메뉴 건너뛰기




Volumn 28, Issue 21, 2014, Pages 2394-2406

Chromosome rearrangements via template switching between diverged repeated sequences

Author keywords

Break induced replication; Chromosome rearrangements; Chromothripsis; Template switching

Indexed keywords

REPETITIVE DNA; MICROSATELLITE DNA; SACCHAROMYCES CEREVISIAE PROTEIN; URA3 PROTEIN, S CEREVISIAE;

EID: 84908431864     PISSN: 08909369     EISSN: 15495477     Source Type: Journal    
DOI: 10.1101/gad.250258.114     Document Type: Article
Times cited : (98)

References (57)
  • 1
    • 39449096135 scopus 로고    scopus 로고
    • Genome instability: A mechanistic view of its causes and consequences
    • Aguilera A, Gomez-Gonzalez B. 2008. Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet 9: 204–217.
    • (2008) Nat Rev Genet , vol.9 , pp. 204-217
    • Aguilera, A.1    Gomez-Gonzalez, B.2
  • 4
    • 79958013665 scopus 로고    scopus 로고
    • A genetic and structural study of genome rearrangements mediated by high copy repeat Ty1 elements
    • Chan JE, Kolodner RD. 2011. A genetic and structural study of genome rearrangements mediated by high copy repeat Ty1 elements. PLoS Genet 7: e1002089.
    • (2011) PLoS Genet , vol.e1002089 , pp. 7
    • Chan, J.E.1    Kolodner, R.D.2
  • 5
    • 84862777955 scopus 로고    scopus 로고
    • Complex reorganization and predominant nonhomologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration
    • S391
    • Chiang C, Jacobsen JC, Ernst C, Hanscom C, Heilbut A, Blumenthal I, Mills RE, Kirby A, Lindgren AM, Rudiger SR et al. 2012. Complex reorganization and predominant nonhomologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat Genet 44: 390–397, S391.
    • (2012) Nat Genet , vol.44 , pp. 390-397
    • Chiang, C.1    Jacobsen, J.C.2    Ernst, C.3    Hanscom, C.4    Heilbut, A.5    Blumenthal, I.6    Mills, R.E.7    Kirby, A.8    Lindgren, A.M.9    Rudiger, S.R.10
  • 6
    • 2542508779 scopus 로고    scopus 로고
    • Removal of one nonhomologous DNA end during gene conversion by a RAD1- and MSH2-independent pathway
    • Colaiacovo MP, Paques F, Haber JE. 1999. Removal of one nonhomologous DNA end during gene conversion by a RAD1- and MSH2-independent pathway. Genetics 151: 1409–1423.
    • (1999) Genetics , vol.151 , pp. 1409-1423
    • Colaiacovo, M.P.1    Paques, F.2    Haber, J.E.3
  • 8
    • 0030885649 scopus 로고    scopus 로고
    • Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast
    • Datta A, Hendrix M, Lipsitch M, Jinks-Robertson S. 1997. Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc Natl Acad Sci 94: 9757–9762.
    • (1997) Proc Natl Acad Sci , vol.94 , pp. 9757-9762
    • Datta, A.1    Hendrix, M.2    Lipsitch, M.3    Jinks-Robertson, S.4
  • 9
    • 1542344337 scopus 로고    scopus 로고
    • RAD51-dependent break-induced replication in yeast
    • Davis AP, Symington LS. 2004. RAD51-dependent break-induced replication in yeast. Mol Cell Biol 24: 2344–2351.
    • (2004) Mol Cell Biol , vol.24 , pp. 2344-2351
    • Davis, A.P.1    Symington, L.S.2
  • 10
    • 84887992179 scopus 로고    scopus 로고
    • Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome
    • Davoli T, Xu AW, Mengwasser KE, Sack LM, Yoon JC, Park PJ, Elledge SJ. 2013. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155: 948–962.
