-
1
-
-
0013865801
-
Functions of lysosomes
-
De Duve C., Wattiaux R. Functions of lysosomes. Annual Review of Physiology 1966, 28:435-492. http://www.ncbi.nlm.nih.gov/pubmed/5322983, 10.1146/annurev.ph.28.030166.002251.
-
(1966)
Annual Review of Physiology
, vol.28
, pp. 435-492
-
-
De Duve, C.1
Wattiaux, R.2
-
2
-
-
0000189281
-
Cellular differentiation in the kidneys of newborn mice studies with the electron microscope
-
Clark S.L. Cellular differentiation in the kidneys of newborn mice studies with the electron microscope. Journal of Biophysical and Biochemical Cytology 1957, 3(3):349-362. http://www.ncbi.nlm.nih.gov/pubmed/13438920, 10.1083/jcb.3.3.349.
-
(1957)
Journal of Biophysical and Biochemical Cytology
, vol.3
, Issue.3
, pp. 349-362
-
-
Clark, S.L.1
-
3
-
-
0000730374
-
Cytoplasmic components in hepatic cell lysosomes
-
Ashford T.P., Porter K.R. Cytoplasmic components in hepatic cell lysosomes. Journal of Cell Biology 1962, 12:198-202. http://www.ncbi.nlm.nih.gov/pubmed/13862833, 10.1083/jcb.12.1.198.
-
(1962)
Journal of Cell Biology
, vol.12
, pp. 198-202
-
-
Ashford, T.P.1
Porter, K.R.2
-
4
-
-
0038208502
-
Cytolysomes and mitochondrial degeneration
-
Novikoff A.B., Essner E. Cytolysomes and mitochondrial degeneration. Journal of Cell Biology 1962, 15:140-146. http://www.ncbi.nlm.nih.gov/pubmed/13939127, 10.1083/jcb.15.1.140.
-
(1962)
Journal of Cell Biology
, vol.15
, pp. 140-146
-
-
Novikoff, A.B.1
Essner, E.2
-
5
-
-
0027424777
-
Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae
-
Tsukada M., Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Letters 1993, 333(1-2):169-174. http://www.ncbi.nlm.nih.gov/pubmed/8224160, 10.1016/0014-5793(93)80398-E.
-
(1993)
FEBS Letters
, vol.333
, Issue.1-2
, pp. 169-174
-
-
Tsukada, M.1
Ohsumi, Y.2
-
6
-
-
0026668042
-
Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction
-
Takeshige K., Baba M., Tsuboi S., Noda T., Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. Journal of Cell Biology 1992, 119(2):301-311. http://www.ncbi.nlm.nih.gov/pubmed/1400575, 10.1083/jcb.119.2.301.
-
(1992)
Journal of Cell Biology
, vol.119
, Issue.2
, pp. 301-311
-
-
Takeshige, K.1
Baba, M.2
Tsuboi, S.3
Noda, T.4
Ohsumi, Y.5
-
7
-
-
0000906170
-
Induction of autophagy and inhibition of tumorigenesis by beclin 1
-
Liang X.H., Jackson S., Seaman M., Brown K., Kempkes B., Hibshoosh H., Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999, 402(6762):672-676. http://www.ncbi.nlm.nih.gov/pubmed/10604474, 10.1038/45257.
-
(1999)
Nature
, vol.402
, Issue.6762
, pp. 672-676
-
-
Liang, X.H.1
Jackson, S.2
Seaman, M.3
Brown, K.4
Kempkes, B.5
Hibshoosh, H.6
Levine, B.7
-
8
-
-
35448981935
-
Autophagy: from phenomenology to molecular understanding in less than a decade
-
Klionsky D.J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nature Reviews Molecular Cell Biology 2007, 8(11):931-937. http://www.ncbi.nlm.nih.gov/pubmed/17712358, 10.1038/nrm2245.
-
(2007)
Nature Reviews Molecular Cell Biology
, vol.8
, Issue.11
, pp. 931-937
-
-
Klionsky, D.J.1
-
9
-
-
77956404377
-
Eaten alive: a history of macroautophagy
-
Yang Z., Klionsky D.J. Eaten alive: a history of macroautophagy. Nature Cell Biology 2010, 12(9):814-822. http://www.ncbi.nlm.nih.gov/pubmed/20811353, 10.1038/ncb0910-814.
-
(2010)
Nature Cell Biology
, vol.12
, Issue.9
, pp. 814-822
-
-
Yang, Z.1
Klionsky, D.J.2
-
10
-
-
84879047011
-
Cellular metabolic and autophagic pathways: traffic control by redox signaling
-
Dodson M., Darley-Usmar V., Zhang J. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radical Biology and Medicine 2013, 63:207-221. http://www.ncbi.nlm.nih.gov/pubmed/23702245, 10.1016/j.freeradbiomed.2013.05.014.
-
(2013)
Free Radical Biology and Medicine
, vol.63
, pp. 207-221
-
-
Dodson, M.1
Darley-Usmar, V.2
Zhang, J.3
-
11
-
-
84898785937
-
Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics
-
Levonen A.L., Hill B.G., Kansanen E., Zhang J., Darley-Usmar V.M. Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radical Biology and Medicine 2014, 71:196-207. http://www.ncbi.nlm.nih.gov/pubmed/24681256, 10.1016/j.freeradbiomed.2014.03.025.
-
(2014)
Free Radical Biology and Medicine
, vol.71
, pp. 196-207
-
-
Levonen, A.L.1
Hill, B.G.2
Kansanen, E.3
Zhang, J.4
Darley-Usmar, V.M.5
-
12
-
-
84892163616
-
Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease
-
Giordano S., Darley-Usmar V., Zhang J. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease. Redox Biology 2014, 2:82-90. http://www.ncbi.nlm.nih.gov/pubmed/24494187, 10.1016/j.redox.2013.12.013.
-
(2014)
Redox Biology
, vol.2
, pp. 82-90
-
-
Giordano, S.1
Darley-Usmar, V.2
Zhang, J.3
-
13
-
-
84879475204
-
Autophagy and mitophagy in cellular damage control
-
Zhang J. Autophagy and mitophagy in cellular damage control. Redox Biology 2013, 1(1):19-23. http://www.ncbi.nlm.nih.gov/pubmed/23946931, 10.1016/j.redox.2012.11.008.
-
(2013)
Redox Biology
, vol.1
, Issue.1
, pp. 19-23
-
-
Zhang, J.1
-
14
-
-
79959999581
-
Microautophagy in mammalian cells: revisiting a 40-year-old conundrum
-
Mijaljica D., Prescott M., Devenish R.J. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 2011, 7(7):673-682. http://www.ncbi.nlm.nih.gov/pubmed/21646866, 10.4161/auto.7.7.14733.
-
(2011)
Autophagy
, vol.7
, Issue.7
, pp. 673-682
-
-
Mijaljica, D.1
Prescott, M.2
Devenish, R.J.3
-
15
-
-
84859161154
-
Microautophagy: lesser-known self-eating
-
Li W.W., Li J., Bao J.K. Microautophagy: lesser-known self-eating. Cellular and Molecular Life Sciences 2012, 69(7):1125-1136. http://www.ncbi.nlm.nih.gov/pubmed/22080117, 10.1007/s00018-011-0865-5.
-
(2012)
Cellular and Molecular Life Sciences
, vol.69
, Issue.7
, pp. 1125-1136
-
-
Li, W.W.1
Li, J.2
Bao, J.K.3
-
16
-
-
0034735511
-
Cell-free reconstitution of microautophagic vacuole invagination and vesicle formation
-
Sattler T., Mayer A. Cell-free reconstitution of microautophagic vacuole invagination and vesicle formation. Journal of Cell Biology 2000, 151(3):529-538. http://www.ncbi.nlm.nih.gov/pubmed/11062255, 10.1083/jcb.151.3.529.
-
(2000)
Journal of Cell Biology
, vol.151
, Issue.3
, pp. 529-538
-
-
Sattler, T.1
Mayer, A.2
-
18
-
-
84907042769
-
ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery
-
Schuck S., Gallagher C.M., Walter P. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. Journal of Cell Science 2014, 127(18):4078-4088. http://www.ncbi.nlm.nih.gov/pubmed/25052096, 10.1242/jcs.154716.
-
(2014)
Journal of Cell Science
, vol.127
, Issue.18
, pp. 4078-4088
-
-
Schuck, S.1
Gallagher, C.M.2
Walter, P.3
-
19
-
-
0020510501
-
Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding
-
Mortimore G.E., Hutson N.J., Surmacz C.A. Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding. Proceedings of the National Academy of Sciences of the United States of America 1983, 80(8):2179-2183. http://www.ncbi.nlm.nih.gov/pubmed/6340116, 10.1073/pnas.80.8.2179.
-
(1983)
Proceedings of the National Academy of Sciences of the United States of America
, vol.80
, Issue.8
, pp. 2179-2183
-
-
Mortimore, G.E.1
Hutson, N.J.2
Surmacz, C.A.3
-
20
-
-
0020422617
-
Energy-dependent lysosomal wrapping mechanism (LWM) during autophagolysosome formation
-
Sakai M., Ogawa K. Energy-dependent lysosomal wrapping mechanism (LWM) during autophagolysosome formation. Histochemistry 1982, 76(4):479-488. http://www.ncbi.nlm.nih.gov/pubmed/7166511, 10.1007/BF00489903.
-
(1982)
Histochemistry
, vol.76
, Issue.4
, pp. 479-488
-
-
Sakai, M.1
Ogawa, K.2
-
21
-
-
0024678021
-
Lysosomal movements during heterophagy and autophagy: with special reference to nematolysosome and wrapping lysosome
-
Sakai M., Araki N., Ogawa K. Lysosomal movements during heterophagy and autophagy: with special reference to nematolysosome and wrapping lysosome. Journal of Electron Microscopy Technique 1989, 12(2):101-131. http://www.ncbi.nlm.nih.gov/pubmed/2668454, 10.1002/jemt.1060120206.
-
(1989)
Journal of Electron Microscopy Technique
, vol.12
, Issue.2
, pp. 101-131
-
-
Sakai, M.1
Araki, N.2
Ogawa, K.3
-
22
-
-
78651423598
-
Microautophagy of cytosolic proteins by late endosomes
-
Sahu R., Kaushik S., Clement C.C., Cannizzo E.S., Scharf B., Follenzi A., Potolicchio I., Nieves E., Cuervo A.M., Santambrogio L. Microautophagy of cytosolic proteins by late endosomes. Developmental Cell 2011, 20(1):131-139. http://www.ncbi.nlm.nih.gov/pubmed/21238931, 10.1016/j.devcel.2010.12.003.
-
(2011)
Developmental Cell
, vol.20
, Issue.1
, pp. 131-139
-
-
Sahu, R.1
Kaushik, S.2
Clement, C.C.3
Cannizzo, E.S.4
Scharf, B.5
Follenzi, A.6
Potolicchio, I.7
Nieves, E.8
Cuervo, A.M.9
Santambrogio, L.10
-
23
-
-
79951833039
-
Chaperone-mediated autophagy at a glance
-
Kaushik S., Bandyopadhyay U., Sridhar S., Kiffin R., Martinez-Vicente M., Kon M., Orenstein S.J., Wong E., Cuervo A.M. Chaperone-mediated autophagy at a glance. Journal of Cell Science 2011, 124(4):495-499. http://www.ncbi.nlm.nih.gov/pubmed/21282471, 10.1242/jcs.073874.
-
(2011)
Journal of Cell Science
, vol.124
, Issue.4
, pp. 495-499
-
-
Kaushik, S.1
Bandyopadhyay, U.2
Sridhar, S.3
Kiffin, R.4
Martinez-Vicente, M.5
Kon, M.6
Orenstein, S.J.7
Wong, E.8
Cuervo, A.M.9
-
24
-
-
84555195856
-
Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling
-
Lee J., Giordano S., Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochemical Journal 2012, 441(2):523-540. http://www.ncbi.nlm.nih.gov/pubmed/22187934, 10.1042/BJ20111451.
-
(2012)
Biochemical Journal
, vol.441
, Issue.2
, pp. 523-540
-
-
Lee, J.1
Giordano, S.2
Zhang, J.3
-
25
-
-
84891747382
-
The machinery of macroautophagy
-
Feng Y., He D., Yao Z., Klionsky D.J. The machinery of macroautophagy. Cell Research 2014, 24(1):24-41. http://www.ncbi.nlm.nih.gov/pubmed/24366339, 10.1038/cr.2013.168.
-
(2014)
Cell Research
, vol.24
, Issue.1
, pp. 24-41
-
-
Feng, Y.1
He, D.2
Yao, Z.3
Klionsky, D.J.4
-
26
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre C., Di Malta C., Polito V.A., Garcia Arencibia M., Vetrini F., Erdin S., Erdin S.U., Huynh T., Medina D., Colella P., Sardiello M., Rubinsztein D.C., Ballabio A. TFEB links autophagy to lysosomal biogenesis. Science 2011, 332(6036):1429-1433. http://www.ncbi.nlm.nih.gov/pubmed/21617040, 10.1126/science.1204592.
-
(2011)
Science
, vol.332
, Issue.6036
, pp. 1429-1433
-
-
Settembre, C.1
Di Malta, C.2
Polito, V.A.3
Garcia Arencibia, M.4
Vetrini, F.5
Erdin, S.6
Erdin, S.U.7
Huynh, T.8
Medina, D.9
Colella, P.10
Sardiello, M.11
Rubinsztein, D.C.12
Ballabio, A.13
-
27
-
-
84920080589
-
Regulation of autophagy by protein post-translational modification
-
Wani W.Y., Boyer-Guittaut M., Dodson M., Chatham J., Darley-Usmar V., Zhang J. Regulation of autophagy by protein post-translational modification. Laboratory Investigation 2015, 95:14-25. http://www.ncbi.nlm.nih.gov/pubmed/25365205, 10.1038/labinvest.2014.131.
-
(2015)
Laboratory Investigation
, vol.95
, pp. 14-25
-
-
Wani, W.Y.1
Boyer-Guittaut, M.2
Dodson, M.3
Chatham, J.4
Darley-Usmar, V.5
Zhang, J.6
-
28
-
-
84912528393
-
MTOR and autophagy: a dynamic relationship governed by nutrients and energy
-
Dunlop E.A., Tee A.R. mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Seminars in Cell and Developmental Biology 2014, 36C:121-129. http://www.ncbi.nlm.nih.gov/pubmed/25158238, 10.1016/j.semcdb.2014.08.006.
-
(2014)
Seminars in Cell and Developmental Biology
, vol.36 C
, pp. 121-129
-
-
Dunlop, E.A.1
Tee, A.R.2
-
29
-
-
84885105969
-
A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS
-
Zhang J., Kim J., Alexander A., Cai S., Tripathi D.N., Dere R., Tee A.R., Tait-Mulder J., Di Nardo A., Han J.M., Kwiatkowski E., Dunlop E.A., Dodd K.M., Folkerth R.D., Faust P.L., Kastan M.B., Sahin M., Walker C.L. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nature Cell Biology 2013, 15(10):1186-1196. http://www.ncbi.nlm.nih.gov/pubmed/23955302, 10.1038/ncb2822.
-
(2013)
Nature Cell Biology
, vol.15
, Issue.10
, pp. 1186-1196
-
-
Zhang, J.1
Kim, J.2
Alexander, A.3
Cai, S.4
Tripathi, D.N.5
Dere, R.6
Tee, A.R.7
Tait-Mulder, J.8
Di Nardo, A.9
Han, J.M.10
Kwiatkowski, E.11
Dunlop, E.A.12
Dodd, K.M.13
Folkerth, R.D.14
Faust, P.L.15
Kastan, M.B.16
Sahin, M.17
Walker, C.L.18
-
30
-
-
84891745585
-
Autophagy regulation by nutrient signaling
-
Russell R.C., Yuan H.X., Guan K.L. Autophagy regulation by nutrient signaling. Cell Research 2014, 24(1):42-57. http://www.ncbi.nlm.nih.gov/pubmed/24343578, 10.1038/cr.2013.166.
-
(2014)
Cell Research
, vol.24
, Issue.1
, pp. 42-57
-
-
Russell, R.C.1
Yuan, H.X.2
Guan, K.L.3
-
31
-
-
84892875805
-
At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy
-
Shen H.M., Mizushima N. At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends in Biochemical Sciences 2014, 39(2):61-71. http://www.ncbi.nlm.nih.gov/pubmed/24369758, 10.1016/j.tibs.2013.12.001.
