메뉴 건너뛰기




Volumn 100, Issue , 2016, Pages 94-107

Redox biology and the interface between bioenergetics, autophagy and circadian control of metabolism

Author keywords

Chronobiology; Keap1; Metabolic shift; Nrf2; Oxidative stress; Reserve capacity

Indexed keywords

KELCH LIKE ECH ASSOCIATED PROTEIN 1; N ACETYLGLUCOSAMINE; TRANSCRIPTION FACTOR NRF2;

EID: 84971622073     PISSN: 08915849     EISSN: 18734596     Source Type: Journal    
DOI: 10.1016/j.freeradbiomed.2016.05.022     Document Type: Review
Times cited : (46)

References (197)
  • 1
    • 0015882341 scopus 로고
    • The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen
    • [1] Boveris, A., Chance, B., The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134 (1973), 707–716.
    • (1973) Biochem. J. , vol.134 , pp. 707-716
    • Boveris, A.1    Chance, B.2
  • 2
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • [2] Murphy, M.P., How mitochondria produce reactive oxygen species. Biochem. J. 417 (2009), 1–13.
    • (2009) Biochem. J. , vol.417 , pp. 1-13
    • Murphy, M.P.1
  • 3
    • 0018776894 scopus 로고
    • Hydroperoxide metabolism in mammalian organs
    • [3] Chance, B., Sies, H., Boveris, A., Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59 (1979), 527–605.
    • (1979) Physiol. Rev. , vol.59 , pp. 527-605
    • Chance, B.1    Sies, H.2    Boveris, A.3
  • 4
    • 0015363173 scopus 로고
    • The cellular production of hydrogen peroxide
    • [4] Boveris, A., Oshino, N., Chance, B., The cellular production of hydrogen peroxide. Biochem. J. 128 (1972), 617–630.
    • (1972) Biochem. J. , vol.128 , pp. 617-630
    • Boveris, A.1    Oshino, N.2    Chance, B.3
  • 7
    • 84878533006 scopus 로고    scopus 로고
    • Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood
    • [7] Chacko, B.K., Kramer, P.A., Ravi, S., Johnson, M.S., Hardy, R.W., Ballinger, S.W., Darley-Usmar, V.M., Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood. Lab. Investig. J. Tech. Methods Pathol. 93 (2013), 690–700.
    • (2013) Lab. Investig. J. Tech. Methods Pathol. , vol.93 , pp. 690-700
    • Chacko, B.K.1    Kramer, P.A.2    Ravi, S.3    Johnson, M.S.4    Hardy, R.W.5    Ballinger, S.W.6    Darley-Usmar, V.M.7
  • 8
    • 84879430920 scopus 로고    scopus 로고
    • Sites of reactive oxygen species generation by mitochondria oxidizing different substrates
    • [8] Quinlan, C.L., Perevoshchikova, I.V., Hey-Mogensen, M., Orr, A.L., Brand, M.D., Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol. 1 (2013), 304–312.
    • (2013) Redox Biol. , vol.1 , pp. 304-312
    • Quinlan, C.L.1    Perevoshchikova, I.V.2    Hey-Mogensen, M.3    Orr, A.L.4    Brand, M.D.5
  • 9
    • 18044383110 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in cardiovascular disease
    • [9] Ballinger, S.W., Mitochondrial dysfunction in cardiovascular disease. Free Radic. Biol. Med. 38 (2005), 1278–1295.
    • (2005) Free Radic. Biol. Med. , vol.38 , pp. 1278-1295
    • Ballinger, S.W.1
  • 11
    • 0037082357 scopus 로고    scopus 로고
    • Hypothesis: the mitochondrial NO(*) signaling pathway, and the transduction of nitrosative to oxidative cell signals: an alternative function for cytochrome C oxidase
    • [11] Brookes, P., Darley-Usmar, V.M., Hypothesis: the mitochondrial NO(*) signaling pathway, and the transduction of nitrosative to oxidative cell signals: an alternative function for cytochrome C oxidase. Free Radic. Biol. Med. 32 (2002), 370–374.
    • (2002) Free Radic. Biol. Med. , vol.32 , pp. 370-374
    • Brookes, P.1    Darley-Usmar, V.M.2
  • 12
    • 84879047011 scopus 로고    scopus 로고
    • Cellular metabolic and autophagic pathways: traffic control by redox signaling
    • [12] Dodson, M., Darley-Usmar, V., Zhang, J., Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic. Biol. Med. 63 (2013), 207–221.
    • (2013) Free Radic. Biol. Med. , vol.63 , pp. 207-221
    • Dodson, M.1    Darley-Usmar, V.2    Zhang, J.3
  • 13
    • 1842665662 scopus 로고    scopus 로고
    • Mitochondrial signaling: the retrograde response
    • [13] Butow, R.A., Avadhani, N.G., Mitochondrial signaling: the retrograde response. Mol. Cell 14 (2004), 1–15.
    • (2004) Mol. Cell , vol.14 , pp. 1-15
    • Butow, R.A.1    Avadhani, N.G.2
  • 14
    • 1642422773 scopus 로고    scopus 로고
    • Mitochondrial free radical production and cell signaling
    • [14] Cadenas, E., Mitochondrial free radical production and cell signaling. Mol. Asp. Med. 25 (2004), 17–26.
    • (2004) Mol. Asp. Med. , vol.25 , pp. 17-26
    • Cadenas, E.1
  • 15
    • 36348953730 scopus 로고    scopus 로고
    • Nitric oxide and mitochondrial signaling: from physiology to pathophysiology
    • [15] Erusalimsky, J.D., Moncada, S., Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler. Thromb. Vascul. Biol. 27 (2007), 2524–2531.
    • (2007) Arterioscler. Thromb. Vascul. Biol. , vol.27 , pp. 2524-2531
    • Erusalimsky, J.D.1    Moncada, S.2
  • 16
    • 34447509483 scopus 로고    scopus 로고
    • Nitric oxide regulation of mitochondrial oxygen consumption II: molecular mechanism and tissue physiology
    • [16] Cooper, C.E., Giulivi, C., Nitric oxide regulation of mitochondrial oxygen consumption II: molecular mechanism and tissue physiology. Am. J. Physiol. Cell Physiol. 292 (2007), C1993–2003.
    • (2007) Am. J. Physiol. Cell Physiol. , vol.292 , pp. C1993-2003
    • Cooper, C.E.1    Giulivi, C.2
  • 17
    • 84920814046 scopus 로고    scopus 로고
    • Emerging concepts in bioenergetics and cancer research: metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy
    • [17] Obre, E., Rossignol, R., Emerging concepts in bioenergetics and cancer research: metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy. Int. J.Biochem. Cell Biol. 59 (2015), 167–181.
    • (2015) Int. J.Biochem. Cell Biol. , vol.59 , pp. 167-181
    • Obre, E.1    Rossignol, R.2
  • 19
    • 84937251158 scopus 로고    scopus 로고
    • Emerging aspects of treatment in mitochondrial disorders
    • [19] Rahman, S., Emerging aspects of treatment in mitochondrial disorders. J. Inherit. Metab. Dis. 38 (2015), 641–653.
    • (2015) J. Inherit. Metab. Dis. , vol.38 , pp. 641-653
    • Rahman, S.1
  • 20
    • 84858794256 scopus 로고    scopus 로고
    • Neurodegeneration: trouble in the cell's powerhouse
    • [20] Narendra, D.P., Youle, R.J., Neurodegeneration: trouble in the cell's powerhouse. Nature 483 (2012), 418–419.
    • (2012) Nature , vol.483 , pp. 418-419
    • Narendra, D.P.1    Youle, R.J.2
  • 22
    • 77949882290 scopus 로고    scopus 로고
    • Mitochondrial energetics and therapeutics
    • [22] Wallace, D.C., Fan, W., Procaccio, V., Mitochondrial energetics and therapeutics. Ann. Rev. Pathol. 5 (2010), 297–348.
