-
1
-
-
41549114279
-
The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease
-
Pan, T.; Kondo, S.; Le, W.; Jankovic, J. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease. Brain 131: 1969-1978; 2008.
-
(2008)
Brain
, vol.131
, pp. 1969-1978
-
-
Pan, T.1
Kondo, S.2
Le, W.3
Jankovic, J.4
-
2
-
-
34247158550
-
Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases
-
DOI 10.1016/j.neuroscience.2006.10.056, PII S0306452206014333, Genome Dynamics and DNA Repair in the CNS
-
Trushina, E.; McMurray, C. T. Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 145:1233-1248; 2007. (Pubitemid 46602738)
-
(2007)
Neuroscience
, vol.145
, Issue.4
, pp. 1233-1248
-
-
Trushina, E.1
McMurray, C.T.2
-
3
-
-
25444474703
-
Mitochondria take center stage in aging and neurodegeneration
-
DOI 10.1002/ana.20624
-
Beal, M. F. Mitochondria take center stage in aging and neurodegeneration. Ann. Neurol. 58:495-505; 2005. (Pubitemid 41377212)
-
(2005)
Annals of Neurology
, vol.58
, Issue.4
, pp. 495-505
-
-
Beal, M.F.1
-
4
-
-
34147193472
-
Cell biology: Autophagy and cancer
-
DOI 10.1038/446745a, PII 446745A
-
Levine, B. Cell biology: autophagy and cancer. Nature 446:745-747; 2007. (Pubitemid 46582063)
-
(2007)
Nature
, vol.446
, Issue.7137
, pp. 745-747
-
-
Levine, B.1
-
5
-
-
57649173518
-
The role of autophagy in the heart
-
Nishida, K.; Kyoi, S.; Yamaguchi, O.; Sadoshima, J.; Otsu, K. The role of autophagy in the heart. Cell Death Differ. 16:31-38; 2009.
-
(2009)
Cell Death Differ
, vol.16
, pp. 31-38
-
-
Nishida, K.1
Kyoi, S.2
Yamaguchi, O.3
Sadoshima, J.4
Otsu, K.5
-
6
-
-
34547830983
-
Diabetes associated cell stress and dysfunction: Role of mitochondrial and non-mitochondrial ROS production and activity
-
DOI 10.1113/jphysiol.2007.135871
-
Newsholme, P.; Haber, E. P.; Hirabara, S. M.; Rebelato, E. L.; Procopio, J.; Morgan, D.; Oliveira-Emilio, H. C.; Carpinelli, A. R.; Curi, R. Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J. Physiol. 583:9-24; 2007. (Pubitemid 47244241)
-
(2007)
Journal of Physiology
, vol.583
, Issue.1
, pp. 9-24
-
-
Newsholme, P.1
Haber, E.P.2
Hirabara, S.M.3
Rebelato, E.L.O.4
Procopio, J.5
Morgan, D.6
Oliveira-Emilio, H.C.7
Carpinelli, A.R.8
Curi, R.9
-
7
-
-
1642282736
-
Cellular mechanisms of redox cell signalling: Role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products
-
DOI 10.1042/BJ20031049
-
Levonen, A. L.; Landar, A.; Ramachandran, A.; Ceaser, E. K.; Dickinson, D. A.; Zanoni, G.; Morrow, J. D.; Darley-Usmar, V. M. Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem. J. 378:373-382; 2004. (Pubitemid 38367228)
-
(2004)
Biochemical Journal
, vol.378
, Issue.2
, pp. 373-382
-
-
Levonen, A.-L.1
Landar, A.2
Ramachandran, A.3
Ceaser, E.K.4
Dickinson, D.A.5
Zanoni, G.6
Morrow, J.D.7
Darley-Usmar, V.M.8
-
8
-
-
84862736551
-
Degradation of damaged proteins: The main function of the 20S proteasome
-
Pickering, A. M.; Davies, K. J. Degradation of damaged proteins: the main function of the 20S proteasome. Prog. Mol. Biol. Transl. Sci 109:227-248; 2012.
-
(2012)
Prog. Mol. Biol. Transl. Sci
, vol.109
, pp. 227-248
-
-
Pickering, A.M.1
Davies, K.J.2
-
9
-
-
0034544570
-
Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: Effect of aging
-
Bentourkia, M.; Bol, A.; Ivanoiu, A.; Labar, D.; Sibomana, M.; Coppens, A.; Michel, C.; Cosnard, G.; De Volder, A. G. Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. J. Neurol. Sci. 181:19-28; 2000.
-
(2000)
J. Neurol. Sci
, vol.181
, pp. 19-28
-
-
Bentourkia, M.1
Bol, A.2
Ivanoiu, A.3
Labar, D.4
Sibomana, M.5
Coppens, A.6
Michel, C.7
Cosnard, G.8
De Volder, A.G.9
-
10
-
-
0026447207
-
Cerebral glucose metabolism in Parkinson's disease with and without dementia
-
Peppard, R. F.; Martin, W. R.; Carr, G. D.; Grochowski, E.; Schulzer, M.; Guttman, M.; McGeer, P. L.; Phillips, A. G.; Tsui, J. K.; Calne, D. B. Cerebral glucose metabolism in Parkinson's disease with and without dementia. Arch. Neurol. 49:1262-1268; 1992.
-
(1992)
Arch. Neurol
, vol.49
, pp. 1262-1268
-
-
Peppard, R.F.1
Martin, W.R.2
Carr, G.D.3
Grochowski, E.4
Schulzer, M.5
Guttman, M.6
McGeer, P.L.7
Phillips, A.G.8
Tsui, J.K.9
Calne, D.B.10
-
11
-
-
0035824167
-
Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome
-
Silverman, D. H.; Small, G. W.; Chang, C. Y.; Lu, C. S.; Kung De Aburto, M. A.; Chen, W.; Czernin, J.; Rapoport, S. I.; Pietrini, P.; Alexander, G. E.; Schapiro, M. B.; Jagust, W. J.; Hoffman, J. M.; Welsh-Bohmer, K. A.; Alavi, A.; Clark, C. M.; Salmon, E.; de Leon, M. J.; Mielke, R.; Cummings, J. L.; Kowell, A. P.; Gambhir, S. S.; Hoh, C. K.; Phelps, M. E. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA 286:2120-2127; 2001. (Pubitemid 34041597)
-
(2001)
Journal of the American Medical Association
, vol.286
, Issue.17
, pp. 2120-2127
-
-
Silverman, D.H.S.1
Small, G.W.2
Chang, C.Y.3
Lu, C.S.4
Kung De Aburto, M.A.5
Chen, W.6
Czernin, J.7
Rapoport, S.I.8
Pietrini, P.9
Alexander, G.E.10
Schapiro, M.B.11
Jagust, W.J.12
Hoffman, J.M.13
Welsh-Bohmer, K.A.14
Alavi, A.15
Clark, C.M.16
Salmon, E.17
De Leon, M.J.18
Mielke, R.19
Cummings, J.L.20
Kowell, A.P.21
Gambhir, S.S.22
Hoh, C.K.23
Phelps, M.E.24
more..
-
12
-
-
77953257870
-
Involvements of the lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer's disease
-
Butterfield, D. A.; Bader Lange, M. L. Sultana, R. Involvements of the lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer's disease. Biochim. Biophys. Acta 1801: 924-929; 2010.
-
(2010)
Biochim. Biophys. Acta
, vol.1801
, pp. 924-929
-
-
Butterfield, D.A.1
Bader Lange, M.L.2
Sultana, R.3
-
13
-
-
1942510654
-
Glucose metabolism and coronary heart disease in patients with normal glucose tolerance
-
DOI 10.1001/jama.291.15.1857
-
Sasso, F. C.; Carbonara, O.; Nasti, R.; Campana, B.; Marfella, R.; Torella, M.; Nappi, G.; Torella, R.; Cozzolino, D. Glucose metabolism and coronary heart disease in patients with normal glucose tolerance. JAMA 291:1857-1863; 2004. (Pubitemid 38509498)
-
(2004)
Journal of the American Medical Association
, vol.291
, Issue.15
, pp. 1857-1863
-
-
Sasso, F.C.1
Carbonara, O.2
Nasti, R.3
Campana, B.4
Marfella, R.5
Torella, M.6
Nappi, G.7
Torella, R.8
Cozzolino, D.9
-
14
-
-
0038677068
-
Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes
-
DOI 10.1161/01.CIR.0000072789.89096.10
-
Scheuermann-Freestone, M.; Madsen, P. L.; Manners, D.; Blamire, A. M.; Buckingham, R. E.; Styles, P.; Radda, G. K.; Neubauer, S.; Clarke, K. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation 107:3040-3046; 2003. (Pubitemid 36758977)
-
(2003)
Circulation
, vol.107
, Issue.24
, pp. 3040-3046
-
-
Scheuermann-Freestone, M.1
Madsen, P.L.2
Manners, D.3
Blamire, A.M.4
Buckingham, R.E.5
Styles, P.6
Radda, G.K.7
Neubauer, S.8
Clarke, K.9
-
15
-
-
33745848775
-
Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony
-
DOI 10.1172/JCI29027
-
Herman, M. A.; Kahn, B. B. Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. J. Clin. Invest. 116: 1767-1775; 2006. (Pubitemid 44033296)
-
(2006)
Journal of Clinical Investigation
, vol.116
, Issue.7
, pp. 1767-1775
-
-
Herman, M.A.1
Kahn, B.B.2
-
16
-
-
0035986085
-
Invited review: Intracellular signaling in contracting skeletal muscle
-
Sakamoto, K.; Goodyear, L. J. Intracellular signaling in contracting skeletal muscle. J. Appl. Physiol. 93:369-383; 2002. (Pubitemid 34686234)
-
(2002)
Journal of Applied Physiology
, vol.93
, Issue.1
, pp. 369-383
-
-
Sakamoto, K.1
Goodyear, L.J.2
-
17
-
-
0032480368
-
Treating ischemic heart disease by pharmacologically improving cardiac energy metabolism
-
Lopaschuk, G. D. Treating ischemic heart disease by pharmacologically improving cardiac energy metabolism. Am. J. Cardiol. 82:14K-17K; 1998.
