-
1
-
-
39449096135
-
Genome instability: A mechanistic view of its causes and consequences
-
Aguilera A, Gomez-Gonzalez B. 2008. Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet 9: 204–217.
-
(2008)
Nat Rev Genet
, vol.9
, pp. 204-217
-
-
Aguilera, A.1
Gomez-Gonzalez, B.2
-
3
-
-
50149084043
-
Double-strand breaks associated with repetitive DNA can reshape the genome
-
Argueso JL, Westmoreland J, Mieczkowski PA, Gawel M, Petes TD, Resnick MA. 2008. Double-strand breaks associated with repetitive DNA can reshape the genome. Proc Natl Acad Sci 105: 11845–11850.
-
(2008)
Proc Natl Acad Sci
, vol.105
, pp. 11845-11850
-
-
Argueso, J.L.1
Westmoreland, J.2
Mieczkowski, P.A.3
Gawel, M.4
Petes, T.D.5
Resnick, M.A.6
-
4
-
-
79958013665
-
A genetic and structural study of genome rearrangements mediated by high copy repeat Ty1 elements
-
Chan JE, Kolodner RD. 2011. A genetic and structural study of genome rearrangements mediated by high copy repeat Ty1 elements. PLoS Genet 7: e1002089.
-
(2011)
PLoS Genet
, vol.e1002089
, pp. 7
-
-
Chan, J.E.1
Kolodner, R.D.2
-
5
-
-
84862777955
-
Complex reorganization and predominant nonhomologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration
-
S391
-
Chiang C, Jacobsen JC, Ernst C, Hanscom C, Heilbut A, Blumenthal I, Mills RE, Kirby A, Lindgren AM, Rudiger SR et al. 2012. Complex reorganization and predominant nonhomologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat Genet 44: 390–397, S391.
-
(2012)
Nat Genet
, vol.44
, pp. 390-397
-
-
Chiang, C.1
Jacobsen, J.C.2
Ernst, C.3
Hanscom, C.4
Heilbut, A.5
Blumenthal, I.6
Mills, R.E.7
Kirby, A.8
Lindgren, A.M.9
Rudiger, S.R.10
-
6
-
-
2542508779
-
Removal of one nonhomologous DNA end during gene conversion by a RAD1- and MSH2-independent pathway
-
Colaiacovo MP, Paques F, Haber JE. 1999. Removal of one nonhomologous DNA end during gene conversion by a RAD1- and MSH2-independent pathway. Genetics 151: 1409–1423.
-
(1999)
Genetics
, vol.151
, pp. 1409-1423
-
-
Colaiacovo, M.P.1
Paques, F.2
Haber, J.E.3
-
7
-
-
84892743776
-
Break-induced replication repair of damaged forks induces genomic duplications in human cells
-
Costantino L, Sotiriou SK, Rantala JK, Magin S, Mladenov E, Helleday T, Haber JE, Iliakis G, Kallioniemi OP, Halazonetis TD. 2014. Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343: 88–91.
-
(2014)
Science
, vol.343
, pp. 88-91
-
-
Costantino, L.1
Sotiriou, S.K.2
Rantala, J.K.3
Magin, S.4
Mladenov, E.5
Helleday, T.6
Haber, J.E.7
Iliakis, G.8
Kallioniemi, O.P.9
Halazonetis, T.D.10
-
8
-
-
0030885649
-
Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast
-
Datta A, Hendrix M, Lipsitch M, Jinks-Robertson S. 1997. Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc Natl Acad Sci 94: 9757–9762.
-
(1997)
Proc Natl Acad Sci
, vol.94
, pp. 9757-9762
-
-
Datta, A.1
Hendrix, M.2
Lipsitch, M.3
Jinks-Robertson, S.4
-
9
-
-
1542344337
-
RAD51-dependent break-induced replication in yeast
-
Davis AP, Symington LS. 2004. RAD51-dependent break-induced replication in yeast. Mol Cell Biol 24: 2344–2351.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 2344-2351
-
-
Davis, A.P.1
Symington, L.S.2
-
10
-
-
84887992179
-
Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome
-
Davoli T, Xu AW, Mengwasser KE, Sack LM, Yoon JC, Park PJ, Elledge SJ. 2013. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155: 948–962.
