 (1983), 3035–3039.
-
(1983)
Proc. Natl. Acad. Sci. U. S. A.
, vol.80
, pp. 3035-3039
-
-
Jensen, R.1
Sprague, G.F.2
Herskowitz, I.3
-
80
-
-
0024027329
-
Physical monitoring of mating type switching in Saccharomyces cerevisiae
-
[80] Connolly, B., White, C.I., Haber, J.E., Physical monitoring of mating type switching in Saccharomyces cerevisiae. Mol. Cell Biol. 8 (1988), 2342–2349.
-
(1988)
Mol. Cell Biol.
, vol.8
, pp. 2342-2349
-
-
Connolly, B.1
White, C.I.2
Haber, J.E.3
-
81
-
-
0025020278
-
Intermediates of recombination during mating type switching in Saccharomyces cerevisiae
-
[81] White, C.I., Haber, J.E., Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9 (1990), 663–673.
-
(1990)
EMBO J.
, vol.9
, pp. 663-673
-
-
White, C.I.1
Haber, J.E.2
-
82
-
-
0041903834
-
In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination
-
[82] Sugawara, N., Wang, X., Haber, J.E., In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol. Cell 12 (2003), 209–219.
-
(2003)
Mol. Cell
, vol.12
, pp. 209-219
-
-
Sugawara, N.1
Wang, X.2
Haber, J.E.3
-
83
-
-
0042626553
-
Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast
-
[83] Wolner, B., van Komen, S., Sung, P., Peterson, C.L., Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast. Mol. Cell 12 (2003), 221–232.
-
(2003)
Mol. Cell
, vol.12
, pp. 221-232
-
-
Wolner, B.1
van Komen, S.2
Sung, P.3
Peterson, C.L.4
-
84
-
-
0033213392
-
Brca1 controls homology-directed DNA repair
-
[84] Moynahan, M.E., Chiu, J.W., Koller, B.H., Jasin, M., Brca1 controls homology-directed DNA repair. Mol. Cell 4 (1999), 511–518.
-
(1999)
Mol. Cell
, vol.4
, pp. 511-518
-
-
Moynahan, M.E.1
Chiu, J.W.2
Koller, B.H.3
Jasin, M.4
-
85
-
-
0035099044
-
BRCA2 is required for homology-directed repair of chromosomal breaks
-
[85] Moynahan, M.E., Pierce, A.J., Jasin, M., BRCA2 is required for homology-directed repair of chromosomal breaks. Mol. Cell 7 (2001), 263–272.
-
(2001)
Mol. Cell
, vol.7
, pp. 263-272
-
-
Moynahan, M.E.1
Pierce, A.J.2
Jasin, M.3
-
86
-
-
33845454120
-
Conservative inheritance of newly synthesized DNA in double-strand break-induced gene conversion
-
[86] Ira, G., Satory, D., Haber, J.E., Conservative inheritance of newly synthesized DNA in double-strand break-induced gene conversion. Mol. Cell Biol. 26 (2006), 9424–9429.
-
(2006)
Mol. Cell Biol.
, vol.26
, pp. 9424-9429
-
-
Ira, G.1
Satory, D.2
Haber, J.E.3
-
87
-
-
79955522790
-
Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes
-
[87] Schwartz, E.K., Heyer, W.D., Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes. Chromosoma 120 (2011), 109–127.
-
(2011)
Chromosoma
, vol.120
, pp. 109-127
-
-
Schwartz, E.K.1
Heyer, W.D.2
-
88
-
-
0347987856
-
The Bloom's syndrome helicase suppresses crossing over during homologous recombination
-
[88] Wu, L., Hickson, I.D., The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426 (2003), 870–874.
-
(2003)
Nature
, vol.426
, pp. 870-874
-
-
Wu, L.1
Hickson, I.D.2
-
89
-
-
0345447604
-
Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast
-
[89] Ira, G., Malkova, A., Liberi, G., Foiani, M., Haber, J.E., Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115 (2003), 401–411.
-
(2003)
Cell
, vol.115
, pp. 401-411
-
-
Ira, G.1
Malkova, A.2
Liberi, G.3
Foiani, M.4
Haber, J.E.5
-
90
-
-
84874617280
-
RNF212 is a dosage-sensitive regulator of crossing-over during mammalian meiosis
-
[90] Reynolds, A., Qiao, H., Yang, Y., Chen, J.K., Jackson, N., Biswas, K., Holloway, J.K., Baudat, F., de Massy, B., Wang, J., Hoog, C., Cohen, P.E., Hunter, N., RNF212 is a dosage-sensitive regulator of crossing-over during mammalian meiosis. Nat. Genet. 45 (2013), 269–278.
-
(2013)
Nat. Genet.
, vol.45
, pp. 269-278
-
-
Reynolds, A.1
Qiao, H.2
Yang, Y.3
Chen, J.K.4
Jackson, N.5
Biswas, K.6
Holloway, J.K.7
Baudat, F.8
de Massy, B.9
Wang, J.10
Hoog, C.11
Cohen, P.E.12
Hunter, N.13
-
91
-
-
0242468933
-
Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences
-
[91] Ma, J.L., Kim, E.M., Haber, J.E., Lee, S.E., Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences. Mol. Cell Biol. 23 (2003), 8820–8828.
-
(2003)
Mol. Cell Biol.
, vol.23
, pp. 8820-8828
-
-
Ma, J.L.1
Kim, E.M.2
Haber, J.E.3
Lee, S.E.4
-
92
-
-
54849404458
-
MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings
-
[92] McVey, M., Lee, S.E., MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet. 24 (2008), 529–538.
-
(2008)
Trends Genet.
, vol.24
, pp. 529-538
-
-
McVey, M.1
Lee, S.E.2
-
93
-
-
84870720807
-
Microhomology directs diverse DNA break repair pathways and chromosomal translocations
-
[93] Villarreal, D.D., Lee, K., Deem, A., Shim, E.Y., Malkova, A., Lee, S.E., Microhomology directs diverse DNA break repair pathways and chromosomal translocations. PLoS Genet., 8, 2012, e1003026.
-
(2012)
PLoS Genet.