-
(2014)
Trends in Biochemical Sciences
, vol.39
, Issue.2
, pp. 61-71
-
-
Shen, H.M.1
Mizushima, N.2
-
32
-
-
84866431363
-
Ragulator Is a GEF for the rag GTPases that signal amino acid Levels to mTORC1
-
Bar-Peled L., Schweitzer L.D., Zoncu R., Sabatini D.M. Ragulator Is a GEF for the rag GTPases that signal amino acid Levels to mTORC1. Cell 2012, 150(6):1196-1208. http://www.ncbi.nlm.nih.gov/pubmed/22980980, 10.1016/j.cell.2012.07.032.
-
(2012)
Cell
, vol.150
, Issue.6
, pp. 1196-1208
-
-
Bar-Peled, L.1
Schweitzer, L.D.2
Zoncu, R.3
Sabatini, D.M.4
-
33
-
-
0036713778
-
TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
-
Inoki K., Li Y., Zhu T., Wu J., Guan K.L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biology 2002, 4(9):648-657. http://www.ncbi.nlm.nih.gov/pubmed/12172553, 10.1038/ncb839.
-
(2002)
Nature Cell Biology
, vol.4
, Issue.9
, pp. 648-657
-
-
Inoki, K.1
Li, Y.2
Zhu, T.3
Wu, J.4
Guan, K.L.5
-
34
-
-
84880541343
-
The kinase triad, AMPK, mTORC1 and ULK1, maintains energy and nutrient homoeostasis
-
Dunlop E.A., Tee A.R. The kinase triad, AMPK, mTORC1 and ULK1, maintains energy and nutrient homoeostasis. Biochemical Society Transactions 2013, 41(4):939-943. http://www.ncbi.nlm.nih.gov/pubmed/23863160, 10.1042/BST20130030.
-
(2013)
Biochemical Society Transactions
, vol.41
, Issue.4
, pp. 939-943
-
-
Dunlop, E.A.1
Tee, A.R.2
-
35
-
-
79551507263
-
AMPK-dependent phosphorylation of ULK1 induces autophagy
-
Zhao M., Klionsky D.J. AMPK-dependent phosphorylation of ULK1 induces autophagy. Cell Metabolism 2011, 13(2):119-120. http://www.ncbi.nlm.nih.gov/pubmed/21284977, 10.1016/j.cmet.2011.01.009.
-
(2011)
Cell Metabolism
, vol.13
, Issue.2
, pp. 119-120
-
-
Zhao, M.1
Klionsky, D.J.2
-
36
-
-
84856800302
-
Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks
-
Alers S., Löffler A.S., Wesselborg S., Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Molecular and Cellular Biology 2012, 32(1):2-11. http://www.ncbi.nlm.nih.gov/pubmed/22025673, 10.1128/MCB.06159-11.
-
(2012)
Molecular and Cellular Biology
, vol.32
, Issue.1
, pp. 2-11
-
-
Alers, S.1
Löffler, A.S.2
Wesselborg, S.3
Stork, B.4
-
37
-
-
84907519033
-
The lysosomal V-ATPase-ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism
-
Zhang C.S., Jiang B., Li M., Zhu M., Peng Y., Zhang Y.L., Wu Y.Q., Li T.Y., Liang Y., Lu Z., Lian G., Liu Q., Guo H., Yin Z., Ye Z., Han J., Wu J.W., Yin H., Lin S.Y., Lin S.C. The lysosomal V-ATPase-ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metabolism 2014, 20(3):526-540. http://www.ncbi.nlm.nih.gov/pubmed/25002183, 10.1016/j.cmet.2014.06.014.
-
(2014)
Cell Metabolism
, vol.20
, Issue.3
, pp. 526-540
-
-
Zhang, C.S.1
Jiang, B.2
Li, M.3
Zhu, M.4
Peng, Y.5
Zhang, Y.L.6
Wu, Y.Q.7
Li, T.Y.8
Liang, Y.9
Lu, Z.10
Lian, G.11
Liu, Q.12
Guo, H.13
Yin, Z.14
Ye, Z.15
Han, J.16
Wu, J.W.17
Yin, H.18
Lin, S.Y.19
Lin, S.C.20
more..
-
38
-
-
84897019542
-
Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology
-
Semenza G.L. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annual Review of Pathology 2014, 9:47-71. http://www.ncbi.nlm.nih.gov/pubmed/23937437, 10.1146/annurev-pathol-012513-104720.
-
(2014)
Annual Review of Pathology
, vol.9
, pp. 47-71
-
-
Semenza, G.L.1
-
39
-
-
37248999267
-
Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb
-
Li Y., Wang Y., Kim E., Beemiller P., Wang C.Y., Swanson J., You M., Guan K.L. Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. Journal of Biological Chemistry 2007, 282(49):35803-35813. http://www.ncbi.nlm.nih.gov/pubmed/17928295, 10.1074/jbc.M705231200.
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.49
, pp. 35803-35813
-
-
Li, Y.1
Wang, Y.2
Kim, E.3
Beemiller, P.4
Wang, C.Y.5
Swanson, J.6
You, M.7
Guan, K.L.8
-
40
-
-
77749233738
-
ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS
-
Alexander A., Cai S.L., Kim J., Nanez A., Sahin M., MacLean K.H., Inoki K., Guan K.L., Shen J., Person M.D., Kusewitt D., Mills G.B., Kastan M.B., Walker C.L. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proceedings of the National Academy of Sciences of the United States of America 2010, 107(9):4153-4158. http://www.ncbi.nlm.nih.gov/pubmed/20160076, 10.1073/pnas.0913860107.
-
(2010)
Proceedings of the National Academy of Sciences of the United States of America
, vol.107
, Issue.9
, pp. 4153-4158
-
-
Alexander, A.1
Cai, S.L.2
Kim, J.3
Nanez, A.4
Sahin, M.5
MacLean, K.H.6
Inoki, K.7
Guan, K.L.8
Shen, J.9
Person, M.D.10
Kusewitt, D.11
Mills, G.B.12
Kastan, M.B.13
Walker, C.L.14
-
41
-
-
84890848742
-
Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy
-
Yuan H.X., Russell R.C., Guan K.L. Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy 2013, 9(12):1983-1995. http://www.ncbi.nlm.nih.gov/pubmed/24013218, 10.4161/auto.26058.
-
(2013)
Autophagy
, vol.9
, Issue.12
, pp. 1983-1995
-
-
Yuan, H.X.1
Russell, R.C.2
Guan, K.L.3
-
42
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
Settembre C., Zoncu R., Medina D.L., Vetrini F., Erdin S., Erdin S., Huynh T., Ferron M., Karsenty G., Vellard M.C., Facchinetti V., Sabatini D.M., Ballabio A. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO Journal 2012, 31(5):1095-1108. http://www.ncbi.nlm.nih.gov/pubmed/22343943, 10.1038/emboj.2012.32.
-
(2012)
EMBO Journal
, vol.31
, Issue.5
, pp. 1095-1108
-
-
Settembre, C.1
Zoncu, R.2
Medina, D.L.3
Vetrini, F.4
Erdin, S.5
Erdin, S.6
Huynh, T.7
Ferron, M.8
Karsenty, G.9
Vellard, M.C.10
Facchinetti, V.11
Sabatini, D.M.12
Ballabio, A.13
-
43
-
-
84864874958
-
MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
-
Martina J.A., Chen Y., Gucek M., Puertollano R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 2012, 8(6):903-914. http://www.ncbi.nlm.nih.gov/pubmed/22576015, 10.4161/auto.19653.
-
(2012)
Autophagy
, vol.8
, Issue.6
, pp. 903-914
-
-
Martina, J.A.1
Chen, Y.2
Gucek, M.3
Puertollano, R.4
-
44
-
-
6344245674
-
Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development
-
Gangloff Y.G., Mueller M., Dann S.G., Svoboda P., Sticker M., Spetz J.F., Um S.H., Brown E.J., Cereghini S., Thomas G., Kozma S.C. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Journal of Molecular Cell Biology 2004, 24(21):9508-9516. http://www.ncbi.nlm.nih.gov/pubmed/15485918, 10.1128/MCB.24.21.9508-9516.2004.
-
(2004)
Journal of Molecular Cell Biology
, vol.24
, Issue.21
, pp. 9508-9516
-
-
Gangloff, Y.G.1
Mueller, M.2
Dann, S.G.3
Svoboda, P.4
Sticker, M.5
Spetz, J.F.6
Um, S.H.7
Brown, E.J.8
Cereghini, S.9
Thomas, G.10
Kozma, S.C.11
-
45
-
-
84893564445
-
Analysis of a lung defect in autophagy-deficient mouse strains
-
Cheong H., Wu J., Gonzales L.K., Guttentag S.H., Thompson C.B., Lindsten T. Analysis of a lung defect in autophagy-deficient mouse strains. Autophagy 2014, 10(1):45-56. http://www.ncbi.nlm.nih.gov/pubmed/24275123, 10.4161/auto.26505.
-
(2014)
Autophagy
, vol.10
, Issue.1
, pp. 45-56
-
-
Cheong, H.1
Wu, J.2
Gonzales, L.K.3
Guttentag, S.H.4
Thompson, C.B.5
Lindsten, T.6
-
46
-
-
68149096799
-
The pharmacology of mTOR inhibition
-
Guertin D.A., Sabatini D.M. The pharmacology of mTOR inhibition. Science Signaling 2009, 2(67):e24. http://www.ncbi.nlm.nih.gov/pubmed/19383975, 10.1126/scisignal.267pe24.
-
(2009)
Science Signaling
, vol.2
, Issue.67
, pp. e24
-
-
Guertin, D.A.1
Sabatini, D.M.2
-
47
-
-
79952628267
-
The Beclin 1 network regulates autophagy and apoptosis
-
Kang R., Zeh H.J., Lotze M.T., Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death & Differentiation 2011, 18(4):571-580. http://www.ncbi.nlm.nih.gov/pubmed/21311563, 10.1038/cdd.2010.191.
-
(2011)
Cell Death & Differentiation
, vol.18
, Issue.4
, pp. 571-580
-
-
Kang, R.1
Zeh, H.J.2
Lotze, M.T.3
Tang, D.4
-
48
-
-
84884819157
-
Autophagosome formation -the role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage
-
Wirth M., Joachim J., Tooze S.A. Autophagosome formation -the role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage. Seminars in Cancer Biology 2013, 23(5):301-309. http://www.ncbi.nlm.nih.gov/pubmed/23727157, 10.1016/j.semcancer.2013.05.007.
-
(2013)
Seminars in Cancer Biology
, vol.23
, Issue.5
, pp. 301-309
-
-
Wirth, M.1
Joachim, J.2
Tooze, S.A.3
-
49
-
-
84875210462
-
Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart
-
Marsh S.A., Powell P.C., Dell'Italia L.J., Chatham J.C. Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart. Life Sciences 2013, 92(11):648-656. http://www.ncbi.nlm.nih.gov/pubmed/22728715, 10.1016/j.lfs.2012.06.011.
-
(2013)
Life Sciences
, vol.92
, Issue.11
, pp. 648-656
-
-
Marsh, S.A.1
Powell, P.C.2
Dell'Italia, L.J.3
Chatham, J.C.4
-
50
-
-
84901304111
-
NRBF2 regulates autophagy and prevents liver injury by modulating Atg14L-linked phosphatidylinositol-3 kinase III activity
-
Lu J., He L., Behrends C., Araki M., Araki K., Jun W.Q., Catanzaro J.M., Friedman S.L., Zong W.X., Fiel M.I., Li M., Yue Z. NRBF2 regulates autophagy and prevents liver injury by modulating Atg14L-linked phosphatidylinositol-3 kinase III activity. Nature Communications 2014, 5:3920.
-
(2014)
Nature Communications
, vol.5
, pp. 3920
-
-
Lu, J.1
He, L.2
Behrends, C.3
Araki, M.4
Araki, K.5
Jun, W.Q.6
Catanzaro, J.M.7
Friedman, S.L.8
Zong, W.X.9
Fiel, M.I.10
Li, M.11
Yue, Z.12
-
51
-
-
77953726483
-
Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation
-
Polson H.E., de Lartigue J., Rigden D.J., Reedijk M., Urbé S., Clague M.J., Tooze S.A. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 2010, 6(4):506-522. http://www.ncbi.nlm.nih.gov/pubmed/20505359, 10.4161/auto.6.4.11863.
-
(2010)
Autophagy
, vol.6
, Issue.4
, pp. 506-522
-
-
Polson, H.E.1
de Lartigue, J.2
Rigden, D.J.3
Reedijk, M.4
Urbé, S.5
Clague, M.J.6
Tooze, S.A.7
-
52
-
-
77955879909
-
Trafficking and signaling in mammalian autophagy
-
Tooze S.A., Jefferies H.B., Kalie E., Longatti A., McAlpine F.E., McKnight N.C., Orsi A., Polson H.E., Razi M., Robinson D.J., Webber J.L. Trafficking and signaling in mammalian autophagy. IUBMB Life 2010, 62(7):503-508. http://www.ncbi.nlm.nih.gov/pubmed/20552641, 10.1002/iub.334.
-
(2010)
IUBMB Life
, vol.62
, Issue.7
, pp. 503-508
-
-
Tooze, S.A.1
Jefferies, H.B.2
Kalie, E.3
Longatti, A.4
McAlpine, F.E.5
McKnight, N.C.6
Orsi, A.7
Polson, H.E.8
Razi, M.9
Robinson, D.J.10
Webber, J.L.11
-
53
-
-
77950903972
-
The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy
-
Filimonenko M., Isakson P., Finley K.D., Anderson M., Jeong H., Melia T.J., Bartlett B.J., Myers K.M., Birkeland H.C., Lamark T., Krainc D., Brech A., Stenmark H., Simonsen A., Yamamoto A. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Molecular Cell 2010, 38(2):265-279. http://www.ncbi.nlm.nih.gov/pubmed/20417604, 10.1016/j.molcel.2010.04.007.
-
(2010)
Molecular Cell
, vol.38
, Issue.2
, pp. 265-279
-
-
Filimonenko, M.1
Isakson, P.2
Finley, K.D.3
Anderson, M.4
Jeong, H.5
Melia, T.J.6
Bartlett, B.J.7
Myers, K.M.8
Birkeland, H.C.9
Lamark, T.10
Krainc, D.11
Brech, A.12
Stenmark, H.13
Simonsen, A.14
Yamamoto, A.15
-
54
-
-
77952914565
-
P62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy
-
Clausen T.H., Lamark T., Isakson P., Finley K., Larsen K.B., Brech A., Øvervatn A., Stenmark H., Bjørkøy G., Simonsen A., Johansen T. p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy. Autophagy 2010, 6(3):330-344. http://www.ncbi.nlm.nih.gov/pubmed/20168092, 10.4161/auto.6.3.11226.
-
(2010)
Autophagy
, vol.6
, Issue.3
, pp. 330-344
-
-
Clausen, T.H.1
Lamark, T.2
Isakson, P.3
Finley, K.4
Larsen, K.B.5
Brech, A.6
Øvervatn, A.7
Stenmark, H.8
Bjørkøy, G.9
Simonsen, A.10
Johansen, T.11
-
55
-
-
4944247868
-
Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes
-
Simonsen A., Birkeland H.C., Gillooly D.J., Mizushima N., Kuma A., Yoshimori T., Slagsvold T., Brech A., Stenmark H. Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. Journal of Cell Science 2004, 117(18):4239-4251. http://www.ncbi.nlm.nih.gov/pubmed/15292400, 10.1242/jcs.01287.
-
(2004)
Journal of Cell Science
, vol.117
, Issue.18
, pp. 4239-4251
-
-
Simonsen, A.1
Birkeland, H.C.2
Gillooly, D.J.3
Mizushima, N.4
Kuma, A.5
Yoshimori, T.6
Slagsvold, T.7
Brech, A.8
Stenmark, H.9
-
56
-
-
0345166111
-
Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor
-
Yue Z., Jin S., Yang C., Levine A.J., Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America 2003, 100(25):15077-15082. http://www.ncbi.nlm.nih.gov/pubmed/14657337, 10.1073/pnas.2436255100.
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.25
, pp. 15077-15082
-
-
Yue, Z.1
Jin, S.2
Yang, C.3
Levine, A.J.4
Heintz, N.5
-
57
-
-
84863116629
-
Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function
-
Jaber N., Dou Z., Chen J.S., Catanzaro J., Jiang Y.P., Ballou L.M., Selinger E., Ouyang X., Lin R.Z., Zhang J., Zong W.X. Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proceedings of the National Academy of Sciences of the United States of America 2012, 109(6):2003-2008. http://www.ncbi.nlm.nih.gov/pubmed/22308354, 10.1073/pnas.1112848109.