-
(2013)
Cell
, vol.155
, pp. 948-962
-
-
Davoli, T.1
Xu, A.W.2
Mengwasser, K.E.3
Sack, L.M.4
Yoon, J.C.5
Park, P.J.6
Elledge, S.J.7
-
11
-
-
79952273242
-
Break-induced replication is highly inaccurate
-
Deem A, Keszthelyi A, Blackgrove T, Vayl A, Coffey B, Mathur R, Chabes A, Malkova A. 2011. Break-induced replication is highly inaccurate. PLoS Biol 9: e1000594.
-
(2011)
PLoS Biol
, vol.9
, pp. e1000594
-
-
Deem, A.1
Keszthelyi, A.2
Blackgrove, T.3
Vayl, A.4
Coffey, B.5
Mathur, R.6
Chabes, A.7
Malkova, A.8
-
12
-
-
0029740114
-
DNA replication fork pause sites dependent on transcription
-
Deshpande AM, Newlon CS. 1996. DNA replication fork pause sites dependent on transcription. Science 272: 1030–1033.
-
(1996)
Science
, vol.272
, pp. 1030-1033
-
-
Deshpande, A.M.1
Newlon, C.S.2
-
13
-
-
84882372684
-
Break-induced replication occurs by conservative DNA synthesis
-
Donnianni RA, Symington LS. 2013. Break-induced replication occurs by conservative DNA synthesis. Proc Natl Acad Sci 110: 13475–13480.
-
(2013)
Proc Natl Acad Sci
, vol.110
, pp. 13475-13480
-
-
Donnianni, R.A.1
Symington, L.S.2
-
14
-
-
0036480427
-
Double-strand breaks and translocations in cancer
-
Elliott B, Jasin M. 2002. Double-strand breaks and translocations in cancer. Cell Mol Life Sci 59: 373–385.
-
(2002)
Cell Mol Life Sci
, vol.59
, pp. 373-385
-
-
Elliott, B.1
Jasin, M.2
-
15
-
-
0034713383
-
Chromosomal evolution in Saccharomyces
-
Fischer G, James SA, Roberts IN, Oliver SG, Louis EJ. 2000. Chromosomal evolution in Saccharomyces. Nature 405: 451–454.
-
(2000)
Nature
, vol.405
, pp. 451-454
-
-
Fischer, G.1
James, S.A.2
Roberts, I.N.3
Oliver, S.G.4
Louis, E.J.5
-
16
-
-
0026498944
-
Removal of nonhomologous DNA ends in double-strand break recombination: The role of the yeast ultraviolet repair gene RAD1
-
Fishman-Lobell J, Haber JE. 1992. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258: 480–484.
-
(1992)
Science
, vol.258
, pp. 480-484
-
-
Fishman-Lobell, J.1
Haber, J.E.2
-
17
-
-
84866728909
-
Chromothripsis and cancer: Causes and consequences of chromosome shattering
-
Forment JV, Kaidi A, Jackson SP. 2012. Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer 12: 663–670.
-
(2012)
Nat Rev Cancer
, vol.12
, pp. 663-670
-
-
Forment, J.V.1
Kaidi, A.2
Jackson, S.P.3
-
18
-
-
40449120350
-
An oncogeneinduced DNA damage model for cancer development
-
Halazonetis TD, Gorgoulis VG, Bartek J. 2008. An oncogeneinduced DNA damage model for cancer development. Science 319: 1352–1355.
-
(2008)
Science
, vol.319
, pp. 1352-1355
-
-
Halazonetis, T.D.1
Gorgoulis, V.G.2
Bartek, J.3
-
19
-
-
59249105978
-
A microhomology-mediated break-induced replication model for the origin of human copy number variation
-
Hastings PJ, Ira G, Lupski JR. 2009a. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5: e1000327.
