메뉴 건너뛰기




Volumn 4, Issue , 2015, Pages 242-259

Teaching the basics of autophagy and mitophagy to redox biologists-Mechanisms and experimental approaches

Author keywords

Aging; Beclin; LC3; Mitochondria; MTOR; Neurodegenerative diseases

Indexed keywords

ADAPTOR PROTEIN; AMINO ACID; BECLIN 1; CHAPERONE; CLATHRIN; HEAT SHOCK COGNATE PROTEIN 70; HYPOXIA INDUCIBLE FACTOR 1ALPHA; MAMMALIAN TARGET OF RAPAMYCIN; MEMBRANE PROTEIN; PRESENILIN; PROTEIN BCL 2; PROTEIN BNIP3; APOPTOSIS REGULATORY PROTEIN; BECN1 PROTEIN, HUMAN; LIGHT CHAIN 3, HUMAN; MICROTUBULE ASSOCIATED PROTEIN; MTOR PROTEIN, HUMAN; TARGET OF RAPAMYCIN KINASE;

EID: 84921501276     PISSN: 22132317     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.redox.2015.01.003     Document Type: Review
Times cited : (109)

References (207)
  • 1
    • 0013865801 scopus 로고
    • Functions of lysosomes
    • De Duve C., Wattiaux R. Functions of lysosomes. Annual Review of Physiology 1966, 28:435-492. http://www.ncbi.nlm.nih.gov/pubmed/5322983, 10.1146/annurev.ph.28.030166.002251.
    • (1966) Annual Review of Physiology , vol.28 , pp. 435-492
    • De Duve, C.1    Wattiaux, R.2
  • 2
    • 0000189281 scopus 로고
    • Cellular differentiation in the kidneys of newborn mice studies with the electron microscope
    • Clark S.L. Cellular differentiation in the kidneys of newborn mice studies with the electron microscope. Journal of Biophysical and Biochemical Cytology 1957, 3(3):349-362. http://www.ncbi.nlm.nih.gov/pubmed/13438920, 10.1083/jcb.3.3.349.
    • (1957) Journal of Biophysical and Biochemical Cytology , vol.3 , Issue.3 , pp. 349-362
    • Clark, S.L.1
  • 3
    • 0000730374 scopus 로고
    • Cytoplasmic components in hepatic cell lysosomes
    • Ashford T.P., Porter K.R. Cytoplasmic components in hepatic cell lysosomes. Journal of Cell Biology 1962, 12:198-202. http://www.ncbi.nlm.nih.gov/pubmed/13862833, 10.1083/jcb.12.1.198.
    • (1962) Journal of Cell Biology , vol.12 , pp. 198-202
    • Ashford, T.P.1    Porter, K.R.2
  • 4
    • 0038208502 scopus 로고
    • Cytolysomes and mitochondrial degeneration
    • Novikoff A.B., Essner E. Cytolysomes and mitochondrial degeneration. Journal of Cell Biology 1962, 15:140-146. http://www.ncbi.nlm.nih.gov/pubmed/13939127, 10.1083/jcb.15.1.140.
    • (1962) Journal of Cell Biology , vol.15 , pp. 140-146
    • Novikoff, A.B.1    Essner, E.2
  • 5
    • 0027424777 scopus 로고
    • Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae
    • Tsukada M., Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Letters 1993, 333(1-2):169-174. http://www.ncbi.nlm.nih.gov/pubmed/8224160, 10.1016/0014-5793(93)80398-E.
    • (1993) FEBS Letters , vol.333 , Issue.1-2 , pp. 169-174
    • Tsukada, M.1    Ohsumi, Y.2
  • 6
    • 0026668042 scopus 로고
    • Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction
    • Takeshige K., Baba M., Tsuboi S., Noda T., Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. Journal of Cell Biology 1992, 119(2):301-311. http://www.ncbi.nlm.nih.gov/pubmed/1400575, 10.1083/jcb.119.2.301.
    • (1992) Journal of Cell Biology , vol.119 , Issue.2 , pp. 301-311
    • Takeshige, K.1    Baba, M.2    Tsuboi, S.3    Noda, T.4    Ohsumi, Y.5
  • 7
    • 0000906170 scopus 로고    scopus 로고
    • Induction of autophagy and inhibition of tumorigenesis by beclin 1
    • Liang X.H., Jackson S., Seaman M., Brown K., Kempkes B., Hibshoosh H., Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999, 402(6762):672-676. http://www.ncbi.nlm.nih.gov/pubmed/10604474, 10.1038/45257.
    • (1999) Nature , vol.402 , Issue.6762 , pp. 672-676
    • Liang, X.H.1    Jackson, S.2    Seaman, M.3    Brown, K.4    Kempkes, B.5    Hibshoosh, H.6    Levine, B.7
  • 8
    • 35448981935 scopus 로고    scopus 로고
    • Autophagy: from phenomenology to molecular understanding in less than a decade
    • Klionsky D.J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nature Reviews Molecular Cell Biology 2007, 8(11):931-937. http://www.ncbi.nlm.nih.gov/pubmed/17712358, 10.1038/nrm2245.
    • (2007) Nature Reviews Molecular Cell Biology , vol.8 , Issue.11 , pp. 931-937
    • Klionsky, D.J.1
  • 9
    • 77956404377 scopus 로고    scopus 로고
    • Eaten alive: a history of macroautophagy
    • Yang Z., Klionsky D.J. Eaten alive: a history of macroautophagy. Nature Cell Biology 2010, 12(9):814-822. http://www.ncbi.nlm.nih.gov/pubmed/20811353, 10.1038/ncb0910-814.
    • (2010) Nature Cell Biology , vol.12 , Issue.9 , pp. 814-822
    • Yang, Z.1    Klionsky, D.J.2
  • 10
    • 84879047011 scopus 로고    scopus 로고
    • Cellular metabolic and autophagic pathways: traffic control by redox signaling
    • Dodson M., Darley-Usmar V., Zhang J. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radical Biology and Medicine 2013, 63:207-221. http://www.ncbi.nlm.nih.gov/pubmed/23702245, 10.1016/j.freeradbiomed.2013.05.014.
    • (2013) Free Radical Biology and Medicine , vol.63 , pp. 207-221
    • Dodson, M.1    Darley-Usmar, V.2    Zhang, J.3
  • 11
    • 84898785937 scopus 로고    scopus 로고
    • Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics
    • Levonen A.L., Hill B.G., Kansanen E., Zhang J., Darley-Usmar V.M. Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radical Biology and Medicine 2014, 71:196-207. http://www.ncbi.nlm.nih.gov/pubmed/24681256, 10.1016/j.freeradbiomed.2014.03.025.
    • (2014) Free Radical Biology and Medicine , vol.71 , pp. 196-207
    • Levonen, A.L.1    Hill, B.G.2    Kansanen, E.3    Zhang, J.4    Darley-Usmar, V.M.5
  • 12
    • 84892163616 scopus 로고    scopus 로고
    • Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease
    • Giordano S., Darley-Usmar V., Zhang J. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease. Redox Biology 2014, 2:82-90. http://www.ncbi.nlm.nih.gov/pubmed/24494187, 10.1016/j.redox.2013.12.013.
    • (2014) Redox Biology , vol.2 , pp. 82-90
    • Giordano, S.1    Darley-Usmar, V.2    Zhang, J.3
  • 13
    • 84879475204 scopus 로고    scopus 로고
    • Autophagy and mitophagy in cellular damage control
    • Zhang J. Autophagy and mitophagy in cellular damage control. Redox Biology 2013, 1(1):19-23. http://www.ncbi.nlm.nih.gov/pubmed/23946931, 10.1016/j.redox.2012.11.008.
    • (2013) Redox Biology , vol.1 , Issue.1 , pp. 19-23
    • Zhang, J.1
  • 14
    • 79959999581 scopus 로고    scopus 로고
    • Microautophagy in mammalian cells: revisiting a 40-year-old conundrum
    • Mijaljica D., Prescott M., Devenish R.J. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 2011, 7(7):673-682. http://www.ncbi.nlm.nih.gov/pubmed/21646866, 10.4161/auto.7.7.14733.
    • (2011) Autophagy , vol.7 , Issue.7 , pp. 673-682
    • Mijaljica, D.1    Prescott, M.2    Devenish, R.J.3
  • 15
    • 84859161154 scopus 로고    scopus 로고
    • Microautophagy: lesser-known self-eating
    • Li W.W., Li J., Bao J.K. Microautophagy: lesser-known self-eating. Cellular and Molecular Life Sciences 2012, 69(7):1125-1136. http://www.ncbi.nlm.nih.gov/pubmed/22080117, 10.1007/s00018-011-0865-5.
    • (2012) Cellular and Molecular Life Sciences , vol.69 , Issue.7 , pp. 1125-1136
    • Li, W.W.1    Li, J.2    Bao, J.K.3
  • 16
    • 0034735511 scopus 로고    scopus 로고
    • Cell-free reconstitution of microautophagic vacuole invagination and vesicle formation
    • Sattler T., Mayer A. Cell-free reconstitution of microautophagic vacuole invagination and vesicle formation. Journal of Cell Biology 2000, 151(3):529-538. http://www.ncbi.nlm.nih.gov/pubmed/11062255, 10.1083/jcb.151.3.529.
    • (2000) Journal of Cell Biology , vol.151 , Issue.3 , pp. 529-538
    • Sattler, T.1    Mayer, A.2
  • 18
    • 84907042769 scopus 로고    scopus 로고
    • ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery
    • Schuck S., Gallagher C.M., Walter P. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. Journal of Cell Science 2014, 127(18):4078-4088. http://www.ncbi.nlm.nih.gov/pubmed/25052096, 10.1242/jcs.154716.
    • (2014) Journal of Cell Science , vol.127 , Issue.18 , pp. 4078-4088
    • Schuck, S.1    Gallagher, C.M.2    Walter, P.3
  • 19
    • 0020510501 scopus 로고
    • Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding
    • Mortimore G.E., Hutson N.J., Surmacz C.A. Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding. Proceedings of the National Academy of Sciences of the United States of America 1983, 80(8):2179-2183. http://www.ncbi.nlm.nih.gov/pubmed/6340116, 10.1073/pnas.80.8.2179.
    • (1983) Proceedings of the National Academy of Sciences of the United States of America , vol.80 , Issue.8 , pp. 2179-2183
    • Mortimore, G.E.1    Hutson, N.J.2    Surmacz, C.A.3
  • 20
    • 0020422617 scopus 로고
    • Energy-dependent lysosomal wrapping mechanism (LWM) during autophagolysosome formation
    • Sakai M., Ogawa K. Energy-dependent lysosomal wrapping mechanism (LWM) during autophagolysosome formation. Histochemistry 1982, 76(4):479-488. http://www.ncbi.nlm.nih.gov/pubmed/7166511, 10.1007/BF00489903.