, vol.8
, pp. e1003026
-
-
Villarreal, D.D.1
Lee, K.2
Deem, A.3
Shim, E.Y.4
Malkova, A.5
Lee, S.E.6
-
94
-
-
33748885242
-
Different mating-type-regulated genes affect the DNA repair defects of Saccharomyces cerevisiae RAD51, RAD52 and RAD55 mutants
-
[94] Valencia-Burton, M., Oki, M., Johnson, J., Seier, T.A., Kamakaka, R., Haber, J.E., Different mating-type-regulated genes affect the DNA repair defects of Saccharomyces cerevisiae RAD51, RAD52 and RAD55 mutants. Genetics 174 (2006), 41–55.
-
(2006)
Genetics
, vol.174
, pp. 41-55
-
-
Valencia-Burton, M.1
Oki, M.2
Johnson, J.3
Seier, T.A.4
Kamakaka, R.5
Haber, J.E.6
-
95
-
-
0034600975
-
Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells
-
[95] Johnson, R.D., Jasin, M., Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 19 (2000), 3398–3407.
-
(2000)
EMBO J.
, vol.19
, pp. 3398-3407
-
-
Johnson, R.D.1
Jasin, M.2
-
96
-
-
0036864626
-
Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination
-
[96] Frank-Vaillant, M., Marcand, S., Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination. Mol. Cell 10 (2002), 1189–1199.
-
(2002)
Mol. Cell
, vol.10
, pp. 1189-1199
-
-
Frank-Vaillant, M.1
Marcand, S.2
-
97
-
-
65549095526
-
Nucleases and helicases take center stage in homologous recombination
-
[97] Mimitou, E.P., Symington, L.S., Nucleases and helicases take center stage in homologous recombination. Trends Biochem. Sci. 34 (2009), 264–272.
-
(2009)
Trends Biochem. Sci.
, vol.34
, pp. 264-272
-
-
Mimitou, E.P.1
Symington, L.S.2
-
98
-
-
0036671706
-
Recovery from checkpoint-mediated arrest after repair of a double- strand break requires srs2 helicase
-
[98] Vaze, M., Pellicioli, A., Lee, S., Ira, G., Liberi, G., Arbel-Eden, A., Foiani, M., Haber, J., Recovery from checkpoint-mediated arrest after repair of a double- strand break requires srs2 helicase. Mol. Cell, 10, 2002, 373.
-
(2002)
Mol. Cell
, vol.10
, pp. 373
-
-
Vaze, M.1
Pellicioli, A.2
Lee, S.3
Ira, G.4
Liberi, G.5
Arbel-Eden, A.6
Foiani, M.7
Haber, J.8
-
99
-
-
84897968795
-
RPA antagonizes microhomology-mediated repair of DNA double-strand breaks
-
[99] Deng, S.K., Gibb, B., de Almeida, M.J., Greene, E.C., Symington, L.S., RPA antagonizes microhomology-mediated repair of DNA double-strand breaks. Nat. Struct. Mol. Biol. 21 (2014), 405–412.
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 405-412
-
-
Deng, S.K.1
Gibb, B.2
de Almeida, M.J.3
Greene, E.C.4
Symington, L.S.5
-
100
-
-
84957436995
-
HELB is a feedback inhibitor of DNA end resection
-
[100] Tkac, J., Xu, G., Adhikary, H., Young, J.T., Gallo, D., Escribano-Diaz, C., Krietsch, J., Orthwein, A., Munro, M., Sol, W., Al-Hakim, A., Lin, Z.Y., Jonkers, J., Borst, P., Brown, G.W., Gingras, A.C., Rottenberg, S., Masson, J.Y., Durocher, D., HELB is a feedback inhibitor of DNA end resection. Mol. Cell 61 (2016), 405–418.
-
(2016)
Mol. Cell
, vol.61
, pp. 405-418
-
-
Tkac, J.1
Xu, G.2
Adhikary, H.3
Young, J.T.4
Gallo, D.5
Escribano-Diaz, C.6
Krietsch, J.7
Orthwein, A.8
Munro, M.9
Sol, W.10
Al-Hakim, A.11
Lin, Z.Y.12
Jonkers, J.13
Borst, P.14
Brown, G.W.15
Gingras, A.C.16
Rottenberg, S.17
Masson, J.Y.18
Durocher, D.19
-
101
-
-
53649104599
-
Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
-
[101] Mimitou, E.P., Symington, L.S., Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455 (2008), 770–774.
-
(2008)
Nature
, vol.455
, pp. 770-774
-
-
Mimitou, E.P.1
Symington, L.S.2
-
102
-
-
0035806955
-
Exonuclease activity is required for sequence addition and Cdc13p loading at a de novo telomere
-
[102] Diede, S.J., Gottschling, D.E., Exonuclease activity is required for sequence addition and Cdc13p loading at a de novo telomere. Curr. Biol. 11 (2001), 1336–1340.
-
(2001)
Curr. Biol.
, vol.11
, pp. 1336-1340
-
-
Diede, S.J.1
Gottschling, D.E.2
-
103
-
-
36549060102
-
Human CtIP promotes DNA end resection
-
[103] Sartori, A.A., Lukas, C., Coates, J., Mistrik, M., Fu, S., Bartek, J., Baer, R., Lukas, J., Jackson, S.P., Human CtIP promotes DNA end resection. Nature 450 (2007), 509–514.
-
(2007)
Nature
, vol.450
, pp. 509-514
-
-
Sartori, A.A.1
Lukas, C.2
Coates, J.3
Mistrik, M.4
Fu, S.5
Bartek, J.6
Baer, R.7
Lukas, J.8
Jackson, S.P.9
-
104
-
-
51549095956
-
Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends
-
[104] Zhu, Z., Chung, W.H., Shim, E.Y., Lee, S.E., Ira, G., Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134 (2008), 981–994.
-
(2008)
Cell
, vol.134
, pp. 981-994
-
-
Zhu, Z.1
Chung, W.H.2
Shim, E.Y.3
Lee, S.E.4
Ira, G.5
-
105
-
-
53649090109
-
DNA helicases Sgs1 and BLM promote DNA double-strand break resection
-
[105] Gravel, S., Chapman, J.R., Magill, C., Jackson, S.P., DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev. 22 (2008), 2767–2772.
-
(2008)
Genes Dev.