-
(1998)
Am. J. Cardiol
, vol.82
-
-
Lopaschuk, G.D.1
-
18
-
-
84858604270
-
Metabolic reprogramming: A cancer hallmark even Warburg did not anticipate
-
Ward, P. S.; Thompson, C. B. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21:297-308; 2012.
-
(2012)
Cancer Cell
, vol.21
, pp. 297-308
-
-
Ward, P.S.1
Thompson, C.B.2
-
19
-
-
84861975431
-
Metabolic reprogramming in cancer: Unraveling the role of glutamine in tumorigenesis
-
Daye, D.; Wellen, K. E. Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin. Cell Dev. Biol. 23:362-369; 2012.
-
(2012)
Semin. Cell Dev. Biol
, vol.23
, pp. 362-369
-
-
Daye, D.1
Wellen, K.E.2
-
20
-
-
84865976786
-
Anticancer targets in the glycolytic metabolism of tumors: A comprehensive review
-
Porporato, P. E.; Dhup, S.; Dadhich, R. K.; Copetti, T.; Sonveaux, P. Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front. Pharmacol 2:49; 2011.
-
(2011)
Front. Pharmacol
, vol.2
, pp. 49
-
-
Porporato, P.E.1
Dhup, S.2
Dadhich, R.K.3
Copetti, T.4
Sonveaux, P.5
-
21
-
-
56649105351
-
Regulation of neuronal glutathione synthesis
-
Aoyama, K.; Watabe, M.; Nakaki, T. Regulation of neuronal glutathione synthesis. J. Pharmacol. Sci. 108:227-238; 2008.
-
(2008)
J. Pharmacol. Sci
, vol.108
, pp. 227-238
-
-
Aoyama, K.1
Watabe, M.2
Nakaki, T.3
-
22
-
-
0034455878
-
Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes
-
DOI 10.1210/jc.85.8.2970
-
Mohanty, P.; Hamouda, W.; Garg, R.; Aljada, A.; Ghanim, H.; Dandona, P. Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J. Clin. Endocrinol. Metab. 85:2970-2973; 2000. (Pubitemid 32269184)
-
(2000)
Journal of Clinical Endocrinology and Metabolism
, vol.85
, Issue.8
, pp. 2970-2973
-
-
Mohanty, P.1
Hamouda, W.2
Garg, R.3
Aljada, A.4
Ghanim, H.5
Dandona, P.6
-
23
-
-
20044363264
-
The hyperglycemia-induced inflammatory response in adipocytes: The role of reactive oxygen species
-
DOI 10.1074/jbc.M411863200
-
Lin, Y.; Berg, A. H.; Iyengar, P.; Lam, T. K.; Giacca, A.; Combs, T. P.; Rajala, M. W.; Du, X.; Rollman, B.; Li, W.; Hawkins, M.; Barzilai, N.; Rhodes, C. J.; Fantus, I. G.; Brownlee, M.; Scherer, P. E. The hyperglycemia-induced inflammatory response in adipocytes: the role of reactive oxygen species. J. Biol. Chem. 280:4617-4626; 2005. (Pubitemid 40288630)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.6
, pp. 4617-4626
-
-
Lin, Y.1
Berg, A.H.2
Iyengar, P.3
Lam, T.K.T.4
Giacca, A.5
Combs, T.P.6
Rajala, M.W.7
Du, X.8
Rollman, B.9
Li, W.10
Hawkins, M.11
Barzilai, N.12
Rhodes, C.J.13
Fantus, I.G.14
Brownlee, M.15
Scherer, P.E.16
-
25
-
-
62749103868
-
Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion
-
Leloup, C.; Tourrel-Cuzin, C.; Magnan, C.; Karaca, M.; Castel, J.; Carneiro, L.; Colombani, A. L.; Ktorza, A.; Casteilla, L.; Penicaud, L. Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion. Diabetes 58:673-681; 2009.
-
(2009)
Diabetes
, vol.58
, pp. 673-681
-
-
Leloup, C.1
Tourrel-Cuzin, C.2
Magnan, C.3
Karaca, M.4
Castel, J.5
Carneiro, L.6
Colombani, A.L.7
Ktorza, A.8
Casteilla, L.9
Penicaud, L.10
-
26
-
-
34347399043
-
Reactive oxygen species as a signal in glucose-stimulated insulin secretion
-
DOI 10.2337/db06-1601
-
Pi, J.; Bai, Y.; Zhang, Q.; Wong, V.; Floering, L. M.; Daniel, K.; Reece, J. M.; Deeney, J. T.; Andersen, M. E.; Corkey, B. E.; Collins, S. Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes 56:1783-1791; 2007. (Pubitemid 47025446)
-
(2007)
Diabetes
, vol.56
, Issue.7
, pp. 1783-1791
-
-
Pi, J.1
Bai, Y.2
Zhang, Q.3
Wong, V.4
Floering, L.M.5
Daniel, K.6
Reece, J.M.7
Deeney, J.T.8
Andersen, M.E.9
Corkey, B.E.10
Collins, S.11
-
27
-
-
0033613855
-
Enhanced glutathione levels and oxidoresistance mediated by increased glucose-6-phosphate dehydrogenase expression
-
DOI 10.1074/jbc.274.5.2750
-
Salvemini, F.; Franze, A.; Iervolino, A.; Filosa, S.; Salzano, S.; Ursini, M. V. Enhanced glutathione levels and oxidoresistance mediated by increased glucose-6-phosphate dehydrogenase expression. J. Biol. Chem. 274:2750-2757; 1999. (Pubitemid 29075355)
-
(1999)
Journal of Biological Chemistry
, vol.274
, Issue.5
, pp. 2750-2757
-
-
Salvemini, F.1
Franze, A.2
Iervolino, A.3
Filosa, S.4
Salzano, S.5
Ursini, M.V.6
-
28
-
-
58249093939
-
How mitochondria produce reactive oxygen species
-
Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 417:1-13; 2009.
-
(2009)
Biochem. J
, vol.417
, pp. 1-13
-
-
Murphy, M.P.1
-
29
-
-
33750475625
-
Free radicals, mitochondria, and oxidized lipids: The emerging role in signal transduction in vascular cells
-
DOI 10.1161/01.RES.0000248212.86638.e9, PII 0000301220061027000005
-
Gutierrez, J.; Ballinger, S. W.; Darley-Usmar, V. M.; Landar, A. Free radicals, mitochondria, and oxidized lipids: the emerging role in signal transduction in vascular cells. Circ. Res. 99:924-932; 2006. (Pubitemid 44657795)
-
(2006)
Circulation Research
, vol.99
, Issue.9
, pp. 924-932
-
-
Gutierrez, J.1
Ballinger, S.W.2
Darley-Usmar, V.M.3
Landar, A.4
-
30
-
-
33646508129
-
Activation of mitogen-activated protein kinases by lysophosphatidylcholine-induced mitochondrial reactive oxygen species generation in endothelial cells
-
Watanabe, N.; Zmijewski, J. W.; Takabe, W.; Umezu-Goto, M.; Le Goffe, C.; Sekine, A.; Landar, A.; Watanabe, A.; Aoki, J.; Arai, H.; Kodama, T.; Murphy, M. P.; Kalyanaraman, R.; Darley-Usmar, V. M.; Noguchi, N. Activation of mitogen-activated protein kinases by lysophosphatidylcholine-induced mitochondrial reactive oxygen species generation in endothelial cells. Am. J. Pathol. 168:1737-1748; 2006.
-
(2006)
Am. J. Pathol
, vol.168
, pp. 1737-1748
-
-
Watanabe, N.1
Zmijewski, J.W.2
Takabe, W.3
Umezu-Goto, M.4
Le Goffe, C.5
Sekine, A.6
Landar, A.7
Watanabe, A.8
Aoki, J.9
Arai, H.10
Kodama, T.11
Murphy, M.P.12
Kalyanaraman, R.13
Darley-Usmar, V.M.14
Noguchi, N.15
-
31
-
-
0025024024
-
Cytochrome oxidase deficiency in Alzheimer's disease
-
Parker Jr W. D.; Filley, C. M.; Parks, J. K. Cytochrome oxidase deficiency in Alzheimer's disease. Neurology 40:1302-1303; 1990. (Pubitemid 20244999)
-
(1990)
Neurology
, vol.40
, Issue.8
, pp. 1302-1303
-
-
Parker Jr., W.D.1
Filley, C.M.2
Parks, J.K.3
-
32
-
-
1542348209
-
The energetics of huntington's disease
-
DOI 10.1023/B:NERE.0000014824.04728.dd
-
Browne, S. E.; Beal, M. F. The energetics of Huntington's disease. Neurochem. Res. 29:531-546; 2004. (Pubitemid 38295004)
-
(2004)
Neurochemical Research
, vol.29
, Issue.3
, pp. 531-546
-
-
Browne, S.E.1
Beal, M.F.2
-
33
-
-
18044383110
-
Mitochondrial dysfunction in cardiovascular disease
-
DOI 10.1016/j.freeradbiomed.2005.02.014
-
Ballinger, S. W. Mitochondrial dysfunction in cardiovascular disease. Free Radic. Biol. Med. 38:1278-1295; 2005. (Pubitemid 40602831)
-
(2005)
Free Radical Biology and Medicine
, vol.38
, Issue.10
, pp. 1278-1295
-
-
Ballinger, S.W.1
-
34
-
-
77954859197
-
The role of mitochondria in the pathogenesis of type 2 diabetes
-
Patti, M. E.; Corvera, S. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr. Rev. 31:364-395; 2010.
-
(2010)
Endocr. Rev
, vol.31
, pp. 364-395
-
-
Patti, M.E.1
Corvera, S.2
-
35
-
-
73649100201
-
Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity
-
Ritov, V. B.; Menshikova, E. V.; Azuma, K.; Wood, R.; Toledo, F. G.; Good-paster, B. H.; Ruderman, N. B.; Kelley, D. E. Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. Am. J. Physiol. Endocrinol. Metab. 298:E49-58; 2010.