-
(2009)
PLoS Genet
, vol.5
, pp. e1000327
-
-
Hastings, P.J.1
Ira, G.2
Lupski, J.R.3
-
21
-
-
77954328102
-
Increased mutagenesis and unique mutation signature associated with mitotic gene conversion
-
Hicks WM, Kim M, Haber JE. 2010. Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 329: 82–85.
-
(2010)
Science
, vol.329
, pp. 82-85
-
-
Hicks, W.M.1
Kim, M.2
Haber, J.E.3
-
22
-
-
78650689283
-
Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination
-
Hoang ML, Tan FJ, Lai DC, Celniker SE, Hoskins RA, Dunham MJ, Zheng Y, Koshland D. 2010. Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination. PLoS Genet 6: e1001228.
-
(2010)
PLoS Genet
, vol.6
, pp. e1001228
-
-
Hoang, M.L.1
Tan, F.J.2
Lai, D.C.3
Celniker, S.E.4
Hoskins, R.A.5
Dunham, M.J.6
Zheng, Y.7
Koshland, D.8
-
23
-
-
0030000946
-
Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae
-
Ivanov EL, Sugawara N, Fishman-Lobell J, Haber JE. 1996. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 142: 693–704.
-
(1996)
Genetics
, vol.142
, pp. 693-704
-
-
Ivanov, E.L.1
Sugawara, N.2
Fishman-Lobell, J.3
Haber, J.E.4
-
24
-
-
0030742948
-
Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins
-
Kirkpatrick DT, Petes TD. 1997. Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins. Nature 387: 929–931.
-
(1997)
Nature
, vol.387
, pp. 929-931
-
-
Kirkpatrick, D.T.1
Petes, T.D.2
-
25
-
-
0030778197
-
RDH54, a RAD54 homologue in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis
-
Klein HL. 1997. RDH54, a RAD54 homologue in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis. Genetics 147: 1533–1543.
-
(1997)
Genetics
, vol.147
, pp. 1533-1543
-
-
Klein, H.L.1
-
26
-
-
37349109667
-
A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders
-
Lee JA, Carvalho CM, Lupski JR. 2007. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131: 1235–1247.
-
(2007)
Cell
, vol.131
, pp. 1235-1247
-
-
Lee, J.A.1
Carvalho, C.M.2
Lupski, J.R.3
-
27
-
-
14844286404
-
Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites
-
Lemoine FJ, Degtyareva NP, Lobachev K, Petes TD. 2005. Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites. Cell 120: 587–598.
-
(2005)
Cell
, vol.120
, pp. 587-598
-
-
Lemoine, F.J.1
Degtyareva, N.P.2
Lobachev, K.3
Petes, T.D.4
-
28
-
-
33748138991
-
Roles of nonhomologous DNA end joining, V(D)J recombination, and class switch recombination in chromosomal translocations
-
Lieber MR, Yu K, Raghavan SC. 2006. Roles of nonhomologous DNA end joining, V(D)J recombination, and class switch recombination in chromosomal translocations. DNA Repair (Amst) 5: 1234–1245.
-
(2006)
DNA Repair (Amst)
, vol.5
, pp. 1234-1245
-
-
Lieber, M.R.1
Yu, K.2
Raghavan, S.C.3
-
29
-
-
80052916562
-
Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements
-
Liu P, Erez A, Nagamani SC, Dhar SU, Kolodziejska KE, Dharmadhikari AV, Cooper ML, Wiszniewska J, Zhang F, Withers MA, et al. 2011. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146: 889–903.
-
(2011)
Cell
, vol.146
, pp. 889-903
-
-
Liu, P.1
Erez, A.2
Nagamani, S.C.3
Dhar, S.U.4
Kolodziejska, K.E.5
Dharmadhikari, A.V.6
Cooper, M.L.7
Wiszniewska, J.8
Zhang, F.9
Withers, M.A.10
-
30
-
-
0025240770
-
Mitotic recombination among subtelomeric Y9 repeats in Saccharomyces cerevisiae
-
Louis EJ, Haber JE. 1990. Mitotic recombination among subtelomeric Y9 repeats in Saccharomyces cerevisiae. Genetics 124: 547–559.