    • (2010) Ann. Rev. Pathol. , vol.5 , pp. 297-348
    • Wallace, D.C.1    Fan, W.2    Procaccio, V.3
  • 24
    • 79955873404 scopus 로고    scopus 로고
    • Mitochondrial oxidative stress significantly influences atherogenic risk and cytokine-induced oxidant production
    • [24] Harrison, C.M., Pompilius, M., Pinkerton, K.E., Ballinger, S.W., Mitochondrial oxidative stress significantly influences atherogenic risk and cytokine-induced oxidant production. Environ. Health Perspect. 119 (2011), 676–681.
    • (2011) Environ. Health Perspect. , vol.119 , pp. 676-681
    • Harrison, C.M.1    Pompilius, M.2    Pinkerton, K.E.3    Ballinger, S.W.4
  • 25
    • 33750475625 scopus 로고    scopus 로고
    • Free radicals, mitochondria, and oxidized lipids: the emerging role in signal transduction in vascular cells
    • [25] Gutierrez, J., Ballinger, S.W., Darley-Usmar, V.M., Landar, A., Free radicals, mitochondria, and oxidized lipids: the emerging role in signal transduction in vascular cells. Circ. Res. 99 (2006), 924–932.
    • (2006) Circ. Res. , vol.99 , pp. 924-932
    • Gutierrez, J.1    Ballinger, S.W.2    Darley-Usmar, V.M.3    Landar, A.4
  • 28
    • 57349138389 scopus 로고    scopus 로고
    • NIM811 (N-methyl-4-isoleucine cyclosporine), a mitochondrial permeability transition inhibitor, attenuates cholestatic liver injury but not fibrosis in mice
    • [28] Rehman, H., Ramshesh, V.K., Theruvath, T.P., Kim, I., Currin, R.T., Giri, S., Lemasters, J.J., Zhong, Z., NIM811 (N-methyl-4-isoleucine cyclosporine), a mitochondrial permeability transition inhibitor, attenuates cholestatic liver injury but not fibrosis in mice. J. Pharmacol. Exp. Ther. 327 (2008), 699–706.
    • (2008) J. Pharmacol. Exp. Ther. , vol.327 , pp. 699-706
    • Rehman, H.1    Ramshesh, V.K.2    Theruvath, T.P.3    Kim, I.4    Currin, R.T.5    Giri, S.6    Lemasters, J.J.7    Zhong, Z.8
  • 30
    • 80052241269 scopus 로고    scopus 로고
    • Mitochondrial therapeutics for cardioprotection
    • [30] Carreira, R.S., Lee, P., Gottlieb, R.A., Mitochondrial therapeutics for cardioprotection. Curr. Pharm. Des. 17 (2011), 2017–2035.
    • (2011) Curr. Pharm. Des. , vol.17 , pp. 2017-2035
    • Carreira, R.S.1    Lee, P.2    Gottlieb, R.A.3
  • 31
    • 46349110018 scopus 로고    scopus 로고
    • Targeting lipophilic cations to mitochondria
    • [31] Murphy, M.P., Targeting lipophilic cations to mitochondria. Biochim. Biophys. Acta 1777 (2008), 1028–1031.
    • (2008) Biochim. Biophys. Acta , vol.1777 , pp. 1028-1031
    • Murphy, M.P.1
  • 34
    • 0037105335 scopus 로고    scopus 로고
    • Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species
    • [34] Brookes, P.S., Levonen, A.L., Shiva, S., Sarti, P., Darley-Usmar, V.M., Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species. Free Radic. Biol. Med. 33 (2002), 755–764.
    • (2002) Free Radic. Biol. Med. , vol.33 , pp. 755-764
    • Brookes, P.S.1    Levonen, A.L.2    Shiva, S.3    Sarti, P.4    Darley-Usmar, V.M.5
  • 35
    • 84857833776 scopus 로고    scopus 로고
    • Cell signalling by reactive lipid species: new concepts and molecular mechanisms
    • [35] Higdon, A., Diers, A.R., Oh, J.Y., Landar, A., Darley-Usmar, V.M., Cell signalling by reactive lipid species: new concepts and molecular mechanisms. Biochem. J. 442 (2012), 453–464.
    • (2012) Biochem. J. , vol.442 , pp. 453-464
    • Higdon, A.1    Diers, A.R.2    Oh, J.Y.3    Landar, A.4    Darley-Usmar, V.M.5
  • 37
    • 84904690794 scopus 로고    scopus 로고
    • Variants of mitochondrial autophagy: types 1 and 2 mitophagy and micromitophagy (Type 3)
    • [37] Lemasters, J.J., Variants of mitochondrial autophagy: types 1 and 2 mitophagy and micromitophagy (Type 3). Redox Biol. 2 (2014), 749–754.
    • (2014) Redox Biol. , vol.2 , pp. 749-754
    • Lemasters, J.J.1
  • 38
    • 84921501276 scopus 로고    scopus 로고
    • Teaching the basics of autophagy and mitophagy to redox biologists—mechanisms and experimental approaches
    • [38] Zhang, J., Teaching the basics of autophagy and mitophagy to redox biologists—mechanisms and experimental approaches. Redox Biol. 4 (2015), 242–259.
    • (2015) Redox Biol. , vol.4 , pp. 242-259
    • Zhang, J.1
  • 39
    • 84555195856 scopus 로고    scopus 로고
    • Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling
    • [39] Lee, J., Giordano, S., Zhang, J., Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J. 441 (2012), 523–540.
    • (2012) Biochem. J. , vol.441 , pp. 523-540
    • Lee, J.1    Giordano, S.2    Zhang, J.3
  • 40
    • 84892163616 scopus 로고    scopus 로고
    • Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease
    • [40] Giordano, S., Darley-Usmar, V., Zhang, J., Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease. Redox Biol. 2 (2014), 82–90.
    • (2014) Redox Biol. , vol.2 , pp. 82-90
    • Giordano, S.1    Darley-Usmar, V.2    Zhang, J.3
  • 42
    • 78649687209 scopus 로고    scopus 로고
    • Circadian integration of metabolism and energetics
    • [42] Bass, J., Takahashi, J.S., Circadian integration of metabolism and energetics. Science 330 (2010), 1349–1354.
    • (2010) Science , vol.330 , pp. 1349-1354
    • Bass, J.1    Takahashi, J.S.2
  • 43
    • 52149109334 scopus 로고    scopus 로고
    • The genetics of mammalian circadian order and disorder: implications for physiology and disease
    • [43] Takahashi, J.S., Hong, H.K., Ko, C.H., McDearmon, E.L., The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 9 (2008), 764–775.
    • (2008) Nat. Rev. Genet. , vol.9 , pp. 764-775
    • Takahashi, J.S.1    Hong, H.K.2    Ko, C.H.3    McDearmon, E.L.4
  • 45
    • 84884170817 scopus 로고    scopus 로고
    • Regulation of circadian clocks by redox homeostasis
    • [45] Stangherlin, A., Reddy, A.B., Regulation of circadian clocks by redox homeostasis. J. Biol. Chem. 288 (2013), 26505–26511.
    • (2013) J. Biol. Chem. , vol.288 , pp. 26505-26511
    • Stangherlin, A.1    Reddy, A.B.2
  • 46
    • 84885670616 scopus 로고    scopus 로고
    • Fueling immunity: insights into metabolism and lymphocyte function
    • [46] Pearce, E.L., Poffenberger, M.C., Chang, C.H., Jones, R.G., Fueling immunity: insights into metabolism and lymphocyte function. Science, 342, 2013, 1242454.
    • (2013) Science , vol.342 , pp. 1242454
    • Pearce, E.L.1    Poffenberger, M.C.2    Chang, C.H.3    Jones, R.G.4
  • 47
    • 84876758617 scopus 로고    scopus 로고
    • Metabolic pathways in immune cell activation and quiescence
    • [47] Pearce, E.L., Pearce, E.J., Metabolic pathways in immune cell activation and quiescence. Immunity 38 (2013), 633–643.