    • (1982) Histochemistry , vol.76 , Issue.4 , pp. 479-488
    • Sakai, M.1    Ogawa, K.2
  • 21
    • 0024678021 scopus 로고
    • Lysosomal movements during heterophagy and autophagy: with special reference to nematolysosome and wrapping lysosome
    • Sakai M., Araki N., Ogawa K. Lysosomal movements during heterophagy and autophagy: with special reference to nematolysosome and wrapping lysosome. Journal of Electron Microscopy Technique 1989, 12(2):101-131. http://www.ncbi.nlm.nih.gov/pubmed/2668454, 10.1002/jemt.1060120206.
    • (1989) Journal of Electron Microscopy Technique , vol.12 , Issue.2 , pp. 101-131
    • Sakai, M.1    Araki, N.2    Ogawa, K.3
  • 24
    • 84555195856 scopus 로고    scopus 로고
    • Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling
    • Lee J., Giordano S., Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochemical Journal 2012, 441(2):523-540. http://www.ncbi.nlm.nih.gov/pubmed/22187934, 10.1042/BJ20111451.
    • (2012) Biochemical Journal , vol.441 , Issue.2 , pp. 523-540
    • Lee, J.1    Giordano, S.2    Zhang, J.3
  • 25
    • 84891747382 scopus 로고    scopus 로고
    • The machinery of macroautophagy
    • Feng Y., He D., Yao Z., Klionsky D.J. The machinery of macroautophagy. Cell Research 2014, 24(1):24-41. http://www.ncbi.nlm.nih.gov/pubmed/24366339, 10.1038/cr.2013.168.
    • (2014) Cell Research , vol.24 , Issue.1 , pp. 24-41
    • Feng, Y.1    He, D.2    Yao, Z.3    Klionsky, D.J.4
  • 28
    • 84912528393 scopus 로고    scopus 로고
    • MTOR and autophagy: a dynamic relationship governed by nutrients and energy
    • Dunlop E.A., Tee A.R. mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Seminars in Cell and Developmental Biology 2014, 36C:121-129. http://www.ncbi.nlm.nih.gov/pubmed/25158238, 10.1016/j.semcdb.2014.08.006.
    • (2014) Seminars in Cell and Developmental Biology , vol.36 C , pp. 121-129
    • Dunlop, E.A.1    Tee, A.R.2
  • 30
    • 84891745585 scopus 로고    scopus 로고
    • Autophagy regulation by nutrient signaling
    • Russell R.C., Yuan H.X., Guan K.L. Autophagy regulation by nutrient signaling. Cell Research 2014, 24(1):42-57. http://www.ncbi.nlm.nih.gov/pubmed/24343578, 10.1038/cr.2013.166.
    • (2014) Cell Research , vol.24 , Issue.1 , pp. 42-57
    • Russell, R.C.1    Yuan, H.X.2    Guan, K.L.3
  • 31
    • 84892875805 scopus 로고    scopus 로고
    • At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy
    • Shen H.M., Mizushima N. At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends in Biochemical Sciences 2014, 39(2):61-71. http://www.ncbi.nlm.nih.gov/pubmed/24369758, 10.1016/j.tibs.2013.12.001.
    • (2014) Trends in Biochemical Sciences , vol.39 , Issue.2 , pp. 61-71
    • Shen, H.M.1    Mizushima, N.2
  • 32
    • 84866431363 scopus 로고    scopus 로고
    • Ragulator Is a GEF for the rag GTPases that signal amino acid Levels to mTORC1
    • Bar-Peled L., Schweitzer L.D., Zoncu R., Sabatini D.M. Ragulator Is a GEF for the rag GTPases that signal amino acid Levels to mTORC1. Cell 2012, 150(6):1196-1208. http://www.ncbi.nlm.nih.gov/pubmed/22980980, 10.1016/j.cell.2012.07.032.
    • (2012) Cell , vol.150 , Issue.6 , pp. 1196-1208
    • Bar-Peled, L.1    Schweitzer, L.D.2    Zoncu, R.3    Sabatini, D.M.4
  • 33
    • 0036713778 scopus 로고    scopus 로고
    • TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
    • Inoki K., Li Y., Zhu T., Wu J., Guan K.L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biology 2002, 4(9):648-657. http://www.ncbi.nlm.nih.gov/pubmed/12172553, 10.1038/ncb839.
    • (2002) Nature Cell Biology , vol.4 , Issue.9 , pp. 648-657
    • Inoki, K.1    Li, Y.2    Zhu, T.3    Wu, J.4    Guan, K.L.5
  • 34
    • 84880541343 scopus 로고    scopus 로고
    • The kinase triad, AMPK, mTORC1 and ULK1, maintains energy and nutrient homoeostasis
    • Dunlop E.A., Tee A.R. The kinase triad, AMPK, mTORC1 and ULK1, maintains energy and nutrient homoeostasis. Biochemical Society Transactions 2013, 41(4):939-943. http://www.ncbi.nlm.nih.gov/pubmed/23863160, 10.1042/BST20130030.
    • (2013) Biochemical Society Transactions , vol.41 , Issue.4 , pp. 939-943
    • Dunlop, E.A.1    Tee, A.R.2
  • 35
    • 79551507263 scopus 로고    scopus 로고
    • AMPK-dependent phosphorylation of ULK1 induces autophagy
    • Zhao M., Klionsky D.J. AMPK-dependent phosphorylation of ULK1 induces autophagy. Cell Metabolism 2011, 13(2):119-120. http://www.ncbi.nlm.nih.gov/pubmed/21284977, 10.1016/j.cmet.2011.01.009.
    • (2011) Cell Metabolism , vol.13 , Issue.2 , pp. 119-120
    • Zhao, M.1    Klionsky, D.J.2
  • 36
    • 84856800302 scopus 로고    scopus 로고
    • Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks
    • Alers S., Löffler A.S., Wesselborg S., Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Molecular and Cellular Biology 2012, 32(1):2-11. http://www.ncbi.nlm.nih.gov/pubmed/22025673, 10.1128/MCB.06159-11.
    • (2012) Molecular and Cellular Biology , vol.32 , Issue.1 , pp. 2-11
    • Alers, S.1    Löffler, A.S.2    Wesselborg, S.3    Stork, B.4
  • 38
    • 84897019542 scopus 로고    scopus 로고
    • Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology
    • Semenza G.L. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annual Review of Pathology 2014, 9:47-71. http://www.ncbi.nlm.nih.gov/pubmed/23937437, 10.1146/annurev-pathol-012513-104720.
    • (2014) Annual Review of Pathology , vol.9 , pp. 47-71
    • Semenza, G.L.1
  • 39
    • 37248999267 scopus 로고    scopus 로고
    • Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb
    • Li Y., Wang Y., Kim E., Beemiller P., Wang C.Y., Swanson J., You M., Guan K.L. Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. Journal of Biological Chemistry 2007, 282(49):35803-35813. http://www.ncbi.nlm.nih.gov/pubmed/17928295, 10.1074/jbc.M705231200.
    • (2007) Journal of Biological Chemistry , vol.282 , Issue.49 , pp. 35803-35813
    • Li, Y.1    Wang, Y.2    Kim, E.3    Beemiller, P.4    Wang, C.Y.5    Swanson, J.6    You, M.7    Guan, K.L.8
  • 41
    • 84890848742 scopus 로고    scopus 로고
    • Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy
    • Yuan H.X., Russell R.C., Guan K.L. Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy 2013, 9(12):1983-1995. http://www.ncbi.nlm.nih.gov/pubmed/24013218, 10.4161/auto.26058.
    • (2013) Autophagy , vol.9 , Issue.12 , pp. 1983-1995
    • Yuan, H.X.1    Russell, R.C.2    Guan, K.L.3
  • 43
    • 84864874958 scopus 로고    scopus 로고
    • MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
    • Martina J.A., Chen Y., Gucek M., Puertollano R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 2012, 8(6):903-914. http://www.ncbi.nlm.nih.gov/pubmed/22576015, 10.4161/auto.19653.
    • (2012) Autophagy , vol.8 , Issue.6 , pp. 903-914
    • Martina, J.A.1    Chen, Y.2    Gucek, M.3    Puertollano, R.4
  • 45
    • 84893564445 scopus 로고    scopus 로고
    • Analysis of a lung defect in autophagy-deficient mouse strains
    • Cheong H., Wu J., Gonzales L.K., Guttentag S.H., Thompson C.B., Lindsten T. Analysis of a lung defect in autophagy-deficient mouse strains. Autophagy 2014, 10(1):45-56. http://www.ncbi.nlm.nih.gov/pubmed/24275123, 10.4161/auto.26505.
    • (2014) Autophagy , vol.10 , Issue.1 , pp. 45-56
    • Cheong, H.1    Wu, J.2    Gonzales, L.K.3    Guttentag, S.H.4    Thompson, C.B.5    Lindsten, T.6
  • 46
    • 68149096799 scopus 로고    scopus 로고
    • The pharmacology of mTOR inhibition
    • Guertin D.A., Sabatini D.M. The pharmacology of mTOR inhibition. Science Signaling 2009, 2(67):e24. http://www.ncbi.nlm.nih.gov/pubmed/19383975, 10.1126/scisignal.267pe24.
    • (2009) Science Signaling , vol.2 , Issue.67 , pp. e24
    • Guertin, D.A.1    Sabatini, D.M.2
  • 47
    • 79952628267 scopus 로고    scopus 로고
    • The Beclin 1 network regulates autophagy and apoptosis
    • Kang R., Zeh H.J., Lotze M.T., Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death & Differentiation 2011, 18(4):571-580. http://www.ncbi.nlm.nih.gov/pubmed/21311563, 10.1038/cdd.2010.191.
    • (2011) Cell Death & Differentiation , vol.18 , Issue.4 , pp. 571-580
    • Kang, R.1    Zeh, H.J.2    Lotze, M.T.3    Tang, D.4
  • 48
    • 84884819157 scopus 로고    scopus 로고
    • Autophagosome formation -the role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage
    • Wirth M., Joachim J., Tooze S.A. Autophagosome formation -the role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage. Seminars in Cancer Biology 2013, 23(5):301-309. http://www.ncbi.nlm.nih.gov/pubmed/23727157, 10.1016/j.semcancer.2013.05.007.
    • (2013) Seminars in Cancer Biology , vol.23 , Issue.5 , pp. 301-309
    • Wirth, M.1    Joachim, J.2    Tooze, S.A.3
  • 49
    • 84875210462 scopus 로고    scopus 로고
    • Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart
    • Marsh S.A., Powell P.C., Dell'Italia L.J., Chatham J.C. Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart. Life Sciences 2013, 92(11):648-656. http://www.ncbi.nlm.nih.gov/pubmed/22728715, 10.1016/j.lfs.2012.06.011.
    • (2013) Life Sciences , vol.92 , Issue.11 , pp. 648-656
    • Marsh, S.A.1    Powell, P.C.2    Dell'Italia, L.J.3    Chatham, J.C.4
  • 51
    • 77953726483 scopus 로고    scopus 로고
    • Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation
    • Polson H.E., de Lartigue J., Rigden D.J., Reedijk M., Urbé S., Clague M.J., Tooze S.A. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 2010, 6(4):506-522. http://www.ncbi.nlm.nih.gov/pubmed/20505359, 10.4161/auto.6.4.11863.