-
(2012)
Proceedings of the National Academy of Sciences of the United States of America
, vol.109
, Issue.6
, pp. 2003-2008
-
-
Jaber, N.1
Dou, Z.2
Chen, J.S.3
Catanzaro, J.4
Jiang, Y.P.5
Ballou, L.M.6
Selinger, E.7
Ouyang, X.8
Lin, R.Z.9
Zhang, J.10
Zong, W.X.11
-
58
-
-
84862283776
-
Mammalian PIK3C3/VPS34: the key to autophagic processing in liver and heart
-
Jaber N., Dou Z., Lin R.Z., Zhang J., Zong W.X. Mammalian PIK3C3/VPS34: the key to autophagic processing in liver and heart. Autophagy 2012, 8(4):707-708. http://www.ncbi.nlm.nih.gov/pubmed/22498475, 10.4161/auto.19627.
-
(2012)
Autophagy
, vol.8
, Issue.4
, pp. 707-708
-
-
Jaber, N.1
Dou, Z.2
Lin, R.Z.3
Zhang, J.4
Zong, W.X.5
-
59
-
-
77952722628
-
Deletion of PIK3C3/Vps34 in sensory neurons causes rapid neurodegeneration by disrupting the endosomal but not the autophagic pathway
-
Zhou X., Wang L., Hasegawa H., Amin P., Han B.X., Kaneko S., He Y., Wang F. Deletion of PIK3C3/Vps34 in sensory neurons causes rapid neurodegeneration by disrupting the endosomal but not the autophagic pathway. Proceedings of the National Academy of Sciences of the United States of America 2010, 107(20):9424-9429. http://www.ncbi.nlm.nih.gov/pubmed/20439739, 10.1073/pnas.0914725107.
-
(2010)
Proceedings of the National Academy of Sciences of the United States of America
, vol.107
, Issue.20
, pp. 9424-9429
-
-
Zhou, X.1
Wang, L.2
Hasegawa, H.3
Amin, P.4
Han, B.X.5
Kaneko, S.6
He, Y.7
Wang, F.8
-
60
-
-
77955882795
-
Effects of neuronal PIK3C3/Vps34 deletion on autophagy and beyond
-
Zhou X., Wang F. Effects of neuronal PIK3C3/Vps34 deletion on autophagy and beyond. Autophagy 2010, 6(6):798-799. http://www.ncbi.nlm.nih.gov/pubmed/20562532, 10.4161/auto.6.6.12511.
-
(2010)
Autophagy
, vol.6
, Issue.6
, pp. 798-799
-
-
Zhou, X.1
Wang, F.2
-
61
-
-
0005677775
-
3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes
-
Seglen P.O., Gordon P.B. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proceedings of the National Academy of Sciences of the United States of America 1982, 79(6):1889-1892. http://www.ncbi.nlm.nih.gov/pubmed/6952238, 10.1073/pnas.79.6.1889.
-
(1982)
Proceedings of the National Academy of Sciences of the United States of America
, vol.79
, Issue.6
, pp. 1889-1892
-
-
Seglen, P.O.1
Gordon, P.B.2
-
62
-
-
77951217000
-
Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase
-
Wu Y.T., Tan H.L., Shui G., Bauvy C., Huang Q., Wenk M.R., Ong C.N., Codogno P., Shen H.M. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. Journal of Biological Chemistry 2010, 285(14):10850-10861. http://www.ncbi.nlm.nih.gov/pubmed/20123989, 10.1074/jbc.M109.080796.
-
(2010)
Journal of Biological Chemistry
, vol.285
, Issue.14
, pp. 10850-10861
-
-
Wu, Y.T.1
Tan, H.L.2
Shui, G.3
Bauvy, C.4
Huang, Q.5
Wenk, M.R.6
Ong, C.N.7
Codogno, P.8
Shen, H.M.9
-
63
-
-
84889636479
-
Phosphoinositide 3-kinases as accelerators and brakes of autophagy
-
O'Farrell F., Rusten T.E., Stenmark H. Phosphoinositide 3-kinases as accelerators and brakes of autophagy. FEBS Journal 2013, 280(24):6322-6337. http://www.ncbi.nlm.nih.gov/pubmed/23953235, 10.1111/febs.12486.
-
(2013)
FEBS Journal
, vol.280
, Issue.24
, pp. 6322-6337
-
-
O'Farrell, F.1
Rusten, T.E.2
Stenmark, H.3
-
64
-
-
51049118332
-
The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. Protein modifications: beyond the usual suspects
-
Geng J., Klionsky D.J. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. Protein modifications: beyond the usual suspects. EMBO Reports 2008, 9:859-864. http://www.ncbi.nlm.nih.gov/pubmed/18704115, 10.1038/embor.2008.163.
-
(2008)
EMBO Reports
, vol.9
, pp. 859-864
-
-
Geng, J.1
Klionsky, D.J.2
-
65
-
-
0028845388
-
Role of microtubule-associated proteins in the control of microtubule assembly
-
Maccioni R.B., Cambiazo V. Role of microtubule-associated proteins in the control of microtubule assembly. Physiological Reviews 1995, 75(4):835-864. http://www.ncbi.nlm.nih.gov/pubmed/7480164.
-
(1995)
Physiological Reviews
, vol.75
, Issue.4
, pp. 835-864
-
-
Maccioni, R.B.1
Cambiazo, V.2
-
66
-
-
84903601805
-
The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells
-
Boyer-Guittaut M., Poillet L., Liang Q., BÔle-Richard E., Ouyang X., Benavides G.A., Chakrama F.Z., Fraichard A., Darley-Usmar V.M., Despouy G., Jouvenot M., Delage-Mourroux R., Zhang J. The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells. Autophagy 2014, 10(6):986-1003. http://www.ncbi.nlm.nih.gov/pubmed/24879149, 10.4161/auto.28390.
-
(2014)
Autophagy
, vol.10
, Issue.6
, pp. 986-1003
-
-
Boyer-Guittaut, M.1
Poillet, L.2
Liang, Q.3
Bôle-Richard, E.4
Ouyang, X.5
Benavides, G.A.6
Chakrama, F.Z.7
Fraichard, A.8
Darley-Usmar, V.M.9
Despouy, G.10
Jouvenot, M.11
Delage-Mourroux, R.12
Zhang, J.13
-
67
-
-
80053430056
-
GABARAPL1 (GEC1): original or copycat?
-
Le Grand J.N., Chakrama F.Z., Seguin-Py S., Fraichard A., Age-Mourroux R., Jouvenot M., Boyer-Guittaut M. GABARAPL1 (GEC1): original or copycat?. Autophagy 2011, 7:1098-1107.
-
(2011)
Autophagy
, vol.7
, pp. 1098-1107
-
-
Le Grand, J.N.1
Chakrama, F.Z.2
Seguin-Py, S.3
Fraichard, A.4
Age-Mourroux, R.5
Jouvenot, M.6
Boyer-Guittaut, M.7
-
68
-
-
77953728406
-
GABARAPL1 (GEC1) associates with autophagic vesicles
-
Chakrama F.Z., Seguin-Py S., Le Grand J.N., Fraichard A., Age-Mourroux R., Despouy G., Perez V., Jouvenot M., Boyer-Guittaut M. GABARAPL1 (GEC1) associates with autophagic vesicles. Autophagy 2010, 6:495-505.
-
(2010)
Autophagy
, vol.6
, pp. 495-505
-
-
Chakrama, F.Z.1
Seguin-Py, S.2
Le Grand, J.N.3
Fraichard, A.4
Age-Mourroux, R.5
Despouy, G.6
Perez, V.7
Jouvenot, M.8
Boyer-Guittaut, M.9
-
69
-
-
79952355107
-
Selective autophagy mediated by autophagic adapter proteins
-
Johansen T., Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 2011, 7(3):279-296. http://www.ncbi.nlm.nih.gov/pubmed/21189453, 10.4161/auto.7.3.14487.
-
(2011)
Autophagy
, vol.7
, Issue.3
, pp. 279-296
-
-
Johansen, T.1
Lamark, T.2
-
70
-
-
84892859905
-
Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy
-
Rogov V., Dötsch V., Johansen T., Kirkin V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Molecular Cell 2014, 53(2):167-178. http://www.ncbi.nlm.nih.gov/pubmed/24462201, 10.1016/j.molcel.2013.12.014.
-
(2014)
Molecular Cell
, vol.53
, Issue.2
, pp. 167-178
-
-
Rogov, V.1
Dötsch, V.2
Johansen, T.3
Kirkin, V.4
-
71
-
-
77649265091
-
The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
-
Komatsu M., Kurokawa H., Waguri S., Taguchi K., Kobayashi A., Ichimura Y., Sou Y.S., Ueno I., Sakamoto A., Tong K.I., Kim M., Nishito Y., Iemura S., Natsume T., Ueno T., Kominami E., Motohashi H., Tanaka K., Yamamoto M. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nature Cell Biology 2010, 12(3):213-223. http://www.ncbi.nlm.nih.gov/pubmed/20173742, 10.1038/ncb2021.
-
(2010)
Nature Cell Biology
, vol.12
, Issue.3
, pp. 213-223
-
-
Komatsu, M.1
Kurokawa, H.2
Waguri, S.3
Taguchi, K.4
Kobayashi, A.5
Ichimura, Y.6
Sou, Y.S.7
Ueno, I.8
Sakamoto, A.9
Tong, K.I.10
Kim, M.11
Nishito, Y.12
Iemura, S.13
Natsume, T.14
Ueno, T.15
Kominami, E.16
Motohashi, H.17
Tanaka, K.18
Yamamoto, M.19
-
72
-
-
79952139698
-
Nrf2-mediated induction of p62 controls toll-like receptor-4-driven aggresome-like induced structure formation and autophagic degradation
-
Fujita K., Maeda D., Xiao Q., Srinivasula S.M. Nrf2-mediated induction of p62 controls toll-like receptor-4-driven aggresome-like induced structure formation and autophagic degradation. Proceedings of the National Academy of Sciences of the United States of America 2011, 108(4):1427-1432. http://www.ncbi.nlm.nih.gov/pubmed/21220332, 10.1073/pnas.1014156108.
-
(2011)
Proceedings of the National Academy of Sciences of the United States of America
, vol.108
, Issue.4
, pp. 1427-1432
-
-
Fujita, K.1
Maeda, D.2
Xiao, Q.3
Srinivasula, S.M.4
-
73
-
-
0036144410
-
P62 is a common component of cytoplasmic inclusions in protein aggregation diseases
-
Zatloukal K., Stumptner C., Fuchsbichler A., Heid H., Schnoelzer M., Kenner L., Kleinert R., Prinz M., Aguzzi A., Denk H. p62 is a common component of cytoplasmic inclusions in protein aggregation diseases. American Journal of Pathology 2002, 160(1):255-263. http://www.ncbi.nlm.nih.gov/pubmed/11786419, 10.1016/S0002-9440(10)64369-6.
-
(2002)
American Journal of Pathology
, vol.160
, Issue.1
, pp. 255-263
-
-
Zatloukal, K.1
Stumptner, C.2
Fuchsbichler, A.3
Heid, H.4
Schnoelzer, M.5
Kenner, L.6
Kleinert, R.7
Prinz, M.8
Aguzzi, A.9
Denk, H.10
-
74
-
-
33646800306
-
Loss of autophagy in the central nervous system causes neurodegeneration in mice
-
Komatsu M., Waguri S., Chiba T., Murata S., Iwata J., Tanida I., Ueno T., Koike M., Uchiyama Y., Kominami E., Tanaka K. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006, 441(7095):880-884. http://www.ncbi.nlm.nih.gov/pubmed/16625205, 10.1038/nature04723.
-
(2006)
Nature
, vol.441
, Issue.7095
, pp. 880-884
-
-
Komatsu, M.1
Waguri, S.2
Chiba, T.3
Murata, S.4
Iwata, J.5
Tanida, I.6
Ueno, T.7
Koike, M.8
Uchiyama, Y.9
Kominami, E.10
Tanaka, K.11
-
75
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
Hara T., Nakamura K., Matsui M., Yamamoto A., Nakahara Y., Suzuki-Migishima R., Yokoyama M., Mishima K., Saito I., Okano H., Mizushima N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006, 441(7095):885-889. http://www.ncbi.nlm.nih.gov/pubmed/16625204, 10.1038/nature04724.
-
(2006)
Nature
, vol.441
, Issue.7095
, pp. 885-889
-
-
Hara, T.1
Nakamura, K.2
Matsui, M.3
Yamamoto, A.4
Nakahara, Y.5
Suzuki-Migishima, R.6
Yokoyama, M.7
Mishima, K.8
Saito, I.9
Okano, H.10
Mizushima, N.11
-
76
-
-
21344463770
-
Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation
-
Babu J.R., Geetha T., Wooten M.W. Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. Journal of Neurochemistry 2005, 94(1):192-203. http://www.ncbi.nlm.nih.gov/pubmed/15953362, 10.1111/j.1471-4159.2005.03181.x.
-
(2005)
Journal of Neurochemistry
, vol.94
, Issue.1
, pp. 192-203
-
-
Babu, J.R.1
Geetha, T.2
Wooten, M.W.3
-
77
-
-
84901832434
-
SQSTM1 mutations -bridging Paget disease of bone and ALS/FTLD
-
Rea S.L., Majcher V., Searle M.S., Layfield R. SQSTM1 mutations -bridging Paget disease of bone and ALS/FTLD. Experimental Cell Research 2014, 325(1):27-37. http://www.ncbi.nlm.nih.gov/pubmed/24486447, 10.1016/j.yexcr.2014.01.020.
-
(2014)
Experimental Cell Research
, vol.325
, Issue.1
, pp. 27-37
-
-
Rea, S.L.1
Majcher, V.2
Searle, M.S.3
Layfield, R.4
-
78
-
-
84890178991
-
Substrate recognition in selective autophagy and the ubiquitin-proteasome system
-
Schreiber A., Peter M. Substrate recognition in selective autophagy and the ubiquitin-proteasome system. Biochimica et Biophysica Acta 2014, 1843(1):163-181. http://www.ncbi.nlm.nih.gov/pubmed/23545414, 10.1016/j.bbamcr.2013.03.019.
-
(2014)
Biochimica et Biophysica Acta
, vol.1843
, Issue.1
, pp. 163-181
-
-
Schreiber, A.1
Peter, M.2
-
79
-
-
84907599058
-
TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition
-
Mandell M.A., Jain A., Arko-Mensah J., Chauhan S., Kimura T., Dinkins C., Silvestri G., Münch J., Kirchhoff F., Simonsen A., Wei Y., Levine B., Johansen T., Deretic V. TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition. Developmental Cell 2014, 30(4):394-409. http://www.ncbi.nlm.nih.gov/pubmed/25127057, 10.1016/j.devcel.2014.06.013.
-
(2014)
Developmental Cell
, vol.30
, Issue.4
, pp. 394-409
-
-
Mandell, M.A.1
Jain, A.2
Arko-Mensah, J.3
Chauhan, S.4
Kimura, T.5
Dinkins, C.6
Silvestri, G.7
Münch, J.8
Kirchhoff, F.9
Simonsen, A.10
Wei, Y.11
Levine, B.12
Johansen, T.13
Deretic, V.14
-
80
-
-
84901768886
-
Mitophagy mechanisms and role in human diseases
-
Redmann M., Dodson M., Boyer-Guittaut M., Darley-Usmar V., Zhang J. Mitophagy mechanisms and role in human diseases. International Journal of Biochemistry & Cell Biology 2014, 53:127-133. http://www.ncbi.nlm.nih.gov/pubmed/24842106, 10.1016/j.biocel.2014.05.010.
-
(2014)
International Journal of Biochemistry & Cell Biology
, vol.53
, pp. 127-133
-
-
Redmann, M.1
Dodson, M.2
Boyer-Guittaut, M.3
Darley-Usmar, V.4
Zhang, J.5
-
81
-
-
16844366524
-
Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging
-
Lemasters J.J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Research 2005, 8(1):3-5. http://www.ncbi.nlm.nih.gov/pubmed/15798367, 10.1089/rej.2005.8.3.
-
(2005)
Rejuvenation Research
, vol.8
, Issue.1
, pp. 3-5
-
-
Lemasters, J.J.1
-
82
-
-
84873197455
-
Convergent mechanisms for dysregulation of mitochondrial quality control in metabolic disease: implications for mitochondrial therapeutics
-
Mitchell T., Chacko B., Ballinger S.W., Bailey S.M., Zhang J., Darley-Usmar V. Convergent mechanisms for dysregulation of mitochondrial quality control in metabolic disease: implications for mitochondrial therapeutics. Biochemical Society Transactions 2013, 41(1):127-133. http://www.ncbi.nlm.nih.gov/pubmed/23356271, 10.1042/BST20120231.
