메뉴 건너뛰기




Volumn 34, Issue 3, 2016, Pages 339-344

Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA

Author keywords

[No Author keywords available]

Indexed keywords

DISSOCIATION; EFFICIENCY; GENES; MOLECULAR BIOLOGY;

EID: 84960911917     PISSN: 10870156     EISSN: 15461696     Source Type: Journal    
DOI: 10.1038/nbt.3481     Document Type: Article
Times cited : (802)

References (33)
  • 1
    • 84913594397 scopus 로고    scopus 로고
    • Genome editing. The new frontier of genome engineering with CRISPR-Cas9
    • Doudna, J.A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).
    • (2014) Science , vol.346 , pp. 1258096
    • Doudna, J.A.1    Charpentier, E.2
  • 2
    • 84942864979 scopus 로고    scopus 로고
    • CRISPR-Cas: New tools for genetic manipulations from bacterial immunity systems
    • Jiang, W. & Marraffini, L.A. CRISPR-Cas: new tools for genetic manipulations from bacterial immunity systems. Annu. Rev. Microbiol. 69, 209-228 (2015).
    • (2015) Annu. Rev. Microbiol. , vol.69 , pp. 209-228
    • Jiang, W.1    Marraffini, L.A.2
  • 3
    • 84908508061 scopus 로고    scopus 로고
    • Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
    • Anders, C., Niewoehner, O., Duerst, A. & Jinek, M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569-573 (2014).
    • (2014) Nature , vol.513 , pp. 569-573
    • Anders, C.1    Niewoehner, O.2    Duerst, A.3    Jinek, M.4
  • 4
    • 84896733529 scopus 로고    scopus 로고
    • Crystal structure of Cas9 in complex with guide RNA and target DNA
    • Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935-949 (2014).
    • (2014) Cell , vol.156 , pp. 935-949
    • Nishimasu, H.1
  • 5
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 (2012).
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1
  • 6
    • 80051535219 scopus 로고    scopus 로고
    • Genome engineering with zinc-finger nucleases
    • Carroll, D. Genome engineering with zinc-finger nucleases. Genetics 188, 773-782 (2011).
    • (2011) Genetics , vol.188 , pp. 773-782
    • Carroll, D.1
  • 7
    • 84879264708 scopus 로고    scopus 로고
    • ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering
    • Gaj, T., Gersbach, C.A. & Barbas, C.F., III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397-405 (2013).
    • (2013) Trends Biotechnol. , vol.31 , pp. 397-405
    • Gaj, T.1    Gersbach, C.A.2    Barbas, C.F.3
  • 8
    • 84895871173 scopus 로고    scopus 로고
    • DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
    • Sternberg, S.H., Redding, S., Jinek, M., Greene, E.C. & Doudna, J.A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62-67 (2014).
    • (2014) Nature , vol.507 , pp. 62-67
    • Sternberg, S.H.1    Redding, S.2    Jinek, M.3    Greene, E.C.4    Doudna, J.A.5
  • 9
    • 43049120226 scopus 로고    scopus 로고
    • Determining kinetics and affinities of protein interactions using a parallel real-time label-free biosensor, the Octet
    • Abdiche, Y., Malashock, D., Pinkerton, A. & Pons, J. Determining kinetics and affinities of protein interactions using a parallel real-time label-free biosensor, the Octet. Anal. Biochem. 377, 209-217 (2008).
    • (2008) Anal. Biochem. , vol.377 , pp. 209-217
    • Abdiche, Y.1    Malashock, D.2    Pinkerton, A.3    Pons, J.4
  • 10
    • 0025739820 scopus 로고
    • Kinetics of DNA double-strand break repair throughout the cell cycle as assayed by pulsed field gel electrophoresis in CHO cells
    • Metzger, L. & Iliakis, G. Kinetics of DNA double-strand break repair throughout the cell cycle as assayed by pulsed field gel electrophoresis in CHO cells. Int. J. Radiat. Biol. 59, 1325-1339 (1991).
    • (1991) Int. J. Radiat. Biol. , vol.59 , pp. 1325-1339
    • Metzger, L.1    Iliakis, G.2
  • 11
    • 84901834420 scopus 로고    scopus 로고
    • Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
    • Kim, S., Kim, D., Cho, S.W., Kim, J. & Kim, J.-S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012-1019 (2014).
    • (2014) Genome Res. , vol.24 , pp. 1012-1019
    • Kim, S.1    Kim, D.2    Cho, S.W.3    Kim, J.4    Kim, J.-S.5
  • 12
    • 84946919064 scopus 로고    scopus 로고
    • Dynamics of CRISPR-Cas9 genome interrogation in living cells
    • Knight, S.C. et al. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350, 823-826 (2015).
    • (2015) Science , vol.350 , pp. 823-826
    • Knight, S.C.1
  • 13
    • 84884288934 scopus 로고    scopus 로고
    • Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
    • Ran, F.A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389 (2013).
    • (2013) Cell , vol.154 , pp. 1380-1389
    • Ran, F.A.1
  • 14
    • 84929147435 scopus 로고    scopus 로고
    • Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells
    • Chu, V.T. et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33, 543-548 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 543-548
    • Chu, V.T.1
  • 15
    • 84983792922 scopus 로고    scopus 로고
    • Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery
    • Lin, S., Staahl, B.T., Alla, R.K. & Doudna, J.A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife 3, e04766 (2014).
    • (2014) ELife , vol.3 , pp. e04766
