-
1
-
-
50649100744
-
Mechanism of eukaryotic homologous recombination
-
San Filippo J., et al. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77 (2008) 229-257
-
(2008)
Annu. Rev. Biochem.
, vol.77
, pp. 229-257
-
-
San Filippo, J.1
-
3
-
-
38049173021
-
Homologous recombination in DNA repair and DNA damage tolerance
-
Li X., and Heyer W.D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 18 (2008) 99-113
-
(2008)
Cell Res.
, vol.18
, pp. 99-113
-
-
Li, X.1
Heyer, W.D.2
-
4
-
-
3242891189
-
The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together
-
Stracker T.H., et al. The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together. DNA Repair (Amst.) 3 (2004) 845-854
-
(2004)
DNA Repair (Amst.)
, vol.3
, pp. 845-854
-
-
Stracker, T.H.1
-
5
-
-
0025334351
-
Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination
-
Alani E., et al. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61 (1990) 419-436
-
(1990)
Cell
, vol.61
, pp. 419-436
-
-
Alani, E.1
-
6
-
-
0025315699
-
A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae
-
Cao L., et al. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61 (1990) 1089-1101
-
(1990)
Cell
, vol.61
, pp. 1089-1101
-
-
Cao, L.1
-
7
-
-
0030987132
-
An atypical topoisomerase II from Archaea with implications for meiotic recombination
-
Bergerat A., et al. An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386 (1997) 414-417
-
(1997)
Nature
, vol.386
, pp. 414-417
-
-
Bergerat, A.1
-
8
-
-
0030893115
-
Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family
-
Keeney S., et al. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88 (1997) 375-384
-
(1997)
Cell
, vol.88
, pp. 375-384
-
-
Keeney, S.1
-
9
-
-
3142704347
-
Conserved and nonconserved proteins for meiotic DNA breakage and repair in yeasts
-
Young J.A., et al. Conserved and nonconserved proteins for meiotic DNA breakage and repair in yeasts. Genetics 167 (2004) 593-605
-
(2004)
Genetics
, vol.167
, pp. 593-605
-
-
Young, J.A.1
-
10
-
-
23944459784
-
Endonucleolytic processing of covalent protein-linked DNA double-strand breaks
-
Neale M.J., et al. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436 (2005) 1053-1057
-
(2005)
Nature
, vol.436
, pp. 1053-1057
-
-
Neale, M.J.1
-
11
-
-
36248942617
-
Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex
-
Lengsfeld B.M., et al. Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. Mol. Cell 28 (2007) 638-651
-
(2007)
Mol. Cell
, vol.28
, pp. 638-651
-
-
Lengsfeld, B.M.1
-
12
-
-
0028212415
-
Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae
-
Ivanov E.L., et al. Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 14 (1994) 3414-3425
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 3414-3425
-
-
Ivanov, E.L.1
-
13
-
-
0031983191
-
A novel mre11 mutation impairs processing of double-strand breaks of DNA during both mitosis and meiosis
-
Tsubouchi H., and Ogawa H. A novel mre11 mutation impairs processing of double-strand breaks of DNA during both mitosis and meiosis. Mol. Cell. Biol. 18 (1998) 260-268
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 260-268
-
-
Tsubouchi, H.1
Ogawa, H.2
-
14
-
-
33644691699
-
The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends
-
Clerici M., et al. The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends. J. Biol. Chem. 280 (2005) 38631-38638
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 38631-38638
-
-
Clerici, M.1
-
15
-
-
6344254299
-
The Mre11 nuclease is not required for 5′ to 3′ resection at multiple HO-induced double-strand breaks
-
Llorente B., and Symington L.S. The Mre11 nuclease is not required for 5′ to 3′ resection at multiple HO-induced double-strand breaks. Mol. Cell. Biol. 24 (2004) 9682-9694
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 9682-9694