-
(2013)
Biochemical Society Transactions
, vol.41
, Issue.1
, pp. 127-133
-
-
Mitchell, T.1
Chacko, B.2
Ballinger, S.W.3
Bailey, S.M.4
Zhang, J.5
Darley-Usmar, V.6
-
83
-
-
79251574964
-
Mitochondrial degradation by autophagy (mitophagy) in GFP-LC3 transgenic hepatocytes during nutrient deprivation
-
Kim I., Lemasters J.J. Mitochondrial degradation by autophagy (mitophagy) in GFP-LC3 transgenic hepatocytes during nutrient deprivation. American Journal of Physiology-Cell Physiology 2011, 300(2):C308-C317. http://www.ncbi.nlm.nih.gov/pubmed/21106691, 10.1152/ajpcell.00056.2010.
-
(2011)
American Journal of Physiology-Cell Physiology
, vol.300
, Issue.2
, pp. C308-C317
-
-
Kim, I.1
Lemasters, J.J.2
-
84
-
-
79954571354
-
The interplay between mitochondrial dynamics and mitophagy
-
Twig G., Shirihai O.S. The interplay between mitochondrial dynamics and mitophagy. Antioxidants & Redox Signaling 2011, 14(10):1939-1951. http://www.ncbi.nlm.nih.gov/pubmed/21128700, 10.1089/ars.2010.3779.
-
(2011)
Antioxidants & Redox Signaling
, vol.14
, Issue.10
, pp. 1939-1951
-
-
Twig, G.1
Shirihai, O.S.2
-
85
-
-
84883792140
-
Dysfunctional mitochondrial bioenergetics and oxidative stress in Akita(+/Ins2)-derived β-cells
-
Mitchell T., Johnson M.S., Ouyang X., Chacko B.K., Mitra K., Lei X., Gai Y., Moore D.R., Barnes S., Zhang J., Koizumi A., Ramanadham S., Darley-Usmar V.M. Dysfunctional mitochondrial bioenergetics and oxidative stress in Akita(+/Ins2)-derived β-cells. American Journal of Physiology-Endocrinology and Metabolism 2013, 305(5):E585-E599. http://www.ncbi.nlm.nih.gov/pubmed/23820623, 10.1152/ajpendo.00093.2013.
-
(2013)
American Journal of Physiology-Endocrinology and Metabolism
, vol.305
, Issue.5
, pp. E585-E599
-
-
Mitchell, T.1
Johnson, M.S.2
Ouyang, X.3
Chacko, B.K.4
Mitra, K.5
Lei, X.6
Gai, Y.7
Moore, D.R.8
Barnes, S.9
Zhang, J.10
Koizumi, A.11
Ramanadham, S.12
Darley-Usmar, V.M.13
-
86
-
-
84859475104
-
Hemin causes mitochondrial dysfunction in endothelial cells through promoting lipid peroxidation: the protective role of autophagy
-
Higdon A.N., Benavides G.A., Chacko B.K., Ouyang X., Johnson M.S., Landar A., Zhang J., Darley-Usmar V.M. Hemin causes mitochondrial dysfunction in endothelial cells through promoting lipid peroxidation: the protective role of autophagy. American Journal of Physiology-Heart and Circulatory Physiology 2012, 302(7):H1394-H1409. http://www.ncbi.nlm.nih.gov/pubmed/22245770, 10.1152/ajpheart.00584.2011.
-
(2012)
American Journal of Physiology-Heart and Circulatory Physiology
, vol.302
, Issue.7
, pp. H1394-H1409
-
-
Higdon, A.N.1
Benavides, G.A.2
Chacko, B.K.3
Ouyang, X.4
Johnson, M.S.5
Landar, A.6
Zhang, J.7
Darley-Usmar, V.M.8
-
87
-
-
84915813278
-
Bioenergetic adaptation in response to autophagy regulators during rotenone exposure
-
Giordano S., Dodson M., Ravi S., Redmann M., Ouyang X., Darley Usmar V.M., Zhang J. Bioenergetic adaptation in response to autophagy regulators during rotenone exposure. Journal of Neurochemistry 2014, 131:625-633. http://www.ncbi.nlm.nih.gov/pubmed/25081478, 10.1111/jnc.12844.
-
(2014)
Journal of Neurochemistry
, vol.131
, pp. 625-633
-
-
Giordano, S.1
Dodson, M.2
Ravi, S.3
Redmann, M.4
Ouyang, X.5
Darley Usmar, V.M.6
Zhang, J.7
-
88
-
-
84885176082
-
Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells
-
Chu C.T., Ji J., Dagda R.K., Jiang J.F., Tyurina Y.Y., Kapralov A.A., Tyurin V.A., Yanamala N., Shrivastava I.H., Mohammadyani D., Qiang Wang K.Z., Zhu J., Klein-Seetharaman J., Balasubramanian K., Amoscato A.A., Borisenko G., Huang Z., Gusdon A.M., Cheikhi A., Steer E.K., Wang R., Baty C., Watkins S., Bahar I., Bayir H., et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nature Cell Biology 2013, 15(10):1197-1205. http://www.ncbi.nlm.nih.gov/pubmed/24036476, 10.1038/ncb2837.
-
(2013)
Nature Cell Biology
, vol.15
, Issue.10
, pp. 1197-1205
-
-
Chu, C.T.1
Ji, J.2
Dagda, R.K.3
Jiang, J.F.4
Tyurina, Y.Y.5
Kapralov, A.A.6
Tyurin, V.A.7
Yanamala, N.8
Shrivastava, I.H.9
Mohammadyani, D.10
Qiang Wang, K.Z.11
Zhu, J.12
Klein-Seetharaman, J.13
Balasubramanian, K.14
Amoscato, A.A.15
Borisenko, G.16
Huang, Z.17
Gusdon, A.M.18
Cheikhi, A.19
Steer, E.K.20
Wang, R.21
Baty, C.22
Watkins, S.23
Bahar, I.24
Bayir, H.25
more..
-
89
-
-
84856951239
-
Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition
-
Gilkerson R.W., de Vries R.L., Lebot P., Wikstrom J.D., Torgyekes E., Shirihai O.S., Przedborski S., Schon E.A. Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition. Human Molecular Genetics 2012, 21(5):978-990. http://www.ncbi.nlm.nih.gov/pubmed/22080835, 10.1093/hmg/ddr529.
-
(2012)
Human Molecular Genetics
, vol.21
, Issue.5
, pp. 978-990
-
-
Gilkerson, R.W.1
de Vries, R.L.2
Lebot, P.3
Wikstrom, J.D.4
Torgyekes, E.5
Shirihai, O.S.6
Przedborski, S.7
Schon, E.A.8
-
90
-
-
84889100159
-
Loss of iron triggers PINK1/Parkin-independent mitophagy
-
Allen G.F., Toth R., James J., Ganley I.G. Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Reports 2013, 14(12):1127-1135. http://www.ncbi.nlm.nih.gov/pubmed/24176932, 10.1038/embor.2013.168.
-
(2013)
EMBO Reports
, vol.14
, Issue.12
, pp. 1127-1135
-
-
Allen, G.F.1
Toth, R.2
James, J.3
Ganley, I.G.4
-
91
-
-
84887486172
-
The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria
-
Jin S.M., Youle R.J. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy 2013, 9(11):1750-1757. http://www.ncbi.nlm.nih.gov/pubmed/24149988, 10.4161/auto.26122.
-
(2013)
Autophagy
, vol.9
, Issue.11
, pp. 1750-1757
-
-
Jin, S.M.1
Youle, R.J.2
-
92
-
-
84897863239
-
Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control
-
McLelland G.L., Soubannier V., Chen C.X., McBride H.M., Fon E.A. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO Journal 2014, 33(4):282-295. http://www.ncbi.nlm.nih.gov/pubmed/24446486, 10.1002/embj.201385902.
-
(2014)
EMBO Journal
, vol.33
, Issue.4
, pp. 282-295
-
-
McLelland, G.L.1
Soubannier, V.2
Chen, C.X.3
McBride, H.M.4
Fon, E.A.5
-
93
-
-
50249168137
-
Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson's disease
-
Dagda R.K., Zhu J., Kulich S.M., Chu C.T. Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson's disease. Autophagy 2008, 4(6):770-782. http://www.ncbi.nlm.nih.gov/pubmed/18594198, 10.4161/auto.6458.
-
(2008)
Autophagy
, vol.4
, Issue.6
, pp. 770-782
-
-
Dagda, R.K.1
Zhu, J.2
Kulich, S.M.3
Chu, C.T.4
-
94
-
-
84919777530
-
Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy
-
Park S., Choi S.G., Yoo S.M., Son J.H., Jung Y.K. Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy. Autophagy 2014, 10(11):1906-1920. http://www.ncbi.nlm.nih.gov/pubmed/25483962, 10.4161/auto.32177.
-
(2014)
Autophagy
, vol.10
, Issue.11
, pp. 1906-1920
-
-
Park, S.1
Choi, S.G.2
Yoo, S.M.3
Son, J.H.4
Jung, Y.K.5
-
95
-
-
84871305945
-
Electron microscopic analysis of a spherical mitochondrial structure
-
Ding W.X., Li M., Biazik J.M., Morgan D.G., Guo F., Ni H.M., Goheen M., Eskelinen E.L., Yin X.M. Electron microscopic analysis of a spherical mitochondrial structure. Journal of Biological Chemistry 2012, 287(50):42373-42378. http://www.ncbi.nlm.nih.gov/pubmed/23093403, 10.1074/jbc.M112.413674.
-
(2012)
Journal of Biological Chemistry
, vol.287
, Issue.50
, pp. 42373-42378
-
-
Ding, W.X.1
Li, M.2
Biazik, J.M.3
Morgan, D.G.4
Guo, F.5
Ni, H.M.6
Goheen, M.7
Eskelinen, E.L.8
Yin, X.M.9
-
96
-
-
84887464170
-
The reciprocal roles of PARK2 and mitofusins in mitophagy and mitochondrial spheroid formation
-
Yin X.M., Ding W.X. The reciprocal roles of PARK2 and mitofusins in mitophagy and mitochondrial spheroid formation. Autophagy 2013, 9(11):1687-1692. http://www.ncbi.nlm.nih.gov/pubmed/24162069, 10.4161/auto.24871.
-
(2013)
Autophagy
, vol.9
, Issue.11
, pp. 1687-1692
-
-
Yin, X.M.1
Ding, W.X.2
-
97
-
-
84871537265
-
Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo
-
Soubannier V., Rippstein P., Kaufman B.A., Shoubridge E.A., McBride H.M. Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo. PLOS ONE 2012, 7(12):e52830. http://www.ncbi.nlm.nih.gov/pubmed/23300790, 10.1371/journal.pone.0052830.
-
(2012)
PLOS ONE
, vol.7
, Issue.12
, pp. e52830
-
-
Soubannier, V.1
Rippstein, P.2
Kaufman, B.A.3
Shoubridge, E.A.4
McBride, H.M.5
-
98
-
-
84861204926
-
PINK1- and Parkin-mediated mitophagy at a glance
-
Jin S.M., Youle R.J. PINK1- and Parkin-mediated mitophagy at a glance. Journal of Cell Science 2012, 125(4):795-799. http://www.ncbi.nlm.nih.gov/pubmed/22448035, 10.1242/jcs.093849.
-
(2012)
Journal of Cell Science
, vol.125
, Issue.4
, pp. 795-799
-
-
Jin, S.M.1
Youle, R.J.2
-
99
-
-
84890429468
-
High-content genome-wide RNAi screens identify regulators of Parkin upstream of mitophagy
-
Hasson S.A., Kane L.A., Yamano K., Huang C.H., Sliter D.A., Buehler E., Wang C., Heman-Ackah S.M., Hessa T., Guha R., Martin S.E., Youle R.J. High-content genome-wide RNAi screens identify regulators of Parkin upstream of mitophagy. Nature 2013, 504(7479):291-295. http://www.ncbi.nlm.nih.gov/pubmed/24270810, 10.1038/nature12748.
-
(2013)
Nature
, vol.504
, Issue.7479
, pp. 291-295
-
-
Hasson, S.A.1
Kane, L.A.2
Yamano, K.3
Huang, C.H.4
Sliter, D.A.5
Buehler, E.6
Wang, C.7
Heman-Ackah, S.M.8
Hessa, T.9
Guha, R.10
Martin, S.E.11
Youle, R.J.12
-
100
-
-
84887464921
-
Genome-wide RNAi screen identifies ATPase inhibitory factor 1 (ATPIF1) as essential for PARK2 recruitment and mitophagy
-
Lefebvre V., Du Q., Baird S., Ng A.C., Nascimento M., Campanella M., McBride H.M., Screaton R.A. Genome-wide RNAi screen identifies ATPase inhibitory factor 1 (ATPIF1) as essential for PARK2 recruitment and mitophagy. Autophagy 2013, 9(11):1770-1779. http://www.ncbi.nlm.nih.gov/pubmed/24005319, 10.4161/auto.25413.
-
(2013)
Autophagy
, vol.9
, Issue.11
, pp. 1770-1779
-
-
Lefebvre, V.1
Du, Q.2
Baird, S.3
Ng, A.C.4
Nascimento, M.5
Campanella, M.6
McBride, H.M.7
Screaton, R.A.8
-
101
-
-
82555187810
-
Image-based genome-wide siRNA screen identifies selective autophagy factors
-
Orvedahl A., Sumpter R., Xiao G., Ng A., Zou Z., Tang Y., Narimatsu M., Gilpin C., Sun Q., Roth M., Forst C.V., Wrana J.L., Zhang Y.E., Luby-Phelps K., Xavier R.J., Xie Y., Levine B. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 2011, 480(7375):113-117. http://www.ncbi.nlm.nih.gov/pubmed/22020285, 10.1038/nature10546.
-
(2011)
Nature
, vol.480
, Issue.7375
, pp. 113-117
-
-
Orvedahl, A.1
Sumpter, R.2
Xiao, G.3
Ng, A.4
Zou, Z.5
Tang, Y.6
Narimatsu, M.7
Gilpin, C.8
Sun, Q.9
Roth, M.10
Forst, C.V.11
Wrana, J.L.12
Zhang, Y.E.13
Luby-Phelps, K.14
Xavier, R.J.15
Xie, Y.16
Levine, B.17
-
102
-
-
79960407069
-
Parkin interacts with Ambra1 to induce mitophagy
-
Van Humbeeck C., Cornelissen T., Hofkens H., Mandemakers W., Gevaert K., De Strooper B., Vandenberghe W. Parkin interacts with Ambra1 to induce mitophagy. Journal of Neuroscience 2011, 31(28):10249-10261. http://www.ncbi.nlm.nih.gov/pubmed/21753002, 10.1523/JNEUROSCI.1917-11.2011.
-
(2011)
Journal of Neuroscience
, vol.31
, Issue.28
, pp. 10249-10261
-
-
Van Humbeeck, C.1
Cornelissen, T.2
Hofkens, H.3
Mandemakers, W.4
Gevaert, K.5
De Strooper, B.6
Vandenberghe, W.7
-
103
-
-
84920892842
-
USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from Parkin
-
Durcan T.M., Tang M.Y., Pérusse J.R., Dashti E.A., Aguileta M.A., McLelland G.L., Gros P., Shaler T.A., Faubert D., Coulombe B., Fon E.A. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from Parkin. EMBO Journal 2014, 33:2473-2491. http://www.ncbi.nlm.nih.gov/pubmed/25216678, 10.15252/embj.201489729.
-
(2014)
EMBO Journal
, vol.33
, pp. 2473-2491
-
-
Durcan, T.M.1
Tang, M.Y.2
Pérusse, J.R.3
Dashti, E.A.4
Aguileta, M.A.5
McLelland, G.L.6
Gros, P.7
Shaler, T.A.8
Faubert, D.9
Coulombe, B.10
Fon, E.A.11
-
104
-
-
84903179483
-
The mitochondrial deubiquitinase USP30 opposes Parkin-mediated mitophagy
-
Bingol B., Tea J.S., Phu L., Reichelt M., Bakalarski C.E., Song Q., Foreman O., Kirkpatrick D.S., Sheng M. The mitochondrial deubiquitinase USP30 opposes Parkin-mediated mitophagy. Nature 2014, 510:370-375. http://www.ncbi.nlm.nih.gov/pubmed/24896179, 10.1038/nature13418.