-
(2010)
Am. J. Physiol. Endocrinol. Metab
, vol.298
-
-
Ritov, V.B.1
Menshikova, E.V.2
Azuma, K.3
Wood, R.4
Toledo, F.G.5
Good-Paster, B.H.6
Ruderman, N.B.7
Kelley, D.E.8
-
37
-
-
73949122199
-
A genomic screen for yeast mutants defective in selective mitochondria autophagy
-
Kanki, T.; Wang, K.; Baba, M.; Bartholomew, C. R.; Lynch-Day, M. A.; Du, Z.; Geng, J.; Mao, K.; Yang, Z.; Yen, W. L.; Klionsky, D. J. A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol. Biol. Cell. 20:4730-4738; 2009.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 4730-4738
-
-
Kanki, T.1
Wang, K.2
Baba, M.3
Bartholomew, C.R.4
Lynch-Day, M.A.5
Du, Z.6
Geng, J.7
Mao, K.8
Yang, Z.9
Yen, W.L.10
Klionsky, D.J.11
-
39
-
-
78649704325
-
Autophagy and metabolism
-
Rabinowitz, J. D.; White, E. Autophagy and metabolism. Science 330:1344-1348; 2010.
-
(2010)
Science
, vol.330
, pp. 1344-1348
-
-
Rabinowitz, J.D.1
White, E.2
-
40
-
-
56749170677
-
Autophagic cell death: The story of a misnomer
-
Kroemer, G.; Levine, B. Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell. Biol. 9:1004-1010; 2008.
-
(2008)
Nat. Rev. Mol. Cell. Biol
, vol.9
, pp. 1004-1010
-
-
Kroemer, G.1
Levine, B.2
-
41
-
-
77953247316
-
Autophagy in vascular disease
-
Ryter, S. W.; Lee, S. J.; Smith, A.; Choi, A. M. Autophagy in vascular disease. Proc. Am. Thorac. Soc 7:40-47; 2010.
-
(2010)
Proc. Am. Thorac. Soc
, vol.7
, pp. 40-47
-
-
Ryter, S.W.1
Lee, S.J.2
Smith, A.3
Choi, A.M.4
-
42
-
-
77955292017
-
Role of autophagy in diabetes and mitochondria
-
Jung, H. S.; Lee, M. S. Role of autophagy in diabetes and mitochondria. Ann. N. Y. Acad. Sci. 1201:79-83; 2010.
-
(2010)
Ann. N. Y. Acad. Sci
, vol.1201
, pp. 79-83
-
-
Jung, H.S.1
Lee, M.S.2
-
43
-
-
0030841350
-
Protein oxidation in aging, disease, and oxidative stress
-
DOI 10.1074/jbc.272.33.20313
-
Berlett, B. S.; Stadtman, E. R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272:20313-20316; 1997. (Pubitemid 27355575)
-
(1997)
Journal of Biological Chemistry
, vol.272
, Issue.33
, pp. 20313-20316
-
-
Berlett, B.S.1
Stadtman, E.R.2
-
44
-
-
79959999581
-
Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum
-
Mijaljica, D.; Prescott, M.; Devenish, R. J. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7:673-682; 2011.
-
(2011)
Autophagy
, vol.7
, pp. 673-682
-
-
Mijaljica, D.1
Prescott, M.2
Devenish, R.J.3
-
45
-
-
33745023775
-
Chaperone-mediated autophagy in aging and disease
-
DOI 10.1016/S0070-2153(05)73007-6, PII S0070215305730076
-
Massey, A. C.; Zhang, C.; Cuervo, A. M. Chaperone-mediated autophagy in aging and disease. Curr. Top. Dev. Biol. 73:205-235; 2006. (Pubitemid 43878134)
-
(2006)
Current Topics in Developmental Biology
, vol.73
, pp. 205-235
-
-
Massey, A.C.1
Zhang, C.2
Cuervo, A.M.3
-
46
-
-
72549095406
-
Regulation mechanisms and signaling pathways of autophagy
-
He, C.; Klionsky, D. J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43:67-93; 2009.
-
(2009)
Annu. Rev. Genet
, vol.43
, pp. 67-93
-
-
He, C.1
Klionsky, D.J.2
-
47
-
-
57549094368
-
The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice
-
Sou, Y. S.; Waguri, S.; Iwata, J.; Ueno, T.; Fujimura, T.; Hara, T.; Sawada, N.; Yamada, A.; Mizushima, N.; Uchiyama, Y.; Kominami, E.; Tanaka, K.; Komatsu, M. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol. Biol. Cell 19:4762-4775; 2008.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 4762-4775
-
-
Sou, Y.S.1
Waguri, S.2
Iwata, J.3
Ueno, T.4
Fujimura, T.5
Hara, T.6
Sawada, N.7
Yamada, A.8
Mizushima, N.9
Uchiyama, Y.10
Kominami, E.11
Tanaka, K.12
Komatsu, M.13
-
48
-
-
34848899280
-
Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis
-
DOI 10.1038/ncb1634, PII NCB1634
-
Takahashi, Y.; Coppola, D.; Matsushita, N.; Cualing, H. D.; Sun, M.; Sato, Y.; Liang, C.; Jung, J. U.; Cheng, J. Q.; Mule, J. J.; Pledger, W. J.; Wang, H. G. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat. Cell Biol. 9:1142-1151; 2007. (Pubitemid 47500490)
-
(2007)
Nature Cell Biology
, vol.9
, Issue.10
, pp. 1142-1151
-
-
Takahashi, Y.1
Coppola, D.2
Matsushita, N.3
Cualing, H.D.4
Sun, M.5
Sato, Y.6
Liang, C.7
Jung, J.U.8
Cheng, J.Q.9
Mule, J.J.10
Pledger, W.J.11
Wang, H.-G.12
-
49
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
DOI 10.1038/nature03029
-
Kuma, A.; Hatano, M.; Matsui, M.; Yamamoto, A.; Nakaya, H.; Yoshimori, T.; Ohsumi, Y.; Tokuhisa, T.; Mizushima, N. The role of autophagy during the early neonatal starvation period. Nature 432:1032-1036; 2004. (Pubitemid 40052234)
-
(2004)
Nature
, vol.432
, Issue.7020
, pp. 1032-1036
-
-
Kuma, A.1
Hatano, M.2
Matsui, M.3
Yamamoto, A.4
Nakaya, H.5
Yoshimori, T.6
Ohsumi, Y.7
Tokuhisa, T.8
Mizushima, N.9
-
50
-
-
79955377420
-
Autophagy-deficient mice develop multiple liver tumors
-
Takamura, A.; Komatsu, M.; Hara, T.; Sakamoto, A.; Kishi, C.; Waguri, S.; Eishi, Y.; Hino, O.; Tanaka, K.; Mizushima, N. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25:795-800; 2011.
-
(2011)
Genes Dev
, vol.25
, pp. 795-800
-
-
Takamura, A.1
Komatsu, M.2
Hara, T.3
Sakamoto, A.4
Kishi, C.5
Waguri, S.6
Eishi, Y.7
Hino, O.8
Tanaka, K.9
Mizushima, N.10
-
51
-
-
21044455137
-
Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
-
DOI 10.1083/jcb.200412022
-
Komatsu, M.; Waguri, S.; Ueno, T.; Iwata, J.; Murata, S.; Tanida, I.; Ezaki, J.; Mizushima, N.; Ohsumi, Y.; Uchiyama, Y.; Kominami, E.; Tanaka, K.; Chiba, T. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169:425-434; 2005. (Pubitemid 40686693)
-
(2005)
Journal of Cell Biology
, vol.169
, Issue.3
, pp. 425-434
-
-
Komatsu, M.1
Waguri, S.2
Ueno, T.3
Iwata, J.4
Murata, S.5
Tanida, I.6
Ezaki, J.7
Mizushima, N.8
Ohsumi, Y.9
Uchiyama, Y.10
Kominami, E.11
Tanaka, K.12
Chiba, T.13
-
52
-
-
79952628267
-
The Beclin 1 network regulates autophagy and apoptosis
-
Kang, R.; Zeh, H. J.; Lotze, M. T.; Tang, D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 18: 571-580; 2011.
-
(2011)
Cell Death Differ
, vol.18
, pp. 571-580
-
-
Kang, R.1
Zeh, H.J.2
Lotze, M.T.3
Tang, D.4
-
53
-
-
77950994646
-
Autophagy: Cellular and molecular mechanisms
-
Glick, D.; Barth, S.; Macleod, K. F. Autophagy: cellular and molecular mechanisms. J. Pathol. 221:3-12; 2010.
-
(2010)
J. Pathol
, vol.221
, pp. 3-12
-
-
Glick, D.1
Barth, S.2
Macleod, K.F.3
-
54
-
-
35848947235
-
Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: Implications for neurodegeneration and cell death
-
Chu, C. T.; Zhu, J.; Dagda, R. Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: implications for neurodegenera-tion and cell death. Autophagy 3:663-666; 2007. (Pubitemid 350060074)
-
(2007)
Autophagy
, vol.3
, Issue.6
, pp. 663-666
-
-
Chu, C.T.1
Zhu, J.2
Dagda, R.3
-
55
-
-
0035911162
-
Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells
-
Mizushima, N.; Yamamoto, A.; Hatano, M.; Kobayashi, Y.; Kabeya, Y.; Suzuki, K.; Tokuhisa, T.; Ohsumi, Y.; Yoshimori, T. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J. Cell Biol. 152:657-668; 2001.
-
(2001)
J. Cell Biol
, vol.152
, pp. 657-668
-
-
Mizushima, N.1
Yamamoto, A.2
Hatano, M.3
Kobayashi, Y.4
Kabeya, Y.5
Suzuki, K.6
Tokuhisa, T.7
Ohsumi, Y.8
Yoshimori, T.9
-
56
-
-
33244481532
-
Autophagy: A forty-year search for a missing membrane source
-
Juhasz, G.; Neufeld, T. P. Autophagy: a forty-year search for a missing membrane source. PLoS Biol. 4:e36; 2006.