-
-
Llorente, B.1
Symington, L.S.2
-
16
-
-
0037169325
-
The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements
-
Lobachev K.S., et al. The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell 108 (2002) 183-193
-
(2002)
Cell
, vol.108
, pp. 183-193
-
-
Lobachev, K.S.1
-
17
-
-
0035022013
-
Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/COM1
-
Rattray A.J., et al. Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/COM1. Genetics 158 (2001) 109-122
-
(2001)
Genetics
, vol.158
, pp. 109-122
-
-
Rattray, A.J.1
-
18
-
-
53649104599
-
Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
-
Mimitou E.P., and Symington L.S. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455 (2008) 770-774
-
(2008)
Nature
, vol.455
, pp. 770-774
-
-
Mimitou, E.P.1
Symington, L.S.2
-
19
-
-
51549095956
-
Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends
-
Zhu Z., et al. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134 (2008) 981-994
-
(2008)
Cell
, vol.134
, pp. 981-994
-
-
Zhu, Z.1
-
20
-
-
47949121598
-
Mre11-Rad50-Nbs1-dependent processing of DNA breaks generates oligonucleotides that stimulate ATM activity
-
Jazayeri A., et al. Mre11-Rad50-Nbs1-dependent processing of DNA breaks generates oligonucleotides that stimulate ATM activity. EMBO J. 27 (2008) 1953-1962
-
(2008)
EMBO J.
, vol.27
, pp. 1953-1962
-
-
Jazayeri, A.1
-
21
-
-
4544281398
-
Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins
-
Lisby M., et al. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118 (2004) 699-713
-
(2004)
Cell
, vol.118
, pp. 699-713
-
-
Lisby, M.1
-
22
-
-
4644257681
-
Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break
-
Shroff R., et al. Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr. Biol. 14 (2004) 1703-1711
-
(2004)
Curr. Biol.
, vol.14
, pp. 1703-1711
-
-
Shroff, R.1
-
23
-
-
34948872046
-
Ctp1 is a cell-cycle-regulated protein that functions with Mre11 complex to control double-strand break repair by homologous recombination
-
Limbo O., et al. Ctp1 is a cell-cycle-regulated protein that functions with Mre11 complex to control double-strand break repair by homologous recombination. Mol. Cell 28 (2007) 134-146
-
(2007)
Mol. Cell
, vol.28
, pp. 134-146
-
-
Limbo, O.1
-
24
-
-
52949149420
-
Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair
-
Williams R.S., et al. Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair. Cell 135 (2008) 97-109
-
(2008)
Cell
, vol.135
, pp. 97-109
-
-
Williams, R.S.1
-
25
-
-
52949109260
-
Mre11 nuclease activity has essential roles in DNA repair and genomic stability distinct from ATM activation
-
Buis J., et al. Mre11 nuclease activity has essential roles in DNA repair and genomic stability distinct from ATM activation. Cell 135 (2008) 85-96
-
(2008)
Cell
, vol.135
, pp. 85-96
-
-
Buis, J.1
-
26
-
-
36549060102
-
Human CtIP promotes DNA end resection
-
Sartori A.A., et al. Human CtIP promotes DNA end resection. Nature 450 (2007) 509-514
-
(2007)
Nature
, vol.450
, pp. 509-514
-
-
Sartori, A.A.1
-
27
-
-
5044219898
-
EXO1 - a multi-tasking eukaryotic nuclease
-
Tran P.T., et al. EXO1 - a multi-tasking eukaryotic nuclease. DNA Repair (Amst.) 3 (2004) 1549-1559
-
(2004)
DNA Repair (Amst.)
, vol.3
, pp. 1549-1559
-
-
Tran, P.T.1
-
28
-
-
11344268431
-
Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells
-
Cotta-Ramusino C., et al. Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Mol. Cell 17 (2005) 153-159
-
(2005)
Mol. Cell
, vol.17
, pp. 153-159
-
-
Cotta-Ramusino, C.1
-
29
-
-
0036682516
-
EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Δ mutants
-
Maringele L., and Lydall D. EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Δ mutants. Genes Dev. 16 (2002) 1919-1933
-
(2002)
Genes Dev.