-
(2014)
Nature
, vol.510
, pp. 370-375
-
-
Bingol, B.1
Tea, J.S.2
Phu, L.3
Reichelt, M.4
Bakalarski, C.E.5
Song, Q.6
Foreman, O.7
Kirkpatrick, D.S.8
Sheng, M.9
-
105
-
-
84920095272
-
The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy
-
Cornelissen T., Haddad D., Wauters F., Van Humbeeck C., Mandemakers W., Koentjoro B., Sue C., Gevaert K., De Strooper B., Verstreken P., Vandenberghe W. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Human Molecular Genetics 2014, 23(19):5227-5242. http://www.ncbi.nlm.nih.gov/pubmed/24852371, 10.1093/hmg/ddu244.
-
(2014)
Human Molecular Genetics
, vol.23
, Issue.19
, pp. 5227-5242
-
-
Cornelissen, T.1
Haddad, D.2
Wauters, F.3
Van Humbeeck, C.4
Mandemakers, W.5
Koentjoro, B.6
Sue, C.7
Gevaert, K.8
De Strooper, B.9
Verstreken, P.10
Vandenberghe, W.11
-
106
-
-
84908544666
-
Inflammasome activation leads to caspase-1-dependent mitochondrial damage and block of mitophagy
-
Yu J., Nagasu H., Murakami T., Hoang H., Broderick L., Hoffman H.M., Horng T. Inflammasome activation leads to caspase-1-dependent mitochondrial damage and block of mitophagy. Proceedings of the National Academy of Sciences of the United States of America 2014, 111(43):15514-15519. http://www.ncbi.nlm.nih.gov/pubmed/25313054, 10.1073/pnas.1414859111.
-
(2014)
Proceedings of the National Academy of Sciences of the United States of America
, vol.111
, Issue.43
, pp. 15514-15519
-
-
Yu, J.1
Nagasu, H.2
Murakami, T.3
Hoang, H.4
Broderick, L.5
Hoffman, H.M.6
Horng, T.7
-
107
-
-
77952242572
-
The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy
-
Michiorri S., Gelmetti V., Giarda E., Lombardi F., Romano F., Marongiu R., Nerini-Molteni S., Sale P., Vago R., Arena G., Torosantucci L., Cassina L., Russo M.A., Dallapiccola B., Valente E.M., Casari G. The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy. Cell Death & Differentiation 2010, 17(6):962-974. http://www.ncbi.nlm.nih.gov/pubmed/20057503, 10.1038/cdd.2009.200.
-
(2010)
Cell Death & Differentiation
, vol.17
, Issue.6
, pp. 962-974
-
-
Michiorri, S.1
Gelmetti, V.2
Giarda, E.3
Lombardi, F.4
Romano, F.5
Marongiu, R.6
Nerini-Molteni, S.7
Sale, P.8
Vago, R.9
Arena, G.10
Torosantucci, L.11
Cassina, L.12
Russo, M.A.13
Dallapiccola, B.14
Valente, E.M.15
Casari, G.16
-
108
-
-
84884494185
-
SARM1 and TRAF6 bind to and stabilize PINK1 on depolarized mitochondria
-
Murata H., Sakaguchi M., Kataoka K., Huh N.H. SARM1 and TRAF6 bind to and stabilize PINK1 on depolarized mitochondria. Molecular Biology of the Cell 2013, 24(18):2772-2784. http://www.ncbi.nlm.nih.gov/pubmed/23885119, 10.1091/mbc.E13-01-0016.
-
(2013)
Molecular Biology of the Cell
, vol.24
, Issue.18
, pp. 2772-2784
-
-
Murata, H.1
Sakaguchi, M.2
Kataoka, K.3
Huh, N.H.4
-
109
-
-
84855645313
-
Mechanisms of autophagosome biogenesis
-
Rubinsztein D.C., Shpilka T., Elazar Z. Mechanisms of autophagosome biogenesis. Current Biology 2012, 22(1):R29-R34. http://www.ncbi.nlm.nih.gov/pubmed/22240478, 10.1016/j.cub.2011.11.034.
-
(2012)
Current Biology
, vol.22
, Issue.1
, pp. R29-R34
-
-
Rubinsztein, D.C.1
Shpilka, T.2
Elazar, Z.3
-
110
-
-
77955131007
-
Plasma membrane contributes to the formation of pre-autophagosomal structures
-
Ravikumar B., Moreau K., Jahreiss L., Puri C., Rubinsztein D.C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nature Cell Biology 2010, 12(8):747-757. http://www.ncbi.nlm.nih.gov/pubmed/20639872, 10.1038/ncb2078.
-
(2010)
Nature Cell Biology
, vol.12
, Issue.8
, pp. 747-757
-
-
Ravikumar, B.1
Moreau, K.2
Jahreiss, L.3
Puri, C.4
Rubinsztein, D.C.5
-
111
-
-
79960774898
-
Autophagosome precursor maturation requires homotypic fusion
-
Moreau K., Ravikumar B., Renna M., Puri C., Rubinsztein D.C. Autophagosome precursor maturation requires homotypic fusion. Cell 2011, 146(2):303-317. http://www.ncbi.nlm.nih.gov/pubmed/21784250, 10.1016/j.cell.2011.06.023.
-
(2011)
Cell
, vol.146
, Issue.2
, pp. 303-317
-
-
Moreau, K.1
Ravikumar, B.2
Renna, M.3
Puri, C.4
Rubinsztein, D.C.5
-
112
-
-
84988422403
-
ATG16L1 meets ATG9 in recycling endosomes: additional roles for the plasma membrane and endocytosis in autophagosome biogenesis
-
Puri C., Renna M., Bento C.F., Moreau K., Rubinsztein D.C. ATG16L1 meets ATG9 in recycling endosomes: additional roles for the plasma membrane and endocytosis in autophagosome biogenesis. Autophagy 2014, 10(1):182-184. http://www.ncbi.nlm.nih.gov/pubmed/24257061, 10.4161/auto.27174.
-
(2014)
Autophagy
, vol.10
, Issue.1
, pp. 182-184
-
-
Puri, C.1
Renna, M.2
Bento, C.F.3
Moreau, K.4
Rubinsztein, D.C.5
-
113
-
-
77955895424
-
Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L
-
Matsunaga K., Morita E., Saitoh T., Akira S., Ktistakis N.T., Izumi T., Noda T., Yoshimori T. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. Journal of Cell Biology 2010, 190(4):511-521. http://www.ncbi.nlm.nih.gov/pubmed/20713597, 10.1083/jcb.200911141.
-
(2010)
Journal of Cell Biology
, vol.190
, Issue.4
, pp. 511-521
-
-
Matsunaga, K.1
Morita, E.2
Saitoh, T.3
Akira, S.4
Ktistakis, N.T.5
Izumi, T.6
Noda, T.7
Yoshimori, T.8
-
114
-
-
50249084987
-
Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
-
Axe E.L., Walker S.A., Manifava M., Chandra P., Roderick H.L., Habermann A., Griffiths G., Ktistakis N.T. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. Journal of Cell Biology 2008, 182(4):685-701. http://www.ncbi.nlm.nih.gov/pubmed/18725538, 10.1083/jcb.200803137.
-
(2008)
Journal of Cell Biology
, vol.182
, Issue.4
, pp. 685-701
-
-
Axe, E.L.1
Walker, S.A.2
Manifava, M.3
Chandra, P.4
Roderick, H.L.5
Habermann, A.6
Griffiths, G.7
Ktistakis, N.T.8
-
115
-
-
71649087199
-
A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation
-
Hayashi-Nishino M., Fujita N., Noda T., Yamaguchi A., Yoshimori T., Yamamoto A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nature Cell Biology 2009, 11(12):1433-1437. http://www.ncbi.nlm.nih.gov/pubmed/19898463, 10.1038/ncb1991.
-
(2009)
Nature Cell Biology
, vol.11
, Issue.12
, pp. 1433-1437
-
-
Hayashi-Nishino, M.1
Fujita, N.2
Noda, T.3
Yamaguchi, A.4
Yoshimori, T.5
Yamamoto, A.6
-
116
-
-
77955884684
-
Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
-
Itakura E., Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 2010, 6(6):764-776. http://www.ncbi.nlm.nih.gov/pubmed/20639694, 10.4161/auto.6.6.12709.
-
(2010)
Autophagy
, vol.6
, Issue.6
, pp. 764-776
-
-
Itakura, E.1
Mizushima, N.2
-
117
-
-
84872799206
-
The VMP1-Beclin 1 interaction regulates autophagy induction
-
Molejon M.I., Ropolo A., Re A.L., Boggio V., Vaccaro M.I. The VMP1-Beclin 1 interaction regulates autophagy induction. Scientific Reports 2013, 3:1055. http://www.ncbi.nlm.nih.gov/pubmed/23316280, 10.1038/srep01055.
-
(2013)
Scientific Reports
, vol.3
, pp. 1055
-
-
Molejon, M.I.1
Ropolo, A.2
Re, A.L.3
Boggio, V.4
Vaccaro, M.I.5
-
118
-
-
84881506338
-
The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis
-
Ge L., Melville D., Zhang M., Schekman R. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. Elife 2013, 2:e00947. http://www.ncbi.nlm.nih.gov/pubmed/23930225, 10.7554/eLife.00947.
-
(2013)
Elife
, vol.2
, pp. e00947
-
-
Ge, L.1
Melville, D.2
Zhang, M.3
Schekman, R.4
-
119
-
-
77952495224
-
Mitochondria supply membranes for autophagosome biogenesis during starvation
-
Hailey D.W., Rambold A.S., Satpute-Krishnan P., Mitra K., Sougrat R., Kim P.K., Lippincott-Schwartz J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 2010, 141(4):656-667. http://www.ncbi.nlm.nih.gov/pubmed/20478256, 10.1016/j.cell.2010.04.009.
-
(2010)
Cell
, vol.141
, Issue.4
, pp. 656-667
-
-
Hailey, D.W.1
Rambold, A.S.2
Satpute-Krishnan, P.3
Mitra, K.4
Sougrat, R.5
Kim, P.K.6
Lippincott-Schwartz, J.7
-
120
-
-
84875365804
-
Autophagosomes form at ER-mitochondria contact sites
-
Hamasaki M., Furuta N., Matsuda A., Nezu A., Yamamoto A., Fujita N., Oomori H., Noda T., Haraguchi T., Hiraoka Y., Amano A., Yoshimori T. Autophagosomes form at ER-mitochondria contact sites. Nature 2013, 495(7441):389-393. http://www.ncbi.nlm.nih.gov/pubmed/23455425, 10.1038/nature11910.
-
(2013)
Nature
, vol.495
, Issue.7441
, pp. 389-393
-
-
Hamasaki, M.1
Furuta, N.2
Matsuda, A.3
Nezu, A.4
Yamamoto, A.5
Fujita, N.6
Oomori, H.7
Noda, T.8
Haraguchi, T.9
Hiraoka, Y.10
Amano, A.11
Yoshimori, T.12
-
121
-
-
84876408458
-
Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion
-
Zhou J., Tan S.H., Nicolas V., Bauvy C., Yang N.D., Zhang J., Xue Y., Codogno P., Shen H.M. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion. Cell Research 2013, 23(4):508-523. http://www.ncbi.nlm.nih.gov/pubmed/23337583, 10.1038/cr.2013.11.
-
(2013)
Cell Research
, vol.23
, Issue.4
, pp. 508-523
-
-
Zhou, J.1
Tan, S.H.2
Nicolas, V.3
Bauvy, C.4
Yang, N.D.5
Zhang, J.6
Xue, Y.7
Codogno, P.8
Shen, H.M.9
-
122
-
-
4344622423
-
Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases
-
Webb J.L., Ravikumar B., Rubinsztein D.C. Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases. International Journal of Biochemistry & Cell Biology 2004, 36(12):2541-2550. http://www.ncbi.nlm.nih.gov/pubmed/15325591, 10.1016/j.biocel.2004.02.003.
-
(2004)
International Journal of Biochemistry & Cell Biology
, vol.36
, Issue.12
, pp. 2541-2550
-
-
Webb, J.L.1
Ravikumar, B.2
Rubinsztein, D.C.3
-
123
-
-
84863613170
-
Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes
-
Zhao T., Huang X., Han L., Wang X., Cheng H., Zhao Y., Chen Q., Chen J., Cheng H., Xiao R., Zheng M. Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes. J. Biol. Chem. 2012, 287(28):23615-23625. http://www.ncbi.nlm.nih.gov/pubmed/22619176, 10.1074/jbc.M112.379164.
-
(2012)
J. Biol. Chem.
, vol.287
, Issue.28
, pp. 23615-23625
-
-
Zhao, T.1
Huang, X.2
Han, L.3
Wang, X.4
Cheng, H.5
Zhao, Y.6
Chen, Q.7
Chen, J.8
Cheng, H.9
Xiao, R.10
Zheng, M.11
-
124
-
-
84862777210
-
A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate
-
Chen D., Fan W., Lu Y., Ding X., Chen S., Zhong Q. A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate. Mol. Cell 2012, 45(5):629-641. http://www.ncbi.nlm.nih.gov/pubmed/22342342, 10.1016/j.molcel.2011.12.036.
-
(2012)
Mol. Cell
, vol.45
, Issue.5
, pp. 629-641
-
-
Chen, D.1
Fan, W.2
Lu, Y.3
Ding, X.4
Chen, S.5
Zhong, Q.6
-
125
-
-
79957896442
-
Presenilins mediate efficient proteolysis via the autophagosome-lysosome system
-
Neely K.M., Green K.N. Presenilins mediate efficient proteolysis via the autophagosome-lysosome system. Autophagy 2011, 7(6):664-665. http://www.ncbi.nlm.nih.gov/pubmed/21460614, 10.4161/auto.7.6.15448.
-
(2011)
Autophagy
, vol.7
, Issue.6
, pp. 664-665
-
-
Neely, K.M.1
Green, K.N.2
-
126
-
-
84877856338
-
DRAM1 regulates autophagy flux through lysosomes
-
Zhang X.D., Qi L., Wu J.C., Qin Z.H. DRAM1 regulates autophagy flux through lysosomes. PLOS ONE 2013, 8(5):e63245. http://www.ncbi.nlm.nih.gov/pubmed/23696801, 10.1371/journal.pone.0063245.
-
(2013)
PLOS ONE
, vol.8
, Issue.5
, pp. e63245
-
-
Zhang, X.D.1
Qi, L.2
Wu, J.C.3
Qin, Z.H.4
-
127
-
-
84867103427
-
Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome
-
Tumbarello D.A., Waxse B.J., Arden S.D., Bright N.A., Kendrick-Jones J., Buss F. Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nature Cell Biology 2012, 14(10):1024-1035. http://www.ncbi.nlm.nih.gov/pubmed/23023224, 10.1038/ncb2589.
-
(2012)
Nature Cell Biology
, vol.14
, Issue.10
, pp. 1024-1035
-
-
Tumbarello, D.A.1
Waxse, B.J.2
Arden, S.D.3
Bright, N.A.4
Kendrick-Jones, J.5
Buss, F.6
-
128
-
-
84920448565
-
PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins
-
McEwan D., Popovic D., Gubas A., Terawaki S., Suzuki H., Stadel D., Coxon F., MirandadeStegmann D., Bhogaraju S., Maddi K., Kirchof A., Gatti E., Helfrich M., Wakatsuki S., Behrends C., Pierre P., Dikic I. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Molecular Cell 2014, 10.1016/j.molcel.2014.11.006.
-
(2014)
Molecular Cell
-
-
McEwan, D.1
Popovic, D.2
Gubas, A.3
Terawaki, S.4
Suzuki, H.5
Stadel, D.6
Coxon, F.7
MirandadeStegmann, D.8
Bhogaraju, S.9
Maddi, K.10
Kirchof, A.11
Gatti, E.12
Helfrich, M.13
Wakatsuki, S.14
Behrends, C.15
Pierre, P.16
Dikic, I.17
-
129
-
-
84879052241
-
Tubulin polymerization-promoting protein (TPPP/p25α) promotes unconventional secretion of α-synuclein through exophagy by impairing autophagosome-lysosome fusion
-
Ejlerskov P., Rasmussen I., Nielsen T.T., Bergström A.L., Tohyama Y., Jensen P.H., Vilhardt F. Tubulin polymerization-promoting protein (TPPP/p25α) promotes unconventional secretion of α-synuclein through exophagy by impairing autophagosome-lysosome fusion. Journal of Biological Chemistry 2013, 288(24):17313-17335. http://www.ncbi.nlm.nih.gov/pubmed/23629650, 10.1074/jbc.M112.401174.