, vol.22
, pp. 2767-2772
-
-
Gravel, S.1
Chapman, J.R.2
Magill, C.3
Jackson, S.P.4
-
106
-
-
7244220162
-
DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1
-
[106] Ira, G., Pellicioli, A., Balijja, A., Wang, X., Fiorani, S., Carotenuto, W., Liberi, G., Bressan, D., Wan, L., Hollingsworth, N.M., Haber, J.E., Foiani, M., DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431 (2004), 1011–1017.
-
(2004)
Nature
, vol.431
, pp. 1011-1017
-
-
Ira, G.1
Pellicioli, A.2
Balijja, A.3
Wang, X.4
Fiorani, S.5
Carotenuto, W.6
Liberi, G.7
Bressan, D.8
Wan, L.9
Hollingsworth, N.M.10
Haber, J.E.11
Foiani, M.12
-
107
-
-
11244269445
-
The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle
-
[107] Aylon, Y., Liefshitz, B., Kupiec, M., The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J. 23 (2004), 4868–4875.
-
(2004)
EMBO J.
, vol.23
, pp. 4868-4875
-
-
Aylon, Y.1
Liefshitz, B.2
Kupiec, M.3
-
108
-
-
77957805302
-
Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2
-
[108] Mimitou, E.P., Symington, L.S., Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2. EMBO J. 29 (2010), 3358–3369.
-
(2010)
EMBO J.
, vol.29
, pp. 3358-3369
-
-
Mimitou, E.P.1
Symington, L.S.2
-
109
-
-
79951688343
-
BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair
-
[109] Nimonkar, A.V., Genschel, J., Kinoshita, E., Polaczek, P., Campbell, J.L., Wyman, C., Modrich, P., Kowalczykowski, S.C., BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev. 25 (2011), 350–362.
-
(2011)
Genes Dev.
, vol.25
, pp. 350-362
-
-
Nimonkar, A.V.1
Genschel, J.2
Kinoshita, E.3
Polaczek, P.4
Campbell, J.L.5
Wyman, C.6
Modrich, P.7
Kowalczykowski, S.C.8
-
110
-
-
84919375868
-
Multifaceted role of the Topo IIIalpha-RMI1-RMI2 complex and DNA2 in the BLM-dependent pathway of DNA break end resection
-
[110] Daley, J.M., Chiba, T., Xue, X., Niu, H., Sung, P., Multifaceted role of the Topo IIIalpha-RMI1-RMI2 complex and DNA2 in the BLM-dependent pathway of DNA break end resection. Nucleic Acids Res. 42 (2014), 11083–11091.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 11083-11091
-
-
Daley, J.M.1
Chiba, T.2
Xue, X.3
Niu, H.4
Sung, P.5
-
111
-
-
84928409013
-
Direct measurement of single-stranded DNA intermediates in mammalian cells by quantitative polymerase chain reaction
-
[111] Zhou, Y., Paull, T.T., Direct measurement of single-stranded DNA intermediates in mammalian cells by quantitative polymerase chain reaction. Anal. Biochem. 479 (2015), 48–50.
-
(2015)
Anal. Biochem.
, vol.479
, pp. 48-50
-
-
Zhou, Y.1
Paull, T.T.2
-
112
-
-
77955841149
-
Collaboration and competition between DNA double-strand break repair pathways
-
[112] Kass, E.M., Jasin, M., Collaboration and competition between DNA double-strand break repair pathways. FEBS Lett. 584 (2010), 3703–3708.
-
(2010)
FEBS Lett.
, vol.584
, pp. 3703-3708
-
-
Kass, E.M.1
Jasin, M.2
-
113
-
-
84892983257
-
53BP1: pro choice in DNA repair
-
[113] Zimmermann, M., de Lange, T., 53BP1: pro choice in DNA repair. Trends Cell Biol. 24 (2014), 108–117.
-
(2014)
Trends Cell Biol.
, vol.24
, pp. 108-117
-
-
Zimmermann, M.1
de Lange, T.2
-
114
-
-
6344234817
-
Genetic steps of mammalian homologous repair with distinct mutagenic consequences
-
[114] Stark, J.M., Pierce, A.J., Oh, J., Pastink, A., Jasin, M., Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol. Cell Biol. 24 (2004), 9305–9316.
-
(2004)
Mol. Cell Biol.
, vol.24
, pp. 9305-9316
-
-
Stark, J.M.1
Pierce, A.J.2
Oh, J.3
Pastink, A.4
Jasin, M.5
-
115
-
-
77950958141
-
53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks
-
[115] Bunting, S.F., Callen, E., Wong, N., Chen, H.T., Polato, F., Gunn, A., Bothmer, A., Feldhahn, N., Fernandez-Capetillo, O., Cao, L., Xu, X., Deng, C.X., Finkel, T., Nussenzweig, M., Stark, J.M., Nussenzweig, A., 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141 (2010), 243–254.
-
(2010)
Cell
, vol.141
, pp. 243-254
-
-
Bunting, S.F.1
Callen, E.2
Wong, N.3
Chen, H.T.4
Polato, F.5
Gunn, A.6
Bothmer, A.7
Feldhahn, N.8
Fernandez-Capetillo, O.9
Cao, L.10
Xu, X.11
Deng, C.X.12
Finkel, T.13
Nussenzweig, M.14
Stark, J.M.15
Nussenzweig, A.16
-
116
-
-
84950294519
-
A mechanism for the suppression of homologous recombination in G1 cells
-
[116] Orthwein, A., Noordermeer, S.M., Wilson, M.D., Landry, S., Enchev, R.I., Sherker, A., Munro, M., Pinder, J., Salsman, J., Dellaire, G., Xia, B., Peter, M., Durocher, D., A mechanism for the suppression of homologous recombination in G1 cells. Nature 528 (2015), 422–426.
-
(2015)
Nature
, vol.528
, pp. 422-426
-
-
Orthwein, A.1
Noordermeer, S.M.2
Wilson, M.D.3
Landry, S.4
Enchev, R.I.5
Sherker, A.6
Munro, M.7
Pinder, J.8
Salsman, J.9
Dellaire, G.10
Xia, B.11
Peter, M.12
Durocher, D.13
-
117
-
-
0029899891
-
Genetic manipulation of genomes with rare-cutting endonucleases
-
[117] Jasin, M., Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet. 12 (1996), 224–228.