    • (2010) Autophagy , vol.6 , Issue.4 , pp. 506-522
    • Polson, H.E.1    de Lartigue, J.2    Rigden, D.J.3    Reedijk, M.4    Urbé, S.5    Clague, M.J.6    Tooze, S.A.7
  • 56
    • 0345166111 scopus 로고    scopus 로고
    • Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor
    • Yue Z., Jin S., Yang C., Levine A.J., Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America 2003, 100(25):15077-15082. http://www.ncbi.nlm.nih.gov/pubmed/14657337, 10.1073/pnas.2436255100.
    • (2003) Proceedings of the National Academy of Sciences of the United States of America , vol.100 , Issue.25 , pp. 15077-15082
    • Yue, Z.1    Jin, S.2    Yang, C.3    Levine, A.J.4    Heintz, N.5
  • 58
    • 84862283776 scopus 로고    scopus 로고
    • Mammalian PIK3C3/VPS34: the key to autophagic processing in liver and heart
    • Jaber N., Dou Z., Lin R.Z., Zhang J., Zong W.X. Mammalian PIK3C3/VPS34: the key to autophagic processing in liver and heart. Autophagy 2012, 8(4):707-708. http://www.ncbi.nlm.nih.gov/pubmed/22498475, 10.4161/auto.19627.
    • (2012) Autophagy , vol.8 , Issue.4 , pp. 707-708
    • Jaber, N.1    Dou, Z.2    Lin, R.Z.3    Zhang, J.4    Zong, W.X.5
  • 60
    • 77955882795 scopus 로고    scopus 로고
    • Effects of neuronal PIK3C3/Vps34 deletion on autophagy and beyond
    • Zhou X., Wang F. Effects of neuronal PIK3C3/Vps34 deletion on autophagy and beyond. Autophagy 2010, 6(6):798-799. http://www.ncbi.nlm.nih.gov/pubmed/20562532, 10.4161/auto.6.6.12511.
    • (2010) Autophagy , vol.6 , Issue.6 , pp. 798-799
    • Zhou, X.1    Wang, F.2
  • 61
    • 0005677775 scopus 로고
    • 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes
    • Seglen P.O., Gordon P.B. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proceedings of the National Academy of Sciences of the United States of America 1982, 79(6):1889-1892. http://www.ncbi.nlm.nih.gov/pubmed/6952238, 10.1073/pnas.79.6.1889.
    • (1982) Proceedings of the National Academy of Sciences of the United States of America , vol.79 , Issue.6 , pp. 1889-1892
    • Seglen, P.O.1    Gordon, P.B.2
  • 62
    • 77951217000 scopus 로고    scopus 로고
    • Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase
    • Wu Y.T., Tan H.L., Shui G., Bauvy C., Huang Q., Wenk M.R., Ong C.N., Codogno P., Shen H.M. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. Journal of Biological Chemistry 2010, 285(14):10850-10861. http://www.ncbi.nlm.nih.gov/pubmed/20123989, 10.1074/jbc.M109.080796.
    • (2010) Journal of Biological Chemistry , vol.285 , Issue.14 , pp. 10850-10861
    • Wu, Y.T.1    Tan, H.L.2    Shui, G.3    Bauvy, C.4    Huang, Q.5    Wenk, M.R.6    Ong, C.N.7    Codogno, P.8    Shen, H.M.9
  • 63
    • 84889636479 scopus 로고    scopus 로고
    • Phosphoinositide 3-kinases as accelerators and brakes of autophagy
    • O'Farrell F., Rusten T.E., Stenmark H. Phosphoinositide 3-kinases as accelerators and brakes of autophagy. FEBS Journal 2013, 280(24):6322-6337. http://www.ncbi.nlm.nih.gov/pubmed/23953235, 10.1111/febs.12486.
    • (2013) FEBS Journal , vol.280 , Issue.24 , pp. 6322-6337
    • O'Farrell, F.1    Rusten, T.E.2    Stenmark, H.3
  • 64
    • 51049118332 scopus 로고    scopus 로고
    • The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. Protein modifications: beyond the usual suspects
    • Geng J., Klionsky D.J. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. Protein modifications: beyond the usual suspects. EMBO Reports 2008, 9:859-864. http://www.ncbi.nlm.nih.gov/pubmed/18704115, 10.1038/embor.2008.163.
    • (2008) EMBO Reports , vol.9 , pp. 859-864
    • Geng, J.1    Klionsky, D.J.2
  • 65
    • 0028845388 scopus 로고
    • Role of microtubule-associated proteins in the control of microtubule assembly
    • Maccioni R.B., Cambiazo V. Role of microtubule-associated proteins in the control of microtubule assembly. Physiological Reviews 1995, 75(4):835-864. http://www.ncbi.nlm.nih.gov/pubmed/7480164.
    • (1995) Physiological Reviews , vol.75 , Issue.4 , pp. 835-864
    • Maccioni, R.B.1    Cambiazo, V.2
  • 69
    • 79952355107 scopus 로고    scopus 로고
    • Selective autophagy mediated by autophagic adapter proteins
    • Johansen T., Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 2011, 7(3):279-296. http://www.ncbi.nlm.nih.gov/pubmed/21189453, 10.4161/auto.7.3.14487.
    • (2011) Autophagy , vol.7 , Issue.3 , pp. 279-296
    • Johansen, T.1    Lamark, T.2
  • 70
    • 84892859905 scopus 로고    scopus 로고
    • Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy
    • Rogov V., Dötsch V., Johansen T., Kirkin V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Molecular Cell 2014, 53(2):167-178. http://www.ncbi.nlm.nih.gov/pubmed/24462201, 10.1016/j.molcel.2013.12.014.
    • (2014) Molecular Cell , vol.53 , Issue.2 , pp. 167-178
    • Rogov, V.1    Dötsch, V.2    Johansen, T.3    Kirkin, V.4
  • 72
    • 79952139698 scopus 로고    scopus 로고
    • Nrf2-mediated induction of p62 controls toll-like receptor-4-driven aggresome-like induced structure formation and autophagic degradation
    • Fujita K., Maeda D., Xiao Q., Srinivasula S.M. Nrf2-mediated induction of p62 controls toll-like receptor-4-driven aggresome-like induced structure formation and autophagic degradation. Proceedings of the National Academy of Sciences of the United States of America 2011, 108(4):1427-1432. http://www.ncbi.nlm.nih.gov/pubmed/21220332, 10.1073/pnas.1014156108.
    • (2011) Proceedings of the National Academy of Sciences of the United States of America , vol.108 , Issue.4 , pp. 1427-1432
    • Fujita, K.1    Maeda, D.2    Xiao, Q.3    Srinivasula, S.M.4
  • 76
    • 21344463770 scopus 로고    scopus 로고
    • Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation
    • Babu J.R., Geetha T., Wooten M.W. Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. Journal of Neurochemistry 2005, 94(1):192-203. http://www.ncbi.nlm.nih.gov/pubmed/15953362, 10.1111/j.1471-4159.2005.03181.x.
    • (2005) Journal of Neurochemistry , vol.94 , Issue.1 , pp. 192-203
    • Babu, J.R.1    Geetha, T.2    Wooten, M.W.3
  • 77
    • 84901832434 scopus 로고    scopus 로고
    • SQSTM1 mutations -bridging Paget disease of bone and ALS/FTLD
    • Rea S.L., Majcher V., Searle M.S., Layfield R. SQSTM1 mutations -bridging Paget disease of bone and ALS/FTLD. Experimental Cell Research 2014, 325(1):27-37. http://www.ncbi.nlm.nih.gov/pubmed/24486447, 10.1016/j.yexcr.2014.01.020.
    • (2014) Experimental Cell Research , vol.325 , Issue.1 , pp. 27-37
    • Rea, S.L.1    Majcher, V.2    Searle, M.S.3    Layfield, R.4
  • 78
    • 84890178991 scopus 로고    scopus 로고
    • Substrate recognition in selective autophagy and the ubiquitin-proteasome system
    • Schreiber A., Peter M. Substrate recognition in selective autophagy and the ubiquitin-proteasome system. Biochimica et Biophysica Acta 2014, 1843(1):163-181. http://www.ncbi.nlm.nih.gov/pubmed/23545414, 10.1016/j.bbamcr.2013.03.019.
    • (2014) Biochimica et Biophysica Acta , vol.1843 , Issue.1 , pp. 163-181
    • Schreiber, A.1    Peter, M.2
  • 81
    • 16844366524 scopus 로고    scopus 로고
    • Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging
    • Lemasters J.J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Research 2005, 8(1):3-5. http://www.ncbi.nlm.nih.gov/pubmed/15798367, 10.1089/rej.2005.8.3.
    • (2005) Rejuvenation Research , vol.8 , Issue.1 , pp. 3-5
    • Lemasters, J.J.1
  • 82
    • 84873197455 scopus 로고    scopus 로고
    • Convergent mechanisms for dysregulation of mitochondrial quality control in metabolic disease: implications for mitochondrial therapeutics
    • Mitchell T., Chacko B., Ballinger S.W., Bailey S.M., Zhang J., Darley-Usmar V. Convergent mechanisms for dysregulation of mitochondrial quality control in metabolic disease: implications for mitochondrial therapeutics. Biochemical Society Transactions 2013, 41(1):127-133. http://www.ncbi.nlm.nih.gov/pubmed/23356271, 10.1042/BST20120231.
    • (2013) Biochemical Society Transactions , vol.41 , Issue.1 , pp. 127-133
    • Mitchell, T.1    Chacko, B.2    Ballinger, S.W.3    Bailey, S.M.4    Zhang, J.5    Darley-Usmar, V.6
  • 83
    • 79251574964 scopus 로고    scopus 로고
    • Mitochondrial degradation by autophagy (mitophagy) in GFP-LC3 transgenic hepatocytes during nutrient deprivation
    • Kim I., Lemasters J.J. Mitochondrial degradation by autophagy (mitophagy) in GFP-LC3 transgenic hepatocytes during nutrient deprivation. American Journal of Physiology-Cell Physiology 2011, 300(2):C308-C317. http://www.ncbi.nlm.nih.gov/pubmed/21106691, 10.1152/ajpcell.00056.2010.
    • (2011) American Journal of Physiology-Cell Physiology , vol.300 , Issue.2 , pp. C308-C317
    • Kim, I.1    Lemasters, J.J.2
  • 84
    • 79954571354 scopus 로고    scopus 로고
    • The interplay between mitochondrial dynamics and mitophagy
    • Twig G., Shirihai O.S. The interplay between mitochondrial dynamics and mitophagy. Antioxidants & Redox Signaling 2011, 14(10):1939-1951. http://www.ncbi.nlm.nih.gov/pubmed/21128700, 10.1089/ars.2010.3779.