    • (2013) Immunity , vol.38 , pp. 633-643
    • Pearce, E.L.1    Pearce, E.J.2
  • 48
    • 84887357874 scopus 로고    scopus 로고
    • Bioenergetic profiles diverge during macrophage polarization: implications for the interpretation of 18F-FDG PET imaging of atherosclerosis
    • [48] Tavakoli, S., Zamora, D., Ullevig, S., Asmis, R., Bioenergetic profiles diverge during macrophage polarization: implications for the interpretation of 18F-FDG PET imaging of atherosclerosis. J. Nucl. Med. 54 (2013), 1661–1667.
    • (2013) J. Nucl. Med. , vol.54 , pp. 1661-1667
    • Tavakoli, S.1    Zamora, D.2    Ullevig, S.3    Asmis, R.4
  • 49
    • 84902103629 scopus 로고    scopus 로고
    • Mitochondria in monocytes and macrophages-implications for translational and basic research
    • [49] Ravi, S., Mitchell, T., Kramer, P.A., Chacko, B., Darley-Usmar, V.M., Mitochondria in monocytes and macrophages-implications for translational and basic research. Int. J.Biochem. Cell Biol. 53C (2014), 202–207.
    • (2014) Int. J.Biochem. Cell Biol. , vol.53C , pp. 202-207
    • Ravi, S.1    Mitchell, T.2    Kramer, P.A.3    Chacko, B.4    Darley-Usmar, V.M.5
  • 50
    • 34249337761 scopus 로고    scopus 로고
    • Perceptions of epigenetics
    • [50] Bird, A., Perceptions of epigenetics. Nature 447 (2007), 396–398.
    • (2007) Nature , vol.447 , pp. 396-398
    • Bird, A.1
  • 51
    • 84938203544 scopus 로고    scopus 로고
    • Impaired mitochondrial energy metabolism in Alzheimer's disease: impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape
    • [51] Salminen, A., Haapasalo, A., Kauppinen, A., Kaarniranta, K., Soininen, H., Hiltunen, M., Impaired mitochondrial energy metabolism in Alzheimer's disease: impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape. Progr. Neurobiol. 131 (2015), 1–20.
    • (2015) Progr. Neurobiol. , vol.131 , pp. 1-20
    • Salminen, A.1    Haapasalo, A.2    Kauppinen, A.3    Kaarniranta, K.4    Soininen, H.5    Hiltunen, M.6
  • 52
    • 84955585172 scopus 로고    scopus 로고
    • Epigenomic regulation of oncogenesis by chromatin remodeling
    • [52] Kumar, R., Li, D.Q., Muller, S., Knapp, S., Epigenomic regulation of oncogenesis by chromatin remodeling. Oncogene, 2016.
    • (2016) Oncogene
    • Kumar, R.1    Li, D.Q.2    Muller, S.3    Knapp, S.4
  • 53
    • 84953348264 scopus 로고    scopus 로고
    • Post-translational modifications of the cardiac proteome in diabetes and heart failure
    • [53] Wende, A.R., Post-translational modifications of the cardiac proteome in diabetes and heart failure. Proteom. Clin. Appl. 10 (2016), 25–38.
    • (2016) Proteom. Clin. Appl. , vol.10 , pp. 25-38
    • Wende, A.R.1
  • 54
  • 55
    • 84886812954 scopus 로고    scopus 로고
    • The nexus of chromatin regulation and intermediary metabolism
    • [55] Gut, P., Verdin, E., The nexus of chromatin regulation and intermediary metabolism. Nature 502 (2013), 489–498.
    • (2013) Nature , vol.502 , pp. 489-498
    • Gut, P.1    Verdin, E.2
  • 57
    • 84944904699 scopus 로고    scopus 로고
    • Organic nitrate therapy, nitrate tolerance, and nitrate-induced endothelial dysfunction: emphasis on redox biology and oxidative stress
    • [57] Daiber, A., Münzel, T., Organic nitrate therapy, nitrate tolerance, and nitrate-induced endothelial dysfunction: emphasis on redox biology and oxidative stress. Antioxid. Redox Signal. 23 (2015), 899–942.
    • (2015) Antioxid. Redox Signal. , vol.23 , pp. 899-942
    • Daiber, A.1    Münzel, T.2
  • 59
    • 84878393793 scopus 로고    scopus 로고
    • Nitric oxide modifies global histone methylation by inhibiting Jumonji C domain-containing demethylases
    • [59] Hickok, J.R., Vasudevan, D., Antholine, W.E., Thomas, D.D., Nitric oxide modifies global histone methylation by inhibiting Jumonji C domain-containing demethylases. J. Biol. Chem. 288 (2013), 16004–16015.
    • (2013) J. Biol. Chem. , vol.288 , pp. 16004-16015
    • Hickok, J.R.1    Vasudevan, D.2    Antholine, W.E.3    Thomas, D.D.4
  • 60
    • 84942800547 scopus 로고    scopus 로고
    • You are what you eat: O-linked N-acetylglucosamine in disease, development and epigenetics
    • [60] Olivier-Van Stichelen, S., Hanover, J.A., You are what you eat: O-linked N-acetylglucosamine in disease, development and epigenetics. Curr. Opin. Clin. Nutr. Metab. Care 18 (2015), 339–345.
    • (2015) Curr. Opin. Clin. Nutr. Metab. Care , vol.18 , pp. 339-345
    • Olivier-Van Stichelen, S.1    Hanover, J.A.2
  • 61
    • 84905723395 scopus 로고    scopus 로고
    • Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation
    • [61] Hardivillé, S., Hart, G.W., Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab. 20 (2014), 208–213.
    • (2014) Cell Metab. , vol.20 , pp. 208-213
    • Hardivillé, S.1    Hart, G.W.2
  • 62
    • 84857627624 scopus 로고    scopus 로고
    • Protein O-linked beta-N-acetylglucosamine: a novel effector of cardiomyocyte metabolism and function
    • [62] Darley-Usmar, V.M., Ball, L.E., Chatham, J.C., Protein O-linked beta-N-acetylglucosamine: a novel effector of cardiomyocyte metabolism and function. J. Mol. Cell. Cardiol. 52 (2012), 538–549.
    • (2012) J. Mol. Cell. Cardiol. , vol.52 , pp. 538-549
    • Darley-Usmar, V.M.1    Ball, L.E.2    Chatham, J.C.3
  • 63
    • 84942163002 scopus 로고    scopus 로고
    • Histone deacetylase inhibition activates Nrf2 and protects against osteoarthritis
    • [63] Cai, D., Yin, S., Yang, J., Jiang, Q., Cao, W., Histone deacetylase inhibition activates Nrf2 and protects against osteoarthritis. Arthr. Res. Ther. 17 (2015), 1–11.
    • (2015) Arthr. Res. Ther. , vol.17 , pp. 1-11
    • Cai, D.1    Yin, S.2    Yang, J.3    Jiang, Q.4    Cao, W.5
  • 65
    • 84906331499 scopus 로고    scopus 로고
    • Epigenetic modifications of Nrf2-mediated glutamate–cysteine ligase: implications for the development of diabetic retinopathy and the metabolic memory phenomenon associated with its continued progression
    • [65] Mishra, M., Zhong, Q., Kowluru, R.A., Epigenetic modifications of Nrf2-mediated glutamate–cysteine ligase: implications for the development of diabetic retinopathy and the metabolic memory phenomenon associated with its continued progression. Free Radic. Biol. Med. 75 (2014), 129–139.
    • (2014) Free Radic. Biol. Med. , vol.75 , pp. 129-139
    • Mishra, M.1    Zhong, Q.2    Kowluru, R.A.3
  • 66
    • 85017177347 scopus 로고    scopus 로고
    • Curcumin, the King of Spices”: epigenetic regulatory mechanisms in the prevention of cancer, neurological, and inflammatory diseases
    • [66] Boyanapalli, S.S., Tony Kong, A.N., “Curcumin, the King of Spices”: epigenetic regulatory mechanisms in the prevention of cancer, neurological, and inflammatory diseases. Curr. Pharmacol. Rep. 1 (2015), 129–139.