-
(2013)
Journal of Biological Chemistry
, vol.288
, Issue.24
, pp. 17313-17335
-
-
Ejlerskov, P.1
Rasmussen, I.2
Nielsen, T.T.3
Bergström, A.L.4
Tohyama, Y.5
Jensen, P.H.6
Vilhardt, F.7
-
130
-
-
84882362568
-
Two pore channel 2 (TPC2) inhibits autophagosomal-lysosomal fusion by alkalinizing lysosomal pH
-
Lu Y., Hao B.X., Graeff R., Wong C.W., Wu W.T., Yue J. Two pore channel 2 (TPC2) inhibits autophagosomal-lysosomal fusion by alkalinizing lysosomal pH. Journal of Biological Chemistry 2013, 288(33):24247-24263. http://www.ncbi.nlm.nih.gov/pubmed/23836916, 10.1074/jbc.M113.484253.
-
(2013)
Journal of Biological Chemistry
, vol.288
, Issue.33
, pp. 24247-24263
-
-
Lu, Y.1
Hao, B.X.2
Graeff, R.3
Wong, C.W.4
Wu, W.T.5
Yue, J.6
-
131
-
-
84919719514
-
Vacuolin-1 potently and reversibly inhibits autophagosome-lysosome fusion by activating RAB5A
-
Lu Y., Dong S., Hao B., Li C., Zhu K., Guo W., Wang Q., Cheung K.H., Wong C.W., Wu W.T., Markus H., Yue J. Vacuolin-1 potently and reversibly inhibits autophagosome-lysosome fusion by activating RAB5A. Autophagy 2014, 10(11):1895-1905. http://www.ncbi.nlm.nih.gov/pubmed/25483964, 10.4161/auto.32200.
-
(2014)
Autophagy
, vol.10
, Issue.11
, pp. 1895-1905
-
-
Lu, Y.1
Dong, S.2
Hao, B.3
Li, C.4
Zhu, K.5
Guo, W.6
Wang, Q.7
Cheung, K.H.8
Wong, C.W.9
Wu, W.T.10
Markus, H.11
Yue, J.12
-
132
-
-
84870880174
-
The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
-
Itakura E., Kishi-Itakura C., Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 2012, 151(6):1256-1269. http://www.ncbi.nlm.nih.gov/pubmed/23217709, 10.1016/j.cell.2012.11.001.
-
(2012)
Cell
, vol.151
, Issue.6
, pp. 1256-1269
-
-
Itakura, E.1
Kishi-Itakura, C.2
Mizushima, N.3
-
133
-
-
77949448601
-
Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes
-
Furuta N., Fujita N., Noda T., Yoshimori T., Amano A. Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Molecular Biology of the Cell 2010, 21(6):1001-1010. http://www.ncbi.nlm.nih.gov/pubmed/20089838, 10.1091/mbc.E09-08-0693.
-
(2010)
Molecular Biology of the Cell
, vol.21
, Issue.6
, pp. 1001-1010
-
-
Furuta, N.1
Fujita, N.2
Noda, T.3
Yoshimori, T.4
Amano, A.5
-
134
-
-
84901381389
-
The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17
-
Jiang P., Nishimura T., Sakamaki Y., Itakura E., Hatta T., Natsume T., Mizushima N. The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Molecular Biology of the Cell 2014, 25(8):1327-1337. http://www.ncbi.nlm.nih.gov/pubmed/24554770, 10.1091/mbc.E13-08-0447.
-
(2014)
Molecular Biology of the Cell
, vol.25
, Issue.8
, pp. 1327-1337
-
-
Jiang, P.1
Nishimura, T.2
Sakamaki, Y.3
Itakura, E.4
Hatta, T.5
Natsume, T.6
Mizushima, N.7
-
135
-
-
84862295360
-
Guidelines for the use and interpretation of assays for monitoring autophagy
-
Klionsky D.J., Abdalla F.C., Abeliovich H., Abraham R.T., Acevedo-Arozena A., Adeli K., Agholme L., Agnello M., Agostinis P., Aguirre-Ghiso J.A., Ahn H.J., et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012, 8(4):445-544. http://www.ncbi.nlm.nih.gov/pubmed/22966490, 10.4161/auto.19496.
-
(2012)
Autophagy
, vol.8
, Issue.4
, pp. 445-544
-
-
Klionsky, D.J.1
Abdalla, F.C.2
Abeliovich, H.3
Abraham, R.T.4
Acevedo-Arozena, A.5
Adeli, K.6
Agholme, L.7
Agnello, M.8
Agostinis, P.9
Aguirre-Ghiso, J.A.10
Ahn, H.J.11
-
136
-
-
0034329418
-
LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
-
Kabeya Y., Mizushima N., Ueno T., Yamamoto A., Kirisako T., Noda T., Kominami E., Ohsumi Y., Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO Journal 2000, 19(21):5720-5728. http://www.ncbi.nlm.nih.gov/pubmed/11060023, 10.1093/emboj/19.21.5720.
-
(2000)
EMBO Journal
, vol.19
, Issue.21
, pp. 5720-5728
-
-
Kabeya, Y.1
Mizushima, N.2
Ueno, T.3
Yamamoto, A.4
Kirisako, T.5
Noda, T.6
Kominami, E.7
Ohsumi, Y.8
Yoshimori, T.9
-
137
-
-
34548077575
-
Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
-
Kimura S., Noda T., Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007, 3(5):452-460. http://www.ncbi.nlm.nih.gov/pubmed/17534139, 10.4161/auto.4451.
-
(2007)
Autophagy
, vol.3
, Issue.5
, pp. 452-460
-
-
Kimura, S.1
Noda, T.2
Yoshimori, T.3
-
138
-
-
59249095218
-
Methods for monitoring autophagy using GFP-LC3 transgenic mice
-
Mizushima N. Methods for monitoring autophagy using GFP-LC3 transgenic mice. Methods in Enzymology 2009, 452:13-23. http://www.ncbi.nlm.nih.gov/pubmed/19200873, 10.1016/S0076-6879(08)03602-1.
-
(2009)
Methods in Enzymology
, vol.452
, pp. 13-23
-
-
Mizushima, N.1
-
139
-
-
84893494111
-
New autophagy reporter mice reveal dynamics of proximal tubular autophagy
-
Li L., Wang Z.V., Hill J.A., Lin F. New autophagy reporter mice reveal dynamics of proximal tubular autophagy. Journal of the American Society of Nephrology 2014, 25(2):305-315. http://www.ncbi.nlm.nih.gov/pubmed/24179166, 10.1681/ASN.2013040374.
-
(2014)
Journal of the American Society of Nephrology
, vol.25
, Issue.2
, pp. 305-315
-
-
Li, L.1
Wang, Z.V.2
Hill, J.A.3
Lin, F.4
-
140
-
-
80655134730
-
"Autophagic flux" in normal mouse tissues: focus on endogenous LC3A processing
-
Zois C.E., Giatromanolaki A., Sivridis E., Papaiakovou M., Kainulainen H., Koukourakis M.I. "Autophagic flux" in normal mouse tissues: focus on endogenous LC3A processing. Autophagy 2011, 7(11):1371-1378. http://www.ncbi.nlm.nih.gov/pubmed/21997374, 10.4161/auto.7.11.16664.
-
(2011)
Autophagy
, vol.7
, Issue.11
, pp. 1371-1378
-
-
Zois, C.E.1
Giatromanolaki, A.2
Sivridis, E.3
Papaiakovou, M.4
Kainulainen, H.5
Koukourakis, M.I.6
-
141
-
-
79957886201
-
Characterization of macroautophagic flux in vivo using a leupeptin-based assay
-
Haspel J., Shaik R.S., Ifedigbo E., Nakahira K., Dolinay T., Englert J.A., Choi A.M. Characterization of macroautophagic flux in vivo using a leupeptin-based assay. Autophagy 2011, 7(6):629-642. http://www.ncbi.nlm.nih.gov/pubmed/21460622, 10.4161/auto.7.6.15100.
-
(2011)
Autophagy
, vol.7
, Issue.6
, pp. 629-642
-
-
Haspel, J.1
Shaik, R.S.2
Ifedigbo, E.3
Nakahira, K.4
Dolinay, T.5
Englert, J.A.6
Choi, A.M.7
-
142
-
-
80052381384
-
Seeing is believing: the impact of electron microscopy on autophagy research
-
Eskelinen E.L., Reggiori F., Baba M., Kovács A.L., Seglen P.O. Seeing is believing: the impact of electron microscopy on autophagy research. Autophagy 2011, 7(9):935-956. http://www.ncbi.nlm.nih.gov/pubmed/21566462, 10.4161/auto.7.9.15760.
-
(2011)
Autophagy
, vol.7
, Issue.9
, pp. 935-956
-
-
Eskelinen, E.L.1
Reggiori, F.2
Baba, M.3
Kovács, A.L.4
Seglen, P.O.5
-
143
-
-
52049096370
-
Detection of autophagy in cell death
-
Zakeri Z., Melendez A., Lockshin R.A. Detection of autophagy in cell death. Methods in Enzymology 2008, 442:289-306. http://www.ncbi.nlm.nih.gov/pubmed/18662576, 10.1016/S0076-6879(08)01415-8.
-
(2008)
Methods in Enzymology
, vol.442
, pp. 289-306
-
-
Zakeri, Z.1
Melendez, A.2
Lockshin, R.A.3
-
144
-
-
0019209783
-
Effects of lysosomotropic monoamines, diamines, amino alcohols, and other amino compounds on protein degradation and protein synthesis in isolated rat hepatocytes
-
Seglen P.O., Gordon P.B. Effects of lysosomotropic monoamines, diamines, amino alcohols, and other amino compounds on protein degradation and protein synthesis in isolated rat hepatocytes. Molecular Pharmacology 1980, 18(3):468-475. http://www.ncbi.nlm.nih.gov/pubmed/7464813.
-
(1980)
Molecular Pharmacology
, vol.18
, Issue.3
, pp. 468-475
-
-
Seglen, P.O.1
Gordon, P.B.2
-
145
-
-
0018927246
-
Amino acid inhibition of the autophagic/lysosomal pathway of protein degradation in isolated rat hepatocytes
-
Seglen P.O., Gordon P.B., Poli A. Amino acid inhibition of the autophagic/lysosomal pathway of protein degradation in isolated rat hepatocytes. Biochimica et Biophysica Acta 1980, 630(1):103-118. http://www.ncbi.nlm.nih.gov/pubmed/7388042, 10.1016/0304-4165(80)90141-5.
-
(1980)
Biochimica et Biophysica Acta
, vol.630
, Issue.1
, pp. 103-118
-
-
Seglen, P.O.1
Gordon, P.B.2
Poli, A.3
-
146
-
-
0020334810
-
Autophagic sequestration of [14C]sucrose, introduced into rat hepatocytes by reversible electro-permeabilization
-
Gordon P.B., Seglen P.O. Autophagic sequestration of [14C]sucrose, introduced into rat hepatocytes by reversible electro-permeabilization. Experimental Cell Research 1982, 142(1):1-14. http://www.ncbi.nlm.nih.gov/pubmed/7140848, 10.1016/0014-4827(82)90402-5.
-
(1982)
Experimental Cell Research
, vol.142
, Issue.1
, pp. 1-14
-
-
Gordon, P.B.1
Seglen, P.O.2
-
147
-
-
0021271399
-
Amino acid control of autophagic sequestration and protein degradation in isolated rat hepatocytes
-
Seglen P.O., Gordon P.B. Amino acid control of autophagic sequestration and protein degradation in isolated rat hepatocytes. Journal of Cell Biology 1984, 99(2):435-444. http://www.ncbi.nlm.nih.gov/pubmed/6746735, 10.1083/jcb.99.2.435.
-
(1984)
Journal of Cell Biology
, vol.99
, Issue.2
, pp. 435-444
-
-
Seglen, P.O.1
Gordon, P.B.2
-
148
-
-
0022388803
-
Autophagy and protein degradation in isolated rat hepatocytes
-
Seglen P.O., Gordon P.B., Tolleshaug H., Høyvik H. Autophagy and protein degradation in isolated rat hepatocytes. Biochemical Society Transactions 1985, 13(6):1007-1010. http://www.ncbi.nlm.nih.gov/pubmed/4092819.
-
(1985)
Biochemical Society Transactions
, vol.13
, Issue.6
, pp. 1007-1010
-
-
Seglen, P.O.1
Gordon, P.B.2
Tolleshaug, H.3
Høyvik, H.4
-
149
-
-
0021781161
-
Pathways of intracellular sequestration and protein degradation in isolated rat hepatocytes
-
Seglen P.O., Gordon P.B., Tolleshaug H., Høyvik H. Pathways of intracellular sequestration and protein degradation in isolated rat hepatocytes. Progress in Clinical Biological Research 1985, 180:437-446. http://www.ncbi.nlm.nih.gov/pubmed/4034550.
-
(1985)
Progress in Clinical Biological Research
, vol.180
, pp. 437-446
-
-
Seglen, P.O.1
Gordon, P.B.2
Tolleshaug, H.3
Høyvik, H.4
-
150
-
-
33644606491
-
Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes
-
Rodriguez-Enriquez S., Kim I., Currin R.T., Lemasters J.J. Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy 2006, 2(1):39-46. http://www.ncbi.nlm.nih.gov/pubmed/16874071, 10.4161/auto.2229.
-
(2006)
Autophagy
, vol.2
, Issue.1
, pp. 39-46
-
-
Rodriguez-Enriquez, S.1
Kim, I.2
Currin, R.T.3
Lemasters, J.J.4
-
151
-
-
84867773087
-
Mitophagy: mechanisms, pathophysiological roles, and analysis
-
Ding W.X., Yin X.M. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biological Chemistry 2012, 393(7):547-564. http://www.ncbi.nlm.nih.gov/pubmed/22944659, 10.1515/hsz-2012-0119.
-
(2012)
Biological Chemistry
, vol.393
, Issue.7
, pp. 547-564
-
-
Ding, W.X.1
Yin, X.M.2
-
152
-
-
35848947235
-
Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: implications for neurodegeneration and cell death
-
Chu C.T., Zhu J., Dagda R. Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: implications for neurodegeneration and cell death. Autophagy 2007, 3(6):663-666. http://www.ncbi.nlm.nih.gov/pubmed/17622797, 10.4161/auto.4625.
-
(2007)
Autophagy
, vol.3
, Issue.6
, pp. 663-666
-
-
Chu, C.T.1
Zhu, J.2
Dagda, R.3
-
153
-
-
67649399288
-
Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission
-
Dagda R.K., Cherra S.J., Kulich S.M., Tandon A., Park D., Chu C.T. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. Journal of Biological Chemistry 2009, 284(20):13843-13855. http://www.ncbi.nlm.nih.gov/pubmed/19279012, 10.1074/jbc.M808515200.
-
(2009)
Journal of Biological Chemistry
, vol.284
, Issue.20
, pp. 13843-13855
-
-
Dagda, R.K.1
Cherra, S.J.2
Kulich, S.M.3
Tandon, A.4
Park, D.5
Chu, C.T.6
-
154
-
-
73449111577
-
Mitochondrial autophagy as a compensatory response to PINK1 deficiency
-
Cherra S.J., Dagda R.K., Tandon A., Chu C.T. Mitochondrial autophagy as a compensatory response to PINK1 deficiency. Autophagy 2009, 5(8):1213-1214. http://www.ncbi.nlm.nih.gov/pubmed/19786829, 10.4161/auto.5.8.10050.
-
(2009)
Autophagy
, vol.5
, Issue.8
, pp. 1213-1214
-
-
Cherra, S.J.1
Dagda, R.K.2
Tandon, A.3
Chu, C.T.4
-
155
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra D., Tanaka A., Suen D.F., Youle R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. Journal of Cell Biology 2008, 183(5):795-803. http://www.ncbi.nlm.nih.gov/pubmed/19029340, 10.1083/jcb.200809125.
-
(2008)
Journal of Cell Biology
, vol.183
, Issue.5
, pp. 795-803
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.F.3
Youle, R.J.4
-
156
-
-
78649300971
-
P62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
-
Narendra D., Kane L.A., Hauser D.N., Fearnley I.M., Youle R.J. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 2010, 6:1090-1106. http://www.ncbi.nlm.nih.gov/pubmed/20890124, 10.4161/auto.6.8.13426.
-
(2010)
Autophagy
, vol.6
, pp. 1090-1106
-
-
Narendra, D.1
Kane, L.A.2
Hauser, D.N.3
Fearnley, I.M.4
Youle, R.J.5
-
157
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
Narendra D.P., Jin S.M., Tanaka A., Suen D.F., Gautier C.A., Shen J., Cookson M.R., Youle R.J. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLOS Biology 2010, 8(1). http://www.ncbi.nlm.nih.gov/pubmed/20126261, 10.1371/journal.pbio.1000298.