    • (2011) Antioxidants & Redox Signaling , vol.14 , Issue.10 , pp. 1939-1951
    • Twig, G.1    Shirihai, O.S.2
  • 87
    • 84915813278 scopus 로고    scopus 로고
    • Bioenergetic adaptation in response to autophagy regulators during rotenone exposure
    • Giordano S., Dodson M., Ravi S., Redmann M., Ouyang X., Darley Usmar V.M., Zhang J. Bioenergetic adaptation in response to autophagy regulators during rotenone exposure. Journal of Neurochemistry 2014, 131:625-633. http://www.ncbi.nlm.nih.gov/pubmed/25081478, 10.1111/jnc.12844.
    • (2014) Journal of Neurochemistry , vol.131 , pp. 625-633
    • Giordano, S.1    Dodson, M.2    Ravi, S.3    Redmann, M.4    Ouyang, X.5    Darley Usmar, V.M.6    Zhang, J.7
  • 89
    • 84856951239 scopus 로고    scopus 로고
    • Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition
    • Gilkerson R.W., de Vries R.L., Lebot P., Wikstrom J.D., Torgyekes E., Shirihai O.S., Przedborski S., Schon E.A. Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition. Human Molecular Genetics 2012, 21(5):978-990. http://www.ncbi.nlm.nih.gov/pubmed/22080835, 10.1093/hmg/ddr529.
    • (2012) Human Molecular Genetics , vol.21 , Issue.5 , pp. 978-990
    • Gilkerson, R.W.1    de Vries, R.L.2    Lebot, P.3    Wikstrom, J.D.4    Torgyekes, E.5    Shirihai, O.S.6    Przedborski, S.7    Schon, E.A.8
  • 90
    • 84889100159 scopus 로고    scopus 로고
    • Loss of iron triggers PINK1/Parkin-independent mitophagy
    • Allen G.F., Toth R., James J., Ganley I.G. Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Reports 2013, 14(12):1127-1135. http://www.ncbi.nlm.nih.gov/pubmed/24176932, 10.1038/embor.2013.168.
    • (2013) EMBO Reports , vol.14 , Issue.12 , pp. 1127-1135
    • Allen, G.F.1    Toth, R.2    James, J.3    Ganley, I.G.4
  • 91
    • 84887486172 scopus 로고    scopus 로고
    • The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria
    • Jin S.M., Youle R.J. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy 2013, 9(11):1750-1757. http://www.ncbi.nlm.nih.gov/pubmed/24149988, 10.4161/auto.26122.
    • (2013) Autophagy , vol.9 , Issue.11 , pp. 1750-1757
    • Jin, S.M.1    Youle, R.J.2
  • 92
    • 84897863239 scopus 로고    scopus 로고
    • Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control
    • McLelland G.L., Soubannier V., Chen C.X., McBride H.M., Fon E.A. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO Journal 2014, 33(4):282-295. http://www.ncbi.nlm.nih.gov/pubmed/24446486, 10.1002/embj.201385902.
    • (2014) EMBO Journal , vol.33 , Issue.4 , pp. 282-295
    • McLelland, G.L.1    Soubannier, V.2    Chen, C.X.3    McBride, H.M.4    Fon, E.A.5
  • 93
    • 50249168137 scopus 로고    scopus 로고
    • Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson's disease
    • Dagda R.K., Zhu J., Kulich S.M., Chu C.T. Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson's disease. Autophagy 2008, 4(6):770-782. http://www.ncbi.nlm.nih.gov/pubmed/18594198, 10.4161/auto.6458.
    • (2008) Autophagy , vol.4 , Issue.6 , pp. 770-782
    • Dagda, R.K.1    Zhu, J.2    Kulich, S.M.3    Chu, C.T.4
  • 94
    • 84919777530 scopus 로고    scopus 로고
    • Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy
    • Park S., Choi S.G., Yoo S.M., Son J.H., Jung Y.K. Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy. Autophagy 2014, 10(11):1906-1920. http://www.ncbi.nlm.nih.gov/pubmed/25483962, 10.4161/auto.32177.
    • (2014) Autophagy , vol.10 , Issue.11 , pp. 1906-1920
    • Park, S.1    Choi, S.G.2    Yoo, S.M.3    Son, J.H.4    Jung, Y.K.5
  • 96
    • 84887464170 scopus 로고    scopus 로고
    • The reciprocal roles of PARK2 and mitofusins in mitophagy and mitochondrial spheroid formation
    • Yin X.M., Ding W.X. The reciprocal roles of PARK2 and mitofusins in mitophagy and mitochondrial spheroid formation. Autophagy 2013, 9(11):1687-1692. http://www.ncbi.nlm.nih.gov/pubmed/24162069, 10.4161/auto.24871.
    • (2013) Autophagy , vol.9 , Issue.11 , pp. 1687-1692
    • Yin, X.M.1    Ding, W.X.2
  • 97
    • 84871537265 scopus 로고    scopus 로고
    • Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo
    • Soubannier V., Rippstein P., Kaufman B.A., Shoubridge E.A., McBride H.M. Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo. PLOS ONE 2012, 7(12):e52830. http://www.ncbi.nlm.nih.gov/pubmed/23300790, 10.1371/journal.pone.0052830.
    • (2012) PLOS ONE , vol.7 , Issue.12 , pp. e52830
    • Soubannier, V.1    Rippstein, P.2    Kaufman, B.A.3    Shoubridge, E.A.4    McBride, H.M.5
  • 98
    • 84861204926 scopus 로고    scopus 로고
    • PINK1- and Parkin-mediated mitophagy at a glance
    • Jin S.M., Youle R.J. PINK1- and Parkin-mediated mitophagy at a glance. Journal of Cell Science 2012, 125(4):795-799. http://www.ncbi.nlm.nih.gov/pubmed/22448035, 10.1242/jcs.093849.
    • (2012) Journal of Cell Science , vol.125 , Issue.4 , pp. 795-799
    • Jin, S.M.1    Youle, R.J.2
  • 100
    • 84887464921 scopus 로고    scopus 로고
    • Genome-wide RNAi screen identifies ATPase inhibitory factor 1 (ATPIF1) as essential for PARK2 recruitment and mitophagy
    • Lefebvre V., Du Q., Baird S., Ng A.C., Nascimento M., Campanella M., McBride H.M., Screaton R.A. Genome-wide RNAi screen identifies ATPase inhibitory factor 1 (ATPIF1) as essential for PARK2 recruitment and mitophagy. Autophagy 2013, 9(11):1770-1779. http://www.ncbi.nlm.nih.gov/pubmed/24005319, 10.4161/auto.25413.
    • (2013) Autophagy , vol.9 , Issue.11 , pp. 1770-1779
    • Lefebvre, V.1    Du, Q.2    Baird, S.3    Ng, A.C.4    Nascimento, M.5    Campanella, M.6    McBride, H.M.7    Screaton, R.A.8
  • 108
    • 84884494185 scopus 로고    scopus 로고
    • SARM1 and TRAF6 bind to and stabilize PINK1 on depolarized mitochondria
    • Murata H., Sakaguchi M., Kataoka K., Huh N.H. SARM1 and TRAF6 bind to and stabilize PINK1 on depolarized mitochondria. Molecular Biology of the Cell 2013, 24(18):2772-2784. http://www.ncbi.nlm.nih.gov/pubmed/23885119, 10.1091/mbc.E13-01-0016.
    • (2013) Molecular Biology of the Cell , vol.24 , Issue.18 , pp. 2772-2784
    • Murata, H.1    Sakaguchi, M.2    Kataoka, K.3    Huh, N.H.4
  • 109
    • 84855645313 scopus 로고    scopus 로고
    • Mechanisms of autophagosome biogenesis
    • Rubinsztein D.C., Shpilka T., Elazar Z. Mechanisms of autophagosome biogenesis. Current Biology 2012, 22(1):R29-R34. http://www.ncbi.nlm.nih.gov/pubmed/22240478, 10.1016/j.cub.2011.11.034.
    • (2012) Current Biology , vol.22 , Issue.1 , pp. R29-R34
    • Rubinsztein, D.C.1    Shpilka, T.2    Elazar, Z.3
  • 110
    • 77955131007 scopus 로고    scopus 로고
    • Plasma membrane contributes to the formation of pre-autophagosomal structures
    • Ravikumar B., Moreau K., Jahreiss L., Puri C., Rubinsztein D.C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nature Cell Biology 2010, 12(8):747-757. http://www.ncbi.nlm.nih.gov/pubmed/20639872, 10.1038/ncb2078.
    • (2010) Nature Cell Biology , vol.12 , Issue.8 , pp. 747-757
    • Ravikumar, B.1    Moreau, K.2    Jahreiss, L.3    Puri, C.4    Rubinsztein, D.C.5
  • 111
    • 79960774898 scopus 로고    scopus 로고
    • Autophagosome precursor maturation requires homotypic fusion
    • Moreau K., Ravikumar B., Renna M., Puri C., Rubinsztein D.C. Autophagosome precursor maturation requires homotypic fusion. Cell 2011, 146(2):303-317. http://www.ncbi.nlm.nih.gov/pubmed/21784250, 10.1016/j.cell.2011.06.023.
    • (2011) Cell , vol.146 , Issue.2 , pp. 303-317
    • Moreau, K.1    Ravikumar, B.2    Renna, M.3    Puri, C.4    Rubinsztein, D.C.5
  • 112
    • 84988422403 scopus 로고    scopus 로고
    • ATG16L1 meets ATG9 in recycling endosomes: additional roles for the plasma membrane and endocytosis in autophagosome biogenesis
    • Puri C., Renna M., Bento C.F., Moreau K., Rubinsztein D.C. ATG16L1 meets ATG9 in recycling endosomes: additional roles for the plasma membrane and endocytosis in autophagosome biogenesis. Autophagy 2014, 10(1):182-184. http://www.ncbi.nlm.nih.gov/pubmed/24257061, 10.4161/auto.27174.
    • (2014) Autophagy , vol.10 , Issue.1 , pp. 182-184
    • Puri, C.1    Renna, M.2    Bento, C.F.3    Moreau, K.4    Rubinsztein, D.C.5
  • 113
    • 77955895424 scopus 로고    scopus 로고
    • Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L
    • Matsunaga K., Morita E., Saitoh T., Akira S., Ktistakis N.T., Izumi T., Noda T., Yoshimori T. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. Journal of Cell Biology 2010, 190(4):511-521. http://www.ncbi.nlm.nih.gov/pubmed/20713597, 10.1083/jcb.200911141.
    • (2010) Journal of Cell Biology , vol.190 , Issue.4 , pp. 511-521
    • Matsunaga, K.1    Morita, E.2    Saitoh, T.3    Akira, S.4    Ktistakis, N.T.5    Izumi, T.6    Noda, T.7    Yoshimori, T.8
  • 114
    • 50249084987 scopus 로고    scopus 로고
    • Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
    • Axe E.L., Walker S.A., Manifava M., Chandra P., Roderick H.L., Habermann A., Griffiths G., Ktistakis N.T. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. Journal of Cell Biology 2008, 182(4):685-701. http://www.ncbi.nlm.nih.gov/pubmed/18725538, 10.1083/jcb.200803137.