-
(1990)
Genetics
, vol.124
, pp. 547-559
-
-
Louis, E.J.1
Haber, J.E.2
-
31
-
-
34347349069
-
Genomic rearrangements and sporadic disease
-
Lupski JR. 2007. Genomic rearrangements and sporadic disease. Nat Genet 39: S43–S47.
-
(2007)
Nat Genet
, vol.39
, pp. S43-S47
-
-
Lupski, J.R.1
-
32
-
-
34547927220
-
Break-induced replication and telomerase-independent telomere maintenance require Pol32
-
Lydeard JR, Jain S, Yamaguchi M, Haber JE. 2007. Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448: 820–823.
-
(2007)
Nature
, vol.448
, pp. 820-823
-
-
Lydeard, J.R.1
Jain, S.2
Yamaguchi, M.3
Haber, J.E.4
-
33
-
-
77953076932
-
Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly
-
Lydeard JR, Lipkin-Moore Z, Sheu YJ, Stillman B, Burgers PM, Haber JE. 2010. Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly. Genes Dev 24: 1133–1144.
-
(2010)
Genes Dev
, vol.24
, pp. 1133-1144
-
-
Lydeard, J.R.1
Lipkin-Moore, Z.2
Sheu, Y.J.3
Stillman, B.4
Burgers, P.M.5
Haber, J.E.6
-
34
-
-
0029947714
-
Double-strand break repair in the absence of RAD51 in yeast: A possible role for break-induced DNA replication
-
Malkova A, Ivanov EL, Haber JE. 1996. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc Natl Acad Sci 93: 7131–7136.
-
(1996)
Proc Natl Acad Sci
, vol.93
, pp. 7131-7136
-
-
Malkova, A.1
Ivanov, E.L.2
Haber, J.E.3
-
35
-
-
0035338254
-
RAD51-independent breakinduced replication to repair a broken chromosome depends on a distant enhancer site
-
Malkova A, Signon L, Schaefer CB, Naylor ML, Theis JF, Newlon CS, Haber JE. 2001. RAD51-independent breakinduced replication to repair a broken chromosome depends on a distant enhancer site. Genes Dev 15: 1055–1060.
-
(2001)
Genes Dev
, vol.15
, pp. 1055-1060
-
-
Malkova, A.1
Signon, L.2
Schaefer, C.B.3
Naylor, M.L.4
Theis, J.F.5
Newlon, C.S.6
Haber, J.E.7
-
36
-
-
12844289007
-
RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion
-
Malkova A, Naylor ML, Yamaguchi M, Ira G, Haber JE. 2005. RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion. Mol Cell Biol 25: 933–944.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 933-944
-
-
Malkova, A.1
Naylor, M.L.2
Yamaguchi, M.3
Ira, G.4
Haber, J.E.5
-
37
-
-
0030760609
-
‘Break copy’ duplication: A model for chromosome fragment formation in Saccharomyces cerevisiae
-
Morrow DM, Connelly C, Hieter P. 1997. ‘Break copy’ duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147: 371–382.
-
(1997)
Genetics
, vol.147
, pp. 371-382
-
-
Morrow, D.M.1
Connelly, C.2
Hieter, P.3
-
39
-
-
1842366037
-
Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae
-
Paques F, Haber JE. 1997. Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol 17: 6765–6771.
-
(1997)
Mol Cell Biol
, vol.17
, pp. 6765-6771
-
-
Paques, F.1
Haber, J.E.2
-
40
-
-
52949143512
-
Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms
-
Payen C, Koszul R, Dujon B, Fischer G. 2008. Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms. PLoS Genet 4: e1000175.