, vol.16
, pp. 1919-1933
-
-
Maringele, L.1
Lydall, D.2
-
30
-
-
0042991423
-
Competition between the Rad50 complex and the Ku heterodimer reveals a role for Exo1 in processing double-strand breaks but not telomeres
-
Tomita K., et al. Competition between the Rad50 complex and the Ku heterodimer reveals a role for Exo1 in processing double-strand breaks but not telomeres. Mol. Cell. Biol. 23 (2003) 5186-5197
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 5186-5197
-
-
Tomita, K.1
-
31
-
-
0037459374
-
Interchangeable parts of the Escherichia coli recombination machinery
-
Amundsen S.K., and Smith G.R. Interchangeable parts of the Escherichia coli recombination machinery. Cell 112 (2003) 741-744
-
(2003)
Cell
, vol.112
, pp. 741-744
-
-
Amundsen, S.K.1
Smith, G.R.2
-
32
-
-
0028033989
-
The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase
-
Gangloff S., et al. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol. Cell. Biol. 14 (1994) 8391-8398
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 8391-8398
-
-
Gangloff, S.1
-
33
-
-
53649090109
-
DNA helicases Sgs1 and BLM promote DNA double-strand break resection
-
Gravel S., et al. DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev. 22 (2008) 2767-2772
-
(2008)
Genes Dev.
, vol.22
, pp. 2767-2772
-
-
Gravel, S.1
-
34
-
-
0028785586
-
The Bloom's syndrome gene product is homologous to RecQ helicases
-
Ellis N.A., et al. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell 83 (1995) 655-666
-
(1995)
Cell
, vol.83
, pp. 655-666
-
-
Ellis, N.A.1
-
35
-
-
0141567744
-
RecQ helicases: suppressors of tumorigenesis and premature aging
-
Bachrati C.Z., and Hickson I.D. RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem. J. 374 (2003) 577-606
-
(2003)
Biochem. J.
, vol.374
, pp. 577-606
-
-
Bachrati, C.Z.1
Hickson, I.D.2
-
36
-
-
33645215616
-
Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta
-
Budd M.E., et al. Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. Mol. Cell. Biol. 26 (2006) 2490-2500
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 2490-2500
-
-
Budd, M.E.1
-
37
-
-
56049111594
-
Identification of the Xenopus DNA2 protein as a major nuclease for the 5′→3′ strand-specific processing of DNA ends
-
Liao S., et al. Identification of the Xenopus DNA2 protein as a major nuclease for the 5′→3′ strand-specific processing of DNA ends. Nucleic Acids Res. 36 (2008) 6091-6100
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 6091-6100
-
-
Liao, S.1
-
38
-
-
55949105327
-
Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair
-
Nimonkar A.V., et al. Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 16906-16911
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 16906-16911
-
-
Nimonkar, A.V.1
-
39
-
-
53549093050
-
The P. furiosus mre11/rad50 complex promotes 5′ strand resection at a DNA double-strand break
-
Hopkins B.B., and Paull T.T. The P. furiosus mre11/rad50 complex promotes 5′ strand resection at a DNA double-strand break. Cell 135 (2008) 250-260
-
(2008)
Cell
, vol.135
, pp. 250-260
-
-
Hopkins, B.B.1
Paull, T.T.2
-
40
-
-
29244463205
-
Nonhomologous end joining in yeast
-
Daley J.M., et al. Nonhomologous end joining in yeast. Annu. Rev. Genet. 39 (2005) 431-451
-
(2005)
Annu. Rev. Genet.
, vol.39
, pp. 431-451
-
-
Daley, J.M.1
-
41
-
-
11244269445
-
The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle
-
Aylon Y., et al. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J. 23 (2004) 4868-4875
-
(2004)
EMBO J.