    • (2008) Journal of Cell Biology , vol.182 , Issue.4 , pp. 685-701
    • Axe, E.L.1    Walker, S.A.2    Manifava, M.3    Chandra, P.4    Roderick, H.L.5    Habermann, A.6    Griffiths, G.7    Ktistakis, N.T.8
  • 115
    • 71649087199 scopus 로고    scopus 로고
    • A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation
    • Hayashi-Nishino M., Fujita N., Noda T., Yamaguchi A., Yoshimori T., Yamamoto A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nature Cell Biology 2009, 11(12):1433-1437. http://www.ncbi.nlm.nih.gov/pubmed/19898463, 10.1038/ncb1991.
    • (2009) Nature Cell Biology , vol.11 , Issue.12 , pp. 1433-1437
    • Hayashi-Nishino, M.1    Fujita, N.2    Noda, T.3    Yamaguchi, A.4    Yoshimori, T.5    Yamamoto, A.6
  • 116
    • 77955884684 scopus 로고    scopus 로고
    • Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
    • Itakura E., Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 2010, 6(6):764-776. http://www.ncbi.nlm.nih.gov/pubmed/20639694, 10.4161/auto.6.6.12709.
    • (2010) Autophagy , vol.6 , Issue.6 , pp. 764-776
    • Itakura, E.1    Mizushima, N.2
  • 117
    • 84872799206 scopus 로고    scopus 로고
    • The VMP1-Beclin 1 interaction regulates autophagy induction
    • Molejon M.I., Ropolo A., Re A.L., Boggio V., Vaccaro M.I. The VMP1-Beclin 1 interaction regulates autophagy induction. Scientific Reports 2013, 3:1055. http://www.ncbi.nlm.nih.gov/pubmed/23316280, 10.1038/srep01055.
    • (2013) Scientific Reports , vol.3 , pp. 1055
    • Molejon, M.I.1    Ropolo, A.2    Re, A.L.3    Boggio, V.4    Vaccaro, M.I.5
  • 118
    • 84881506338 scopus 로고    scopus 로고
    • The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis
    • Ge L., Melville D., Zhang M., Schekman R. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. Elife 2013, 2:e00947. http://www.ncbi.nlm.nih.gov/pubmed/23930225, 10.7554/eLife.00947.
    • (2013) Elife , vol.2 , pp. e00947
    • Ge, L.1    Melville, D.2    Zhang, M.3    Schekman, R.4
  • 119
    • 77952495224 scopus 로고    scopus 로고
    • Mitochondria supply membranes for autophagosome biogenesis during starvation
    • Hailey D.W., Rambold A.S., Satpute-Krishnan P., Mitra K., Sougrat R., Kim P.K., Lippincott-Schwartz J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 2010, 141(4):656-667. http://www.ncbi.nlm.nih.gov/pubmed/20478256, 10.1016/j.cell.2010.04.009.
    • (2010) Cell , vol.141 , Issue.4 , pp. 656-667
    • Hailey, D.W.1    Rambold, A.S.2    Satpute-Krishnan, P.3    Mitra, K.4    Sougrat, R.5    Kim, P.K.6    Lippincott-Schwartz, J.7
  • 121
    • 84876408458 scopus 로고    scopus 로고
    • Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion
    • Zhou J., Tan S.H., Nicolas V., Bauvy C., Yang N.D., Zhang J., Xue Y., Codogno P., Shen H.M. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion. Cell Research 2013, 23(4):508-523. http://www.ncbi.nlm.nih.gov/pubmed/23337583, 10.1038/cr.2013.11.
    • (2013) Cell Research , vol.23 , Issue.4 , pp. 508-523
    • Zhou, J.1    Tan, S.H.2    Nicolas, V.3    Bauvy, C.4    Yang, N.D.5    Zhang, J.6    Xue, Y.7    Codogno, P.8    Shen, H.M.9
  • 122
    • 4344622423 scopus 로고    scopus 로고
    • Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases
    • Webb J.L., Ravikumar B., Rubinsztein D.C. Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases. International Journal of Biochemistry & Cell Biology 2004, 36(12):2541-2550. http://www.ncbi.nlm.nih.gov/pubmed/15325591, 10.1016/j.biocel.2004.02.003.
    • (2004) International Journal of Biochemistry & Cell Biology , vol.36 , Issue.12 , pp. 2541-2550
    • Webb, J.L.1    Ravikumar, B.2    Rubinsztein, D.C.3
  • 123
    • 84863613170 scopus 로고    scopus 로고
    • Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes
    • Zhao T., Huang X., Han L., Wang X., Cheng H., Zhao Y., Chen Q., Chen J., Cheng H., Xiao R., Zheng M. Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes. J. Biol. Chem. 2012, 287(28):23615-23625. http://www.ncbi.nlm.nih.gov/pubmed/22619176, 10.1074/jbc.M112.379164.
    • (2012) J. Biol. Chem. , vol.287 , Issue.28 , pp. 23615-23625
    • Zhao, T.1    Huang, X.2    Han, L.3    Wang, X.4    Cheng, H.5    Zhao, Y.6    Chen, Q.7    Chen, J.8    Cheng, H.9    Xiao, R.10    Zheng, M.11
  • 124
    • 84862777210 scopus 로고    scopus 로고
    • A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate
    • Chen D., Fan W., Lu Y., Ding X., Chen S., Zhong Q. A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate. Mol. Cell 2012, 45(5):629-641. http://www.ncbi.nlm.nih.gov/pubmed/22342342, 10.1016/j.molcel.2011.12.036.
    • (2012) Mol. Cell , vol.45 , Issue.5 , pp. 629-641
    • Chen, D.1    Fan, W.2    Lu, Y.3    Ding, X.4    Chen, S.5    Zhong, Q.6
  • 125
    • 79957896442 scopus 로고    scopus 로고
    • Presenilins mediate efficient proteolysis via the autophagosome-lysosome system
    • Neely K.M., Green K.N. Presenilins mediate efficient proteolysis via the autophagosome-lysosome system. Autophagy 2011, 7(6):664-665. http://www.ncbi.nlm.nih.gov/pubmed/21460614, 10.4161/auto.7.6.15448.
    • (2011) Autophagy , vol.7 , Issue.6 , pp. 664-665
    • Neely, K.M.1    Green, K.N.2
  • 126
    • 84877856338 scopus 로고    scopus 로고
    • DRAM1 regulates autophagy flux through lysosomes
    • Zhang X.D., Qi L., Wu J.C., Qin Z.H. DRAM1 regulates autophagy flux through lysosomes. PLOS ONE 2013, 8(5):e63245. http://www.ncbi.nlm.nih.gov/pubmed/23696801, 10.1371/journal.pone.0063245.
    • (2013) PLOS ONE , vol.8 , Issue.5 , pp. e63245
    • Zhang, X.D.1    Qi, L.2    Wu, J.C.3    Qin, Z.H.4
  • 127
    • 84867103427 scopus 로고    scopus 로고
    • Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome
    • Tumbarello D.A., Waxse B.J., Arden S.D., Bright N.A., Kendrick-Jones J., Buss F. Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nature Cell Biology 2012, 14(10):1024-1035. http://www.ncbi.nlm.nih.gov/pubmed/23023224, 10.1038/ncb2589.
    • (2012) Nature Cell Biology , vol.14 , Issue.10 , pp. 1024-1035
    • Tumbarello, D.A.1    Waxse, B.J.2    Arden, S.D.3    Bright, N.A.4    Kendrick-Jones, J.5    Buss, F.6
  • 129
    • 84879052241 scopus 로고    scopus 로고
    • Tubulin polymerization-promoting protein (TPPP/p25α) promotes unconventional secretion of α-synuclein through exophagy by impairing autophagosome-lysosome fusion
    • Ejlerskov P., Rasmussen I., Nielsen T.T., Bergström A.L., Tohyama Y., Jensen P.H., Vilhardt F. Tubulin polymerization-promoting protein (TPPP/p25α) promotes unconventional secretion of α-synuclein through exophagy by impairing autophagosome-lysosome fusion. Journal of Biological Chemistry 2013, 288(24):17313-17335. http://www.ncbi.nlm.nih.gov/pubmed/23629650, 10.1074/jbc.M112.401174.
    • (2013) Journal of Biological Chemistry , vol.288 , Issue.24 , pp. 17313-17335
    • Ejlerskov, P.1    Rasmussen, I.2    Nielsen, T.T.3    Bergström, A.L.4    Tohyama, Y.5    Jensen, P.H.6    Vilhardt, F.7
  • 130
    • 84882362568 scopus 로고    scopus 로고
    • Two pore channel 2 (TPC2) inhibits autophagosomal-lysosomal fusion by alkalinizing lysosomal pH
    • Lu Y., Hao B.X., Graeff R., Wong C.W., Wu W.T., Yue J. Two pore channel 2 (TPC2) inhibits autophagosomal-lysosomal fusion by alkalinizing lysosomal pH. Journal of Biological Chemistry 2013, 288(33):24247-24263. http://www.ncbi.nlm.nih.gov/pubmed/23836916, 10.1074/jbc.M113.484253.
    • (2013) Journal of Biological Chemistry , vol.288 , Issue.33 , pp. 24247-24263
    • Lu, Y.1    Hao, B.X.2    Graeff, R.3    Wong, C.W.4    Wu, W.T.5    Yue, J.6
  • 131
    • 84919719514 scopus 로고    scopus 로고
    • Vacuolin-1 potently and reversibly inhibits autophagosome-lysosome fusion by activating RAB5A
    • Lu Y., Dong S., Hao B., Li C., Zhu K., Guo W., Wang Q., Cheung K.H., Wong C.W., Wu W.T., Markus H., Yue J. Vacuolin-1 potently and reversibly inhibits autophagosome-lysosome fusion by activating RAB5A. Autophagy 2014, 10(11):1895-1905. http://www.ncbi.nlm.nih.gov/pubmed/25483964, 10.4161/auto.32200.
    • (2014) Autophagy , vol.10 , Issue.11 , pp. 1895-1905
    • Lu, Y.1    Dong, S.2    Hao, B.3    Li, C.4    Zhu, K.5    Guo, W.6    Wang, Q.7    Cheung, K.H.8    Wong, C.W.9    Wu, W.T.10    Markus, H.11    Yue, J.12
  • 132
    • 84870880174 scopus 로고    scopus 로고
    • The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
    • Itakura E., Kishi-Itakura C., Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 2012, 151(6):1256-1269. http://www.ncbi.nlm.nih.gov/pubmed/23217709, 10.1016/j.cell.2012.11.001.
    • (2012) Cell , vol.151 , Issue.6 , pp. 1256-1269
    • Itakura, E.1    Kishi-Itakura, C.2    Mizushima, N.3
  • 133
    • 77949448601 scopus 로고    scopus 로고
    • Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes
    • Furuta N., Fujita N., Noda T., Yoshimori T., Amano A. Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Molecular Biology of the Cell 2010, 21(6):1001-1010. http://www.ncbi.nlm.nih.gov/pubmed/20089838, 10.1091/mbc.E09-08-0693.