-
(2008)
PLoS Genet
, vol.4
, pp. e1000175
-
-
Payen, C.1
Koszul, R.2
Dujon, B.3
Fischer, G.4
-
41
-
-
70350457512
-
Chromosomal translocations caused by either pol32-dependent or pol32- independent triparental break-induced replication
-
Ruiz JF, Gomez-Gonzalez B, Aguilera A. 2009. Chromosomal translocations caused by either pol32-dependent or pol32- independent triparental break-induced replication. Mol Cell Biol 29: 5441–5454.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 5441-5454
-
-
Ruiz, J.F.1
Gomez-Gonzalez, B.2
Aguilera, A.3
-
42
-
-
84885843906
-
Migrating bubble during break-induced replication drives conservative DNA synthesis
-
Saini N, Ramakrishnan S, Elango R, Ayyar S, Zhang Y, Deem A, Ira G, Haber JE, Lobachev KS, Malkova A. 2013. Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature 502: 389–392.
-
(2013)
Nature
, vol.502
, pp. 389-392
-
-
Saini, N.1
Ramakrishnan, S.2
Elango, R.3
Ayyar, S.4
Zhang, Y.5
Deem, A.6
Ira, G.7
Haber, J.E.8
Lobachev, K.S.9
Malkova, A.10
-
43
-
-
0029896663
-
Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1– RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae
-
Saparbaev M, Prakash L, Prakash S. 1996. Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1– RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae. Genetics 142: 727–736.
-
(1996)
Genetics
, vol.142
, pp. 727-736
-
-
Saparbaev, M.1
Prakash, L.2
Prakash, S.3
-
44
-
-
33745872612
-
Control of translocations between highly diverged genes by Sgs1, the Saccharomyces cerevisiae homolog of the Bloom’s syndrome protein
-
Schmidt KH, Wu J, Kolodner RD. 2006. Control of translocations between highly diverged genes by Sgs1, the Saccharomyces cerevisiae homolog of the Bloom’s syndrome protein. Mol Cell Biol 26: 5406–5420.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 5406-5420
-
-
Schmidt, K.H.1
Wu, J.2
Kolodner, R.D.3
-
45
-
-
11244287233
-
Non-recurrent 17p11.2 deletions are generated by homologous and non-homologous mechanisms
-
Shaw CJ, Lupski JR. 2005. Non-recurrent 17p11.2 deletions are generated by homologous and non-homologous mechanisms. Hum Genet 116: 1–7.
-
(2005)
Hum Genet
, vol.116
, pp. 1-7
-
-
Shaw, C.J.1
Lupski, J.R.2
-
46
-
-
0035000154
-
Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal doublestrand break
-
Signon L, Malkova A, Naylor ML, Klein H, Haber JE. 2001. Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal doublestrand break. Mol Cell Biol 21: 2048–2056.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 2048-2056
-
-
Signon, L.1
Malkova, A.2
Naylor, M.L.3
Klein, H.4
Haber, J.E.5
-
47
-
-
34247611513
-
Template switching during break-induced replication
-
Smith CE, Llorente B, Symington LS. 2007. Template switching during break-induced replication. Nature 447: 102–105.
-
(2007)
Nature
, vol.447
, pp. 102-105
-
-
Smith, C.E.1
Llorente, B.2
Symington, L.S.3
-
48
-
-
84901330077
-
Template switching during break-induced replication is promoted by the Mph1 helicase in Saccharomyces cerevisiae
-
Stafa A, Donnianni RA, Timashev LA, Lam AF, Symington LS. 2014. Template switching during break-induced replication is promoted by the Mph1 helicase in Saccharomyces cerevisiae. Genetics 196: 1017–1028.
-
(2014)
Genetics
, vol.196
, pp. 1017-1028
-
-
Stafa, A.1
Donnianni, R.A.2
Timashev, L.A.3
Lam, A.F.4
Symington, L.S.5
-
49
-
-
78650959663
-
Massive genomic rearrangement acquired in a single catastrophic event during cancer development
-
Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, Pleasance ED, Lau KW, Beare D, Stebbings LA, et al. 2011. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144: 27–40.