    • Lin, S.1    Staahl, B.T.2    Alla, R.K.3    Doudna, J.A.4
  • 16
    • 84929166074 scopus 로고    scopus 로고
    • Increasing the efficiency of precise genome editing with CRISPRCas9 by inhibition of nonhomologous end joining
    • Maruyama, T. et al. Increasing the efficiency of precise genome editing with CRISPRCas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33, 538-542 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 538-542
    • Maruyama, T.1
  • 17
    • 84885157177 scopus 로고    scopus 로고
    • Optimization of scarless human stem cell genome editing
    • Yang, L. et al. Optimization of scarless human stem cell genome editing. Nucleic Acids Res. 41, 9049-9061 (2013).
    • (2013) Nucleic Acids Res. , vol.41 , pp. 9049-9061
    • Yang, L.1
  • 18
    • 80052292973 scopus 로고    scopus 로고
    • High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases
    • Chen, F. et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat. Methods 8, 753-755 (2011).
    • (2011) Nat. Methods , vol.8 , pp. 753-755
    • Chen, F.1
  • 19
    • 84884160273 scopus 로고    scopus 로고
    • CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
    • Mali, P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833-838 (2013).
    • (2013) Nat. Biotechnol. , vol.31 , pp. 833-838
    • Mali, P.1
  • 20
    • 84925427919 scopus 로고    scopus 로고
    • Genome editing using Cas9 nickases
    • Trevino, A.E. & Zhang, F. Genome editing using Cas9 nickases. Methods Enzymol. 546, 161-174 (2014).
    • (2014) Methods Enzymol. , vol.546 , pp. 161-174
    • Trevino, A.E.1    Zhang, F.2
  • 21
    • 84902315464 scopus 로고    scopus 로고
    • Targeted genome editing in human repopulating haematopoietic stem cells
    • Genovese, P. et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature 510, 235-240 (2014).
    • (2014) Nature , vol.510 , pp. 235-240
    • Genovese, P.1
  • 22
    • 84902095353 scopus 로고    scopus 로고
    • Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype
    • Yin, H. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 32, 551-553 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 551-553
    • Yin, H.1
  • 23
    • 84924705939 scopus 로고    scopus 로고
    • Cas9 specifies functional viral targets during CRISPR-Cas adaptation
    • Heler, R. et al. Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature 519, 199-202 (2015).
    • (2015) Nature , vol.519 , pp. 199-202
    • Heler, R.1
  • 25
    • 79952708070 scopus 로고    scopus 로고
    • In vitro assessment of zinc finger nuclease activity
    • Cathomen, T. & Söllü, C. In vitro assessment of zinc finger nuclease activity. Methods Mol. Biol. 649, 227-235 (2010).
    • (2010) Methods Mol. Biol. , vol.649 , pp. 227-235
    • Cathomen, T.1    Söllü, C.2
  • 26
    • 84902204289 scopus 로고    scopus 로고
    • Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
    • Tsai, S.Q. et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32, 569-576 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 569-576
    • Tsai, S.Q.1
  • 27
    • 84896267457 scopus 로고    scopus 로고
    • Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair
    • Davis, L. & Maizels, N. Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proc. Natl. Acad. Sci. USA 111, E924-E932 (2014).
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. E924-E932
    • Davis, L.1    Maizels, N.2
  • 28
    • 33749590905 scopus 로고    scopus 로고
    • Conservative repair of a chromosomal double-strand break by single-strand DNA through two steps of annealing
    • Storici, F., Snipe, J.R., Chan, G.K., Gordenin, D.A. & Resnick, M.A. Conservative repair of a chromosomal double-strand break by single-strand DNA through two steps of annealing. Mol. Cell. Biol. 26, 7645-7657 (2006).
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 7645-7657
    • Storici, F.1    Snipe, J.R.2    Chan, G.K.3    Gordenin, D.A.4    Resnick, M.A.5
  • 29
    • 54849404458 scopus 로고    scopus 로고
    • MMEJ repair of double-strand breaks (director's cut): Deleted sequences and alternative endings
    • McVey, M. & Lee, S.E. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet. 24, 529-538 (2008).
    • (2008) Trends Genet. , vol.24 , pp. 529-538
    • McVey, M.1    Lee, S.E.2
  • 30
    • 84945916597 scopus 로고    scopus 로고
    • Microhomology-mediated end joining: A back-up survival mechanism or dedicated pathway?
    • Sfeir, A. & Symington, L.S. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem. Sci. 40, 701-714 (2015).
    • (2015) Trends Biochem. Sci. , vol.40 , pp. 701-714
    • Sfeir, A.1    Symington, L.S.2
  • 31
    • 84925456214 scopus 로고    scopus 로고
    • In vitro enzymology of Cas9
    • Anders, C. & Jinek, M. In vitro enzymology of Cas9. Methods Enzymol. 546, 1-20 (2014).
    • (2014) Methods Enzymol. , vol.546 , pp. 1-20
    • Anders, C.1    Jinek, M.2
  • 33
    • 39749128389 scopus 로고    scopus 로고
    • Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo
    • Aparicio, O. et al. Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Curr. Protoc. Mol. Biol. 69, 21.3.1-21.3.33 (2005).
    • (2005) Curr. Protoc. Mol. Biol. , vol.69 , pp. 1-33
    • Aparicio, O.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.