    • (2013) Cell , vol.155 , pp. 948-962
    • Davoli, T.1    Xu, A.W.2    Mengwasser, K.E.3    Sack, L.M.4    Yoon, J.C.5    Park, P.J.6    Elledge, S.J.7
  • 12
    • 0029740114 scopus 로고    scopus 로고
    • DNA replication fork pause sites dependent on transcription
    • Deshpande AM, Newlon CS. 1996. DNA replication fork pause sites dependent on transcription. Science 272: 1030–1033.
    • (1996) Science , vol.272 , pp. 1030-1033
    • Deshpande, A.M.1    Newlon, C.S.2
  • 13
    • 84882372684 scopus 로고    scopus 로고
    • Break-induced replication occurs by conservative DNA synthesis
    • Donnianni RA, Symington LS. 2013. Break-induced replication occurs by conservative DNA synthesis. Proc Natl Acad Sci 110: 13475–13480.
    • (2013) Proc Natl Acad Sci , vol.110 , pp. 13475-13480
    • Donnianni, R.A.1    Symington, L.S.2
  • 14
    • 0036480427 scopus 로고    scopus 로고
    • Double-strand breaks and translocations in cancer
    • Elliott B, Jasin M. 2002. Double-strand breaks and translocations in cancer. Cell Mol Life Sci 59: 373–385.
    • (2002) Cell Mol Life Sci , vol.59 , pp. 373-385
    • Elliott, B.1    Jasin, M.2
  • 16
    • 0026498944 scopus 로고
    • Removal of nonhomologous DNA ends in double-strand break recombination: The role of the yeast ultraviolet repair gene RAD1
    • Fishman-Lobell J, Haber JE. 1992. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258: 480–484.
    • (1992) Science , vol.258 , pp. 480-484
    • Fishman-Lobell, J.1    Haber, J.E.2
  • 17
    • 84866728909 scopus 로고    scopus 로고
    • Chromothripsis and cancer: Causes and consequences of chromosome shattering
    • Forment JV, Kaidi A, Jackson SP. 2012. Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer 12: 663–670.
    • (2012) Nat Rev Cancer , vol.12 , pp. 663-670
    • Forment, J.V.1    Kaidi, A.2    Jackson, S.P.3
  • 18
    • 40449120350 scopus 로고    scopus 로고
    • An oncogeneinduced DNA damage model for cancer development
    • Halazonetis TD, Gorgoulis VG, Bartek J. 2008. An oncogeneinduced DNA damage model for cancer development. Science 319: 1352–1355.
    • (2008) Science , vol.319 , pp. 1352-1355
    • Halazonetis, T.D.1    Gorgoulis, V.G.2    Bartek, J.3
  • 19
    • 59249105978 scopus 로고    scopus 로고
    • A microhomology-mediated break-induced replication model for the origin of human copy number variation
    • Hastings PJ, Ira G, Lupski JR. 2009a. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5: e1000327.
    • (2009) PLoS Genet , vol.5 , pp. e1000327
    • Hastings, P.J.1    Ira, G.2    Lupski, J.R.3
  • 21
    • 77954328102 scopus 로고    scopus 로고
    • Increased mutagenesis and unique mutation signature associated with mitotic gene conversion
    • Hicks WM, Kim M, Haber JE. 2010. Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 329: 82–85.
    • (2010) Science , vol.329 , pp. 82-85
    • Hicks, W.M.1    Kim, M.2    Haber, J.E.3
  • 23
    • 0030000946 scopus 로고    scopus 로고
    • Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae
    • Ivanov EL, Sugawara N, Fishman-Lobell J, Haber JE. 1996. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 142: 693–704.
    • (1996) Genetics , vol.142 , pp. 693-704
    • Ivanov, E.L.1    Sugawara, N.2    Fishman-Lobell, J.3    Haber, J.E.4
  • 24
    • 0030742948 scopus 로고    scopus 로고
    • Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins
    • Kirkpatrick DT, Petes TD. 1997. Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins. Nature 387: 929–931.
    • (1997) Nature , vol.387 , pp. 929-931
    • Kirkpatrick, D.T.1    Petes, T.D.2
  • 25
    • 0030778197 scopus 로고    scopus 로고
    • RDH54, a RAD54 homologue in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis
    • Klein HL. 1997. RDH54, a RAD54 homologue in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis. Genetics 147: 1533–1543.