-
(2011)
Cell
, vol.144
, pp. 27-40
-
-
Stephens, P.J.1
Greenman, C.D.2
Fu, B.3
Yang, F.4
Bignell, G.R.5
Mudie, L.J.6
Pleasance, E.D.7
Lau, K.W.8
Beare, D.9
Stebbings, L.A.10
-
50
-
-
0032718278
-
Separation-of-function mutations in Saccharomyces cerevisiae MSH2 that confer mismatch repair defects but do not affect nonhomologous-tail removal during recombination
-
Studamire B, Price G, Sugawara N, Haber JE, Alani E. 1999. Separation-of-function mutations in Saccharomyces cerevisiae MSH2 that confer mismatch repair defects but do not affect nonhomologous-tail removal during recombination. Mol Cell Biol 19: 7558–7567.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 7558-7567
-
-
Studamire, B.1
Price, G.2
Sugawara, N.3
Haber, J.E.4
Alani, E.5
-
51
-
-
0030834260
-
Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination
-
Sugawara N, Paques F, Colaiacovo M, Haber JE. 1997. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc Natl Acad Sci 94: 9214–9219.
-
(1997)
Proc Natl Acad Sci
, vol.94
, pp. 9214-9219
-
-
Sugawara, N.1
Paques, F.2
Colaiacovo, M.3
Haber, J.E.4
-
52
-
-
0041903834
-
In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination
-
Sugawara N, Wang X, Haber JE. 2003. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol Cell 12: 209–219.
-
(2003)
Mol Cell
, vol.12
, pp. 209-219
-
-
Sugawara, N.1
Wang, X.2
Haber, J.E.3
-
53
-
-
3042546122
-
Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1
-
Sugawara N, Goldfarb T, Studamire B, Alani E, Haber JE. 2004. Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1. Proc Natl Acad Sci 101: 9315–9320.
-
(2004)
Proc Natl Acad Sci
, vol.101
, pp. 9315-9320
-
-
Sugawara, N.1
Goldfarb, T.2
Studamire, B.3
Alani, E.4
Haber, J.E.5
-
54
-
-
84873030486
-
Replicative mechanisms of CNV formation preferentially occur as intrachromosomal events: Evidence from Potocki- Lupski duplication syndrome
-
Sun Z, Liu P, Jia X, Withers MA, Jin L, Lupski JR, Zhang F. 2013. Replicative mechanisms of CNV formation preferentially occur as intrachromosomal events: evidence from Potocki- Lupski duplication syndrome. Hum Mol Genet 22: 749–756.
-
(2013)
Hum Mol Genet
, vol.22
, pp. 749-756
-
-
Sun, Z.1
Liu, P.2
Jia, X.3
Withers, M.A.4
Jin, L.5
Lupski, J.R.6
Zhang, F.7
-
55
-
-
84906791314
-
Frequent interchromosomal template switches during gene conversion in S. cerevisiae
-
Tsaponina O, Haber JE. 2014. Frequent interchromosomal template switches during gene conversion in S. cerevisiae. Mol Cell 55: 615–625.
-
(2014)
Mol Cell
, vol.55
, pp. 615-625
-
-
Tsaponina, O.1
Haber, J.E.2
-
56
-
-
34147205098
-
Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements
-
VanHulle K, Lemoine FJ, Narayanan V, Downing B, Hull K, McCullough C, Bellinger M, Lobachev K, Petes TD, Malkova A. 2007. Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements. Mol Cell Biol 27: 2601–2614.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 2601-2614
-
-
Vanhulle, K.1
Lemoine, F.J.2
Narayanan, V.3
Downing, B.4
Hull, K.5
McCullough, C.6
Bellinger, M.7
Lobachev, K.8
Petes, T.D.9
Malkova, A.10
-
57
-
-
84885866032
-
Pif1 helicase and Pold promote recombination-coupled DNA synthesis via bubble migration
-
Wilson MA, Kwon Y, Xu Y, Chung WH, Chi P, Niu H, Mayle R, Chen X, Malkova A, Sung P, et al. 2013. Pif1 helicase and Pold promote recombination-coupled DNA synthesis via bubble migration. Nature 502: 393–396.
-
(2013)
Nature
, vol.502
, pp. 393-396
-
-
Wilson, M.A.1
Kwon, Y.2
Xu, Y.3
Chung, W.H.4
Chi, P.5
Niu, H.6
Mayle, R.7
Chen, X.8
Malkova, A.9
Sung, P.10
|