-
(2010)
PLOS Biology
, vol.8
, Issue.1
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
Suen, D.F.4
Gautier, C.A.5
Shen, J.6
Cookson, M.R.7
Youle, R.J.8
-
158
-
-
84869388804
-
Integration of cellular bioenergetics with mitochondrial quality control and autophagy
-
Hill B.G., Benavides G.A., Lancaster J.R., Ballinger S., Dell'Italia L., Jianhua Z., Darley-Usmar V.M. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biological Chemistry 2012, 393(12):1485-1512. http://www.ncbi.nlm.nih.gov/pubmed/23092819, 10.1515/hsz-2012-0198.
-
(2012)
Biological Chemistry
, vol.393
, Issue.12
, pp. 1485-1512
-
-
Hill, B.G.1
Benavides, G.A.2
Lancaster, J.R.3
Ballinger, S.4
Dell'Italia, L.5
Jianhua, Z.6
Darley-Usmar, V.M.7
-
159
-
-
84878533006
-
Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood
-
Chacko B.K., Kramer P.A., Ravi S., Johnson M.S., Hardy R.W., Ballinger S.W., Darley-Usmar V.M. Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood. Laboratory Investigation 2013, 93(6):690-700. http://www.ncbi.nlm.nih.gov/pubmed/23528848, 10.1038/labinvest.2013.53.
-
(2013)
Laboratory Investigation
, vol.93
, Issue.6
, pp. 690-700
-
-
Chacko, B.K.1
Kramer, P.A.2
Ravi, S.3
Johnson, M.S.4
Hardy, R.W.5
Ballinger, S.W.6
Darley-Usmar, V.M.7
-
160
-
-
84905116272
-
The Bioenergetic Health Index: a new concept in mitochondrial translational research
-
Chacko B.K., Kramer P.A., Ravi S., Benavides G.A., Mitchell T., Dranka B.P., Ferrick D., Singal A.K., Ballinger S.W., Bailey S.M., Hardy R.W., Zhang J., Zhi D., Darley-Usmar V.M. The Bioenergetic Health Index: a new concept in mitochondrial translational research. Clinical Science (London) 2014, 127(6):367-373. http://www.ncbi.nlm.nih.gov/pubmed/24895057, 10.1042/CS20140101.
-
(2014)
Clinical Science (London)
, vol.127
, Issue.6
, pp. 367-373
-
-
Chacko, B.K.1
Kramer, P.A.2
Ravi, S.3
Benavides, G.A.4
Mitchell, T.5
Dranka, B.P.6
Ferrick, D.7
Singal, A.K.8
Ballinger, S.W.9
Bailey, S.M.10
Hardy, R.W.11
Zhang, J.12
Zhi, D.13
Darley-Usmar, V.M.14
-
161
-
-
84866122688
-
Autophagy modulation as a potential therapeutic target for diverse diseases
-
Rubinsztein D.C., Codogno P., Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nature Reviews Drug Discovery 2012, 11(9):709-730. http://www.ncbi.nlm.nih.gov/pubmed/22935804, 10.1038/nrd3802.
-
(2012)
Nature Reviews Drug Discovery
, vol.11
, Issue.9
, pp. 709-730
-
-
Rubinsztein, D.C.1
Codogno, P.2
Levine, B.3
-
162
-
-
84877628647
-
Autophagy in human health and disease
-
Choi A.M., Ryter S.W., Levine B. Autophagy in human health and disease. New England Journal of Medicine 2013, 368(19):1845-1846. http://www.ncbi.nlm.nih.gov/pubmed/23656658, 10.1056/NEJMc1303158.
-
(2013)
New England Journal of Medicine
, vol.368
, Issue.19
, pp. 1845-1846
-
-
Choi, A.M.1
Ryter, S.W.2
Levine, B.3
-
163
-
-
84875892111
-
Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease
-
Murrow L., Debnath J. Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annual Review of Pathology 2013, 8:105-137. http://www.ncbi.nlm.nih.gov/pubmed/23072311, 10.1146/annurev-pathol-020712-163918.
-
(2013)
Annual Review of Pathology
, vol.8
, pp. 105-137
-
-
Murrow, L.1
Debnath, J.2
-
164
-
-
84921459109
-
Aging and energetics' 'top 40' future research opportunities 2010-2013
-
Allison D.B., Antoine L.H., Ballinger S.W., Bamman M.M., Biga P., Darley-Usmar V.M., Fisher G., Gohlke J.M., Halade G.V., Hartman J.L., Hunter G.R., Messina J.L., Nagy T.R., Plaisance E.P., Powell M.L., Roth K.A., Sandel M.W., Schwartz T.S., Smith D.L., Sweatt J.D., Tollefsbol T.O., Watts S.A., Yang Y., Zhang J., Austad S.N. Aging and energetics' 'top 40' future research opportunities 2010-2013. F1000 Research 2014, 3:219.
-
(2014)
F1000 Research
, vol.3
, pp. 219
-
-
Allison, D.B.1
Antoine, L.H.2
Ballinger, S.W.3
Bamman, M.M.4
Biga, P.5
Darley-Usmar, V.M.6
Fisher, G.7
Gohlke, J.M.8
Halade, G.V.9
Hartman, J.L.10
Hunter, G.R.11
Messina, J.L.12
Nagy, T.R.13
Plaisance, E.P.14
Powell, M.L.15
Roth, K.A.16
Sandel, M.W.17
Schwartz, T.S.18
Smith, D.L.19
Sweatt, J.D.20
Tollefsbol, T.O.21
Watts, S.A.22
Yang, Y.23
Zhang, J.24
Austad, S.N.25
more..
-
165
-
-
84885580133
-
Cardiovascular autophagy: concepts, controversies, and perspectives
-
Lavandero S., Troncoso R., Rothermel B.A., Martinet W., Sadoshima J., Hill J.A. Cardiovascular autophagy: concepts, controversies, and perspectives. Autophagy 2013, 9(10):1455-1466. http://www.ncbi.nlm.nih.gov/pubmed/23959233, 10.4161/auto.25969.
-
(2013)
Autophagy
, vol.9
, Issue.10
, pp. 1455-1466
-
-
Lavandero, S.1
Troncoso, R.2
Rothermel, B.A.3
Martinet, W.4
Sadoshima, J.5
Hill, J.A.6
-
166
-
-
84883763522
-
Zonated induction of autophagy and mitochondrial spheroids limits acetaminophen-induced necrosis in the liver
-
Ni H.M., Williams J.A., Jaeschke H., Ding W.X. Zonated induction of autophagy and mitochondrial spheroids limits acetaminophen-induced necrosis in the liver. Redox Biology 2013, 1(1):427-432. http://www.ncbi.nlm.nih.gov/pubmed/24191236, 10.1016/j.redox.2013.08.005.
-
(2013)
Redox Biology
, vol.1
, Issue.1
, pp. 427-432
-
-
Ni, H.M.1
Williams, J.A.2
Jaeschke, H.3
Ding, W.X.4
-
167
-
-
84921475513
-
Autophagy and non-alcoholic fatty liver disease
-
Lavallard V.J., Gual P. Autophagy and non-alcoholic fatty liver disease. BioMed Research International 2014, 2014:120179. http://www.ncbi.nlm.nih.gov/pubmed/25295245, 10.1155/2014/120179.
-
(2014)
BioMed Research International
, vol.2014
, pp. 120179
-
-
Lavallard, V.J.1
Gual, P.2
-
168
-
-
84921482855
-
Autophagy: a multifaceted partner in liver fibrosis
-
Mallat A., Lodder J., Teixeira-Clerc F., Moreau R., Codogno P., Lotersztajn S. Autophagy: a multifaceted partner in liver fibrosis. BioMed Research International 2014, 2014:869390. http://www.ncbi.nlm.nih.gov/pubmed/25254217, 10.1155/2014/869390.
-
(2014)
BioMed Research International
, vol.2014
, pp. 869390
-
-
Mallat, A.1
Lodder, J.2
Teixeira-Clerc, F.3
Moreau, R.4
Codogno, P.5
Lotersztajn, S.6
-
169
-
-
84921458749
-
Role of islet beta cell autophagy in the pathogenesis of diabetes
-
Lee M. Role of islet beta cell autophagy in the pathogenesis of diabetes. Trends in Endocrinology & Metabolism 2014, 25:620-627. 10.1016/j.tem.2014.08.005.
-
(2014)
Trends in Endocrinology & Metabolism
, vol.25
, pp. 620-627
-
-
Lee, M.1
-
170
-
-
84897559222
-
Activation of AKT by O-Linked N-acetylglucosamine induces vascular calcification in diabetes mellitus
-
Heath J.M., Sun Y., Yuan K., Bradley W.E., Litovsky S., Dell'Italia L.J., Chatham J.C., Wu H., Chen Y. Activation of AKT by O-Linked N-acetylglucosamine induces vascular calcification in diabetes mellitus. Circulation Research 2014, 114(7):1094-1102. http://www.ncbi.nlm.nih.gov/pubmed/24526702, 10.1161/CIRCRESAHA.114.302968.
-
(2014)
Circulation Research
, vol.114
, Issue.7
, pp. 1094-1102
-
-
Heath, J.M.1
Sun, Y.2
Yuan, K.3
Bradley, W.E.4
Litovsky, S.5
Dell'Italia, L.J.6
Chatham, J.C.7
Wu, H.8
Chen, Y.9
-
171
-
-
9144240441
-
Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene
-
Qu X., Yu J., Bhagat G., Furuya N., Hibshoosh H., Troxel A., Rosen J., Eskelinen E.L., Mizushima N., Ohsumi Y., Cattoretti G., Levine B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. Journal of Clinical Investigation 2003, 112(12):1809-1820. http://www.ncbi.nlm.nih.gov/pubmed/14638851, 10.1172/JCI20039.
-
(2003)
Journal of Clinical Investigation
, vol.112
, Issue.12
, pp. 1809-1820
-
-
Qu, X.1
Yu, J.2
Bhagat, G.3
Furuya, N.4
Hibshoosh, H.5
Troxel, A.6
Rosen, J.7
Eskelinen, E.L.8
Mizushima, N.9
Ohsumi, Y.10
Cattoretti, G.11
Levine, B.12
-
172
-
-
11244297916
-
Dysregulation of the TSC-mTOR pathway in human disease
-
Inoki K., Corradetti M.N., Guan K.L. Dysregulation of the TSC-mTOR pathway in human disease. Nature Genetics 2005, 37(1):19-24. http://www.ncbi.nlm.nih.gov/pubmed/15624019, 10.1038/ng1494.
-
(2005)
Nature Genetics
, vol.37
, Issue.1
, pp. 19-24
-
-
Inoki, K.1
Corradetti, M.N.2
Guan, K.L.3
-
173
-
-
34547132328
-
Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in ATG4C/autophagin-3
-
Mariño G., Salvador-Montoliu N., Fueyo A., Knecht E., Mizushima N., López-Otín C. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in ATG4C/autophagin-3. Journal of Biological Chemistry 2007, 282:18573-18583. http://www.ncbi.nlm.nih.gov/pubmed/17442669, 10.1074/jbc.M701194200.
-
(2007)
Journal of Biological Chemistry
, vol.282
, pp. 18573-18583
-
-
Mariño, G.1
Salvador-Montoliu, N.2
Fueyo, A.3
Knecht, E.4
Mizushima, N.5
López-Otín, C.6
-
174
-
-
79955377420
-
Autophagy-deficient mice develop multiple liver tumors
-
Takamura A., Komatsu M., Hara T., Sakamoto A., Kishi C., Waguri S., Eishi Y., Hino O., Tanaka K., Mizushima N. Autophagy-deficient mice develop multiple liver tumors. Genes & Development 2011, 25(8):795-800. http://www.ncbi.nlm.nih.gov/pubmed/21498569, 10.1101/gad.2016211.
-
(2011)
Genes & Development
, vol.25
, Issue.8
, pp. 795-800
-
-
Takamura, A.1
Komatsu, M.2
Hara, T.3
Sakamoto, A.4
Kishi, C.5
Waguri, S.6
Eishi, Y.7
Hino, O.8
Tanaka, K.9
Mizushima, N.10
-
175
-
-
80052227050
-
Autophagy as a target for anticancer therapy
-
Janku F., McConkey D.J., Hong D.S., Kurzrock R. Autophagy as a target for anticancer therapy. Nature Reviews Clinical Oncology 2011, 8:528-539. http://www.ncbi.nlm.nih.gov/pubmed/21587219, 10.1038/nrclinonc.2011.71.
-
(2011)
Nature Reviews Clinical Oncology
, vol.8
, pp. 528-539
-
-
Janku, F.1
McConkey, D.J.2
Hong, D.S.3
Kurzrock, R.4
-
176
-
-
23944448372
-
Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans
-
Takacs-Vellai K., Vellai T., Puoti A., Passannante M., Wicky C., Streit A., Kovacs A.L., Müller F. Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans. Current Biology 2005, 15(16):1513-1517. http://www.ncbi.nlm.nih.gov/pubmed/16111945, 10.1016/j.cub.2005.07.035.
-
(2005)
Current Biology
, vol.15
, Issue.16
, pp. 1513-1517
-
-
Takacs-Vellai, K.1
Vellai, T.2
Puoti, A.3
Passannante, M.4
Wicky, C.5
Streit, A.6
Kovacs, A.L.7
Müller, F.8
-
177
-
-
36849021043
-
Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in drosophila
-
Juhász G., Erdi B., Sass M., Neufeld T.P. Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in drosophila. Genes & Development 2007, 21(23):3061-3066. http://www.ncbi.nlm.nih.gov/pubmed/18056421, 10.1101/gad.1600707.
-
(2007)
Genes & Development
, vol.21
, Issue.23
, pp. 3061-3066
-
-
Juhász, G.1
Erdi, B.2
Sass, M.3
Neufeld, T.P.4
-
178
-
-
41449102024
-
Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans
-
Tóth M.L., Sigmond T., Borsos E., Barna J., Erdélyi P., Takács-Vellai K., Orosz L., Kovács A.L., Csikós G., Sass M., Vellai T. Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 2008, 4(3):330-338. http://www.ncbi.nlm.nih.gov/pubmed/18219227, 10.4161/auto.5618.
-
(2008)
Autophagy
, vol.4
, Issue.3
, pp. 330-338
-
-
Tóth, M.L.1
Sigmond, T.2
Borsos, E.3
Barna, J.4
Erdélyi, P.5
Takács-Vellai, K.6
Orosz, L.7
Kovács, A.L.8
Csikós, G.9
Sass, M.10
Vellai, T.11
-
179
-
-
67650944993
-
Rapamycin fed late in life extends lifespan in genetically heterogeneous mice
-
Harrison D.E., Strong R., Sharp Z.D., Nelson J.F., Astle C.M., Flurkey K., Nadon N.L., Wilkinson J.E., Frenkel K., Carter C.S., Pahor M., Javors M.A., Fernandez E., Miller R.A. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009, 460(7253):392-395. http://www.ncbi.nlm.nih.gov/pubmed/19587680, 10.1038/nature08221.
-
(2009)
Nature
, vol.460
, Issue.7253
, pp. 392-395
-
-
Harrison, D.E.1
Strong, R.2
Sharp, Z.D.3
Nelson, J.F.4
Astle, C.M.5
Flurkey, K.6
Nadon, N.L.7
Wilkinson, J.E.8
Frenkel, K.9
Carter, C.S.10
Pahor, M.11
Javors, M.A.12
Fernandez, E.13
Miller, R.A.14
-
180
-
-
79953231709
-
A longer and healthier life with TOR down-regulation: genetics and drugs
-
Bjedov I., Partridge L. A longer and healthier life with TOR down-regulation: genetics and drugs. Biochemical Society Transactions 2011, 39(2):460-465. http://www.ncbi.nlm.nih.gov/pubmed/21428920, 10.1042/BST0390460.
-
(2011)
Biochemical Society Transactions
, vol.39
, Issue.2
, pp. 460-465
-
-
Bjedov, I.1
Partridge, L.2
-
181
-
-
84896800569
-
Rapamycin extends life and health in C57BL/6 mice
-
Zhang Y., Bokov A., Gelfond J., Soto V., Ikeno Y., Hubbard G., Diaz V., Sloane L., Maslin K., Treaster S., Réndon S., van Remmen H., Ward W., Javors M., Richardson A., Austad S.N., Fischer K. Rapamycin extends life and health in C57BL/6 mice. Journals of Gerontology Series A: Biological Sciences and Medical Science 2014, 69(2):119-130. http://www.ncbi.nlm.nih.gov/pubmed/23682161, 10.1093/gerona/glt056.