-
(1996)
Trends Genet.
, vol.12
, pp. 224-228
-
-
Jasin, M.1
-
118
-
-
0029598505
-
Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells
-
[118] Smih, F., Rouet, P., Romanienko, P.J., Jasin, M., Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res. 23 (1995), 5012–5019.
-
(1995)
Nucleic Acids Res.
, vol.23
, pp. 5012-5019
-
-
Smih, F.1
Rouet, P.2
Romanienko, P.J.3
Jasin, M.4
-
119
-
-
0028919608
-
Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae
-
[119] Choulika, A., Perrin, A., Dujon, B., Nicolas, J.F., Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol. Cell Biol. 15 (1995), 1968–1973.
-
(1995)
Mol. Cell Biol.
, vol.15
, pp. 1968-1973
-
-
Choulika, A.1
Perrin, A.2
Dujon, B.3
Nicolas, J.F.4
-
120
-
-
0029833721
-
Chromosomal double-strand break repair in Ku80-deficient cells
-
[120] Liang, F., Romanienko, P.J., Weaver, D.T., Jeggo, P.A., Jasin, M., Chromosomal double-strand break repair in Ku80-deficient cells. Proc. Natl. Acad. Sci. U. S. A. 93 (1996), 8929–8933.
-
(1996)
Proc. Natl. Acad. Sci. U. S. A.
, vol.93
, pp. 8929-8933
-
-
Liang, F.1
Romanienko, P.J.2
Weaver, D.T.3
Jeggo, P.A.4
Jasin, M.5
-
121
-
-
0032535036
-
Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations
-
[121] Richardson, C., Moynahan, M.E., Jasin, M., Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 12 (1998), 3831–3842.
-
(1998)
Genes Dev.
, vol.12
, pp. 3831-3842
-
-
Richardson, C.1
Moynahan, M.E.2
Jasin, M.3
-
122
-
-
0031863007
-
Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells
-
[122] Donoho, G., Jasin, M., Berg, P., Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol. Cell Biol. 18 (1998), 4070–4078.
-
(1998)
Mol. Cell Biol.
, vol.18
, pp. 4070-4078
-
-
Donoho, G.1
Jasin, M.2
Berg, P.3
-
123
-
-
30444458875
-
A model of oncogenic rearrangements: differences between chromosomal translocation mechanisms and simple double-strand break repair
-
[123] Weinstock, D.M., Elliott, B., Jasin, M., A model of oncogenic rearrangements: differences between chromosomal translocation mechanisms and simple double-strand break repair. Blood 107 (2006), 777–780.
-
(2006)
Blood
, vol.107
, pp. 777-780
-
-
Weinstock, D.M.1
Elliott, B.2
Jasin, M.3
-
124
-
-
0034621854
-
Frequent chromosomal translocations induced by DNA double-strand breaks
-
[124] Richardson, C., Jasin, M., Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405 (2000), 697–700.
-
(2000)
Nature
, vol.405
, pp. 697-700
-
-
Richardson, C.1
Jasin, M.2
-
125
-
-
33749590905
-
Conservative repair of a chromosomal double-strand break by single-strand DNA through two steps of annealing
-
[125] Storici, F., Snipe, J.R., Chan, G.K., Gordenin, D.A., Resnick, M.A., Conservative repair of a chromosomal double-strand break by single-strand DNA through two steps of annealing. Mol. Cell Biol., 2006.
-
(2006)
Mol. Cell Biol.
-
-
Storici, F.1
Snipe, J.R.2
Chan, G.K.3
Gordenin, D.A.4
Resnick, M.A.5
-
126
-
-
0345166826
-
Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast
-
[126] Storici, F., Durham, C.L., Gordenin, D.A., Resnick, M.A., Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast. Proc. Natl. Acad. Sci. U. S. A. 100 (2003), 14994–14999.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 14994-14999
-
-
Storici, F.1
Durham, C.L.2
Gordenin, D.A.3
Resnick, M.A.4
-
127
-
-
84898985341
-
Aptamer-guided gene targeting in yeast and human cells
-
[127] Ruff, P., Koh, K.D., Keskin, H., Pai, R.B., Storici, F., Aptamer-guided gene targeting in yeast and human cells. Nucleic Acids Res., 42, 2014, e61.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. e61
-
-
Ruff, P.1
Koh, K.D.2
Keskin, H.3
Pai, R.B.4
Storici, F.5
-
128
-
-
34249038737
-
RNA-templated DNA repair
-
[128] Storici, F., Bebenek, K., Kunkel, T.A., Gordenin, D.A., Resnick, M.A., RNA-templated DNA repair. Nature 447 (2007), 338–341.
-
(2007)
Nature
, vol.447
, pp. 338-341
-
-
Storici, F.1
Bebenek, K.2
Kunkel, T.A.3
Gordenin, D.A.4
Resnick, M.A.5
-
129
-
-
82755189624
-
RNA-driven genetic changes in bacteria and in human cells
-
[129] Shen, Y., Nandi, P., Taylor, M.B., Stuckey, S., Bhadsavle, H.P., Weiss, B., Storici, F., RNA-driven genetic changes in bacteria and in human cells. Mutat. Res. 717 (2011), 91–98.
-
(2011)
Mutat. Res.
, vol.717
, pp. 91-98
-
-
Shen, Y.1
Nandi, P.2
Taylor, M.B.3
Stuckey, S.4
Bhadsavle, H.P.5
Weiss, B.6
Storici, F.7
-
130
-
-
84911500734
-
Transcript-RNA-templated DNA recombination and repair
-
[130] Keskin, H., Shen, Y., Huang, F., Patel, M., Yang, T., Ashley, K., Mazin, A.V., Storici, F., Transcript-RNA-templated DNA recombination and repair. Nature 515 (2014), 436–439.
-
(2014)
Nature
, vol.515
, pp. 436-439
-
-
Keskin, H.1
Shen, Y.2
Huang, F.3
Patel, M.4
Yang, T.5
Ashley, K.6
Mazin, A.V.7
Storici, F.8
-
131
-
-
0242636378
-
The crystal structure of the gene targeting homing endonuclease I-SceI reveals the origins of its target site specificity
-
[131] Moure, C.M., Gimble, F.S., Quiocho, F.A., The crystal structure of the gene targeting homing endonuclease I-SceI reveals the origins of its target site specificity. J. Mol. Biol. 334 (2003), 685–695.