    • (2015) Curr. Pharmacol. Rep. , vol.1 , pp. 129-139
    • Boyanapalli, S.S.1    Tony Kong, A.N.2
  • 67
    • 84872305918 scopus 로고    scopus 로고
    • Oxidative stress induces DNA demethylation and histone acetylation in SH-SY5Y cells: potential epigenetic mechanisms in gene transcription in Aβ production
    • [67] Gu, X., Sun, J., Li, S., Wu, X., Li, L., Oxidative stress induces DNA demethylation and histone acetylation in SH-SY5Y cells: potential epigenetic mechanisms in gene transcription in Aβ production. Neurobiol. Aging 34 (2013), 1069–1079.
    • (2013) Neurobiol. Aging , vol.34 , pp. 1069-1079
    • Gu, X.1    Sun, J.2    Li, S.3    Wu, X.4    Li, L.5
  • 68
    • 84964588067 scopus 로고    scopus 로고
    • Regulation of histone acetylation by autophagy in Parkinson disease
    • [68] Park, G., Tan, J., Garcia, G., Kang, Y., Salvesen, G., Zhang, Z., Regulation of histone acetylation by autophagy in Parkinson disease. J. Biol. Chem. 291 (2016), 3531–3540.
    • (2016) J. Biol. Chem. , vol.291 , pp. 3531-3540
    • Park, G.1    Tan, J.2    Garcia, G.3    Kang, Y.4    Salvesen, G.5    Zhang, Z.6
  • 69
    • 79959381299 scopus 로고    scopus 로고
    • Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease
    • [69] Hart, G.W., Slawson, C., Ramirez-Correa, G., Lagerlof, O., Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 80 (2011), 825–858.
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 825-858
    • Hart, G.W.1    Slawson, C.2    Ramirez-Correa, G.3    Lagerlof, O.4
  • 70
    • 84928254126 scopus 로고    scopus 로고
    • A little sugar goes a long way: the cell biology of O-GlcNAc
    • [70] Bond, M.R., Hanover, J.A., A little sugar goes a long way: the cell biology of O-GlcNAc. J. Cell. Biol. 208 (2015), 869–880.
    • (2015) J. Cell. Biol. , vol.208 , pp. 869-880
    • Bond, M.R.1    Hanover, J.A.2
  • 71
    • 84872953223 scopus 로고    scopus 로고
    • TET2 promotes histone O-GlcNAcylation during gene transcription
    • [71] Chen, Q., Chen, Y., Bian, C., Fujiki, R., Yu, X., TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 493 (2013), 561–564.
    • (2013) Nature , vol.493 , pp. 561-564
    • Chen, Q.1    Chen, Y.2    Bian, C.3    Fujiki, R.4    Yu, X.5
  • 72
    • 84880530231 scopus 로고    scopus 로고
    • Ten-eleven translocation 1 (Tet1) is regulated by O-Linked N-acetylglucosamine transferase (Ogt) for target gene repression in mouse embryonic stem cells
    • [72] Shi, F.-T., Kim, H., Lu, W., He, Q., Liu, D., Goodell, M.A., Wan, M., Songyang, Z., Ten-eleven translocation 1 (Tet1) is regulated by O-Linked N-acetylglucosamine transferase (Ogt) for target gene repression in mouse embryonic stem cells. J. Biol. Chem. 288 (2013), 20776–20784.
    • (2013) J. Biol. Chem. , vol.288 , pp. 20776-20784
    • Shi, F.-T.1    Kim, H.2    Lu, W.3    He, Q.4    Liu, D.5    Goodell, M.A.6    Wan, M.7    Songyang, Z.8
  • 74
    • 84877693964 scopus 로고    scopus 로고
    • Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcytosine
    • [74] Minor, E.A., Court, B.L., Young, J.I., Wang, G., Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcytosine. J. Biol. Chem. 288 (2013), 13669–13674.
    • (2013) J. Biol. Chem. , vol.288 , pp. 13669-13674
    • Minor, E.A.1    Court, B.L.2    Young, J.I.3    Wang, G.4
  • 75
    • 0034710891 scopus 로고    scopus 로고
    • Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation
    • [75] Du, X.L., Edelstein, D., Rossetti, L., Fantus, I.G., Goldberg, H., Ziyadeh, F., Wu, J., Brownlee, M., Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc. Natl. Acad. Sci. USA 97 (2000), 12222–12226.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 12222-12226
    • Du, X.L.1    Edelstein, D.2    Rossetti, L.3    Fantus, I.G.4    Goldberg, H.5    Ziyadeh, F.6    Wu, J.7    Brownlee, M.8
  • 76
    • 0035180299 scopus 로고    scopus 로고
    • Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site
    • [76] Du, X.L., Edelstein, D., Dimmeler, S., Ju, Q., Sui, C., Brownlee, M., Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J. Clin. Invest. 108 (2001), 1341–1348.
    • (2001) J. Clin. Invest. , vol.108 , pp. 1341-1348
    • Du, X.L.1    Edelstein, D.2    Dimmeler, S.3    Ju, Q.4    Sui, C.5    Brownlee, M.6
  • 77
    • 58649095123 scopus 로고    scopus 로고
    • Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose
    • [77] Hu, Y., Suarez, J., Fricovsky, E., Wang, H., Scott, B.T., Trauger, S.A., Han, W., Oyeleye, M.O., Dillmann, W.H., Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. J. Biol. Chem. 284 (2009), 547–555.
    • (2009) J. Biol. Chem. , vol.284 , pp. 547-555
    • Hu, Y.1    Suarez, J.2    Fricovsky, E.3    Wang, H.4    Scott, B.T.5    Trauger, S.A.6    Han, W.7    Oyeleye, M.O.8    Dillmann, W.H.9
  • 81
    • 84929191592 scopus 로고    scopus 로고
    • Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria
    • [81] Banerjee, P.S., Ma, J., Hart, G.W., Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria. Proc. Natl. Acad. Sci. USA 112 (2015), 6050–6055.
    • (2015) Proc. Natl. Acad. Sci. USA , vol.112 , pp. 6050-6055
    • Banerjee, P.S.1    Ma, J.2    Hart, G.W.3
  • 82
    • 3042534011 scopus 로고    scopus 로고
    • Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells
    • [82] Zachara, N.E., O'Donnell, N., Cheung, W.D., Mercer, J.J., Marth, J.D., Hart, G.W., Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J. Biol. Chem. 279 (2004), 30133–30142.
    • (2004) J. Biol. Chem. , vol.279 , pp. 30133-30142
    • Zachara, N.E.1    O'Donnell, N.2    Cheung, W.D.3    Mercer, J.J.4    Marth, J.D.5    Hart, G.W.6
  • 83
    • 47249102179 scopus 로고    scopus 로고
    • Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein O-GlcNAc and increased mitochondrial Bcl-2
    • [83] Champattanachai, V., Marchase, R.B., Chatham, J.C., Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein O-GlcNAc and increased mitochondrial Bcl-2. Am. J. Physiol. Cell Physiol. 294 (2008), C1509–1520.
    • (2008) Am. J. Physiol. Cell Physiol. , vol.294 , pp. C1509-1520
    • Champattanachai, V.1    Marchase, R.B.2    Chatham, J.C.3
  • 84
    • 79954437198 scopus 로고    scopus 로고
    • Augmented O-GlcNAc signaling attenuates oxidative stress and calcium overload in cardiomyocytes
    • [84] Ngoh, G.A., Watson, L.J., Facundo, H.T., Jones, S.P., Augmented O-GlcNAc signaling attenuates oxidative stress and calcium overload in cardiomyocytes. Amino Acids 40 (2011), 895–911.
    • (2011) Amino Acids , vol.40 , pp. 895-911
    • Ngoh, G.A.1    Watson, L.J.2    Facundo, H.T.3    Jones, S.P.4
  • 85
    • 48849094054 scopus 로고    scopus 로고
    • Non-canonical glycosyltransferase modulates post-hypoxic cardiac myocyte death and mitochondrial permeability transition
    • [85] Ngoh, G.A., Watson, L.J., Facundo, H.T., Dillmann, W., Jones, S.P., Non-canonical glycosyltransferase modulates post-hypoxic cardiac myocyte death and mitochondrial permeability transition. J. Mol. Cell. Cardiol. 45 (2008), 313–325.