, vol.23
, pp. 4868-4875
-
-
Aylon, Y.1
-
42
-
-
7244220162
-
DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1
-
Ira G., et al. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431 (2004) 1011-1017
-
(2004)
Nature
, vol.431
, pp. 1011-1017
-
-
Ira, G.1
-
43
-
-
48649086824
-
The Yku70-Yku80 complex contributes to regulate double-strand break processing and checkpoint activation during the cell cycle
-
Clerici M., et al. The Yku70-Yku80 complex contributes to regulate double-strand break processing and checkpoint activation during the cell cycle. EMBO Rep. 9 (2008) 810-818
-
(2008)
EMBO Rep.
, vol.9
, pp. 810-818
-
-
Clerici, M.1
-
44
-
-
2942594756
-
The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation
-
Baroni E., et al. The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation. Mol. Cell. Biol. 24 (2004) 4151-4165
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 4151-4165
-
-
Baroni, E.1
-
45
-
-
53349162987
-
CDK targets Sae2 to control DNA-end resection and homologous recombination
-
Huertas P., et al. CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455 (2008) 689-692
-
(2008)
Nature
, vol.455
, pp. 689-692
-
-
Huertas, P.1
-
46
-
-
34147205098
-
Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements
-
VanHulle K., et al. Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements. Mol. Cell. Biol. 27 (2007) 2601-2614
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 2601-2614
-
-
VanHulle, K.1
-
47
-
-
33751419716
-
Surviving the breakup: the DNA damage checkpoint
-
Harrison J.C., and Haber J.E. Surviving the breakup: the DNA damage checkpoint. Annu. Rev. Genet. 40 (2006) 209-235
-
(2006)
Annu. Rev. Genet.
, vol.40
, pp. 209-235
-
-
Harrison, J.C.1
Haber, J.E.2
-
48
-
-
38349073475
-
DNA damage response at functional and dysfunctional telomeres
-
Longhese M.P. DNA damage response at functional and dysfunctional telomeres. Genes Dev. 22 (2008) 125-140
-
(2008)
Genes Dev.
, vol.22
, pp. 125-140
-
-
Longhese, M.P.1
-
49
-
-
44349180168
-
Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres
-
Lazzaro F., et al. Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres. EMBO J. 27 (2008) 1502-1512
-
(2008)
EMBO J.
, vol.27
, pp. 1502-1512
-
-
Lazzaro, F.1
-
50
-
-
39149129387
-
ATR-dependent pathways control hEXO1 stability in response to stalled forks
-
El-Shemerly M., et al. ATR-dependent pathways control hEXO1 stability in response to stalled forks. Nucleic Acids Res. 36 (2008) 511-519
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 511-519
-
-
El-Shemerly, M.1
-
51
-
-
51949118680
-
Checkpoint-dependent phosphorylation of Exo1 modulates the DNA damage response
-
Morin I., et al. Checkpoint-dependent phosphorylation of Exo1 modulates the DNA damage response. EMBO J. 27 (2008) 2400-2410
-
(2008)
EMBO J.
, vol.27
, pp. 2400-2410
-
-
Morin, I.1
-
52
-
-
34547499407
-
Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases
-
Smolka M.B., et al. Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 10364-10369
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 10364-10369
-
-
Smolka, M.B.1
-
53
-
-
33645799075
-
The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling
-
Clerici M., et al. The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling. EMBO Rep. 7 (2006) 212-218
-
(2006)
EMBO Rep.
, vol.7
, pp. 212-218
-
-
Clerici, M.1
-
54
-
-
0026331068
-
Formation and resolution of recombination intermediates by E. coli RecA and RuvC proteins
-
Dunderdale H.J., et al. Formation and resolution of recombination intermediates by E. coli RecA and RuvC proteins. Nature 354 (1991) 506-510
-
(1991)
Nature
, vol.354
, pp. 506-510
-
-
Dunderdale, H.J.1
-
55
-
-
56749119855
-
Identification of Holliday junction resolvases from humans and yeast
-
Ip S.C., et al. Identification of Holliday junction resolvases from humans and yeast. Nature 456 (2008) 357-361
-
(2008)
Nature
, vol.456
, pp. 357-361
-
-
Ip, S.C.1
-
56
-
-
33749603235
-
A network of multi-tasking proteins at the DNA replication fork preserves genome stability
-
Budd M.E., et al. A network of multi-tasking proteins at the DNA replication fork preserves genome stability. PLoS Genet. 1 (2005) e61
-
(2005)
PLoS Genet.