-
(2003)
J. Mol. Biol.
, vol.334
, pp. 685-695
-
-
Moure, C.M.1
Gimble, F.S.2
Quiocho, F.A.3
-
132
-
-
84896504411
-
Redesign of extensive protein-DNA interfaces of meganucleases using iterative cycles of in vitro compartmentalization
-
[132] Takeuchi, R., Choi, M., Stoddard, B.L., Redesign of extensive protein-DNA interfaces of meganucleases using iterative cycles of in vitro compartmentalization. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 4061–4066.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. 4061-4066
-
-
Takeuchi, R.1
Choi, M.2
Stoddard, B.L.3
-
133
-
-
33644507991
-
Directed evolution and substrate specificity profile of homing endonuclease I-SceI
-
[133] Doyon, J.B., Pattanayak, V., Meyer, C.B., Liu, D.R., Directed evolution and substrate specificity profile of homing endonuclease I-SceI. J. Am. Chem. Soc. 128 (2006), 2477–2484.
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 2477-2484
-
-
Doyon, J.B.1
Pattanayak, V.2
Meyer, C.B.3
Liu, D.R.4
-
134
-
-
78650432023
-
The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy
-
[134] Arnould, S., Delenda, C., Grizot, S., Desseaux, C., Paques, F., Silva, G.H., Smith, J., The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy. Protein Eng. Des. Sel. 24 (2011), 27–31.
-
(2011)
Protein Eng. Des. Sel.
, vol.24
, pp. 27-31
-
-
Arnould, S.1
Delenda, C.2
Grizot, S.3
Desseaux, C.4
Paques, F.5
Silva, G.H.6
Smith, J.7
-
135
-
-
78651240053
-
Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification
-
[135] Stoddard, B.L., Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19 (2011), 7–15.
-
(2011)
Structure
, vol.19
, pp. 7-15
-
-
Stoddard, B.L.1
-
136
-
-
0026511244
-
Functional domains in Fok I restriction endonuclease
-
[136] Li, L., Wu, L.P., Chandrasegaran, S., Functional domains in Fok I restriction endonuclease. Proc. Natl. Acad. Sci. U. S. A. 89 (1992), 4275–4279.
-
(1992)
Proc. Natl. Acad. Sci. U. S. A.
, vol.89
, pp. 4275-4279
-
-
Li, L.1
Wu, L.P.2
Chandrasegaran, S.3
-
137
-
-
0030790696
-
Structure of the multimodular endonuclease FokI bound to DNA
-
[137] Wah, D.A., Hirsch, J.A., Dorner, L.F., Schildkraut, I., Aggarwal, A.K., Structure of the multimodular endonuclease FokI bound to DNA. Nature 388 (1997), 97–100.
-
(1997)
Nature
, vol.388
, pp. 97-100
-
-
Wah, D.A.1
Hirsch, J.A.2
Dorner, L.F.3
Schildkraut, I.4
Aggarwal, A.K.5
-
139
-
-
0030032063
-
Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain
-
[139] Kim, Y.G., Cha, J., Chandrasegaran, S., Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. U. S. A. 93 (1996), 1156–1160.
-
(1996)
Proc. Natl. Acad. Sci. U. S. A.
, vol.93
, pp. 1156-1160
-
-
Kim, Y.G.1
Cha, J.2
Chandrasegaran, S.3
-
140
-
-
0040215628
-
Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes
-
[140] Miller, J., McLachlan, A.D., Klug, A., Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4 (1985), 1609–1614.
-
(1985)
EMBO J.
, vol.4
, pp. 1609-1614
-
-
Miller, J.1
McLachlan, A.D.2
Klug, A.3
-
141
-
-
0025773296
-
Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A
-
[141] Pavletich, N.P., Pabo, C.O., Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252 (1991), 809–817.
-
(1991)
Science
, vol.252
, pp. 809-817
-
-
Pavletich, N.P.1
Pabo, C.O.2
-
142
-
-
0026089185
-
Base sequence discrimination by zinc-finger DNA-binding domains
-
[142] Nardelli, J., Gibson, T.J., Vesque, C., Charnay, P., Base sequence discrimination by zinc-finger DNA-binding domains. Nature 349 (1991), 175–178.
-
(1991)
Nature
, vol.349
, pp. 175-178
-
-
Nardelli, J.1
Gibson, T.J.2
Vesque, C.3
Charnay, P.4
-
143
-
-
77955867185
-
Genome editing with engineered zinc finger nucleases
-
[143] Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S., Gregory, P.D., Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11 (2010), 636–646.
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 636-646
-
-
Urnov, F.D.1
Rebar, E.J.2
Holmes, M.C.3
Zhang, H.S.4
Gregory, P.D.5
-
144
-
-
0036021389
-
Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases
-
[144] Bibikova, M., Golic, M., Golic, K.G., Carroll, D., Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161 (2002), 1169–1175.
-
(2002)
Genetics
, vol.161
, pp. 1169-1175
-
-
Bibikova, M.1
Golic, M.2
Golic, K.G.3
Carroll, D.4
-
145
-
-
18944373328
-
Highly efficient endogenous human gene correction using designed zinc-finger nucleases
-
[145] Urnov, F.D., Miller, J.C., Lee, Y.L., Beausejour, C.M., Rock, J.M., Augustus, S., Jamieson, A.C., Porteus, M.H., Gregory, P.D., Holmes, M.C., Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435 (2005), 646–651.
-
(2005)
Nature
, vol.435
, pp. 646-651
-
-
Urnov, F.D.1
Miller, J.C.2
Lee, Y.L.3
Beausejour, C.M.4
Rock, J.M.5
Augustus, S.6
Jamieson, A.C.7
Porteus, M.H.8
Gregory, P.D.9
Holmes, M.C.10
-
146
-
-
72149090954
-
A simple cipher governs DNA recognition by TAL effectors
-
[146] Moscou, M.J., Bogdanove, A.J., A simple cipher governs DNA recognition by TAL effectors. Science, 326, 2009, 1501.