-
(2006)
PLoS Biol
, vol.4
-
-
Juhasz, G.1
Neufeld, T.P.2
-
57
-
-
50249084987
-
Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
-
Axe, E. L.; Walker, S. A.; Manifava, M.; Chandra, P.; Roderick, H. L.; Habermann, A.; Griffiths, G.; Ktistakis, N. T. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182:685-701; 2008.
-
(2008)
J. Cell Biol
, vol.182
, pp. 685-701
-
-
Axe, E.L.1
Walker, S.A.2
Manifava, M.3
Chandra, P.4
Roderick, H.L.5
Habermann, A.6
Griffiths, G.7
Ktistakis, N.T.8
-
58
-
-
79959415069
-
Biogenesis and cargo selectivity of autophagosomes
-
Weidberg, H.; Shvets, E.; Elazar, Z. Biogenesis and cargo selectivity of autophagosomes. Annu. Rev. Biochem. 80:125-156; 2011.
-
(2011)
Annu. Rev. Biochem
, vol.80
, pp. 125-156
-
-
Weidberg, H.1
Shvets, E.2
Elazar, Z.3
-
59
-
-
4344604111
-
A receptor-associated protein-phospholipid conjugates
-
DOI 10.1074/jbc.M401461200
-
Tanida, I.; Sou, Y. S.; Ezaki, J.; Minematsu-Ikeguchi, N.; Ueno, T.; Kominami, E. HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubule-associated protein light chain 3- and GABAA receptor-associated protein-phospholipid conjugates. J. Biol. Chem 279:36268-36276; 2004. (Pubitemid 39128963)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.35
, pp. 36268-36276
-
-
Tanida, I.1
Sou, Y.-S.2
Ezaki, J.3
Minematsu-Ikeguchi, N.4
Ueno, T.5
Kominami, E.6
-
60
-
-
19244384656
-
Accumulation of autophagic vacuoles and cardiomyopathy LAMP-2-deficient mice
-
DOI 10.1038/35022595
-
Tanaka, Y.; Guhde, G.; Suter, A.; Eskelinen, E. L.; Hartmann, D.; Lullmann-Rauch, R.; Janssen, P. M.; Blanz, J.; von Figura, K.; Saftig, P. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406:902-906; 2000. (Pubitemid 30664267)
-
(2000)
Nature
, vol.406
, Issue.6798
, pp. 902-906
-
-
Tanaka, Y.1
Guhde, G.2
Suter, A.3
Eskelinen, E.-L.4
Hartmann, D.5
Lullmann-Rauch, R.6
Janssen, P.M.L.7
Blanz, J.8
Von Figura, K.9
Saftig, P.10
-
61
-
-
79955631150
-
Autophagy in the cellular energetic balance
-
Singh, R.; Cuervo, A. M. Autophagy in the cellular energetic balance. Cell Metab. 13:495-504; 2011.
-
(2011)
Cell Metab
, vol.13
, pp. 495-504
-
-
Singh, R.1
Cuervo, A.M.2
-
62
-
-
0017688771
-
Alterations of lysosomal size and density during rat liver perfusion. Suppression by insulin and amino acids
-
Neely, A. N.; Cox, J. R.; Fortney, J. A.; Schworer, C. M.; Mortimore, G. E. Alterations of lysosomal size and density during rat liver perfusion: suppression by insulin and amino acids. J. Biol. Chem. 252:6948-6954; 1977. (Pubitemid 8214764)
-
(1977)
Journal of Biological Chemistry
, vol.252
, Issue.19
, pp. 6948-6954
-
-
Neely, A.N.1
Cox, J.R.2
Fortney, J.A.3
-
63
-
-
77950501014
-
MTOR regulation of autophagy
-
Jung, C. H.; Ro, S. H.; Cao, J.; Otto, N. M.; Kim, D. H. mTOR regulation of autophagy. FEBS Lett. 584:1287-1295; 2010.
-
(2010)
FEBS Lett
, vol.584
, pp. 1287-1295
-
-
Jung, C.H.1
Ro, S.H.2
Cao, J.3
Otto, N.M.4
Kim, D.H.5
-
64
-
-
48649085816
-
Regulation of TORC1 by Rag GTPases in nutrient response
-
Kim, E.; Goraksha-Hicks, P.; Li, L.; Neufeld, T. P.; Guan, K. L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10:935-945; 2008.
-
(2008)
Nat. Cell Biol
, vol.10
, pp. 935-945
-
-
Kim, E.1
Goraksha-Hicks, P.2
Li, L.3
Neufeld, T.P.4
Guan, K.L.5
-
65
-
-
45849105156
-
The rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
DOI 10.1126/science.1157535
-
Sancak, Y.; Peterson, T. R.; Shaul, Y. D.; Lindquist, R. A.; Thoreen, C. C.; Bar-Peled, L.; Sabatini, D. M. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496-1501; 2008. (Pubitemid 351929429)
-
(2008)
Science
, vol.320
, Issue.5882
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
Bar-Peled, L.6
Sabatini, D.M.7
-
66
-
-
84055178474
-
Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks
-
Magnuson, B.; Ekim, B.; Fingar, D. C. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem. J. 441:1-21; 2012.
-
(2012)
Biochem. J
, vol.441
, pp. 1-21
-
-
Magnuson, B.1
Ekim, B.2
Fingar, D.C.3
-
67
-
-
24944480788
-
The Akt-mTOR tango and its relevance to cancer
-
DOI 10.1016/j.ccr.2005.08.008, PII S1535610805002667
-
Hay, N. The Akt-mTOR tango and its relevance to cancer. Cancer Cell 8:179-183; 2005. (Pubitemid 41317589)
-
(2005)
Cancer Cell
, vol.8
, Issue.3
, pp. 179-183
-
-
Hay, N.1
-
68
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim, J.; Kundu, M.; Viollet, B.; Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13:132-141; 2011.
-
(2011)
Nat. Cell Biol
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
69
-
-
44649101436
-
The Janus of autophagy?
-
DOI 10.1038/ncb0608-637, PII NCB0608-637
-
Levine, B.; Abrams, J. p53: the Janus of autophagy? Nat. Cell Biol. 10:637-639; 2008. (Pubitemid 351772928)
-
(2008)
Nature Cell Biology
, vol.10
, Issue.6
, pp. 637-639
-
-
Levine, B.1
Abrams, J.2
-
70
-
-
84864313580
-
Autophagy in the brains of young patients with poorly controlled T1DM and fatal diabetic ketoacidosis
-
Hoffman, W. H.; Shacka, J. J.; Andjelkovic, A. V. Autophagy in the brains of young patients with poorly controlled T1DM and fatal diabetic ketoacidosis. Exp. Mol. Pathol. 93:273-280; 2012.
-
(2012)
Exp. Mol. Pathol
, vol.93
, pp. 273-280
-
-
Hoffman, W.H.1
Shacka, J.J.2
Andjelkovic, A.V.3
-
71
-
-
77953699438
-
Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning
-
Sheng, R.; Zhang, L. S.; Han, R.; Liu, X. Q.; Gao, B.; Qin, Z. H. Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning. Autophagy 6; 2010.
-
(2010)
Autophagy
, pp. 6
-
-
Sheng, R.1
Zhang, L.S.2
Han, R.3
Liu, X.Q.4
Gao, B.5
Qin, Z.H.6
-
72
-
-
77953727786
-
Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia
-
Carloni, S.; Girelli, S.; Scopa, C.; Buonocore, G.; Longini, M.; Balduini, W. Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy 6:366-377; 2010.
-
(2010)
Autophagy
, vol.6
, pp. 366-377
-
-
Carloni, S.1
Girelli, S.2
Scopa, C.3
Buonocore, G.4
Longini, M.5
Balduini, W.6
-
73
-
-
84857253827
-
Roles of AMP-activated protein kinase in Alzheimer's disease
-
Cai, Z.; Yan, L. J.; Li, K.; Quazi, S. H.; Zhao, B. Roles of AMP-activated protein kinase in Alzheimer's disease. Neuromol. Med. 14:1-14; 2012.
-
(2012)
Neuromol. Med
, vol.14
, pp. 1-14
-
-
Cai, Z.1
Yan, L.J.2
Li, K.3
Quazi, S.H.4
Zhao, B.5
-
74
-
-
84856953003
-
Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation
-
Coupe, B.; Ishii, Y.; Dietrich, M. O.; Komatsu, M.; Horvath, T. L.; Bouret, S. G. Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metab. 15:247-255; 2012.
-
(2012)
Cell Metab
, vol.15
, pp. 247-255
-
-
Coupe, B.1
Ishii, Y.2
Dietrich, M.O.3
Komatsu, M.4
Horvath, T.L.5
Bouret, S.G.6
-
75
-
-
51449084384
-
Apoptosome-deficient cells lose cytochrome c through proteasomal degradation but survive by autophagy-dependent glycolysis
-
Ferraro, E.; Pulicati, A.; Cencioni, M. T.; Cozzolino, M.; Navoni, F.; di Martino, S.; Nardacci, R.; Carri, M. T.; Cecconi, F. Apoptosome-deficient cells lose cytochrome c through proteasomal degradation but survive by autophagy-dependent glycolysis. Mol. Biol. Cell 19:3576-3588; 2008.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 3576-3588
-
-
Ferraro, E.1
Pulicati, A.2
Cencioni, M.T.3
Cozzolino, M.4
Navoni, F.5
Di Martino, S.6
Nardacci, R.7
Carri, M.T.8
Cecconi, F.9
-
76
-
-
79952227187
-
2-Deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase
-
Wang, Q.; Liang, B.; Shirwany, N. A.; Zou, M. H. 2-Deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase. PLoS One 6:e17234; 2011.