    • (1997) Genetics , vol.147 , pp. 1533-1543
    • Klein, H.L.1
  • 26
    • 37349109667 scopus 로고    scopus 로고
    • A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders
    • Lee JA, Carvalho CM, Lupski JR. 2007. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131: 1235–1247.
    • (2007) Cell , vol.131 , pp. 1235-1247
    • Lee, J.A.1    Carvalho, C.M.2    Lupski, J.R.3
  • 27
    • 14844286404 scopus 로고    scopus 로고
    • Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites
    • Lemoine FJ, Degtyareva NP, Lobachev K, Petes TD. 2005. Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites. Cell 120: 587–598.
    • (2005) Cell , vol.120 , pp. 587-598
    • Lemoine, F.J.1    Degtyareva, N.P.2    Lobachev, K.3    Petes, T.D.4
  • 28
    • 33748138991 scopus 로고    scopus 로고
    • Roles of nonhomologous DNA end joining, V(D)J recombination, and class switch recombination in chromosomal translocations
    • Lieber MR, Yu K, Raghavan SC. 2006. Roles of nonhomologous DNA end joining, V(D)J recombination, and class switch recombination in chromosomal translocations. DNA Repair (Amst) 5: 1234–1245.
    • (2006) DNA Repair (Amst) , vol.5 , pp. 1234-1245
    • Lieber, M.R.1    Yu, K.2    Raghavan, S.C.3
  • 30
    • 0025240770 scopus 로고
    • Mitotic recombination among subtelomeric Y9 repeats in Saccharomyces cerevisiae
    • Louis EJ, Haber JE. 1990. Mitotic recombination among subtelomeric Y9 repeats in Saccharomyces cerevisiae. Genetics 124: 547–559.
    • (1990) Genetics , vol.124 , pp. 547-559
    • Louis, E.J.1    Haber, J.E.2
  • 31
    • 34347349069 scopus 로고    scopus 로고
    • Genomic rearrangements and sporadic disease
    • Lupski JR. 2007. Genomic rearrangements and sporadic disease. Nat Genet 39: S43–S47.
    • (2007) Nat Genet , vol.39 , pp. S43-S47
    • Lupski, J.R.1
  • 32
    • 34547927220 scopus 로고    scopus 로고
    • Break-induced replication and telomerase-independent telomere maintenance require Pol32
    • Lydeard JR, Jain S, Yamaguchi M, Haber JE. 2007. Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448: 820–823.
    • (2007) Nature , vol.448 , pp. 820-823
    • Lydeard, J.R.1    Jain, S.2    Yamaguchi, M.3    Haber, J.E.4
  • 33
    • 77953076932 scopus 로고    scopus 로고
    • Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly
    • Lydeard JR, Lipkin-Moore Z, Sheu YJ, Stillman B, Burgers PM, Haber JE. 2010. Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly. Genes Dev 24: 1133–1144.
    • (2010) Genes Dev , vol.24 , pp. 1133-1144
    • Lydeard, J.R.1    Lipkin-Moore, Z.2    Sheu, Y.J.3    Stillman, B.4    Burgers, P.M.5    Haber, J.E.6
  • 34
    • 0029947714 scopus 로고    scopus 로고
    • Double-strand break repair in the absence of RAD51 in yeast: A possible role for break-induced DNA replication
    • Malkova A, Ivanov EL, Haber JE. 1996. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc Natl Acad Sci 93: 7131–7136.
    • (1996) Proc Natl Acad Sci , vol.93 , pp. 7131-7136
    • Malkova, A.1    Ivanov, E.L.2    Haber, J.E.3
  • 35
    • 0035338254 scopus 로고    scopus 로고
    • RAD51-independent breakinduced replication to repair a broken chromosome depends on a distant enhancer site
    • Malkova A, Signon L, Schaefer CB, Naylor ML, Theis JF, Newlon CS, Haber JE. 2001. RAD51-independent breakinduced replication to repair a broken chromosome depends on a distant enhancer site. Genes Dev 15: 1055–1060.