, vol.1
-
-
Budd, M.E.1
-
57
-
-
0345447604
-
Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast
-
Ira G., et al. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115 (2003) 401-411
-
(2003)
Cell
, vol.115
, pp. 401-411
-
-
Ira, G.1
-
58
-
-
34447536139
-
BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules
-
Oh S.D., et al. BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 130 (2007) 259-272
-
(2007)
Cell
, vol.130
, pp. 259-272
-
-
Oh, S.D.1
-
59
-
-
0347987856
-
The Bloom's syndrome helicase suppresses crossing over during homologous recombination
-
Wu L., and Hickson I.D. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426 (2003) 870-874
-
(2003)
Nature
, vol.426
, pp. 870-874
-
-
Wu, L.1
Hickson, I.D.2
-
60
-
-
54349099705
-
RMI, a new OB-fold complex essential for Bloom syndrome protein to maintain genome stability
-
Xu D., et al. RMI, a new OB-fold complex essential for Bloom syndrome protein to maintain genome stability. Genes Dev. 22 (2008) 2843-2855
-
(2008)
Genes Dev.
, vol.22
, pp. 2843-2855
-
-
Xu, D.1
-
61
-
-
54349114671
-
BLAP18/RMI2, a novel OB-fold-containing protein, is an essential component of the Bloom helicase-double Holliday junction dissolvasome
-
Singh T.R., et al. BLAP18/RMI2, a novel OB-fold-containing protein, is an essential component of the Bloom helicase-double Holliday junction dissolvasome. Genes Dev. 22 (2008) 2856-2868
-
(2008)
Genes Dev.
, vol.22
, pp. 2856-2868
-
-
Singh, T.R.1
-
62
-
-
0346351375
-
A manyfold increase in sister chromatid exchanges in Bloom's syndrome lymphocytes
-
Chaganti R.S., et al. A manyfold increase in sister chromatid exchanges in Bloom's syndrome lymphocytes. Proc. Natl. Acad. Sci. U. S. A. 71 (1974) 4508-4512
-
(1974)
Proc. Natl. Acad. Sci. U. S. A.
, vol.71
, pp. 4508-4512
-
-
Chaganti, R.S.1
-
63
-
-
0942279596
-
The Mus81 solution to resolution: generating meiotic crossovers without Holliday junctions
-
Hollingsworth N.M., and Brill S.J. The Mus81 solution to resolution: generating meiotic crossovers without Holliday junctions. Genes Dev. 18 (2004) 117-125
-
(2004)
Genes Dev.