-
(2009)
Science
, vol.326
, pp. 1501
-
-
Moscou, M.J.1
Bogdanove, A.J.2
-
147
-
-
72149110399
-
Breaking the code of DNA binding specificity of TAL-type III effectors
-
[147] Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A., Bonas, U., Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326 (2009), 1509–1512.
-
(2009)
Science
, vol.326
, pp. 1509-1512
-
-
Boch, J.1
Scholze, H.2
Schornack, S.3
Landgraf, A.4
Hahn, S.5
Kay, S.6
Lahaye, T.7
Nickstadt, A.8
Bonas, U.9
-
148
-
-
84857032466
-
Structural basis for sequence-specific recognition of DNA by TAL effectors
-
[148] Deng, D., Yan, C., Pan, X., Mahfouz, M., Wang, J., Zhu, J.K., Shi, Y., Yan, N., Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335 (2012), 720–723.
-
(2012)
Science
, vol.335
, pp. 720-723
-
-
Deng, D.1
Yan, C.2
Pan, X.3
Mahfouz, M.4
Wang, J.5
Zhu, J.K.6
Shi, Y.7
Yan, N.8
-
149
-
-
84857029597
-
The crystal structure of TAL effector PthXo1 bound to its DNA target
-
[149] Mak, A.N., Bradley, P., Cernadas, R.A., Bogdanove, A.J., Stoddard, B.L., The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335 (2012), 716–719.
-
(2012)
Science
, vol.335
, pp. 716-719
-
-
Mak, A.N.1
Bradley, P.2
Cernadas, R.A.3
Bogdanove, A.J.4
Stoddard, B.L.5
-
150
-
-
78951479577
-
Targeting DNA double-strand breaks with TAL effector nucleases
-
[150] Christian, M., Cermak, T., Doyle, E.L., Schmidt, C., Zhang, F., Hummel, A., Bogdanove, A.J., Voytas, D.F., Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186 (2010), 757–761.
-
(2010)
Genetics
, vol.186
, pp. 757-761
-
-
Christian, M.1
Cermak, T.2
Doyle, E.L.3
Schmidt, C.4
Zhang, F.5
Hummel, A.6
Bogdanove, A.J.7
Voytas, D.F.8
-
151
-
-
84880938470
-
TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins
-
[151] Doyle, E.L., Stoddard, B.L., Voytas, D.F., Bogdanove, A.J., TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Trends Cell Biol. 23 (2013), 390–398.
-
(2013)
Trends Cell Biol.
, vol.23
, pp. 390-398
-
-
Doyle, E.L.1
Stoddard, B.L.2
Voytas, D.F.3
Bogdanove, A.J.4
-
152
-
-
0028971084
-
RecA.oligonucleotide filaments bind in the minor groove of double-stranded DNA
-
[152] Baliga, R., Singleton, J.W., Dervan, P.B., RecA.oligonucleotide filaments bind in the minor groove of double-stranded DNA. Proc. Natl. Acad. Sci. U. S. A. 92 (1995), 10393–10397.
-
(1995)
Proc. Natl. Acad. Sci. U. S. A.
, vol.92
, pp. 10393-10397
-
-
Baliga, R.1
Singleton, J.W.2
Dervan, P.B.3
-
153
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
[153] Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337 (2012), 816–821.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
154
-
-
84866859751
-
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
[154] Gasiunas, G., Barrangou, R., Horvath, P., Siksnys, V., Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), E2579–2586.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. E2579-2586
-
-
Gasiunas, G.1
Barrangou, R.2
Horvath, P.3
Siksnys, V.4
-
155
-
-
84943160849
-
CRISPR-Cas immunity in prokaryotes
-
[155] Marraffini, L.A., CRISPR-Cas immunity in prokaryotes. Nature 526 (2015), 55–61.
-
(2015)
Nature
, vol.526
, pp. 55-61
-
-
Marraffini, L.A.1
-
156
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
[156] Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., Zhang, F., Multiplex genome engineering using CRISPR/Cas systems. Science 339 (2013), 819–823.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
Habib, N.6
Hsu, P.D.7
Wu, X.8
Jiang, W.9
Marraffini, L.A.10
Zhang, F.11
-
157
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
[157] Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., Church, G.M., RNA-guided human genome engineering via Cas9. Science 339 (2013), 823–826.
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
Aach, J.4
Guell, M.5
DiCarlo, J.E.6
Norville, J.E.7
Church, G.M.8
-
158
-
-
84942864979
-
CRISPR-cas: new tools for genetic manipulations from bacterial immunity systems
-
[158] Jiang, W., Marraffini, L.A., CRISPR-cas: new tools for genetic manipulations from bacterial immunity systems. Annu. Rev. Microbiol. 69 (2015), 209–228.
-
(2015)
Annu. Rev. Microbiol.
, vol.69
, pp. 209-228
-
-
Jiang, W.1
Marraffini, L.A.2
-
159
-
-
84911885395
-
Gene editing using ssODNs with engineered endonucleases
-
[159] Chen, F., Pruett-Miller, S.M., Davis, G.D., Gene editing using ssODNs with engineered endonucleases. Methods Mol. Biol. 1239 (2015), 251–265.
-
(2015)
Methods Mol. Biol.
, vol.1239
, pp. 251-265
-
-
Chen, F.1
Pruett-Miller, S.M.2
Davis, G.D.3
-
160
-
-
84960911917
-
Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA
-
[160] Richardson, C.D., Ray, G.J., DeWitt, M.A., Curie, G.L., Corn, J.E., Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34 (2016), 339–344.
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 339-344
-
-
Richardson, C.D.1
Ray, G.J.2
DeWitt, M.A.3
Curie, G.L.4
Corn, J.E.5
-
161
-
-
84975706937
-
Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases
-
[161] Renaud, J.B., Boix, C., Charpentier, M., De Cian, A., Cochennec, J., Duvernois-Berthet, E., Perrouault, L., Tesson, L., Edouard, J., Thinard, R., Cherifi, Y., Menoret, S., Fontaniere, S., de Croze, N., Fraichard, A., Sohm, F., Anegon, I., Concordet, J.P., Giovannangeli, C., Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Rep. 14 (2016), 2263–2272.