-
(2011)
PLoS One
, vol.6
-
-
Wang, Q.1
Liang, B.2
Shirwany, N.A.3
Zou, M.H.4
-
77
-
-
43949114864
-
Molecular mechanisms and physiological significance of autophagy during myocardial ischemia and reperfusion
-
Matsui, Y.; Kyoi, S.; Takagi, H.; Hsu, C. P.; Hariharan, N.; Ago, T.; Vatner, S. F.; Sadoshima, J. Molecular mechanisms and physiological significance of autophagy during myocardial ischemia and reperfusion. Autophagy 4:409-415; 2008. (Pubitemid 351705136)
-
(2008)
Autophagy
, vol.4
, Issue.4
, pp. 409-415
-
-
Matsui, Y.1
Kyoi, S.2
Takagi, H.3
Hsu, C.-P.4
Hariharan, N.5
Ago, T.6
Vatner, S.F.7
Sadoshima, J.8
-
79
-
-
67650076833
-
Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb
-
Lee, M. N.; Ha, S. H.; Kim, J.; Koh, A.; Lee, C. S.; Kim, J. H.; Jeon, H.; Kim, D. H.; Suh, P. G.; Ryu, S. H. Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol. Cell. Biol. 29:3991-4001; 2009.
-
(2009)
Mol. Cell. Biol
, vol.29
, pp. 3991-4001
-
-
Lee, M.N.1
Ha, S.H.2
Kim, J.3
Koh, A.4
Lee, C.S.5
Kim, J.H.6
Jeon, H.7
Kim, D.H.8
Suh, P.G.9
Ryu, S.H.10
-
80
-
-
34249279169
-
GAPDH and Autophagy Preserve Survival after Apoptotic Cytochrome c Release in the Absence of Caspase Activation
-
DOI 10.1016/j.cell.2007.03.045, PII S0092867407005144
-
Colell, A.; Ricci, J. E.; Tait, S.; Milasta, S.; Maurer, U.; Bouchier-Hayes, L.; Fitzgerald, P.; Guio-Carrion, A.; Waterhouse, N. J.; Li, C. W.; Mari, B.; Barbry, P.; Newmeyer, D. D.; Beere, H. M.; Green, D. R. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129:983-997; 2007. (Pubitemid 46813151)
-
(2007)
Cell
, vol.129
, Issue.5
, pp. 983-997
-
-
Colell, A.1
Ricci, J.-E.2
Tait, S.3
Milasta, S.4
Maurer, U.5
Bouchier-Hayes, L.6
Fitzgerald, P.7
Guio-Carrion, A.8
Waterhouse, N.J.9
Li, C.W.10
Mari, B.11
Barbry, P.12
Newmeyer, D.D.13
Beere, H.M.14
Green, D.R.15
-
81
-
-
78751511180
-
Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation
-
Lock, R.; Roy, S.; Kenific, C. M.; Su, J. S.; Salas, E.; Ronen, S. M.; Debnath, J. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol. Biol. Cell 22:165-178; 2011.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 165-178
-
-
Lock, R.1
Roy, S.2
Kenific, C.M.3
Su, J.S.4
Salas, E.5
Ronen, S.M.6
Debnath, J.7
-
82
-
-
33745918951
-
TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis
-
DOI 10.1016/j.cell.2006.05.036, PII S0092867406007628
-
Bensaad, K.; Tsuruta, A.; Selak, M. A.; Vidal, M. N.; Nakano, K.; Bartrons, R.; Gottlieb, E.; Vousden, K. H. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107-120; 2006. (Pubitemid 44040989)
-
(2006)
Cell
, vol.126
, Issue.1
, pp. 107-120
-
-
Bensaad, K.1
Tsuruta, A.2
Selak, M.A.3
Vidal, M.N.C.4
Nakano, K.5
Bartrons, R.6
Gottlieb, E.7
Vousden, K.H.8
-
83
-
-
84864022325
-
Autophagy in idiopathic pulmonary fibrosis
-
Patel, A. S.; Lin, L.; Geyer, A.; Haspel, J. A.; An, C. H.; Cao, J.; Rosas, I. O.; Morse, D. Autophagy in idiopathic pulmonary fibrosis. PLoS One 7:e41394; 2012.
-
(2012)
PLoS One
, vol.7
-
-
Patel, A.S.1
Lin, L.2
Geyer, A.3
Haspel, J.A.4
An, C.H.5
Cao, J.6
Rosas, I.O.7
Morse, D.8
-
84
-
-
70350575440
-
Modulation of intracellular ROS levels by TIGAR controls autophagy
-
Bensaad, K.; Cheung, E. C.; Vousden, K. H. Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J. 28:3015-3026; 2009.
-
(2009)
EMBO J
, vol.28
, pp. 3015-3026
-
-
Bensaad, K.1
Cheung, E.C.2
Vousden, K.H.3
-
85
-
-
77957681100
-
ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy
-
Dewaele, M.; Maes, H.; Agostinis, P. ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy 6:838-854; 2010.
-
(2010)
Autophagy
, vol.6
, pp. 838-854
-
-
Dewaele, M.1
Maes, H.2
Agostinis, P.3
-
86
-
-
57649178844
-
The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: A review
-
Wamelink, M. M.; Struys, E. A.; Jakobs, C. The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review. J. Inherit. Metab. Dis. 31:703-717; 2008.
-
(2008)
J. Inherit. Metab. Dis
, vol.31
, pp. 703-717
-
-
Wamelink, M.M.1
Struys, E.A.2
Jakobs, C.3
-
88
-
-
37549026846
-
Glucose-6-phosphate dehydrogenase deficiency
-
Cappellini, M. D.; Fiorelli, G. Glucose-6-phosphate dehydrogenase deficiency. Lancet 371:64-74; 2008.
-
(2008)
Lancet
, vol.371
, pp. 64-74
-
-
Cappellini, M.D.1
Fiorelli, G.2
-
89
-
-
0020510926
-
Impaired pentose phosphate shunt function in sickle cell disease: A potential mechanism for increased Heinz body formation and membrane lipid peroxidation
-
Lachant, N. A.; Davidson, W. D.; Tanaka, K. R. Impaired pentose phosphate shunt function in sickle cell disease: a potential mechanism for increased Heinz body formation and membrane lipid peroxidation. Am. J. Hematol. 15:1-13; 1983. (Pubitemid 13043650)
-
(1983)
American Journal of Hematology
, vol.15
, Issue.1
, pp. 1-13
-
-
Lachant, N.A.1
Davidson, W.D.2
Tanaka, K.R.3
-
90
-
-
0028834278
-
Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehy-drogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress
-
Pandolfi, P. P.; Sonati, F.; Rivi, R.; Mason, P.; Grosveld, F.; Luzzatto, L. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehy-drogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J 14:5209-5215; 1995.
-
(1995)
EMBO J
, vol.14
, pp. 5209-5215
-
-
Pandolfi, P.P.1
Sonati, F.2
Rivi, R.3
Mason, P.4
Grosveld, F.5
Luzzatto, L.6
-
91
-
-
18544369618
-
Maternally transmitted severe glucose 6-phosphate dehydrogenase deficiency is an embryonic lethal
-
Longo, L.; Vanegas, O. C.; Patel, M.; Rosti, V.; Li, H.; Waka, J.; Merghoub, T.; Pandolfi, P. P.; Notaro, R.; Manova, K.; Luzzatto, L. Maternally transmitted severe glucose 6-phosphate dehydrogenase deficiency is an embryonic lethal. EMBO J. 21:4229-4239; 2002.
-
(2002)
EMBO J
, vol.21
, pp. 4229-4239
-
-
Longo, L.1
Vanegas, O.C.2
Patel, M.3
Rosti, V.4
Li, H.5
Waka, J.6
Merghoub, T.7
Pandolfi, P.P.8
Notaro, R.9
Manova, K.10
Luzzatto, L.11
-
92
-
-
0037444772
-
Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress
-
DOI 10.1042/BJ20021614
-
Filosa, S.; Fico, A.; Paglialunga, F.; Balestrieri, M.; Crooke, A.; Verde, P.; Abrescia, P.; Bautista, J. M.; Martini, G. Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress. Biochem. J. 370:935-943; 2003. (Pubitemid 36399086)
-
(2003)
Biochemical Journal
, vol.370
, Issue.3
, pp. 935-943
-
-
Filosa, S.1
Fico, A.2
Paglialunga, F.3
Balestrieri, M.4
Crooke, A.5
Verde, P.6
Abrescia, P.7
Bautista, J.M.8
Martini, G.9
-
93
-
-
1342267125
-
Increased myocardial dysfunction after ischemia-Reperfusion in mice lacking glucose-6-Phosphate dehydrogenase
-
DOI 10.1161/01.CIR.0000112605.43318.CA
-
Jain, M.; Cui, L.; Brenner, D. A.; Wang, B.; Handy, D. E.; Leopold, J. A.; Loscalzo, J.; Apstein, C. S.; Liao, R. Increased myocardial dysfunction after ischemia-reperfusion in mice lacking glucose-6-phosphate dehydrogenase. Circulation 109:898-903; 2004. (Pubitemid 38252743)
-
(2004)
Circulation
, vol.109
, Issue.7
, pp. 898-903
-
-
Jain, M.1
Cui, L.2
Brenner, D.A.3
Wang, B.4
Handy, D.E.5
Leopold, J.A.6
Loscalzo, J.7
Apstein, C.S.8
Liao, R.9
-
94
-
-
77952316342
-
High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased oxidative stress and beta-cell apoptosis
-
Zhang, Z.; Liew, C. W.; Handy, D. E.; Zhang, Y.; Leopold, J. A.; Hu, J.; Guo, L.; Kulkarni, R. N.; Loscalzo, J.; Stanton, R. C. High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased oxidative stress and beta-cell apoptosis. FASEB J 24:1497-1505; 2010.