    • (2008) J. Mol. Cell. Cardiol. , vol.45 , pp. 313-325
    • Ngoh, G.A.1    Watson, L.J.2    Facundo, H.T.3    Dillmann, W.4    Jones, S.P.5
  • 86
    • 59649107122 scopus 로고    scopus 로고
    • Unique hexosaminidase reduces metabolic survival signal and sensitizes cardiac myocytes to hypoxia/reoxygenation injury
    • [86] Ngoh, G.A., Facundo, H.T., Hamid, T., Dillmann, W., Zachara, N.E., Jones, S.P., Unique hexosaminidase reduces metabolic survival signal and sensitizes cardiac myocytes to hypoxia/reoxygenation injury. Circ. Res. 104 (2009), 41–49.
    • (2009) Circ. Res. , vol.104 , pp. 41-49
    • Ngoh, G.A.1    Facundo, H.T.2    Hamid, T.3    Dillmann, W.4    Zachara, N.E.5    Jones, S.P.6
  • 87
    • 84875210462 scopus 로고    scopus 로고
    • Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart
    • [87] Marsh, S.A., Powell, P.C., Dell'italia, L.J., Chatham, J.C., Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart. Life Sci. 92 (2013), 648–656.
    • (2013) Life Sci. , vol.92 , pp. 648-656
    • Marsh, S.A.1    Powell, P.C.2    Dell'italia, L.J.3    Chatham, J.C.4
  • 89
    • 0037442984 scopus 로고    scopus 로고
    • Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase
    • [89] Love, D.C., Kochan, J., Cathey, R.L., Shin, S.H., Hanover, J.A., Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase. J. Cell Sci. 116 (2003), 647–654.
    • (2003) J. Cell Sci. , vol.116 , pp. 647-654
    • Love, D.C.1    Kochan, J.2    Cathey, R.L.3    Shin, S.H.4    Hanover, J.A.5
  • 90
    • 84949008124 scopus 로고    scopus 로고
    • O-GlcNAcomic profiling identifies widespread O-linked beta-N-acetylglucosamine modification (O-GlcNAcylation) in oxidative phosphorylation system regulating cardiac mitochondrial function
    • [90] Ma, J., Liu, T., Wei, A.C., Banerjee, P., O'Rourke, B., Hart, G.W., O-GlcNAcomic profiling identifies widespread O-linked beta-N-acetylglucosamine modification (O-GlcNAcylation) in oxidative phosphorylation system regulating cardiac mitochondrial function. J. Biol. Chem. 290 (2015), 29141–29153.
    • (2015) J. Biol. Chem. , vol.290 , pp. 29141-29153
    • Ma, J.1    Liu, T.2    Wei, A.C.3    Banerjee, P.4    O'Rourke, B.5    Hart, G.W.6
  • 94
    • 79953180902 scopus 로고    scopus 로고
    • Assessing mitochondrial dysfunction in cells
    • [94] Brand, M.D., Nicholls, D.G., Assessing mitochondrial dysfunction in cells. Biochem. J. 435 (2011), 297–312.
    • (2011) Biochem. J. , vol.435 , pp. 297-312
    • Brand, M.D.1    Nicholls, D.G.2
  • 95
    • 0142150051 scopus 로고    scopus 로고
    • Mitochondrial formation of reactive oxygen species
    • [95] Turrens, J.F., Mitochondrial formation of reactive oxygen species. J. Physiol. 552 (2003), 335–344.
    • (2003) J. Physiol. , vol.552 , pp. 335-344
    • Turrens, J.F.1
  • 97
    • 79957576648 scopus 로고    scopus 로고
    • Bioenergetic function in cardiovascular cells: the importance of the reserve capacity and its biological regulation
    • [97] Sansbury, B.E., Jones, S.P., Riggs, D.W., Darley-Usmar, V.M., Hill, B.G., Bioenergetic function in cardiovascular cells: the importance of the reserve capacity and its biological regulation. Chem.-Biol. Interact. 191 (2011), 288–295.
    • (2011) Chem.-Biol. Interact. , vol.191 , pp. 288-295
    • Sansbury, B.E.1    Jones, S.P.2    Riggs, D.W.3    Darley-Usmar, V.M.4    Hill, B.G.5
  • 98
    • 84862205217 scopus 로고    scopus 로고
    • Pyruvate fuels mitochondrial respiration and proliferation of breast cancer cells: effect of monocarboxylate transporter inhibition
    • [98] Diers, A.R., Broniowska, K.A., Chang, C.F., Hogg, N., Pyruvate fuels mitochondrial respiration and proliferation of breast cancer cells: effect of monocarboxylate transporter inhibition. Biochem. J. 444 (2012), 561–571.
    • (2012) Biochem. J. , vol.444 , pp. 561-571
    • Diers, A.R.1    Broniowska, K.A.2    Chang, C.F.3    Hogg, N.4
  • 101
    • 84947602703 scopus 로고    scopus 로고
    • Altered mitochondrial function, mitochondrial DNA and reduced metabolic flexibility in patients with diabetic nephropathy
    • [101] Czajka, A., Ajaz, S., Gnudi, L., Parsade, C.K., Jones, P., Reid, F., Malik, A.N., Altered mitochondrial function, mitochondrial DNA and reduced metabolic flexibility in patients with diabetic nephropathy. EBioMedicine, 2015.
    • (2015) EBioMedicine
    • Czajka, A.1    Ajaz, S.2    Gnudi, L.3    Parsade, C.K.4    Jones, P.5    Reid, F.6    Malik, A.N.7
  • 102
    • 84902842760 scopus 로고    scopus 로고
    • Platelet bioenergetic screen in sickle cell patients reveals mitochondrial complex V inhibition, which contributes to platelet activation
    • [102] Cardenes, N., Corey, C., Geary, L., Jain, S., Zharikov, S., Barge, S., Novelli, E.M., Shiva, S., Platelet bioenergetic screen in sickle cell patients reveals mitochondrial complex V inhibition, which contributes to platelet activation. Blood 123 (2014), 2864–2872.
    • (2014) Blood , vol.123 , pp. 2864-2872
    • Cardenes, N.1    Corey, C.2    Geary, L.3    Jain, S.4    Zharikov, S.5    Barge, S.6    Novelli, E.M.7    Shiva, S.8
  • 103
    • 84873204520 scopus 로고    scopus 로고
    • Platelet mitochondrial function: from regulation of thrombosis to biomarker of disease
    • [103] Zharikov, S., Shiva, S., Platelet mitochondrial function: from regulation of thrombosis to biomarker of disease. Biochem. Soc. Trans. 41 (2013), 118–123.
    • (2013) Biochem. Soc. Trans. , vol.41 , pp. 118-123
    • Zharikov, S.1    Shiva, S.2
  • 104
    • 84893196785 scopus 로고    scopus 로고
    • A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: implications for their use as bioenergetic biomarkers
    • [104] Kramer, P.A., Ravi, S., Chacko, B., Johnson, M.S., Darley-Usmar, V.M., A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: implications for their use as bioenergetic biomarkers. Redox Biol. 2 (2014), 206–210.
    • (2014) Redox Biol. , vol.2 , pp. 206-210
    • Kramer, P.A.1    Ravi, S.2    Chacko, B.3    Johnson, M.S.4    Darley-Usmar, V.M.5
  • 105
    • 84940069365 scopus 로고    scopus 로고
    • Platelets from asthmatic individuals show less reliance on glycolysis
    • [105] Xu, W., Cardenes, N., Corey, C., Erzurum, S.C., Shiva, S., Platelets from asthmatic individuals show less reliance on glycolysis. PLoS One, 10, 2015, e0132007.
    • (2015) PLoS One , vol.10 , pp. e0132007
    • Xu, W.1    Cardenes, N.2    Corey, C.3    Erzurum, S.C.4    Shiva, S.5
  • 106
    • 84857369274 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis
    • [106] Rossignol, D.A., Frye, R.E., Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol. Psychiatry 17 (2012), 290–314.