-
(2016)
Cell Rep.
, vol.14
, pp. 2263-2272
-
-
Renaud, J.B.1
Boix, C.2
Charpentier, M.3
De Cian, A.4
Cochennec, J.5
Duvernois-Berthet, E.6
Perrouault, L.7
Tesson, L.8
Edouard, J.9
Thinard, R.10
Cherifi, Y.11
Menoret, S.12
Fontaniere, S.13
de Croze, N.14
Fraichard, A.15
Sohm, F.16
Anegon, I.17
Concordet, J.P.18
Giovannangeli, C.19
-
162
-
-
84901834420
-
Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
-
[162] Kim, S., Kim, D., Cho, S.W., Kim, J., Kim, J.S., Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome. Res. 24 (2014), 1012–1019.
-
(2014)
Genome. Res.
, vol.24
, pp. 1012-1019
-
-
Kim, S.1
Kim, D.2
Cho, S.W.3
Kim, J.4
Kim, J.S.5
-
163
-
-
84963941043
-
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
-
[163] Kleinstiver, B.P., Pattanayak, V., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Zheng, Z., Joung, J.K., High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529 (2016), 490–495.
-
(2016)
Nature
, vol.529
, pp. 490-495
-
-
Kleinstiver, B.P.1
Pattanayak, V.2
Prew, M.S.3
Tsai, S.Q.4
Nguyen, N.T.5
Zheng, Z.6
Joung, J.K.7
-
164
-
-
84952943845
-
Rationally engineered Cas9 nucleases with improved specificity
-
[164] Slaymaker, I.M., Gao, L., Zetsche, B., Scott, D.A., Yan, W.X., Zhang, F., Rationally engineered Cas9 nucleases with improved specificity. Science 351 (2016), 84–88.
-
(2016)
Science
, vol.351
, pp. 84-88
-
-
Slaymaker, I.M.1
Gao, L.2
Zetsche, B.3
Scott, D.A.4
Yan, W.X.5
Zhang, F.6
-
165
-
-
84964300289
-
Genome editing: the domestication of Cas9
-
[165] Urnov, F., Genome editing: the domestication of Cas9. Nature 529 (2016), 468–469.
-
(2016)
Nature
, vol.529
, pp. 468-469
-
-
Urnov, F.1
-
166
-
-
0031962185
-
Gene conversion tracts from double-strand break repair in mammalian cells
-
[166] Elliott, B., Richardson, C., Winderbaum, J., Nickoloff, J.A., Jasin, M., Gene conversion tracts from double-strand break repair in mammalian cells. Mol. Cell Biol. 18 (1998), 93–101.
-
(1998)
Mol. Cell Biol.
, vol.18
, pp. 93-101
-
-
Elliott, B.1
Richardson, C.2
Winderbaum, J.3
Nickoloff, J.A.4
Jasin, M.5
-
167
-
-
84962514403
-
Structural plasticity of PAM recognition by engineered variants of the RNA-Guided endonuclease Cas9
-
[167] Anders, C., Bargsten, K., Jinek, M., Structural plasticity of PAM recognition by engineered variants of the RNA-Guided endonuclease Cas9. Mol. Cell 61 (2016), 895–902.
-
(2016)
Mol. Cell
, vol.61
, pp. 895-902
-
-
Anders, C.1
Bargsten, K.2
Jinek, M.3
-
168
-
-
84937908208
-
Engineered CRISPR-Cas9 nucleases with altered PAM specificities
-
[168] Kleinstiver, B.P., Prew, M.S., Tsai, S.Q., Topkar, V.V., Nguyen, N.T., Zheng, Z., Gonzales, A.P., Li, Z., Peterson, R.T., Yeh, J.R., Aryee, M.J., Joung, J.K., Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523 (2015), 481–485.
-
(2015)
Nature
, vol.523
, pp. 481-485
-
-
Kleinstiver, B.P.1
Prew, M.S.2
Tsai, S.Q.3
Topkar, V.V.4
Nguyen, N.T.5
Zheng, Z.6
Gonzales, A.P.7
Li, Z.8
Peterson, R.T.9
Yeh, J.R.10
Aryee, M.J.11
Joung, J.K.12
-
169
-
-
84949791988
-
Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition
-
[169] Kleinstiver, B.P., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Topkar, V.V., Zheng, Z., Joung, J.K., Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat. Biotechnol. 33 (2015), 1293–1298.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 1293-1298
-
-
Kleinstiver, B.P.1
Prew, M.S.2
Tsai, S.Q.3
Nguyen, N.T.4
Topkar, V.V.5
Zheng, Z.6
Joung, J.K.7
-
170
-
-
84927514894
-
In vivo genome editing using taphylococcus aureus Cas9
-
[170] Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., Zetsche, B., Shalem, O., Wu, X., Makarova, K.S., Koonin, E.V., Sharp, P.A., Zhang, F., In vivo genome editing using taphylococcus aureus Cas9. Nature 520 (2015), 186–191.
-
(2015)
Nature
, vol.520
, pp. 186-191
-
-
Ran, F.A.1
Cong, L.2
Yan, W.X.3
Scott, D.A.4
Gootenberg, J.S.5
Kriz, A.J.6
Zetsche, B.7
Shalem, O.8
Wu, X.9
Makarova, K.S.10
Koonin, E.V.11
Sharp, P.A.12
Zhang, F.13
-
171
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
[171] Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., Koonin, E.V., Zhang, F., Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163 (2015), 759–771.