    • (2010) Molecular Biology of the Cell , vol.21 , Issue.6 , pp. 1001-1010
    • Furuta, N.1    Fujita, N.2    Noda, T.3    Yoshimori, T.4    Amano, A.5
  • 134
    • 84901381389 scopus 로고    scopus 로고
    • The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17
    • Jiang P., Nishimura T., Sakamaki Y., Itakura E., Hatta T., Natsume T., Mizushima N. The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Molecular Biology of the Cell 2014, 25(8):1327-1337. http://www.ncbi.nlm.nih.gov/pubmed/24554770, 10.1091/mbc.E13-08-0447.
    • (2014) Molecular Biology of the Cell , vol.25 , Issue.8 , pp. 1327-1337
    • Jiang, P.1    Nishimura, T.2    Sakamaki, Y.3    Itakura, E.4    Hatta, T.5    Natsume, T.6    Mizushima, N.7
  • 136
    • 0034329418 scopus 로고    scopus 로고
    • LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
    • Kabeya Y., Mizushima N., Ueno T., Yamamoto A., Kirisako T., Noda T., Kominami E., Ohsumi Y., Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO Journal 2000, 19(21):5720-5728. http://www.ncbi.nlm.nih.gov/pubmed/11060023, 10.1093/emboj/19.21.5720.
    • (2000) EMBO Journal , vol.19 , Issue.21 , pp. 5720-5728
    • Kabeya, Y.1    Mizushima, N.2    Ueno, T.3    Yamamoto, A.4    Kirisako, T.5    Noda, T.6    Kominami, E.7    Ohsumi, Y.8    Yoshimori, T.9
  • 137
    • 34548077575 scopus 로고    scopus 로고
    • Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
    • Kimura S., Noda T., Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007, 3(5):452-460. http://www.ncbi.nlm.nih.gov/pubmed/17534139, 10.4161/auto.4451.
    • (2007) Autophagy , vol.3 , Issue.5 , pp. 452-460
    • Kimura, S.1    Noda, T.2    Yoshimori, T.3
  • 138
    • 59249095218 scopus 로고    scopus 로고
    • Methods for monitoring autophagy using GFP-LC3 transgenic mice
    • Mizushima N. Methods for monitoring autophagy using GFP-LC3 transgenic mice. Methods in Enzymology 2009, 452:13-23. http://www.ncbi.nlm.nih.gov/pubmed/19200873, 10.1016/S0076-6879(08)03602-1.
    • (2009) Methods in Enzymology , vol.452 , pp. 13-23
    • Mizushima, N.1
  • 139
    • 84893494111 scopus 로고    scopus 로고
    • New autophagy reporter mice reveal dynamics of proximal tubular autophagy
    • Li L., Wang Z.V., Hill J.A., Lin F. New autophagy reporter mice reveal dynamics of proximal tubular autophagy. Journal of the American Society of Nephrology 2014, 25(2):305-315. http://www.ncbi.nlm.nih.gov/pubmed/24179166, 10.1681/ASN.2013040374.
    • (2014) Journal of the American Society of Nephrology , vol.25 , Issue.2 , pp. 305-315
    • Li, L.1    Wang, Z.V.2    Hill, J.A.3    Lin, F.4
  • 140
    • 80655134730 scopus 로고    scopus 로고
    • "Autophagic flux" in normal mouse tissues: focus on endogenous LC3A processing
    • Zois C.E., Giatromanolaki A., Sivridis E., Papaiakovou M., Kainulainen H., Koukourakis M.I. "Autophagic flux" in normal mouse tissues: focus on endogenous LC3A processing. Autophagy 2011, 7(11):1371-1378. http://www.ncbi.nlm.nih.gov/pubmed/21997374, 10.4161/auto.7.11.16664.
    • (2011) Autophagy , vol.7 , Issue.11 , pp. 1371-1378
    • Zois, C.E.1    Giatromanolaki, A.2    Sivridis, E.3    Papaiakovou, M.4    Kainulainen, H.5    Koukourakis, M.I.6
  • 141
    • 79957886201 scopus 로고    scopus 로고
    • Characterization of macroautophagic flux in vivo using a leupeptin-based assay
    • Haspel J., Shaik R.S., Ifedigbo E., Nakahira K., Dolinay T., Englert J.A., Choi A.M. Characterization of macroautophagic flux in vivo using a leupeptin-based assay. Autophagy 2011, 7(6):629-642. http://www.ncbi.nlm.nih.gov/pubmed/21460622, 10.4161/auto.7.6.15100.
    • (2011) Autophagy , vol.7 , Issue.6 , pp. 629-642
    • Haspel, J.1    Shaik, R.S.2    Ifedigbo, E.3    Nakahira, K.4    Dolinay, T.5    Englert, J.A.6    Choi, A.M.7
  • 142
    • 80052381384 scopus 로고    scopus 로고
    • Seeing is believing: the impact of electron microscopy on autophagy research
    • Eskelinen E.L., Reggiori F., Baba M., Kovács A.L., Seglen P.O. Seeing is believing: the impact of electron microscopy on autophagy research. Autophagy 2011, 7(9):935-956. http://www.ncbi.nlm.nih.gov/pubmed/21566462, 10.4161/auto.7.9.15760.
    • (2011) Autophagy , vol.7 , Issue.9 , pp. 935-956
    • Eskelinen, E.L.1    Reggiori, F.2    Baba, M.3    Kovács, A.L.4    Seglen, P.O.5
  • 143
    • 52049096370 scopus 로고    scopus 로고
    • Detection of autophagy in cell death
    • Zakeri Z., Melendez A., Lockshin R.A. Detection of autophagy in cell death. Methods in Enzymology 2008, 442:289-306. http://www.ncbi.nlm.nih.gov/pubmed/18662576, 10.1016/S0076-6879(08)01415-8.
    • (2008) Methods in Enzymology , vol.442 , pp. 289-306
    • Zakeri, Z.1    Melendez, A.2    Lockshin, R.A.3
  • 144
    • 0019209783 scopus 로고
    • Effects of lysosomotropic monoamines, diamines, amino alcohols, and other amino compounds on protein degradation and protein synthesis in isolated rat hepatocytes
    • Seglen P.O., Gordon P.B. Effects of lysosomotropic monoamines, diamines, amino alcohols, and other amino compounds on protein degradation and protein synthesis in isolated rat hepatocytes. Molecular Pharmacology 1980, 18(3):468-475. http://www.ncbi.nlm.nih.gov/pubmed/7464813.
    • (1980) Molecular Pharmacology , vol.18 , Issue.3 , pp. 468-475
    • Seglen, P.O.1    Gordon, P.B.2
  • 145
    • 0018927246 scopus 로고
    • Amino acid inhibition of the autophagic/lysosomal pathway of protein degradation in isolated rat hepatocytes
    • Seglen P.O., Gordon P.B., Poli A. Amino acid inhibition of the autophagic/lysosomal pathway of protein degradation in isolated rat hepatocytes. Biochimica et Biophysica Acta 1980, 630(1):103-118. http://www.ncbi.nlm.nih.gov/pubmed/7388042, 10.1016/0304-4165(80)90141-5.
    • (1980) Biochimica et Biophysica Acta , vol.630 , Issue.1 , pp. 103-118
    • Seglen, P.O.1    Gordon, P.B.2    Poli, A.3
  • 146
    • 0020334810 scopus 로고
    • Autophagic sequestration of [14C]sucrose, introduced into rat hepatocytes by reversible electro-permeabilization
    • Gordon P.B., Seglen P.O. Autophagic sequestration of [14C]sucrose, introduced into rat hepatocytes by reversible electro-permeabilization. Experimental Cell Research 1982, 142(1):1-14. http://www.ncbi.nlm.nih.gov/pubmed/7140848, 10.1016/0014-4827(82)90402-5.
    • (1982) Experimental Cell Research , vol.142 , Issue.1 , pp. 1-14
    • Gordon, P.B.1    Seglen, P.O.2
  • 147
    • 0021271399 scopus 로고
    • Amino acid control of autophagic sequestration and protein degradation in isolated rat hepatocytes
    • Seglen P.O., Gordon P.B. Amino acid control of autophagic sequestration and protein degradation in isolated rat hepatocytes. Journal of Cell Biology 1984, 99(2):435-444. http://www.ncbi.nlm.nih.gov/pubmed/6746735, 10.1083/jcb.99.2.435.
    • (1984) Journal of Cell Biology , vol.99 , Issue.2 , pp. 435-444
    • Seglen, P.O.1    Gordon, P.B.2
  • 148
    • 0022388803 scopus 로고
    • Autophagy and protein degradation in isolated rat hepatocytes
    • Seglen P.O., Gordon P.B., Tolleshaug H., Høyvik H. Autophagy and protein degradation in isolated rat hepatocytes. Biochemical Society Transactions 1985, 13(6):1007-1010. http://www.ncbi.nlm.nih.gov/pubmed/4092819.
    • (1985) Biochemical Society Transactions , vol.13 , Issue.6 , pp. 1007-1010
    • Seglen, P.O.1    Gordon, P.B.2    Tolleshaug, H.3    Høyvik, H.4
  • 149
    • 0021781161 scopus 로고
    • Pathways of intracellular sequestration and protein degradation in isolated rat hepatocytes
    • Seglen P.O., Gordon P.B., Tolleshaug H., Høyvik H. Pathways of intracellular sequestration and protein degradation in isolated rat hepatocytes. Progress in Clinical Biological Research 1985, 180:437-446. http://www.ncbi.nlm.nih.gov/pubmed/4034550.
    • (1985) Progress in Clinical Biological Research , vol.180 , pp. 437-446
    • Seglen, P.O.1    Gordon, P.B.2    Tolleshaug, H.3    Høyvik, H.4
  • 150
    • 33644606491 scopus 로고    scopus 로고
    • Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes
    • Rodriguez-Enriquez S., Kim I., Currin R.T., Lemasters J.J. Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy 2006, 2(1):39-46. http://www.ncbi.nlm.nih.gov/pubmed/16874071, 10.4161/auto.2229.
    • (2006) Autophagy , vol.2 , Issue.1 , pp. 39-46
    • Rodriguez-Enriquez, S.1    Kim, I.2    Currin, R.T.3    Lemasters, J.J.4
  • 151
    • 84867773087 scopus 로고    scopus 로고
    • Mitophagy: mechanisms, pathophysiological roles, and analysis
    • Ding W.X., Yin X.M. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biological Chemistry 2012, 393(7):547-564. http://www.ncbi.nlm.nih.gov/pubmed/22944659, 10.1515/hsz-2012-0119.
    • (2012) Biological Chemistry , vol.393 , Issue.7 , pp. 547-564
    • Ding, W.X.1    Yin, X.M.2
  • 152
    • 35848947235 scopus 로고    scopus 로고
    • Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: implications for neurodegeneration and cell death
    • Chu C.T., Zhu J., Dagda R. Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: implications for neurodegeneration and cell death. Autophagy 2007, 3(6):663-666. http://www.ncbi.nlm.nih.gov/pubmed/17622797, 10.4161/auto.4625.