    • (2012) Mol. Psychiatry , vol.17 , pp. 290-314
    • Rossignol, D.A.1    Frye, R.E.2
  • 107
    • 84880172350 scopus 로고    scopus 로고
    • Unique acyl-carnitine profiles are potential biomarkers for acquired mitochondrial disease in autism spectrum disorder
    • [107] Frye, R.E., Melnyk, S., Macfabe, D.F., Unique acyl-carnitine profiles are potential biomarkers for acquired mitochondrial disease in autism spectrum disorder. Transl. Psychiatry, 3, 2013, e220.
    • (2013) Transl. Psychiatry , vol.3 , pp. e220
    • Frye, R.E.1    Melnyk, S.2    Macfabe, D.F.3
  • 109
    • 33847050801 scopus 로고    scopus 로고
    • Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway
    • [109] Kensler, T.W., Wakabayashi, N., Biswal, S., Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47 (2007), 89–116.
    • (2007) Annu. Rev. Pharmacol. Toxicol. , vol.47 , pp. 89-116
    • Kensler, T.W.1    Wakabayashi, N.2    Biswal, S.3
  • 110
    • 84878785993 scopus 로고    scopus 로고
    • The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer
    • [110] Kansanen, E., Kuosmanen, S.M., Leinonen, H., Levonen, A.L., The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol. 1 (2013), 45–49.
    • (2013) Redox Biol. , vol.1 , pp. 45-49
    • Kansanen, E.1    Kuosmanen, S.M.2    Leinonen, H.3    Levonen, A.L.4
  • 111
    • 24744453945 scopus 로고    scopus 로고
    • Specific patterns of electrophile adduction trigger Keap1 ubiquitination and Nrf2 activation
    • [111] Hong, F., Sekhar, K.R., Freeman, M.L., Liebler, D.C., Specific patterns of electrophile adduction trigger Keap1 ubiquitination and Nrf2 activation. J. Biol. Chem. 280 (2005), 31768–31775.
    • (2005) J. Biol. Chem. , vol.280 , pp. 31768-31775
    • Hong, F.1    Sekhar, K.R.2    Freeman, M.L.3    Liebler, D.C.4
  • 112
    • 78650509515 scopus 로고    scopus 로고
    • Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals
    • [112] McMahon, M., Lamont, D.J., Beattie, K.A., Hayes, J.D., Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc. Natl. Acad. Sci. USA 107 (2010), 18838–18843.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 18838-18843
    • McMahon, M.1    Lamont, D.J.2    Beattie, K.A.3    Hayes, J.D.4
  • 113
    • 42649130014 scopus 로고    scopus 로고
    • PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mitochondria
    • [113] Lo, S.C., Hannink, M., PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mitochondria. Exp. Cell Res. 314 (2008), 1789–1803.
    • (2008) Exp. Cell Res. , vol.314 , pp. 1789-1803
    • Lo, S.C.1    Hannink, M.2
  • 114
    • 64249099733 scopus 로고    scopus 로고
    • The permissive role of mitochondria in the induction of haem oxygenase-1 in endothelial cells
    • [114] Ricart, K.C., Bolisetty, S., Johnson, M.S., Perez, J., Agarwal, A., Murphy, M.P., Landar, A., The permissive role of mitochondria in the induction of haem oxygenase-1 in endothelial cells. Biochem. J. 419 (2009), 427–436.
    • (2009) Biochem. J. , vol.419 , pp. 427-436
    • Ricart, K.C.1    Bolisetty, S.2    Johnson, M.S.3    Perez, J.4    Agarwal, A.5    Murphy, M.P.6    Landar, A.7
  • 115
    • 84969983910 scopus 로고    scopus 로고
    • The emerging role of Nrf2 in mitochondrial function
    • [115] Dinkova-Kostova, A.T., Abramov, A.Y., The emerging role of Nrf2 in mitochondrial function. Free Radic. Biol. Med. 88:Part B (2015), 179–188.
    • (2015) Free Radic. Biol. Med. , vol.88 , pp. 179-188
    • Dinkova-Kostova, A.T.1    Abramov, A.Y.2
  • 116
    • 84867034260 scopus 로고    scopus 로고
    • Role of Nrf2 in oxidative stress and toxicity
    • [116] Ma, Q., Role of Nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 53 (2013), 401–426.
    • (2013) Annu. Rev. Pharmacol. Toxicol. , vol.53 , pp. 401-426
    • Ma, Q.1
  • 123
    • 84878003949 scopus 로고    scopus 로고
    • The transcription factor Nrf2 promotes survival by enhancing the expression of uncoupling protein 3 under conditions of oxidative stress
    • [123] Anedda, A., Lopez-Bernardo, E., Acosta-Iborra, B., Saadeh Suleiman, M., Landazuri, M.O., Cadenas, S., The transcription factor Nrf2 promotes survival by enhancing the expression of uncoupling protein 3 under conditions of oxidative stress. Free Radic. Biol. Med. 61 (2013), 395–407.
    • (2013) Free Radic. Biol. Med. , vol.61 , pp. 395-407
    • Anedda, A.1    Lopez-Bernardo, E.2    Acosta-Iborra, B.3    Saadeh Suleiman, M.4    Landazuri, M.O.5    Cadenas, S.6
  • 124
    • 58149328569 scopus 로고    scopus 로고
    • Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1
    • [124] Piantadosi, C.A., Carraway, M.S., Babiker, A., Suliman, H.B., Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ. Res. 103 (2008), 1232–1240.
    • (2008) Circ. Res. , vol.103 , pp. 1232-1240
    • Piantadosi, C.A.1    Carraway, M.S.2    Babiker, A.3    Suliman, H.B.4
  • 126
    • 84921501276 scopus 로고    scopus 로고
    • Teaching the basics of autophagy and mitophagy to redox biologists-Mechanisms and experimental approaches
    • [126] Zhang, J., Teaching the basics of autophagy and mitophagy to redox biologists-Mechanisms and experimental approaches. Redox Biol. 4C (2015), 242–259.
    • (2015) Redox Biol. , vol.4C , pp. 242-259
    • Zhang, J.1
  • 127
    • 84879475204 scopus 로고    scopus 로고
    • Autophagy and mitophagy in cellular damage control
    • [127] Zhang, J., Autophagy and mitophagy in cellular damage control. Redox Biol. 1 (2013), 19–23.
    • (2013) Redox Biol. , vol.1 , pp. 19-23
    • Zhang, J.1
  • 128
    • 84555195856 scopus 로고    scopus 로고
    • Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling
    • [128] Lee, J., Giordano, S., Zhang, J., Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J. 441 (2012), 523–540.
    • (2012) Biochem. J. , vol.441 , pp. 523-540
    • Lee, J.1    Giordano, S.2    Zhang, J.3
  • 130
    • 84938487642 scopus 로고    scopus 로고
    • KEAP1-NRF2 signalling and autophagy in protection against oxidative and reductive proteotoxicity
    • [130] Dodson, M., Redmann, M., Rajasekaran, N.S., Darley-Usmar, V., Zhang, J., KEAP1-NRF2 signalling and autophagy in protection against oxidative and reductive proteotoxicity. Biochem. J. 469 (2015), 347–355.
    • (2015) Biochem. J. , vol.469 , pp. 347-355
    • Dodson, M.1    Redmann, M.2    Rajasekaran, N.S.3    Darley-Usmar, V.4    Zhang, J.5
  • 131
    • 48249140220 scopus 로고    scopus 로고
    • Diurnal rhythms of autophagy: implications for cell biology and human disease
    • [131] Sachdeva, U.M., Thompson, C.B., Diurnal rhythms of autophagy: implications for cell biology and human disease. Autophagy 4 (2008), 581–589.
    • (2008) Autophagy , vol.4 , pp. 581-589
    • Sachdeva, U.M.1    Thompson, C.B.2
  • 135
    • 84898438267 scopus 로고    scopus 로고
    • Cracking the survival code: autophagy-related histone modifications
    • [135] Fullgrabe, J., Heldring, N., Hermanson, O., Joseph, B., Cracking the survival code: autophagy-related histone modifications. Autophagy 10 (2014), 556–561.