    • (2001) Genes Dev , vol.15 , pp. 1055-1060
    • Malkova, A.1    Signon, L.2    Schaefer, C.B.3    Naylor, M.L.4    Theis, J.F.5    Newlon, C.S.6    Haber, J.E.7
  • 36
    • 12844289007 scopus 로고    scopus 로고
    • RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion
    • Malkova A, Naylor ML, Yamaguchi M, Ira G, Haber JE. 2005. RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion. Mol Cell Biol 25: 933–944.
    • (2005) Mol Cell Biol , vol.25 , pp. 933-944
    • Malkova, A.1    Naylor, M.L.2    Yamaguchi, M.3    Ira, G.4    Haber, J.E.5
  • 37
    • 0030760609 scopus 로고    scopus 로고
    • ‘Break copy’ duplication: A model for chromosome fragment formation in Saccharomyces cerevisiae
    • Morrow DM, Connelly C, Hieter P. 1997. ‘Break copy’ duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147: 371–382.
    • (1997) Genetics , vol.147 , pp. 371-382
    • Morrow, D.M.1    Connelly, C.2    Hieter, P.3
  • 39
    • 1842366037 scopus 로고    scopus 로고
    • Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae
    • Paques F, Haber JE. 1997. Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol 17: 6765–6771.
    • (1997) Mol Cell Biol , vol.17 , pp. 6765-6771
    • Paques, F.1    Haber, J.E.2
  • 40
    • 52949143512 scopus 로고    scopus 로고
    • Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms
    • Payen C, Koszul R, Dujon B, Fischer G. 2008. Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms. PLoS Genet 4: e1000175.
    • (2008) PLoS Genet , vol.4 , pp. e1000175
    • Payen, C.1    Koszul, R.2    Dujon, B.3    Fischer, G.4
  • 41
    • 70350457512 scopus 로고    scopus 로고
    • Chromosomal translocations caused by either pol32-dependent or pol32- independent triparental break-induced replication
    • Ruiz JF, Gomez-Gonzalez B, Aguilera A. 2009. Chromosomal translocations caused by either pol32-dependent or pol32- independent triparental break-induced replication. Mol Cell Biol 29: 5441–5454.
    • (2009) Mol Cell Biol , vol.29 , pp. 5441-5454
    • Ruiz, J.F.1    Gomez-Gonzalez, B.2    Aguilera, A.3
  • 43
    • 0029896663 scopus 로고    scopus 로고
    • Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1– RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae
    • Saparbaev M, Prakash L, Prakash S. 1996. Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1– RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae. Genetics 142: 727–736.
    • (1996) Genetics , vol.142 , pp. 727-736
    • Saparbaev, M.1    Prakash, L.2    Prakash, S.3
  • 44
    • 33745872612 scopus 로고    scopus 로고
    • Control of translocations between highly diverged genes by Sgs1, the Saccharomyces cerevisiae homolog of the Bloom’s syndrome protein
    • Schmidt KH, Wu J, Kolodner RD. 2006. Control of translocations between highly diverged genes by Sgs1, the Saccharomyces cerevisiae homolog of the Bloom’s syndrome protein. Mol Cell Biol 26: 5406–5420.
    • (2006) Mol Cell Biol , vol.26 , pp. 5406-5420
    • Schmidt, K.H.1    Wu, J.2    Kolodner, R.D.3
  • 45
    • 11244287233 scopus 로고    scopus 로고
    • Non-recurrent 17p11.2 deletions are generated by homologous and non-homologous mechanisms
    • Shaw CJ, Lupski JR. 2005. Non-recurrent 17p11.2 deletions are generated by homologous and non-homologous mechanisms. Hum Genet 116: 1–7.
    • (2005) Hum Genet , vol.116 , pp. 1-7
    • Shaw, C.J.1    Lupski, J.R.2
  • 46
    • 0035000154 scopus 로고    scopus 로고
    • Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal doublestrand break
    • Signon L, Malkova A, Naylor ML, Klein H, Haber JE. 2001. Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal doublestrand break. Mol Cell Biol 21: 2048–2056.