-
(2014)
Journals of Gerontology Series A: Biological Sciences and Medical Science
, vol.69
, Issue.2
, pp. 119-130
-
-
Zhang, Y.1
Bokov, A.2
Gelfond, J.3
Soto, V.4
Ikeno, Y.5
Hubbard, G.6
Diaz, V.7
Sloane, L.8
Maslin, K.9
Treaster, S.10
Réndon, S.11
van Remmen, H.12
Ward, W.13
Javors, M.14
Richardson, A.15
Austad, S.N.16
Fischer, K.17
-
182
-
-
70349330773
-
The regulation of aging: does autophagy underlie longevity?
-
Vellai T., Takács-Vellai K., Sass M., Klionsky D.J. The regulation of aging: does autophagy underlie longevity?. Trends in Cell Biology 2009, 19(10):487-494. http://www.ncbi.nlm.nih.gov/pubmed/19726187, 10.1016/j.tcb.2009.07.007.
-
(2009)
Trends in Cell Biology
, vol.19
, Issue.10
, pp. 487-494
-
-
Vellai, T.1
Takács-Vellai, K.2
Sass, M.3
Klionsky, D.J.4
-
183
-
-
84856492243
-
Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan
-
Mai S., Muster B., Bereiter-Hahn J., Jendrach M. Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy 2012, 8(1):47-62. http://www.ncbi.nlm.nih.gov/pubmed/22170153, 10.4161/auto.8.1.18174.
-
(2012)
Autophagy
, vol.8
, Issue.1
, pp. 47-62
-
-
Mai, S.1
Muster, B.2
Bereiter-Hahn, J.3
Jendrach, M.4
-
184
-
-
84883114523
-
Overexpression of Atg5 in mice activates autophagy and extends lifespan
-
Pyo J.O., Yoo S.M., Ahn H.H., Nah J., Hong S.H., Kam T.I., Jung S., Jung Y.K. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nature Communications 2013, 4:2300.
-
(2013)
Nature Communications
, vol.4
, pp. 2300
-
-
Pyo, J.O.1
Yoo, S.M.2
Ahn, H.H.3
Nah, J.4
Hong, S.H.5
Kam, T.I.6
Jung, S.7
Jung, Y.K.8
-
185
-
-
77956420489
-
Can autophagy promote longevity?
-
Madeo F., Tavernarakis N., Kroemer G. Can autophagy promote longevity?. Nature Cell Biology 2010, 12(9):842-846. http://www.ncbi.nlm.nih.gov/pubmed/20811357, 10.1038/ncb0910-842.
-
(2010)
Nature Cell Biology
, vol.12
, Issue.9
, pp. 842-846
-
-
Madeo, F.1
Tavernarakis, N.2
Kroemer, G.3
-
186
-
-
57649234905
-
Autophagy genes and ageing
-
Vellai T. Autophagy genes and ageing. Cell Death & Differentiation 2009, 16(1):94-102. http://www.ncbi.nlm.nih.gov/pubmed/19079287, 10.1038/cdd.2008.126.
-
(2009)
Cell Death & Differentiation
, vol.16
, Issue.1
, pp. 94-102
-
-
Vellai, T.1
-
187
-
-
79953043473
-
Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy
-
Morselli E., Maiuri M.C., Markaki M., Megalou E., Pasparaki A., Palikaras K., Criollo A., Galluzzi L., Malik S.A., Vitale I., Michaud M., Madeo F., Tavernarakis N., Kroemer G. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death & Disease 2010, 1:e10. http://www.ncbi.nlm.nih.gov/pubmed/21364612, 10.1038/cddis.2009.8.
-
(2010)
Cell Death & Disease
, vol.1
, pp. e10
-
-
Morselli, E.1
Maiuri, M.C.2
Markaki, M.3
Megalou, E.4
Pasparaki, A.5
Palikaras, K.6
Criollo, A.7
Galluzzi, L.8
Malik, S.A.9
Vitale, I.10
Michaud, M.11
Madeo, F.12
Tavernarakis, N.13
Kroemer, G.14
-
188
-
-
79952127458
-
Cats, "rats", and bats: the comparative biology of aging in the 21st century
-
Austad S.N. Cats, "rats", and bats: the comparative biology of aging in the 21st century. Integrative and Comparative Biology 2010, 50(5):783-792. http://www.ncbi.nlm.nih.gov/pubmed/21558241, 10.1093/icb/icq131.
-
(2010)
Integrative and Comparative Biology
, vol.50
, Issue.5
, pp. 783-792
-
-
Austad, S.N.1
-
189
-
-
0031036896
-
Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease
-
Anglade P., Vyas S., Javoy-Agid F., Herrero M.T., Michel P.P., Marquez J., Mouatt-Prigent A., Ruberg M., Hirsch E.C., Agid Y. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histology and Histopathology 1997, 12(1):25-31. http://www.ncbi.nlm.nih.gov/pubmed/9046040.
-
(1997)
Histology and Histopathology
, vol.12
, Issue.1
, pp. 25-31
-
-
Anglade, P.1
Vyas, S.2
Javoy-Agid, F.3
Herrero, M.T.4
Michel, P.P.5
Marquez, J.6
Mouatt-Prigent, A.7
Ruberg, M.8
Hirsch, E.C.9
Agid, Y.10
-
190
-
-
84882254367
-
The role of autophagy in neurodegenerative disease
-
Nixon R.A. The role of autophagy in neurodegenerative disease. Nature Medicine 2013, 19(8):983-997. http://www.ncbi.nlm.nih.gov/pubmed/23921753, 10.1038/nm.3232.
-
(2013)
Nature Medicine
, vol.19
, Issue.8
, pp. 983-997
-
-
Nixon, R.A.1
-
191
-
-
45749114895
-
The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice
-
Pickford F., Masliah E., Britschgi M., Lucin K., Narasimhan R., Jaeger P.A., Small S., Spencer B., Rockenstein E., Levine B., Wyss-Coray T. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. Journal of Clinical Investigation 2008, 118(6):2190-2199. http://www.ncbi.nlm.nih.gov/pubmed/18497889, 10.1172/JCI33585.
-
(2008)
Journal of Clinical Investigation
, vol.118
, Issue.6
, pp. 2190-2199
-
-
Pickford, F.1
Masliah, E.2
Britschgi, M.3
Lucin, K.4
Narasimhan, R.5
Jaeger, P.A.6
Small, S.7
Spencer, B.8
Rockenstein, E.9
Levine, B.10
Wyss-Coray, T.11
-
192
-
-
84877615360
-
Therapeutic induction of autophagy to modulate neurodegenerative disease progression
-
Hochfeld W.E., Lee S., Rubinsztein D.C. Therapeutic induction of autophagy to modulate neurodegenerative disease progression. Acta Pharmacologica Sinica 2013, 34(5):600-604. http://www.ncbi.nlm.nih.gov/pubmed/23377551, 10.1038/aps.2012.189.
-
(2013)
Acta Pharmacologica Sinica
, vol.34
, Issue.5
, pp. 600-604
-
-
Hochfeld, W.E.1
Lee, S.2
Rubinsztein, D.C.3
-
193
-
-
74049126112
-
The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway
-
Zheng Y.T., Shahnazari S., Brech A., Lamark T., Johansen T., Brumell J.H. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. Journal of Immunology 2009, 183(9):5909-5916. http://www.ncbi.nlm.nih.gov/pubmed/19812211, 10.4049/jimmunol.0900441.
-
(2009)
Journal of Immunology
, vol.183
, Issue.9
, pp. 5909-5916
-
-
Zheng, Y.T.1
Shahnazari, S.2
Brech, A.3
Lamark, T.4
Johansen, T.5
Brumell, J.H.6
-
194
-
-
70350450808
-
The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria
-
Thurston T.L., Ryzhakov G., Bloor S., von Muhlinen N., Randow F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nature Immunology 2009, 10(11):1215-1221. http://www.ncbi.nlm.nih.gov/pubmed/19820708, 10.1038/ni.1800.
-
(2009)
Nature Immunology
, vol.10
, Issue.11
, pp. 1215-1221
-
-
Thurston, T.L.1
Ryzhakov, G.2
Bloor, S.3
von Muhlinen, N.4
Randow, F.5
-
195
-
-
79960804104
-
Phosphorylation of the autophagy receptor optineurin restricts salmonella growth
-
Wild P., Farhan H., McEwan D.G., Wagner S., Rogov V.V., Brady N.R., Richter B., Korac J., Waidmann O., Choudhary C., Dötsch V., Bumann D., Dikic I. Phosphorylation of the autophagy receptor optineurin restricts salmonella growth. Science 2011, 333(6039):228-233. http://www.ncbi.nlm.nih.gov/pubmed/21617041, 10.1126/science.1205405.
-
(2011)
Science
, vol.333
, Issue.6039
, pp. 228-233
-
-
Wild, P.1
Farhan, H.2
McEwan, D.G.3
Wagner, S.4
Rogov, V.V.5
Brady, N.R.6
Richter, B.7
Korac, J.8
Waidmann, O.9
Choudhary, C.10
Dötsch, V.11
Bumann, D.12
Dikic, I.13
-
196
-
-
79956147302
-
A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens
-
Ogawa M., Yoshikawa Y., Kobayashi T., Mimuro H., Fukumatsu M., Kiga K., Piao Z., Ashida H., Yoshida M., Kakuta S., Koyama T., Goto Y., Nagatake T., Nagai S., Kiyono H., Kawalec M., Reichhart J.M., Sasakawa C. A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host & Microbe 2011, 9(5):376-389. http://www.ncbi.nlm.nih.gov/pubmed/21575909, 10.1016/j.chom.2011.04.010.
-
(2011)
Cell Host & Microbe
, vol.9
, Issue.5
, pp. 376-389
-
-
Ogawa, M.1
Yoshikawa, Y.2
Kobayashi, T.3
Mimuro, H.4
Fukumatsu, M.5
Kiga, K.6
Piao, Z.7
Ashida, H.8
Yoshida, M.9
Kakuta, S.10
Koyama, T.11
Goto, Y.12
Nagatake, T.13
Nagai, S.14
Kiyono, H.15
Kawalec, M.16
Reichhart, J.M.17
Sasakawa, C.18
-
197
-
-
10944253145
-
Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
-
Gutierrez M.G., Master S.S., Singh S.B., Taylor G.A., Colombo M.I., Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004, 119(6):753-766. http://www.ncbi.nlm.nih.gov/pubmed/15607973, 10.1016/j.cell.2004.11.038.
-
(2004)
Cell
, vol.119
, Issue.6
, pp. 753-766
-
-
Gutierrez, M.G.1
Master, S.S.2
Singh, S.B.3
Taylor, G.A.4
Colombo, M.I.5
Deretic, V.6
-
198
-
-
13244256806
-
Escape of intracellular Shigella from autophagy
-
Ogawa M., Yoshimori T., Suzuki T., Sagara H., Mizushima N., Sasakawa C. Escape of intracellular Shigella from autophagy. Science 2005, 307(5710):727-731. http://www.ncbi.nlm.nih.gov/pubmed/15576571, 10.1126/science.1106036.
-
(2005)
Science
, vol.307
, Issue.5710
, pp. 727-731
-
-
Ogawa, M.1
Yoshimori, T.2
Suzuki, T.3
Sagara, H.4
Mizushima, N.5
Sasakawa, C.6
-
199
-
-
70349652310
-
Listeria monocytogenes ActA-mediated escape from autophagic recognition
-
Yoshikawa Y., Ogawa M., Hain T., Yoshida M., Fukumatsu M., Kim M., Mimuro H., Nakagawa I., Yanagawa T., Ishii T., Kakizuka A., Sztul E., Chakraborty T., Sasakawa C. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nature Cell Biology 2009, 11(10):1233-1240. http://www.ncbi.nlm.nih.gov/pubmed/19749745, 10.1038/ncb1967.
-
(2009)
Nature Cell Biology
, vol.11
, Issue.10
, pp. 1233-1240
-
-
Yoshikawa, Y.1
Ogawa, M.2
Hain, T.3
Yoshida, M.4
Fukumatsu, M.5
Kim, M.6
Mimuro, H.7
Nakagawa, I.8
Yanagawa, T.9
Ishii, T.10
Kakizuka, A.11
Sztul, E.12
Chakraborty, T.13
Sasakawa, C.14
-
200
-
-
21344472825
-
Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles
-
Gutierrez M.G., Vázquez C.L., Munafó D.B., Zoppino F.C., Berón W., Rabinovitch M., Colombo M.I. Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cellular Microbiology 2005, 7(7):981-993. http://www.ncbi.nlm.nih.gov/pubmed/15953030, 10.1111/j.1462-5822.2005.00527.x.
-
(2005)
Cellular Microbiology
, vol.7
, Issue.7
, pp. 981-993
-
-
Gutierrez, M.G.1
Vázquez, C.L.2
Munafó, D.B.3
Zoppino, F.C.4
Berón, W.5
Rabinovitch, M.6
Colombo, M.I.7
-
201
-
-
76249112828
-
Autophagy protects against Sindbis virus infection of the central nervous system
-
Orvedahl A., MacPherson S., Sumpter R., Tallóczy Z., Zou Z., Levine B. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host & Microbe 2010, 7(2):115-127. http://www.ncbi.nlm.nih.gov/pubmed/20159618, 10.1016/j.chom.2010.01.007.
-
(2010)
Cell Host & Microbe
, vol.7
, Issue.2
, pp. 115-127
-
-
Orvedahl, A.1
MacPherson, S.2
Sumpter, R.3
Tallóczy, Z.4
Zou, Z.5
Levine, B.6
-
202
-
-
77951237303
-
The Beclin 1 interactome
-
He C., Levine B. The Beclin 1 interactome. Current Opinion in Cell Biology 2010, 22(2):140-149. http://www.ncbi.nlm.nih.gov/pubmed/20097051, 10.1016/j.ceb.2010.01.001.
-
(2010)
Current Opinion in Cell Biology
, vol.22
, Issue.2
, pp. 140-149
-
-
He, C.1
Levine, B.2
-
203
-
-
69349084842
-
Autophagy, antiviral immunity, and viral countermeasures
-
Shoji-Kawata S., Levine B. Autophagy, antiviral immunity, and viral countermeasures. Biochimica et Biophysica Acta 2009, 1793(9):1478-1484. http://www.ncbi.nlm.nih.gov/pubmed/19264100, 10.1016/j.bbamcr.2009.02.008.
-
(2009)
Biochimica et Biophysica Acta
, vol.1793
, Issue.9
, pp. 1478-1484
-
-
Shoji-Kawata, S.1
Levine, B.2
-
204
-
-
84898041863
-
Pathophysiological importance of aggregated damaged proteins
-
Höhn A., Jung T., Grune T. Pathophysiological importance of aggregated damaged proteins. Free Radical Biology and Medicine 2014, 71:70-89. http://www.ncbi.nlm.nih.gov/pubmed/24632383, 10.1016/j.freeradbiomed.2014.02.028.
-
(2014)
Free Radical Biology and Medicine
, vol.71
, pp. 70-89
-
-
Höhn, A.1
Jung, T.2
Grune, T.3
-
205
-
-
84896732643
-
The proteasome and the degradation of oxidized proteins: Part III - Redox regulation of the proteasomal system
-
Höhn T.J., Grune T. The proteasome and the degradation of oxidized proteins: Part III - Redox regulation of the proteasomal system. Redox Biology 2014, 2:388-394. http://www.ncbi.nlm.nih.gov/pubmed/24563857, 10.1016/j.redox.2013.12.029.
-
(2014)
Redox Biology
, vol.2
, pp. 388-394
-
-
Höhn, T.J.1
Grune, T.2
-
206
-
-
84878851013
-
The proteasome and the degradation of oxidized proteins: Part I - Structure of proteasomes
-
Jung T., Grune T. The proteasome and the degradation of oxidized proteins: Part I - Structure of proteasomes. Redox Biology 2013, 1(1):178-182. http://www.ncbi.nlm.nih.gov/pubmed/24024151, 10.1016/j.redox.2013.01.004.
-
(2013)
Redox Biology
, vol.1
, Issue.1
, pp. 178-182
-
-
Jung, T.1
Grune, T.2
-
207
-
-
84878771657
-
Upregulation of the mitochondrial Lon protease allows adaptation to acute oxidative stress but dysregulation is associated with chronic stress, disease, and aging
-
Ngo J.K., Pomatto L.C., Davies K.J. Upregulation of the mitochondrial Lon protease allows adaptation to acute oxidative stress but dysregulation is associated with chronic stress, disease, and aging. Redox Biology 2013, 1(1):258-264. http://www.ncbi.nlm.nih.gov/pubmed/24024159, 10.1016/j.redox.2013.01.015.
-
(2013)
Redox Biology
, vol.1
, Issue.1
, pp. 258-264
-
-
Ngo, J.K.1
Pomatto, L.C.2
Davies, K.J.3
|