    • (2014) Autophagy , vol.10 , pp. 556-561
    • Fullgrabe, J.1    Heldring, N.2    Hermanson, O.3    Joseph, B.4
  • 136
    • 84891014899 scopus 로고    scopus 로고
    • The return of the nucleus: transcriptional and epigenetic control of autophagy
    • [136] Fullgrabe, J., Klionsky, D.J., Joseph, B., The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat. Rev. Mol. Cell Biol. 15 (2014), 65–74.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 65-74
    • Fullgrabe, J.1    Klionsky, D.J.2    Joseph, B.3
  • 146
    • 84885332889 scopus 로고    scopus 로고
    • Inhibition of autophagy and glycolysis by nitric oxide during hypoxia-reoxygenation impairs cellular bioenergetics and promotes cell death in primary neurons
    • [146] Benavides, G.A., Liang, Q., Dodson, M., Darley-Usmar, V., Zhang, J., Inhibition of autophagy and glycolysis by nitric oxide during hypoxia-reoxygenation impairs cellular bioenergetics and promotes cell death in primary neurons. Free Radic. Biol. Med. 65 (2013), 1215–1228.
    • (2013) Free Radic. Biol. Med. , vol.65 , pp. 1215-1228
    • Benavides, G.A.1    Liang, Q.2    Dodson, M.3    Darley-Usmar, V.4    Zhang, J.5
  • 147
    • 84881538902 scopus 로고    scopus 로고
    • Bioenergetic and autophagic control by Sirt3 in response to nutrient deprivation in mouse embryonic fibroblasts
    • [147] Liang, Q., Benavides, G.A., Vassilopoulos, A., Gius, D., Darley-Usmar, V., Zhang, J., Bioenergetic and autophagic control by Sirt3 in response to nutrient deprivation in mouse embryonic fibroblasts. Biochem. J. 454 (2013), 249–257.
    • (2013) Biochem. J. , vol.454 , pp. 249-257
    • Liang, Q.1    Benavides, G.A.2    Vassilopoulos, A.3    Gius, D.4    Darley-Usmar, V.5    Zhang, J.6
  • 148
    • 84890822456 scopus 로고    scopus 로고
    • Inhibition of glycolysis attenuates 4-hydroxynonenal-dependent autophagy and exacerbates apoptosis in differentiated SH-SY5Y neuroblastoma cells
    • [148] Dodson, M., Liang, Q., Johnson, M.S., Redmann, M., Fineberg, N., Darley-Usmar, V.M., Zhang, J., Inhibition of glycolysis attenuates 4-hydroxynonenal-dependent autophagy and exacerbates apoptosis in differentiated SH-SY5Y neuroblastoma cells. Autophagy 9 (2013), 1996–2008.
    • (2013) Autophagy , vol.9 , pp. 1996-2008
    • Dodson, M.1    Liang, Q.2    Johnson, M.S.3    Redmann, M.4    Fineberg, N.5    Darley-Usmar, V.M.6    Zhang, J.7
  • 152
    • 79958172986 scopus 로고    scopus 로고
    • Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1
    • [152] Huang, C., Andres, A.M., Ratliff, E.P., Hernandez, G., Lee, P., Gottlieb, R.A., Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS One, 6, 2011, e20975.
    • (2011) PLoS One , vol.6 , pp. e20975
    • Huang, C.1    Andres, A.M.2    Ratliff, E.P.3    Hernandez, G.4    Lee, P.5    Gottlieb, R.A.6
  • 154
    • 84938309334 scopus 로고    scopus 로고
    • PINK1 Is dispensable for mitochondrial recruitment of Parkin and activation of mitophagy in cardiac myocytes
    • [154] Kubli, D.A., Cortez, M.Q., Moyzis, A.G., Najor, R.H., Lee, Y., Gustafsson, A.B., PINK1 Is dispensable for mitochondrial recruitment of Parkin and activation of mitophagy in cardiac myocytes. PLoS One, 10, 2015, e0130707.
    • (2015) PLoS One , vol.10 , pp. e0130707
    • Kubli, D.A.1    Cortez, M.Q.2    Moyzis, A.G.3    Najor, R.H.4    Lee, Y.5    Gustafsson, A.B.6
  • 156
    • 84922926666 scopus 로고    scopus 로고
    • Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts
    • [156] Song, M., Mihara, K., Chen, Y., Scorrano, L., Dorn, G.W., Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab. 21 (2015), 273–285.
    • (2015) Cell Metab. , vol.21 , pp. 273-285
    • Song, M.1    Mihara, K.2    Chen, Y.3    Scorrano, L.4    Dorn, G.W.5
  • 158
    • 84255192658 scopus 로고    scopus 로고
    • Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death
    • [158] Papanicolaou, K.N., Ngoh, G.A., Dabkowski, E.R., O'Connell, K.A., Ribeiro, R.F. Jr, Stanley, W.C., Walsh, K., Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death. Am. J. Physiol. Heart Circ. Physiol. 302 (2012), H167–H179.
    • (2012) Am. J. Physiol. Heart Circ. Physiol. , vol.302 , pp. H167-H179
    • Papanicolaou, K.N.1    Ngoh, G.A.2    Dabkowski, E.R.3    O'Connell, K.A.4    Ribeiro, R.F.5    Stanley, W.C.6    Walsh, K.7
  • 160
    • 84876531457 scopus 로고    scopus 로고
    • PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
    • [160] Chen, Y., Dorn, G.W., PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340 (2013), 471–475.
    • (2013) Science , vol.340 , pp. 471-475
    • Chen, Y.1    Dorn, G.W.2
  • 162
    • 84867229697 scopus 로고    scopus 로고
    • A transcriptional variant of the LC3A gene is involved in autophagy and frequently inactivated in human cancers
    • [162] Bai, H., Inoue, J., Kawano, T., Inazawa, J., A transcriptional variant of the LC3A gene is involved in autophagy and frequently inactivated in human cancers. Oncogene 31 (2012), 4397–4408.
    • (2012) Oncogene , vol.31 , pp. 4397-4408
    • Bai, H.1    Inoue, J.2    Kawano, T.3    Inazawa, J.4
  • 164
    • 77952272127 scopus 로고    scopus 로고
    • Genetic and epigenetic silencing of the beclin 1 gene in sporadic breast tumors
    • [164] Li, Z., Chen, B., Wu, Y., Jin, F., Xia, Y., Liu, X., Genetic and epigenetic silencing of the beclin 1 gene in sporadic breast tumors. BMC Cancer, 10, 2010, 98.
    • (2010) BMC Cancer , vol.10 , pp. 98
    • Li, Z.1    Chen, B.2    Wu, Y.3    Jin, F.4    Xia, Y.5    Liu, X.6
  • 166
    • 84888835068 scopus 로고    scopus 로고
    • The interplay between epigenetic silencing, oncogenic KRas and HIF-1 regulatory pathways in control of BNIP3 expression in human colorectal cancer cells
    • [166] Swiderek, E., Kalas, W., Wysokinska, E., Pawlak, A., Rak, J., Strzadala, L., The interplay between epigenetic silencing, oncogenic KRas and HIF-1 regulatory pathways in control of BNIP3 expression in human colorectal cancer cells. Biochem. Biophys. Res. Commun. 441 (2013), 707–712.
    • (2013) Biochem. Biophys. Res. Commun. , vol.441 , pp. 707-712
    • Swiderek, E.1    Kalas, W.2    Wysokinska, E.3    Pawlak, A.4    Rak, J.5    Strzadala, L.6
  • 168
    • 84885622468 scopus 로고    scopus 로고
    • Histone post-translational modifications regulate autophagy flux and outcome
    • [168] Fullgrabe, J., Klionsky, D.J., Joseph, B., Histone post-translational modifications regulate autophagy flux and outcome. Autophagy 9 (2013), 1621–1623.
    • (2013) Autophagy , vol.9 , pp. 1621-1623
    • Fullgrabe, J.1    Klionsky, D.J.2    Joseph, B.3
  • 171
    • 41249099242 scopus 로고    scopus 로고
    • Inhibition of histone deacetylase1 induces autophagy
    • [171] Oh, M., Choi, I.K., Kwon, H.J., Inhibition of histone deacetylase1 induces autophagy. Biochem. Biophys. Res. Commun. 369 (2008), 1179–1183.