    • (2001) Mol Cell Biol , vol.21 , pp. 2048-2056
    • Signon, L.1    Malkova, A.2    Naylor, M.L.3    Klein, H.4    Haber, J.E.5
  • 47
    • 34247611513 scopus 로고    scopus 로고
    • Template switching during break-induced replication
    • Smith CE, Llorente B, Symington LS. 2007. Template switching during break-induced replication. Nature 447: 102–105.
    • (2007) Nature , vol.447 , pp. 102-105
    • Smith, C.E.1    Llorente, B.2    Symington, L.S.3
  • 48
    • 84901330077 scopus 로고    scopus 로고
    • Template switching during break-induced replication is promoted by the Mph1 helicase in Saccharomyces cerevisiae
    • Stafa A, Donnianni RA, Timashev LA, Lam AF, Symington LS. 2014. Template switching during break-induced replication is promoted by the Mph1 helicase in Saccharomyces cerevisiae. Genetics 196: 1017–1028.
    • (2014) Genetics , vol.196 , pp. 1017-1028
    • Stafa, A.1    Donnianni, R.A.2    Timashev, L.A.3    Lam, A.F.4    Symington, L.S.5
  • 50
    • 0032718278 scopus 로고    scopus 로고
    • Separation-of-function mutations in Saccharomyces cerevisiae MSH2 that confer mismatch repair defects but do not affect nonhomologous-tail removal during recombination
    • Studamire B, Price G, Sugawara N, Haber JE, Alani E. 1999. Separation-of-function mutations in Saccharomyces cerevisiae MSH2 that confer mismatch repair defects but do not affect nonhomologous-tail removal during recombination. Mol Cell Biol 19: 7558–7567.
    • (1999) Mol Cell Biol , vol.19 , pp. 7558-7567
    • Studamire, B.1    Price, G.2    Sugawara, N.3    Haber, J.E.4    Alani, E.5
  • 51
    • 0030834260 scopus 로고    scopus 로고
    • Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination
    • Sugawara N, Paques F, Colaiacovo M, Haber JE. 1997. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc Natl Acad Sci 94: 9214–9219.
    • (1997) Proc Natl Acad Sci , vol.94 , pp. 9214-9219
    • Sugawara, N.1    Paques, F.2    Colaiacovo, M.3    Haber, J.E.4
  • 52
    • 0041903834 scopus 로고    scopus 로고
    • In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination
    • Sugawara N, Wang X, Haber JE. 2003. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol Cell 12: 209–219.
    • (2003) Mol Cell , vol.12 , pp. 209-219
    • Sugawara, N.1    Wang, X.2    Haber, J.E.3
  • 53
    • 3042546122 scopus 로고    scopus 로고
    • Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1
    • Sugawara N, Goldfarb T, Studamire B, Alani E, Haber JE. 2004. Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1. Proc Natl Acad Sci 101: 9315–9320.
    • (2004) Proc Natl Acad Sci , vol.101 , pp. 9315-9320
    • Sugawara, N.1    Goldfarb, T.2    Studamire, B.3    Alani, E.4    Haber, J.E.5
  • 54
    • 84873030486 scopus 로고    scopus 로고
    • Replicative mechanisms of CNV formation preferentially occur as intrachromosomal events: Evidence from Potocki- Lupski duplication syndrome
    • Sun Z, Liu P, Jia X, Withers MA, Jin L, Lupski JR, Zhang F. 2013. Replicative mechanisms of CNV formation preferentially occur as intrachromosomal events: evidence from Potocki- Lupski duplication syndrome. Hum Mol Genet 22: 749–756.
    • (2013) Hum Mol Genet , vol.22 , pp. 749-756
    • Sun, Z.1    Liu, P.2    Jia, X.3    Withers, M.A.4    Jin, L.5    Lupski, J.R.6    Zhang, F.7
  • 55
    • 84906791314 scopus 로고    scopus 로고
    • Frequent interchromosomal template switches during gene conversion in S. cerevisiae
    • Tsaponina O, Haber JE. 2014. Frequent interchromosomal template switches during gene conversion in S. cerevisiae. Mol Cell 55: 615–625.
    • (2014) Mol Cell , vol.55 , pp. 615-625
    • Tsaponina, O.1    Haber, J.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.