-
(2010)
FASEB J
, vol.24
, pp. 1497-1505
-
-
Zhang, Z.1
Liew, C.W.2
Handy, D.E.3
Zhang, Y.4
Leopold, J.A.5
Hu, J.6
Guo, L.7
Kulkarni, R.N.8
Loscalzo, J.9
Stanton, R.C.10
-
95
-
-
77950583501
-
The pentose-phosphate pathway in neuronal survival against nitrosative stress
-
Bolanos, J. P.; Almeida, A. The pentose-phosphate pathway in neuronal survival against nitrosative stress. IUBMB Life 62:14-18; 2010.
-
(2010)
IUBMB Life
, vol.62
, pp. 14-18
-
-
Bolanos, J.P.1
Almeida, A.2
-
96
-
-
84870918602
-
Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death
-
Cheung, E. C.; Ludwig, R. L.; Vousden, K. H. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc. Natl. Acad. Sci. USA 109:20491-20496; 2012.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 20491-20496
-
-
Cheung, E.C.1
Ludwig, R.L.2
Vousden, K.H.3
-
97
-
-
14044254798
-
Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation
-
DOI 10.1089/ars.2005.7.385
-
Kobayashi, M.; Yamamoto, M. Molecular mechanisms activating the Nrf2- Keap1 pathway of antioxidant gene regulation. Antioxid. Redox Signaling 7:385-394; 2005. (Pubitemid 40279806)
-
(2005)
Antioxidants and Redox Signaling
, vol.7
, Issue.3-4
, pp. 385-394
-
-
Kobayashi, M.1
Yamamoto, M.2
-
98
-
-
79959992219
-
Lysosomal thiol reductase negatively regulates autophagy by altering glutathione synthesis and oxidation
-
Chiang, H. S.; Maric, M. Lysosomal thiol reductase negatively regulates autophagy by altering glutathione synthesis and oxidation. Free Radic. Biol. Med. 51:688-699; 2011.
-
(2011)
Free Radic. Biol. Med
, vol.51
, pp. 688-699
-
-
Chiang, H.S.1
Maric, M.2
-
99
-
-
84870925187
-
Glutathione participates in the modulation of starvation-induced autophagy in carcinoma cells
-
Desideri, E.; Filomeni, G.; Ciriolo, M. R. Glutathione participates in the modulation of starvation-induced autophagy in carcinoma cells. Autophagy 8:1769-1781; 2012.
-
(2012)
Autophagy
, vol.8
, pp. 1769-1781
-
-
Desideri, E.1
Filomeni, G.2
Ciriolo, M.R.3
-
100
-
-
68949208061
-
Parkin deficiency increases the resistance of midbrain neurons and glia to mild proteasome inhibition: The role of autophagy and glutathione homeostasis
-
Casarejos, M.J.; Solano, R.M.; Rodriguez-Navarro, J.A.; Gomez, A.;Perucho, J.; Castano, J.G.; Garcia de Yebenes, J.; Mena, M.A. Parkin deficiency increases the resistance of midbrain neurons and glia to mild proteasome inhibition: the role of autophagy and glutathione homeostasis. J. Neurochem. 110: 1523-1537; 2009.
-
(2009)
J. Neurochem
, vol.110
, pp. 1523-1537
-
-
Casarejos, M.J.1
Solano, R.M.2
Rodriguez-Navarro, J.A.3
Gomez, A.4
Perucho, J.5
Castano, J.G.6
Garcia De Yebenes, J.7
Mena, M.A.8
-
101
-
-
0027519943
-
Protein glycosylation. Structural and functional aspects
-
DOI 10.1111/j.1432-1033.1993.tb18347.x
-
Lis, H.; Sharon, N. Protein glycosylation: structural and functional aspects. Eur. J. Biochem. 218:1-27; 1993. (Pubitemid 23350356)
-
(1993)
European Journal of Biochemistry
, vol.218
, Issue.1
, pp. 1-27
-
-
Lis, H.1
Sharon, N.2
-
102
-
-
33644858343
-
The unfolded protein response: A stress signaling pathway critical for health and disease
-
PII 0000611420060124100018 SUPPL. 1
-
Zhang, K.; Kaufman, R. J. The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 66:S102-109; 2006. (Pubitemid 43739994)
-
(2006)
Neurology
, vol.66
, Issue.2
-
-
Zhang, K.1
Kaufman, R.J.2
-
103
-
-
84870838478
-
Endoplasmic reticulum dysfunction in neurological disease
-
Roussel, B. D.; Kruppa, A. J.; Miranda, E.; Crowther, D. C.; Lomas, D. A.; Marciniak, S. J. Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol. 12:105-118; 2013.
-
(2013)
Lancet Neurol
, vol.12
, pp. 105-118
-
-
Roussel, B.D.1
Kruppa, A.J.2
Miranda, E.3
Crowther, D.C.4
Lomas, D.A.5
Marciniak, S.J.6
-
104
-
-
4043076224
-
Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: Possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis
-
DOI 10.1161/01.CIR.0000137836.95625.D4
-
Okada, K.; Minamino, T.; Tsukamoto, Y.; Liao, Y.; Tsukamoto, O.; Takashima, S.; Hirata, A.; Fujita, M.; Nagamachi, Y.; Nakatani, T.; Yutani, C.; Ozawa, K.; Ogawa, S.; Tomoike, H.; Hori, M.; Kitakaze, M. Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation 110: 705-712; 2004. (Pubitemid 39056270)
-
(2004)
Circulation
, vol.110
, Issue.6
, pp. 705-712
-
-
Okada, K.-I.1
Minamino, T.2
Tsukamoto, Y.3
Liao, Y.4
Tsukamoto, O.5
Takashima, S.6
Hirata, A.7
Fujita, M.8
Nagamachi, Y.9
Nakatani, T.10
Yutani, C.11
Ozawa, K.12
Ogawa, S.13
Tomoike, H.14
Hori, M.15
Kitakaze, M.16
-
105
-
-
34548419344
-
Adipocyte stress: The endoplasmic reticulum and metabolic disease
-
DOI 10.1194/jlr.R700007-JLR200
-
Gregor, M. F.; Hotamisligil, G. S. Adipocyte biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J. Lipid Res. 48:1905-1914; 2007. (Pubitemid 47360610)
-
(2007)
Journal of Lipid Research
, vol.48
, Issue.9
, pp. 1905-1914
-
-
Gregor, M.F.1
Hotamisligil, G.S.2
-
106
-
-
33845459165
-
Autophagy is activated for cell survival after endoplasmic reticulum stress
-
DOI 10.1128/MCB.01453-06
-
Ogata, M.; Hino, S.; Saito, A.; Morikawa, K.; Kondo, S.; Kanemoto, S.; Murakami, T.; Taniguchi, M.; Tanii, I.; Yoshinaga, K.; Shiosaka, S.; Ham-marback, J. A.; Urano, F.; Imaizumi, K. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell. Biol. 26:9220-9231; 2006. (Pubitemid 44904418)
-
(2006)
Molecular and Cellular Biology
, vol.26
, Issue.24
, pp. 9220-9231
-
-
Ogata, M.1
Hino, S.-I.2
Saito, A.3
Morikawa, K.4
Kondo, S.5
Kanemoto, S.6
Murakami, T.7
Taniguchi, M.8
Tanii, I.9
Yoshinaga, K.10
Shiosaka, S.11
Hammarback, J.A.12
Urano, F.13
Imaizumi, K.14
-
107
-
-
77953913051
-
Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations
-
Lee, J. H.; Yu, W. H.; Kumar, A.; Lee, S.; Mohan, P. S.; Peterhoff, C. M.; Wolfe, D. M.; Martinez-Vicente, M.; Massey, A. C.; Sovak, G.; Uchiyama, Y.; Westaway, D.; Cuervo, A. M.; Nixon, R. A. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141:1146-1158; 2010.
-
(2010)
Cell
, vol.141
, pp. 1146-1158
-
-
Lee, J.H.1
Yu, W.H.2
Kumar, A.3
Lee, S.4
Mohan, P.S.5
Peterhoff, C.M.6
Wolfe, D.M.7
Martinez-Vicente, M.8
Massey, A.C.9
Sovak, G.10
Uchiyama, Y.11
Westaway, D.12
Cuervo, A.M.13
Nixon, R.A.14
-
108
-
-
77956400005
-
Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
-
Yang, L.; Li, P.; Fu, S.; Calay, E. S.; Hotamisligil, G. S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11: 467-478; 2010.
-
(2010)
Cell Metab
, vol.11
, pp. 467-478
-
-
Yang, L.1
Li, P.2
Fu, S.3
Calay, E.S.4
Hotamisligil, G.S.5
-
109
-
-
79954450327
-
2-Deoxy-D-glucose activates autophagy via endoplasmic reticulum stress rather than ATP depletion
-
Xi, H.; Kurtoglu, M.; Liu, H.; Wangpaichitr, M.; You, M.; Liu, X.; Savaraj, N.; Lampidis, T. J. 2-Deoxy-D-glucose activates autophagy via endoplasmic reticulum stress rather than ATP depletion. Cancer Chemother. Pharmacol. 67:899-910; 2011.