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
Gootenberg, J.S.2
Abudayyeh, O.O.3
Slaymaker, I.M.4
Makarova, K.S.5
Essletzbichler, P.6
Volz, S.E.7
Joung, J.8
van der Oost, J.9
Regev, A.10
Koonin, E.V.11
Zhang, F.12
-
172
-
-
79951565665
-
Single-strand nicks induce homologous recombination with less toxicity than double-strand breaks using an AAV vector template
-
[172] Metzger, M.J., McConnell-Smith, A., Stoddard, B.L., Miller, A.D., Single-strand nicks induce homologous recombination with less toxicity than double-strand breaks using an AAV vector template. Nucleic Acids Res. 39 (2011), 926–935.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 926-935
-
-
Metzger, M.J.1
McConnell-Smith, A.2
Stoddard, B.L.3
Miller, A.D.4
-
173
-
-
84861960685
-
Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects
-
[173] Ramirez, C.L., Certo, M.T., Mussolino, C., Goodwin, M.J., Cradick, T.J., McCaffrey, A.P., Cathomen, T., Scharenberg, A.M., Joung, J.K., Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res. 40 (2012), 5560–5568.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 5560-5568
-
-
Ramirez, C.L.1
Certo, M.T.2
Mussolino, C.3
Goodwin, M.J.4
Cradick, T.J.5
McCaffrey, A.P.6
Cathomen, T.7
Scharenberg, A.M.8
Joung, J.K.9
-
174
-
-
84861984839
-
Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme
-
[174] Wang, J., Friedman, G., Doyon, Y., Wang, N.S., Li, C.J., Miller, J.C., Hua, K.L., Yan, J.J., Babiarz, J.E., Gregory, P.D., Holmes, M.C., Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome. Res. 22 (2012), 1316–1326.
-
(2012)
Genome. Res.
, vol.22
, pp. 1316-1326
-
-
Wang, J.1
Friedman, G.2
Doyon, Y.3
Wang, N.S.4
Li, C.J.5
Miller, J.C.6
Hua, K.L.7
Yan, J.J.8
Babiarz, J.E.9
Gregory, P.D.10
Holmes, M.C.11
-
175
-
-
84904013419
-
An RNF168 fragment defective for focal accumulation at DNA damage is proficient for inhibition of homologous recombination in BRCA1 deficient cells
-
[175] Munoz, M.C., Yanez, D.A., Stark, J.M., An RNF168 fragment defective for focal accumulation at DNA damage is proficient for inhibition of homologous recombination in BRCA1 deficient cells. Nucleic Acids Res. 42 (2014), 7720–7733.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 7720-7733
-
-
Munoz, M.C.1
Yanez, D.A.2
Stark, J.M.3
-
176
-
-
49349086561
-
Engineering variants of the I-SceI homing endonuclease with strand-specific and site-specific DNA-nicking activity
-
[176] Niu, Y., Tenney, K., Li, H., Gimble, F.S., Engineering variants of the I-SceI homing endonuclease with strand-specific and site-specific DNA-nicking activity. J. Mol. Biol. 382 (2008), 188–202.
-
(2008)
J. Mol. Biol.
, vol.382
, pp. 188-202
-
-
Niu, Y.1
Tenney, K.2
Li, H.3
Gimble, F.S.4
-
177
-
-
78651319695
-
Natural and engineered nicking endonucleases—from cleavage mechanism to engineering of strand-specificity
-
[177] Chan, S.H., Stoddard, B.L., Xu, S.Y., Natural and engineered nicking endonucleases—from cleavage mechanism to engineering of strand-specificity. Nucleic Acids Res. 39 (2011), 1–18.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 1-18
-
-
Chan, S.H.1
Stoddard, B.L.2
Xu, S.Y.3
-
178
-
-
84898014585
-
TALE nickase mediates high efficient targeted transgene integration at the human multi-copy ribosomal DNA locus
-
[178] Wu, Y., Gao, T., Wang, X., Hu, Y., Hu, X., Hu, Z., Pang, J., Li, Z., Xue, J., Feng, M., Wu, L., Liang, D., TALE nickase mediates high efficient targeted transgene integration at the human multi-copy ribosomal DNA locus. Biochem. Biophys. Res. Commun. 446 (2014), 261–266.
-
(2014)
Biochem. Biophys. Res. Commun.
, vol.446
, pp. 261-266
-
-
Wu, Y.1
Gao, T.2
Wang, X.3
Hu, Y.4
Hu, X.5
Hu, Z.6
Pang, J.7
Li, Z.8
Xue, J.9
Feng, M.10
Wu, L.11
Liang, D.12
-
179
-
-
84896267457
-
Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair
-
[179] Davis, L., Maizels, N., Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), E924–932.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. E924-932
-
-
Davis, L.1
Maizels, N.2
-
180
-
-
84895897031
-
To nick or not to nick: comparison of I-SceI single- and double-strand break-induced recombination in yeast and human cells
-
[180] Katz, S.S., Gimble, F.S., Storici, F., To nick or not to nick: comparison of I-SceI single- and double-strand break-induced recombination in yeast and human cells. PLoS One, 9, 2014, e88840.
-
(2014)
PLoS One
, vol.9
, pp. e88840
-
-
Katz, S.S.1
Gimble, F.S.2
Storici, F.3
-
181
-
-
84976406291
-
Distinct genetic control of homologous recombination repair of Cas9-induced double-strand breaks, nicks and paired nicks
-
[181] Vriend, L.E., Prakash, R., Chen, C.C., Vanoli, F., Cavallo, F., Zhang, Y., Jasin, M., Krawczyk, P.M., Distinct genetic control of homologous recombination repair of Cas9-induced double-strand breaks, nicks and paired nicks. Nucleic Acids Res., 2016.
-
(2016)
Nucleic Acids Res.
-
-
Vriend, L.E.1
Prakash, R.2
Chen, C.C.3
Vanoli, F.4
Cavallo, F.5
Zhang, Y.6
Jasin, M.7
Krawczyk, P.M.8
-
182
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
[182] Ran, F.A., Hsu, P.D., Lin, C.Y., Gootenberg, J.S., Konermann, S., Trevino, A.E., Scott, D.A., Inoue, A., Matoba, S., Zhang, Y., Zhang, F., Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154 (2013), 1380–1389.
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu, P.D.2
Lin, C.Y.3
Gootenberg, J.S.4
Konermann, S.5
Trevino, A.E.6
Scott, D.A.7
Inoue, A.8
Matoba, S.9
Zhang, Y.10
Zhang, F.11
-
183
-
-
84884160273
-
CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
-
[183] Mali, P., Aach, J., Stranges, P.B., Esvelt, K.M., Moosburner, M., Kosuri, S., Yang, L., Church, G.M., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31 (2013), 833–838.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 833-838
-
-
Mali, P.1
Aach, J.2
Stranges, P.B.3
Esvelt, K.M.4
Moosburner, M.5
Kosuri, S.6
Yang, L.7
Church, G.M.8
|