    • (2007) Autophagy , vol.3 , Issue.6 , pp. 663-666
    • Chu, C.T.1    Zhu, J.2    Dagda, R.3
  • 153
    • 67649399288 scopus 로고    scopus 로고
    • Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission
    • Dagda R.K., Cherra S.J., Kulich S.M., Tandon A., Park D., Chu C.T. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. Journal of Biological Chemistry 2009, 284(20):13843-13855. http://www.ncbi.nlm.nih.gov/pubmed/19279012, 10.1074/jbc.M808515200.
    • (2009) Journal of Biological Chemistry , vol.284 , Issue.20 , pp. 13843-13855
    • Dagda, R.K.1    Cherra, S.J.2    Kulich, S.M.3    Tandon, A.4    Park, D.5    Chu, C.T.6
  • 154
    • 73449111577 scopus 로고    scopus 로고
    • Mitochondrial autophagy as a compensatory response to PINK1 deficiency
    • Cherra S.J., Dagda R.K., Tandon A., Chu C.T. Mitochondrial autophagy as a compensatory response to PINK1 deficiency. Autophagy 2009, 5(8):1213-1214. http://www.ncbi.nlm.nih.gov/pubmed/19786829, 10.4161/auto.5.8.10050.
    • (2009) Autophagy , vol.5 , Issue.8 , pp. 1213-1214
    • Cherra, S.J.1    Dagda, R.K.2    Tandon, A.3    Chu, C.T.4
  • 155
    • 58149314211 scopus 로고    scopus 로고
    • Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
    • Narendra D., Tanaka A., Suen D.F., Youle R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. Journal of Cell Biology 2008, 183(5):795-803. http://www.ncbi.nlm.nih.gov/pubmed/19029340, 10.1083/jcb.200809125.
    • (2008) Journal of Cell Biology , vol.183 , Issue.5 , pp. 795-803
    • Narendra, D.1    Tanaka, A.2    Suen, D.F.3    Youle, R.J.4
  • 156
    • 78649300971 scopus 로고    scopus 로고
    • P62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
    • Narendra D., Kane L.A., Hauser D.N., Fearnley I.M., Youle R.J. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 2010, 6:1090-1106. http://www.ncbi.nlm.nih.gov/pubmed/20890124, 10.4161/auto.6.8.13426.
    • (2010) Autophagy , vol.6 , pp. 1090-1106
    • Narendra, D.1    Kane, L.A.2    Hauser, D.N.3    Fearnley, I.M.4    Youle, R.J.5
  • 159
    • 84878533006 scopus 로고    scopus 로고
    • Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood
    • Chacko B.K., Kramer P.A., Ravi S., Johnson M.S., Hardy R.W., Ballinger S.W., Darley-Usmar V.M. Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood. Laboratory Investigation 2013, 93(6):690-700. http://www.ncbi.nlm.nih.gov/pubmed/23528848, 10.1038/labinvest.2013.53.
    • (2013) Laboratory Investigation , vol.93 , Issue.6 , pp. 690-700
    • Chacko, B.K.1    Kramer, P.A.2    Ravi, S.3    Johnson, M.S.4    Hardy, R.W.5    Ballinger, S.W.6    Darley-Usmar, V.M.7
  • 161
    • 84866122688 scopus 로고    scopus 로고
    • Autophagy modulation as a potential therapeutic target for diverse diseases
    • Rubinsztein D.C., Codogno P., Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nature Reviews Drug Discovery 2012, 11(9):709-730. http://www.ncbi.nlm.nih.gov/pubmed/22935804, 10.1038/nrd3802.
    • (2012) Nature Reviews Drug Discovery , vol.11 , Issue.9 , pp. 709-730
    • Rubinsztein, D.C.1    Codogno, P.2    Levine, B.3
  • 162
    • 84877628647 scopus 로고    scopus 로고
    • Autophagy in human health and disease
    • Choi A.M., Ryter S.W., Levine B. Autophagy in human health and disease. New England Journal of Medicine 2013, 368(19):1845-1846. http://www.ncbi.nlm.nih.gov/pubmed/23656658, 10.1056/NEJMc1303158.
    • (2013) New England Journal of Medicine , vol.368 , Issue.19 , pp. 1845-1846
    • Choi, A.M.1    Ryter, S.W.2    Levine, B.3
  • 163
    • 84875892111 scopus 로고    scopus 로고
    • Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease
    • Murrow L., Debnath J. Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annual Review of Pathology 2013, 8:105-137. http://www.ncbi.nlm.nih.gov/pubmed/23072311, 10.1146/annurev-pathol-020712-163918.
    • (2013) Annual Review of Pathology , vol.8 , pp. 105-137
    • Murrow, L.1    Debnath, J.2
  • 165
    • 84885580133 scopus 로고    scopus 로고
    • Cardiovascular autophagy: concepts, controversies, and perspectives
    • Lavandero S., Troncoso R., Rothermel B.A., Martinet W., Sadoshima J., Hill J.A. Cardiovascular autophagy: concepts, controversies, and perspectives. Autophagy 2013, 9(10):1455-1466. http://www.ncbi.nlm.nih.gov/pubmed/23959233, 10.4161/auto.25969.
    • (2013) Autophagy , vol.9 , Issue.10 , pp. 1455-1466
    • Lavandero, S.1    Troncoso, R.2    Rothermel, B.A.3    Martinet, W.4    Sadoshima, J.5    Hill, J.A.6
  • 166
    • 84883763522 scopus 로고    scopus 로고
    • Zonated induction of autophagy and mitochondrial spheroids limits acetaminophen-induced necrosis in the liver
    • Ni H.M., Williams J.A., Jaeschke H., Ding W.X. Zonated induction of autophagy and mitochondrial spheroids limits acetaminophen-induced necrosis in the liver. Redox Biology 2013, 1(1):427-432. http://www.ncbi.nlm.nih.gov/pubmed/24191236, 10.1016/j.redox.2013.08.005.
    • (2013) Redox Biology , vol.1 , Issue.1 , pp. 427-432
    • Ni, H.M.1    Williams, J.A.2    Jaeschke, H.3    Ding, W.X.4
  • 167
    • 84921475513 scopus 로고    scopus 로고
    • Autophagy and non-alcoholic fatty liver disease
    • Lavallard V.J., Gual P. Autophagy and non-alcoholic fatty liver disease. BioMed Research International 2014, 2014:120179. http://www.ncbi.nlm.nih.gov/pubmed/25295245, 10.1155/2014/120179.
    • (2014) BioMed Research International , vol.2014 , pp. 120179
    • Lavallard, V.J.1    Gual, P.2
  • 169
    • 84921458749 scopus 로고    scopus 로고
    • Role of islet beta cell autophagy in the pathogenesis of diabetes
    • Lee M. Role of islet beta cell autophagy in the pathogenesis of diabetes. Trends in Endocrinology & Metabolism 2014, 25:620-627. 10.1016/j.tem.2014.08.005.
    • (2014) Trends in Endocrinology & Metabolism , vol.25 , pp. 620-627
    • Lee, M.1
  • 170
    • 84897559222 scopus 로고    scopus 로고
    • Activation of AKT by O-Linked N-acetylglucosamine induces vascular calcification in diabetes mellitus
    • Heath J.M., Sun Y., Yuan K., Bradley W.E., Litovsky S., Dell'Italia L.J., Chatham J.C., Wu H., Chen Y. Activation of AKT by O-Linked N-acetylglucosamine induces vascular calcification in diabetes mellitus. Circulation Research 2014, 114(7):1094-1102. http://www.ncbi.nlm.nih.gov/pubmed/24526702, 10.1161/CIRCRESAHA.114.302968.
    • (2014) Circulation Research , vol.114 , Issue.7 , pp. 1094-1102
    • Heath, J.M.1    Sun, Y.2    Yuan, K.3    Bradley, W.E.4    Litovsky, S.5    Dell'Italia, L.J.6    Chatham, J.C.7    Wu, H.8    Chen, Y.9
  • 172
    • 11244297916 scopus 로고    scopus 로고
    • Dysregulation of the TSC-mTOR pathway in human disease
    • Inoki K., Corradetti M.N., Guan K.L. Dysregulation of the TSC-mTOR pathway in human disease. Nature Genetics 2005, 37(1):19-24. http://www.ncbi.nlm.nih.gov/pubmed/15624019, 10.1038/ng1494.
    • (2005) Nature Genetics , vol.37 , Issue.1 , pp. 19-24
    • Inoki, K.1    Corradetti, M.N.2    Guan, K.L.3
  • 173
    • 34547132328 scopus 로고    scopus 로고
    • Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in ATG4C/autophagin-3
    • Mariño G., Salvador-Montoliu N., Fueyo A., Knecht E., Mizushima N., López-Otín C. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in ATG4C/autophagin-3. Journal of Biological Chemistry 2007, 282:18573-18583. http://www.ncbi.nlm.nih.gov/pubmed/17442669, 10.1074/jbc.M701194200.
    • (2007) Journal of Biological Chemistry , vol.282 , pp. 18573-18583
    • Mariño, G.1    Salvador-Montoliu, N.2    Fueyo, A.3    Knecht, E.4    Mizushima, N.5    López-Otín, C.6
  • 176
    • 23944448372 scopus 로고    scopus 로고
    • Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans
    • Takacs-Vellai K., Vellai T., Puoti A., Passannante M., Wicky C., Streit A., Kovacs A.L., Müller F. Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans. Current Biology 2005, 15(16):1513-1517. http://www.ncbi.nlm.nih.gov/pubmed/16111945, 10.1016/j.cub.2005.07.035.
    • (2005) Current Biology , vol.15 , Issue.16 , pp. 1513-1517
    • Takacs-Vellai, K.1    Vellai, T.2    Puoti, A.3    Passannante, M.4    Wicky, C.5    Streit, A.6    Kovacs, A.L.7    Müller, F.8
  • 177
    • 36849021043 scopus 로고    scopus 로고
    • Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in drosophila
    • Juhász G., Erdi B., Sass M., Neufeld T.P. Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in drosophila. Genes & Development 2007, 21(23):3061-3066. http://www.ncbi.nlm.nih.gov/pubmed/18056421, 10.1101/gad.1600707.
    • (2007) Genes & Development , vol.21 , Issue.23 , pp. 3061-3066
    • Juhász, G.1    Erdi, B.2    Sass, M.3    Neufeld, T.P.4
  • 180
    • 79953231709 scopus 로고    scopus 로고
    • A longer and healthier life with TOR down-regulation: genetics and drugs
    • Bjedov I., Partridge L. A longer and healthier life with TOR down-regulation: genetics and drugs. Biochemical Society Transactions 2011, 39(2):460-465. http://www.ncbi.nlm.nih.gov/pubmed/21428920, 10.1042/BST0390460.