-
(2011)
Cancer Chemother. Pharmacol
, vol.67
, pp. 899-910
-
-
Xi, H.1
Kurtoglu, M.2
Liu, H.3
Wangpaichitr, M.4
You, M.5
Liu, X.6
Savaraj, N.7
Lampidis, T.J.8
-
110
-
-
41749104745
-
Complex I deficiency in Parkinson's disease frontal cortex
-
DOI 10.1016/j.brainres.2007.10.061, PII S0006899307025814
-
Parker Jr W. D.; Parks, J. K.; Swerdlow, R. H. Complex I deficiency in Parkinson's disease frontal cortex. Brain Res. 1189:215-218; 2008. (Pubitemid 351842538)
-
(2008)
Brain Research
, vol.1189
, Issue.1
, pp. 215-218
-
-
Parker Jr., W.D.1
Parks, J.K.2
Swerdlow, R.H.3
-
111
-
-
0037229425
-
Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and synuclein aggregation
-
DOI 10.1006/exnr.2002.8072
-
Sherer, T. B.; Kim, J. H.; Betarbet, R.; Greenamyre, J. T. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp. Neurol. 179:9-16; 2003. (Pubitemid 36062614)
-
(2003)
Experimental Neurology
, vol.179
, Issue.1
, pp. 9-16
-
-
Sherer, T.B.1
Kim, J.-H.2
Betarbet, R.3
Greenamyre, J.T.4
-
112
-
-
0020680904
-
Chronic parkinsonism in humans due to a product of meperidine-analog synthesis
-
Langston, J. W.; Ballard, P.; Tetrud, J. W.; Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979-980; 1983. (Pubitemid 13189531)
-
(1983)
Science
, vol.219
, Issue.4587
, pp. 979-980
-
-
Langston, J.W.1
Ballard, P.2
Tetrud, J.W.3
Irwin, I.4
-
113
-
-
84866091599
-
Distinct effects of rotenone, 1-methyl-4-phenylpyridinium and 6-hydroxydopamine on cellular bioenergetics and cell death
-
Giordano, S.; Lee, J.; Darley-Usmar, V. M.; Zhang, J. Distinct effects of rotenone, 1-methyl-4-phenylpyridinium and 6-hydroxydopamine on cellular bioenergetics and cell death. PLoS One 7:e44610; 2012.
-
(2012)
PLoS One
, vol.7
-
-
Giordano, S.1
Lee, J.2
Darley-Usmar, V.M.3
Zhang, J.4
-
114
-
-
83055186447
-
Potential autophagy enhancers attenuate rotenone-induced toxicity in SH-SY5Y
-
Xiong, N.; Jia, M.; Chen, C.; Xiong, J.; Zhang, Z.; Huang, J.; Hou, L.; Yang, H.; Cao, X.; Liang, Z.; Sun, S.; Lin, Z.; Wang, T. Potential autophagy enhancers attenuate rotenone-induced toxicity in SH-SY5Y. Neuroscience 199:292-302; 2011.
-
(2011)
Neuroscience
, vol.199
, pp. 292-302
-
-
Xiong, N.1
Jia, M.2
Chen, C.3
Xiong, J.4
Zhang, Z.5
Huang, J.6
Hou, L.7
Yang, H.8
Cao, X.9
Liang, Z.10
Sun, S.11
Lin, Z.12
Wang, T.13
-
115
-
-
70349750492
-
Rapamycin protects against rotenone-induced apoptosis through autophagy induction
-
Pan, T.; Rawal, P.; Wu, Y.; Xie, W.; Jankovic, J.; Le, W. Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neu-roscience 164:541-551; 2009.
-
(2009)
Neu-roscience
, vol.164
, pp. 541-551
-
-
Pan, T.1
Rawal, P.2
Wu, Y.3
Xie, W.4
Jankovic, J.5
Le, W.6
-
116
-
-
77955094939
-
Neuroprotection of deferoxamine on rotenone-induced injury via accumulation of HIF-1 alpha and induction of autophagy in SH-SY5Y cells
-
Wu, Y.; Li, X.; Xie, W.; Jankovic, J.; Le, W.; Pan, T. Neuroprotection of deferoxamine on rotenone-induced injury via accumulation of HIF-1 alpha and induction of autophagy in SH-SY5Y cells. Neurochem. Int. 57:198-205; 2010.
-
(2010)
Neurochem. Int
, vol.57
, pp. 198-205
-
-
Wu, Y.1
Li, X.2
Xie, W.3
Jankovic, J.4
Le, W.5
Pan, T.6
-
117
-
-
33847048316
-
Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death
-
DOI 10.2353/ajpath.2007.060524
-
Zhu, J. H.; Horbinski, C.; Guo, F.; Watkins, S.; Uchiyama, Y.; Chu, C. T. Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am. J. Pathol. 170:75-86; 2007. (Pubitemid 47339191)
-
(2007)
American Journal of Pathology
, vol.170
, Issue.1
, pp. 75-86
-
-
Zhu, J.-H.1
Horbinski, C.2
Guo, F.3
Watkins, S.4
Uchiyama, Y.5
Chu, C.T.6
-
118
-
-
84861544095
-
Impaired mitochondrial biogenesis contributes to depletion of functional mitochondria in chronic MPP+ toxicity: Dual roles for ERK1/2
-
Zhu, J. H.; Gusdon, A. M.; Cimen, H.; Van Houten, B.; Koc, E.; Chu, C. T. Impaired mitochondrial biogenesis contributes to depletion of functional mitochondria in chronic MPP+ toxicity: dual roles for ERK1/2. Cell Death Dis 3:e312; 2012.
-
(2012)
Cell Death Dis
, vol.3
-
-
Zhu, J.H.1
Gusdon, A.M.2
Cimen, H.3
Van Houten, B.4
Koc, E.5
Chu, C.T.6
-
119
-
-
82255181192
-
Mitochondrial electron transport chain complex III is required for antimycin A to inhibit autophagy
-
Ma, X.; Jin, M.; Cai, Y.; Xia, H.; Long, K.; Liu, J.; Yu, Q.; Yuan, J. Mitochondrial electron transport chain complex III is required for antimycin A to inhibit autophagy. Chem. Biol. 18: 1474-1481; 2011.
-
(2011)
Chem. Biol
, vol.18
, pp. 1474-1481
-
-
Ma, X.1
Jin, M.2
Cai, Y.3
Xia, H.4
Long, K.5
Liu, J.6
Yu, Q.7
Yuan, J.8
-
120
-
-
38349043984
-
Mitochondrial electron-transport-chain inhibitors of complexes i and II induce autophagic cell death mediated by reactive oxygen species
-
Chen, Y.; McMillan-Ward, E.; Kong, J.; Israels, S. J.; Gibson, S. B. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J. Cell Sci. 120:4155-4166; 2007.
-
(2007)
J. Cell Sci
, vol.120
, pp. 4155-4166
-
-
Chen, Y.1
McMillan-Ward, E.2
Kong, J.3
Israels, S.J.4
Gibson, S.B.5
-
121
-
-
84869388804
-
Integration of cellular bioenergetics with mitochon-drial quality control and autophagy
-
Hill, B. G.; Benavides, G. A.; Lancaster, J. R.; Ballinger, S.; Dell'italia, L.; Zhang, J.; Darley-Usmar, V. M. Integration of cellular bioenergetics with mitochon-drial quality control and autophagy. Biol. Chem. 393:1485-1512; 2012.
-
(2012)
Biol. Chem
, vol.393
, pp. 1485-1512
-
-
Hill, B.G.1
Benavides, G.A.2
Lancaster, J.R.3
Ballinger, S.4
Dell'Italia, L.5
Zhang, J.6
Darley-Usmar, V.M.7
-
122
-
-
84555195856
-
Autophagy, mitochondria and oxidative stress: Cross-talk and redox signalling
-
Lee, J.; Giordano, S.; Zhang, J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J. 441:523-540; 2012.
-
(2012)
Biochem. J
, vol.441
, pp. 523-540
-
-
Lee, J.1
Giordano, S.2
Zhang, J.3
-
123
-
-
16844366524
-
Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging
-
Lemasters, J. J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8:3-5; 2005.
-
(2005)
Rejuvenation Res
, vol.8
, pp. 3-5
-
-
Lemasters, J.J.1
-
124
-
-
67649363854
-
Glutathione participates in the regulation of mitophagy in yeast
-
Deffieu, M.; Bhatia-Kissova, I.; Salin, B.; Galinier, A.; Manon, S.; Camougrand, N. Glutathione participates in the regulation of mitophagy in yeast. J. Biol. Chem. 284:14828-14837; 2009.
-
(2009)
J. Biol. Chem
, vol.284
, pp. 14828-14837
-
-
Deffieu, M.1
Bhatia-Kissova, I.2
Salin, B.3
Galinier, A.4
Manon, S.5
Camougrand, N.6
-
125
-
-
67650246357
-
Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy
-
Okamoto, K.; Kondo-Okamoto, N.; Ohsumi, Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 17: 87-97; 2009.
-
(2009)
Dev. Cell
, vol.17
, pp. 87-97
-
-
Okamoto, K.1
Kondo-Okamoto, N.2
Ohsumi, Y.3
-
126
-
-
49349102894
-
Mitochondrial fusion, fission and autophagy as a quality control axis: The bioenergetic view
-
Twig, G.; Hyde, B.; Shirihai, O. S. Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim. Biophys. Acta 1777: 1092-1097; 2008.
-
(2008)
Biochim. Biophys. Acta
, vol.1777
, pp. 1092-1097
-
-
Twig, G.1
Hyde, B.2
Shirihai, O.S.3
-
127
-
-
67549101188
-
Role of BNIP3 and NIX in cell death, autophagy, and mitophagy
-
Zhang, J.; Ney, P. A. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 16:939-946; 2009.
-
(2009)
Cell Death Differ
, vol.16
, pp. 939-946
-
-
Zhang, J.1
Ney, P.A.2
-
128
-
-
77951228508
-
Hypoxia-induced autophagy: Cell death or cell survival?
-
Mazure, N. M.; Pouyssegur, J. Hypoxia-induced autophagy: cell death or cell survival? Curr. Opin. Cell Biol. 22:177-180; 2010.
-
(2010)
Curr. Opin. Cell Biol
, vol.22
, pp. 177-180
-
-
Mazure, N.M.1
Pouyssegur, J.2
-
129
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
Narendra, D. P.; Jin, S. M.; Tanaka, A.; Suen, D. F.; Gautier, C. A.; Shen, J.; Cookson, M. R.; Youle, R. J. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8:e1000298; 2010.
-
(2010)
PLoS Biol
, vol.8
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
Suen, D.F.4
Gautier, C.A.5
Shen, J.6
Cookson, M.R.7
Youle, R.J.8
-
130
-
-
84860747905
-
Restriction of trophic factors and nutrients induces PARKIN expression
-
Klinkenberg, M.; Gispert, S.; Dominguez-Bautista, J. A.; Braun, I.; Auburger, G.; Jendrach, M. Restriction of trophic factors and nutrients induces PARKIN expression. Neurogenetics 13:9-21; 2012.