, vol.18
, pp. 117-125
-
-
Hollingsworth, N.M.1
Brill, S.J.2
-
64
-
-
0035900652
-
Mus81-Eme1 are essential components of a Holliday junction resolvase
-
Boddy M.N., et al. Mus81-Eme1 are essential components of a Holliday junction resolvase. Cell 107 (2001) 537-548
-
(2001)
Cell
, vol.107
, pp. 537-548
-
-
Boddy, M.N.1
-
65
-
-
0141707817
-
Generating crossovers by resolution of nicked Holliday junctions: a role for Mus81-Eme1 in meiosis
-
Osman F., et al. Generating crossovers by resolution of nicked Holliday junctions: a role for Mus81-Eme1 in meiosis. Mol. Cell 12 (2003) 761-774
-
(2003)
Mol. Cell
, vol.12
, pp. 761-774
-
-
Osman, F.1
-
66
-
-
34248202607
-
Mus81-Eme1-dependent and -independent crossovers form in mitotic cells during double-strand break repair in Schizosaccharomyces pombe
-
Hope J.C., et al. Mus81-Eme1-dependent and -independent crossovers form in mitotic cells during double-strand break repair in Schizosaccharomyces pombe. Mol. Cell. Biol. 27 (2007) 3828-3838
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 3828-3838
-
-
Hope, J.C.1
-
67
-
-
53149087431
-
The FANCM ortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair
-
Sun W., et al. The FANCM ortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair. Mol. Cell 32 (2008) 118-128
-
(2008)
Mol. Cell
, vol.32
, pp. 118-128
-
-
Sun, W.1
-
68
-
-
11244321837
-
Competing crossover pathways act during meiosis in Saccharomyces cerevisiae
-
Argueso J.L., et al. Competing crossover pathways act during meiosis in Saccharomyces cerevisiae. Genetics 168 (2004) 1805-1816
-
(2004)
Genetics
, vol.168
, pp. 1805-1816
-
-
Argueso, J.L.1
-
69
-
-
52949098362
-
MUS81 generates a subset of MLH1-MLH3-independent crossovers in mammalian meiosis
-
Holloway J.K., et al. MUS81 generates a subset of MLH1-MLH3-independent crossovers in mammalian meiosis. PLoS Genet. 4 (2008) e1000186
-
(2008)
PLoS Genet.
, vol.4
-
-
Holloway, J.K.1
-
70
-
-
33746189409
-
Endonucleolytic function of MutLα in human mismatch repair
-
Kadyrov F.A., et al. Endonucleolytic function of MutLα in human mismatch repair. Cell 126 (2006) 297-308
-
(2006)
Cell
, vol.126
, pp. 297-308
-
-
Kadyrov, F.A.1
-
71
-
-
49849087552
-
A mutation in the putative MLH3 endonuclease domain confers a defect in both mismatch repair and meiosis in Saccharomyces cerevisiae
-
Nishant K.T., et al. A mutation in the putative MLH3 endonuclease domain confers a defect in both mismatch repair and meiosis in Saccharomyces cerevisiae. Genetics 179 (2008) 747-755
-
(2008)
Genetics
, vol.179
, pp. 747-755
-
-
Nishant, K.T.1
-
72
-
-
0034727684
-
Binding and melting of D-loops by the Bloom syndrome helicase
-
van Brabant A.J., et al. Binding and melting of D-loops by the Bloom syndrome helicase. Biochemistry 39 (2000) 14617-14625
-
(2000)
Biochemistry
, vol.39
, pp. 14617-14625
-
-
van Brabant, A.J.1
-
73
-
-
53549122238
-
RTEL1 maintains genomic stability by suppressing homologous recombination
-
Barber L.J., et al. RTEL1 maintains genomic stability by suppressing homologous recombination. Cell 135 (2008) 261-271
-
(2008)
Cell
, vol.135
, pp. 261-271
-
-
Barber, L.J.1
-
74
-
-
38649130654
-
The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: implications for crossover incidence during mitotic recombination
-
Dupaigne P., et al. The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: implications for crossover incidence during mitotic recombination. Mol. Cell 29 (2008) 243-254
-
(2008)
Mol. Cell
, vol.29
, pp. 243-254
-
-
Dupaigne, P.1
-
75
-
-
55849133052
-
Remodeling of DNA replication structures by the branch point translocase FANCM
-
Gari K., et al. Remodeling of DNA replication structures by the branch point translocase FANCM. Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 16107-16112
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 16107-16112
-
-
Gari, K.1
-
76
-
-
21244434850
-
RMI1/NCE4, a suppressor of genome instability, encodes a member of the RecQ helicase/Topo III complex
-
Chang M., et al. RMI1/NCE4, a suppressor of genome instability, encodes a member of the RecQ helicase/Topo III complex. EMBO J. 24 (2005) 2024-2033
-
(2005)
EMBO J.
, vol.24
, pp. 2024-2033
-
-
Chang, M.1
|