    • (2011) Biochemical Society Transactions , vol.39 , Issue.2 , pp. 460-465
    • Bjedov, I.1    Partridge, L.2
  • 182
    • 70349330773 scopus 로고    scopus 로고
    • The regulation of aging: does autophagy underlie longevity?
    • Vellai T., Takács-Vellai K., Sass M., Klionsky D.J. The regulation of aging: does autophagy underlie longevity?. Trends in Cell Biology 2009, 19(10):487-494. http://www.ncbi.nlm.nih.gov/pubmed/19726187, 10.1016/j.tcb.2009.07.007.
    • (2009) Trends in Cell Biology , vol.19 , Issue.10 , pp. 487-494
    • Vellai, T.1    Takács-Vellai, K.2    Sass, M.3    Klionsky, D.J.4
  • 183
    • 84856492243 scopus 로고    scopus 로고
    • Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan
    • Mai S., Muster B., Bereiter-Hahn J., Jendrach M. Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy 2012, 8(1):47-62. http://www.ncbi.nlm.nih.gov/pubmed/22170153, 10.4161/auto.8.1.18174.
    • (2012) Autophagy , vol.8 , Issue.1 , pp. 47-62
    • Mai, S.1    Muster, B.2    Bereiter-Hahn, J.3    Jendrach, M.4
  • 185
    • 77956420489 scopus 로고    scopus 로고
    • Can autophagy promote longevity?
    • Madeo F., Tavernarakis N., Kroemer G. Can autophagy promote longevity?. Nature Cell Biology 2010, 12(9):842-846. http://www.ncbi.nlm.nih.gov/pubmed/20811357, 10.1038/ncb0910-842.
    • (2010) Nature Cell Biology , vol.12 , Issue.9 , pp. 842-846
    • Madeo, F.1    Tavernarakis, N.2    Kroemer, G.3
  • 186
    • 57649234905 scopus 로고    scopus 로고
    • Autophagy genes and ageing
    • Vellai T. Autophagy genes and ageing. Cell Death & Differentiation 2009, 16(1):94-102. http://www.ncbi.nlm.nih.gov/pubmed/19079287, 10.1038/cdd.2008.126.
    • (2009) Cell Death & Differentiation , vol.16 , Issue.1 , pp. 94-102
    • Vellai, T.1
  • 188
    • 79952127458 scopus 로고    scopus 로고
    • Cats, "rats", and bats: the comparative biology of aging in the 21st century
    • Austad S.N. Cats, "rats", and bats: the comparative biology of aging in the 21st century. Integrative and Comparative Biology 2010, 50(5):783-792. http://www.ncbi.nlm.nih.gov/pubmed/21558241, 10.1093/icb/icq131.
    • (2010) Integrative and Comparative Biology , vol.50 , Issue.5 , pp. 783-792
    • Austad, S.N.1
  • 190
    • 84882254367 scopus 로고    scopus 로고
    • The role of autophagy in neurodegenerative disease
    • Nixon R.A. The role of autophagy in neurodegenerative disease. Nature Medicine 2013, 19(8):983-997. http://www.ncbi.nlm.nih.gov/pubmed/23921753, 10.1038/nm.3232.
    • (2013) Nature Medicine , vol.19 , Issue.8 , pp. 983-997
    • Nixon, R.A.1
  • 192
    • 84877615360 scopus 로고    scopus 로고
    • Therapeutic induction of autophagy to modulate neurodegenerative disease progression
    • Hochfeld W.E., Lee S., Rubinsztein D.C. Therapeutic induction of autophagy to modulate neurodegenerative disease progression. Acta Pharmacologica Sinica 2013, 34(5):600-604. http://www.ncbi.nlm.nih.gov/pubmed/23377551, 10.1038/aps.2012.189.
    • (2013) Acta Pharmacologica Sinica , vol.34 , Issue.5 , pp. 600-604
    • Hochfeld, W.E.1    Lee, S.2    Rubinsztein, D.C.3
  • 193
    • 74049126112 scopus 로고    scopus 로고
    • The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway
    • Zheng Y.T., Shahnazari S., Brech A., Lamark T., Johansen T., Brumell J.H. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. Journal of Immunology 2009, 183(9):5909-5916. http://www.ncbi.nlm.nih.gov/pubmed/19812211, 10.4049/jimmunol.0900441.
    • (2009) Journal of Immunology , vol.183 , Issue.9 , pp. 5909-5916
    • Zheng, Y.T.1    Shahnazari, S.2    Brech, A.3    Lamark, T.4    Johansen, T.5    Brumell, J.H.6
  • 194
    • 70350450808 scopus 로고    scopus 로고
    • The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria
    • Thurston T.L., Ryzhakov G., Bloor S., von Muhlinen N., Randow F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nature Immunology 2009, 10(11):1215-1221. http://www.ncbi.nlm.nih.gov/pubmed/19820708, 10.1038/ni.1800.
    • (2009) Nature Immunology , vol.10 , Issue.11 , pp. 1215-1221
    • Thurston, T.L.1    Ryzhakov, G.2    Bloor, S.3    von Muhlinen, N.4    Randow, F.5
  • 197
    • 10944253145 scopus 로고    scopus 로고
    • Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
    • Gutierrez M.G., Master S.S., Singh S.B., Taylor G.A., Colombo M.I., Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004, 119(6):753-766. http://www.ncbi.nlm.nih.gov/pubmed/15607973, 10.1016/j.cell.2004.11.038.
    • (2004) Cell , vol.119 , Issue.6 , pp. 753-766
    • Gutierrez, M.G.1    Master, S.S.2    Singh, S.B.3    Taylor, G.A.4    Colombo, M.I.5    Deretic, V.6
  • 198
    • 13244256806 scopus 로고    scopus 로고
    • Escape of intracellular Shigella from autophagy
    • Ogawa M., Yoshimori T., Suzuki T., Sagara H., Mizushima N., Sasakawa C. Escape of intracellular Shigella from autophagy. Science 2005, 307(5710):727-731. http://www.ncbi.nlm.nih.gov/pubmed/15576571, 10.1126/science.1106036.
    • (2005) Science , vol.307 , Issue.5710 , pp. 727-731
    • Ogawa, M.1    Yoshimori, T.2    Suzuki, T.3    Sagara, H.4    Mizushima, N.5    Sasakawa, C.6
  • 200
    • 21344472825 scopus 로고    scopus 로고
    • Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles
    • Gutierrez M.G., Vázquez C.L., Munafó D.B., Zoppino F.C., Berón W., Rabinovitch M., Colombo M.I. Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cellular Microbiology 2005, 7(7):981-993. http://www.ncbi.nlm.nih.gov/pubmed/15953030, 10.1111/j.1462-5822.2005.00527.x.
    • (2005) Cellular Microbiology , vol.7 , Issue.7 , pp. 981-993
    • Gutierrez, M.G.1    Vázquez, C.L.2    Munafó, D.B.3    Zoppino, F.C.4    Berón, W.5    Rabinovitch, M.6    Colombo, M.I.7
  • 201
    • 76249112828 scopus 로고    scopus 로고
    • Autophagy protects against Sindbis virus infection of the central nervous system
    • Orvedahl A., MacPherson S., Sumpter R., Tallóczy Z., Zou Z., Levine B. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host & Microbe 2010, 7(2):115-127. http://www.ncbi.nlm.nih.gov/pubmed/20159618, 10.1016/j.chom.2010.01.007.
    • (2010) Cell Host & Microbe , vol.7 , Issue.2 , pp. 115-127
    • Orvedahl, A.1    MacPherson, S.2    Sumpter, R.3    Tallóczy, Z.4    Zou, Z.5    Levine, B.6
  • 202
    • 77951237303 scopus 로고    scopus 로고
    • The Beclin 1 interactome
    • He C., Levine B. The Beclin 1 interactome. Current Opinion in Cell Biology 2010, 22(2):140-149. http://www.ncbi.nlm.nih.gov/pubmed/20097051, 10.1016/j.ceb.2010.01.001.
    • (2010) Current Opinion in Cell Biology , vol.22 , Issue.2 , pp. 140-149
    • He, C.1    Levine, B.2
  • 203
    • 69349084842 scopus 로고    scopus 로고
    • Autophagy, antiviral immunity, and viral countermeasures
    • Shoji-Kawata S., Levine B. Autophagy, antiviral immunity, and viral countermeasures. Biochimica et Biophysica Acta 2009, 1793(9):1478-1484. http://www.ncbi.nlm.nih.gov/pubmed/19264100, 10.1016/j.bbamcr.2009.02.008.
    • (2009) Biochimica et Biophysica Acta , vol.1793 , Issue.9 , pp. 1478-1484
    • Shoji-Kawata, S.1    Levine, B.2
  • 204
    • 84898041863 scopus 로고    scopus 로고
    • Pathophysiological importance of aggregated damaged proteins
    • Höhn A., Jung T., Grune T. Pathophysiological importance of aggregated damaged proteins. Free Radical Biology and Medicine 2014, 71:70-89. http://www.ncbi.nlm.nih.gov/pubmed/24632383, 10.1016/j.freeradbiomed.2014.02.028.
    • (2014) Free Radical Biology and Medicine , vol.71 , pp. 70-89
    • Höhn, A.1    Jung, T.2    Grune, T.3
  • 205
    • 84896732643 scopus 로고    scopus 로고
    • The proteasome and the degradation of oxidized proteins: Part III - Redox regulation of the proteasomal system
    • Höhn T.J., Grune T. The proteasome and the degradation of oxidized proteins: Part III - Redox regulation of the proteasomal system. Redox Biology 2014, 2:388-394. http://www.ncbi.nlm.nih.gov/pubmed/24563857, 10.1016/j.redox.2013.12.029.
    • (2014) Redox Biology , vol.2 , pp. 388-394
    • Höhn, T.J.1    Grune, T.2
  • 206
    • 84878851013 scopus 로고    scopus 로고
    • The proteasome and the degradation of oxidized proteins: Part I - Structure of proteasomes
    • Jung T., Grune T. The proteasome and the degradation of oxidized proteins: Part I - Structure of proteasomes. Redox Biology 2013, 1(1):178-182. http://www.ncbi.nlm.nih.gov/pubmed/24024151, 10.1016/j.redox.2013.01.004.
    • (2013) Redox Biology , vol.1 , Issue.1 , pp. 178-182
    • Jung, T.1    Grune, T.2
  • 207
    • 84878771657 scopus 로고    scopus 로고
    • Upregulation of the mitochondrial Lon protease allows adaptation to acute oxidative stress but dysregulation is associated with chronic stress, disease, and aging
    • Ngo J.K., Pomatto L.C., Davies K.J. Upregulation of the mitochondrial Lon protease allows adaptation to acute oxidative stress but dysregulation is associated with chronic stress, disease, and aging. Redox Biology 2013, 1(1):258-264. http://www.ncbi.nlm.nih.gov/pubmed/24024159, 10.1016/j.redox.2013.01.015.
    • (2013) Redox Biology , vol.1 , Issue.1 , pp. 258-264
    • Ngo, J.K.1    Pomatto, L.C.2    Davies, K.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.