    • (2008) Biochem. Biophys. Res. Commun. , vol.369 , pp. 1179-1183
    • Oh, M.1    Choi, I.K.2    Kwon, H.J.3
  • 174
    • 81255177778 scopus 로고    scopus 로고
    • Temporal orchestration of circadian autophagy rhythm by C/EBPbeta
    • [174] Ma, D., Panda, S., Lin, J.D., Temporal orchestration of circadian autophagy rhythm by C/EBPbeta. EMBO J. 30 (2011), 4642–4651.
    • (2011) EMBO J. , vol.30 , pp. 4642-4651
    • Ma, D.1    Panda, S.2    Lin, J.D.3
  • 175
    • 84869005229 scopus 로고    scopus 로고
    • The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism
    • [175] Xiong, X., Tao, R., DePinho, R.A., Dong, X.C., The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism. J. Biol. Chem. 287 (2012), 39107–39114.
    • (2012) J. Biol. Chem. , vol.287 , pp. 39107-39114
    • Xiong, X.1    Tao, R.2    DePinho, R.A.3    Dong, X.C.4
  • 177
    • 84899969108 scopus 로고    scopus 로고
    • Akt2 knockout alleviates prolonged caloric restriction-induced change in cardiac contractile function through regulation of autophagy
    • [177] Zhang, Y., Han, X., Hu, N., Huff, A.F., Gao, F., Ren, J., Akt2 knockout alleviates prolonged caloric restriction-induced change in cardiac contractile function through regulation of autophagy. J. Mol. Cell Cardiol. 71 (2014), 81–91.
    • (2014) J. Mol. Cell Cardiol. , vol.71 , pp. 81-91
    • Zhang, Y.1    Han, X.2    Hu, N.3    Huff, A.F.4    Gao, F.5    Ren, J.6
  • 178
    • 78651091035 scopus 로고    scopus 로고
    • Salvianolic acid B inhibits autophagy and protects starving cardiac myocytes
    • [178] Han, X., Liu, J.X., Li, X.Z., Salvianolic acid B inhibits autophagy and protects starving cardiac myocytes. Acta Pharmacol. Sin. 32 (2011), 38–44.
    • (2011) Acta Pharmacol. Sin. , vol.32 , pp. 38-44
    • Han, X.1    Liu, J.X.2    Li, X.Z.3
  • 181
    • 84873197455 scopus 로고    scopus 로고
    • Convergent mechanisms for dysregulation of mitochondrial quality control in metabolic disease: implications for mitochondrial therapeutics
    • [181] Mitchell, T., Chacko, B., Ballinger, S.W., Bailey, S.M., Zhang, J., Darley-Usmar, V., Convergent mechanisms for dysregulation of mitochondrial quality control in metabolic disease: implications for mitochondrial therapeutics. Biochem. Soc. Trans. 41 (2013), 127–133.
    • (2013) Biochem. Soc. Trans. , vol.41 , pp. 127-133
    • Mitchell, T.1    Chacko, B.2    Ballinger, S.W.3    Bailey, S.M.4    Zhang, J.5    Darley-Usmar, V.6
  • 183
    • 84962855296 scopus 로고    scopus 로고
    • Circadian system and glucose metabolism: implications for physiology and disease
    • [183] Qian, J., Scheer, F.A., Circadian system and glucose metabolism: implications for physiology and disease. Trends Endocrinol. Metab. 27 (2016), 282–293.
    • (2016) Trends Endocrinol. Metab. , vol.27 , pp. 282-293
    • Qian, J.1    Scheer, F.A.2
  • 184
    • 0025248418 scopus 로고
    • Indirect calorimetry: methodological and interpretative problems
    • [184] Simonson, D.C., DeFronzo, R.A., Indirect calorimetry: methodological and interpretative problems. Am. J. Physiol. 258 (1990), E399–412.
    • (1990) Am. J. Physiol. , vol.258 , pp. E399-412
    • Simonson, D.C.1    DeFronzo, R.A.2
  • 187
    • 0037669427 scopus 로고    scopus 로고
    • Circadian rhythms of oxidative phosphorylation: effects of rotenone and melatonin on isolated rat brain mitochondria
    • [187] Simon, N., Papa, K., Vidal, J., Boulamery, A., Bruguerolle, B., Circadian rhythms of oxidative phosphorylation: effects of rotenone and melatonin on isolated rat brain mitochondria. Chronobiol. Int. 20 (2003), 451–461.
    • (2003) Chronobiol. Int. , vol.20 , pp. 451-461
    • Simon, N.1    Papa, K.2    Vidal, J.3    Boulamery, A.4    Bruguerolle, B.5
  • 189
  • 190
    • 79952707813 scopus 로고    scopus 로고
    • Clock gene mPer2 functions in diurnal variation of acetaminophen induced hepatotoxicity in mice
    • [190] Kakan, X., Chen, P., Zhang, J., Clock gene mPer2 functions in diurnal variation of acetaminophen induced hepatotoxicity in mice. Exp. Toxicol. Pathol. 63 (2011), 581–585.
    • (2011) Exp. Toxicol. Pathol. , vol.63 , pp. 581-585
    • Kakan, X.1    Chen, P.2    Zhang, J.3
  • 191
  • 192
    • 0015750526 scopus 로고
    • The diurnal response of muscle and liver protein synthesis in vivo in meal-fed rats
    • [192] Garlick, P.J., Millward, D.J., James, W.P., The diurnal response of muscle and liver protein synthesis in vivo in meal-fed rats. Biochem. J. 136 (1973), 935–945.
    • (1973) Biochem. J. , vol.136 , pp. 935-945
    • Garlick, P.J.1    Millward, D.J.2    James, W.P.3
  • 194
    • 0016727296 scopus 로고
    • A diurnal rhythm of incorporation of L-[3H] leucine in myocardium of the rat
    • [194] Rau, E., Meyer, D.K., A diurnal rhythm of incorporation of L-[3H] leucine in myocardium of the rat. Recent Adv. Stud. Cardiac. Struct. Metab. 7 (1975), 105–110.
    • (1975) Recent Adv. Stud. Cardiac. Struct. Metab. , vol.7 , pp. 105-110
    • Rau, E.1    Meyer, D.K.2
  • 195
    • 81255177778 scopus 로고    scopus 로고
    • Temporal orchestration of circadian autophagy rhythm by C/EBPbeta
    • [195] Ma, D., Panda, S., Lin, J.D., Temporal orchestration of circadian autophagy rhythm by C/EBPbeta. EMBO J. 30 (2011), 4642–4651.
    • (2011) EMBO J. , vol.30 , pp. 4642-4651
    • Ma, D.1    Panda, S.2    Lin, J.D.3
  • 196
    • 84962231285 scopus 로고    scopus 로고
    • Circadian modulation of proteasome activity and accumulation of oxidized protein in human embryonic kidney HEK 293 cells and primary dermal fibroblasts
    • [196] Desvergne, A., Ugarte, N., Radjei, S., Gareil, M., Petropoulos, I., Friguet, B., Circadian modulation of proteasome activity and accumulation of oxidized protein in human embryonic kidney HEK 293 cells and primary dermal fibroblasts. Free Radic. Biol. Med. 94 (2016), 195–207.
    • (2016) Free Radic. Biol. Med. , vol.94 , pp. 195-207
    • Desvergne, A.1    Ugarte, N.2    Radjei, S.3    Gareil, M.4    Petropoulos, I.5    Friguet, B.6
  • 197
    • 0019349745 scopus 로고
    • Autophagic vacuoles in heart muscle and liver. A comparative morphometric study including circadian variations in meal-fed rats
    • [197] Pfeifer, U., Strauss, P., Autophagic vacuoles in heart muscle and liver. A comparative morphometric study including circadian variations in meal-fed rats. J. Mol. Cell. Cardiol. 13 (1981), 37–49.
    • (1981) J. Mol. Cell. Cardiol. , vol.13 , pp. 37-49
    • Pfeifer, U.1    Strauss, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.