-
(2012)
Neurogenetics
, vol.13
, pp. 9-21
-
-
Klinkenberg, M.1
Gispert, S.2
Dominguez-Bautista, J.A.3
Braun, I.4
Auburger, G.5
Jendrach, M.6
-
132
-
-
79960407069
-
Parkin interacts with Ambra1 to induce mitophagy
-
Van Humbeeck, C.; Cornelissen, T.; Hofkens, H.; Mandemakers, W.; Gevaert, K.; De Strooper, B.; Vandenberghe, W. Parkin interacts with Ambra1 to induce mitophagy. J. Neurosci. 31:10249-10261; 2011.
-
(2011)
J. Neurosci
, vol.31
, pp. 10249-10261
-
-
Van Humbeeck, C.1
Cornelissen, T.2
Hofkens, H.3
Mandemakers, W.4
Gevaert, K.5
De Strooper, B.6
Vandenberghe, W.7
-
133
-
-
75949130828
-
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
-
Geisler, S.; Holmstrom, K. M.; Skujat, D.; Fiesel, F. C.; Rothfuss, O. C.; Kahle, P. J.; Springer, W. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12:119-131; 2010.
-
(2010)
Nat. Cell Biol
, vol.12
, pp. 119-131
-
-
Geisler, S.1
Holmstrom, K.M.2
Skujat, D.3
Fiesel, F.C.4
Rothfuss, O.C.5
Kahle, P.J.6
Springer, W.7
-
134
-
-
73449111577
-
Mitochondrial autophagy as a compensatory response to PINK1 deficiency
-
Cherra 3rd S. J.; Dagda, R. K.; Tandon, A.; Chu, C. T. Mitochondrial autophagy as a compensatory response to PINK1 deficiency. Autophagy 5:1213-1214; 2009.
-
(2009)
Autophagy
, vol.5
, pp. 1213-1214
-
-
Cherra III, S.J.1
Dagda, R.K.2
Tandon, A.3
Chu, C.T.4
-
135
-
-
67649399288
-
Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission
-
Dagda, R. K.; Cherra 3rd S. J.; Kulich, S. M.; Tandon, A.; Park, D.; Chu, C. T. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J. Biol. Chem. 284:13843-13855; 2009.
-
(2009)
J. Biol. Chem
, vol.284
, pp. 13843-13855
-
-
Dagda, R.K.1
Cherra III, S.J.2
Kulich, S.M.3
Tandon, A.4
Park, D.5
Chu, C.T.6
-
136
-
-
84872283780
-
Parkin protein deficiency exacerbates cardiac injury and reduces survival following myo-cardial infarction
-
Kubli, D. A.; Zhang, X.; Lee, Y.; Hanna, R. A.; Quinsay, M. N.; Nguyen, C. K.; Jimenez, R.; Petrosyan, S.; Murphy, A. N.; Gustafsson, A. B. Parkin protein deficiency exacerbates cardiac injury and reduces survival following myo-cardial infarction. J. Biol. Chem. 288:915-926; 2013.
-
(2013)
J. Biol. Chem
, vol.288
, pp. 915-926
-
-
Kubli, D.A.1
Zhang, X.2
Lee, Y.3
Hanna, R.A.4
Quinsay, M.N.5
Nguyen, C.K.6
Jimenez, R.7
Petrosyan, S.8
Murphy, A.N.9
Gustafsson, A.B.10
-
137
-
-
79956323688
-
DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy
-
Thomas, K. J.; McCoy, M. K.; Blackinton, J.; Beilina, A.; van der Brug, M.; Sandebring, A.; Miller, D.; Maric, D.; Cedazo-Minguez, A.; Cookson, M. R. DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Hum. Mol. Genet 20:40-50; 2011.
-
(2011)
Hum. Mol. Genet
, vol.20
, pp. 40-50
-
-
Thomas, K.J.1
McCoy, M.K.2
Blackinton, J.3
Beilina, A.4
Van Der Brug, M.5
Sandebring, A.6
Miller, D.7
Maric, D.8
Cedazo-Minguez, A.9
Cookson, M.R.10
-
138
-
-
50249168137
-
Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: Implications for Parkinson's disease
-
Dagda, R. K.; Zhu, J.; Kulich, S. M.; Chu, C. T. Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson's disease. Autophagy 4:770-782; 2008.
-
(2008)
Autophagy
, vol.4
, pp. 770-782
-
-
Dagda, R.K.1
Zhu, J.2
Kulich, S.M.3
Chu, C.T.4
-
139
-
-
0242499488
-
Localization of phosphorylated ERK/MAP Kinases to mitochondria and autophagosomes in lewy body diseases
-
Zhu, J. H.; Guo, F.; Shelburne, J.; Watkins, S.; Chu, C. T. Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol. 13:473-481; 2003. (Pubitemid 37420692)
-
(2003)
Brain Pathology
, vol.13
, Issue.4
, pp. 473-481
-
-
Zhu, J.-H.1
Guo, F.2
Shelburne, J.3
Watkins, S.4
Chu, C.T.5
-
140
-
-
84859475104
-
Hemin causes mitochondrial dysfunction in endothelial cells through promoting lipid peroxidation: The protective role of autophagy
-
Higdon, A. N.; Benavides, G. A.; Chacko, B. K.; Ouyang, X.; Johnson, M. S.; Landar, A.; Zhang, J.; Darley-Usmar, V. M. Hemin causes mitochondrial dysfunction in endothelial cells through promoting lipid peroxidation: the protective role of autophagy. Am. J. Physiol. Heart Circ. Physiol 302:H1394-1409; 2012.
-
(2012)
Am. J. Physiol. Heart Circ. Physiol
, vol.302
-
-
Higdon, A.N.1
Benavides, G.A.2
Chacko, B.K.3
Ouyang, X.4
Johnson, M.S.5
Landar, A.6
Zhang, J.7
Darley-Usmar, V.M.8
-
141
-
-
79952228407
-
Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis
-
Guo, J. Y.; Chen, H. Y.; Mathew, R.; Fan, J.; Strohecker, A. M.; Karsli-Uzunbas, G.; Kamphorst, J. J.; Chen, G.; Lemons, J. M.; Karantza, V.; Coller, H. A.; Dipaola, R. S.; Gelinas, C.; Rabinowitz, J. D.; White, E. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25:460-470; 2011.
-
(2011)
Genes Dev
, vol.25
, pp. 460-470
-
-
Guo, J.Y.1
Chen, H.Y.2
Mathew, R.3
Fan, J.4
Strohecker, A.M.5
Karsli-Uzunbas, G.6
Kamphorst, J.J.7
Chen, G.8
Lemons, J.M.9
Karantza, V.10
Coller, H.A.11
Dipaola, R.S.12
Gelinas, C.13
Rabinowitz, J.D.14
White, E.15
-
143
-
-
4344618623
-
Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain
-
DOI 10.1016/j.biocel.2004.05.003, PII S1357272504001876
-
Keller, J. N.; Dimayuga, E.; Chen, Q.; Thorpe, J.; Gee, J.; Ding, Q. Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain. Int. J. Biochem. Cell Biol. 36:2376-2391; 2004. (Pubitemid 39119753)
-
(2004)
International Journal of Biochemistry and Cell Biology
, vol.36
, Issue.12
, pp. 2376-2391
-
-
Keller, J.N.1
Dimayuga, E.2
Chen, Q.3
Thorpe, J.4
Gee, J.5
Ding, Q.6
-
144
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
Hara, T.; Nakamura, K.; Matsui, M.; Yamamoto, A.; Nakahara, Y.; Suzuki-Migishima, R.; Yokoyama, M.; Mishima, K.; Saito, I.; Okano, H.; Mizushima, N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885-889; 2006.
-
(2006)
Nature
, vol.441
, pp. 885-889
-
-
Hara, T.1
Nakamura, K.2
Matsui, M.3
Yamamoto, A.4
Nakahara, Y.5
Suzuki-Migishima, R.6
Yokoyama, M.7
Mishima, K.8
Saito, I.9
Okano, H.10
Mizushima, N.11
-
145
-
-
79953736356
-
Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart?
-
Sciarretta, S.; Hariharan, N.; Monden, Y.; Zablocki, D.; Sadoshima, J. Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart? Pediatr. Cardiol. 32:275-281; 2011.
-
(2011)
Pediatr. Cardiol
, vol.32
, pp. 275-281
-
-
Sciarretta, S.1
Hariharan, N.2
Monden, Y.3
Zablocki, D.4
Sadoshima, J.5
-
146
-
-
84863613170
-
Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes
-
Zhao, T.; Huang, X.; Han, L.; Wang, X.; Cheng, H.; Zhao, Y.; Chen, Q.; Chen, J.; Xiao, R.; Zheng, M. Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes. J. Biol. Chem. 287:23615-23625; 2012.
-
(2012)
J. Biol. Chem
, vol.287
, pp. 23615-23625
-
-
Zhao, T.1
Huang, X.2
Han, L.3
Wang, X.4
Cheng, H.5
Zhao, Y.6
Chen, Q.7
Chen, J.8
Xiao, R.9
Zheng, M.10
-
147
-
-
79953186624
-
FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress
-
Sengupta, A.; Molkentin, J. D.; Paik, J. H.; DePinho, R. A.; Yutzey, K. E. FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J. Biol. Chem. 286:7468-7478; 2011.
-
(2011)
J. Biol. Chem
, vol.286
, pp. 7468-7478
-
-
Sengupta, A.1
Molkentin, J.D.2
Paik, J.H.3
Depinho, R.A.4
Yutzey, K.E.5
-
148
-
-
79956126271
-
Oxidative stress stimulates autophagic flux during ischemia/reperfusion
-
Hariharan, N.; Zhai, P.; Sadoshima, J. Oxidative stress stimulates autophagic flux during ischemia/reperfusion. Antioxid. Redox Signaling 14:2179-2190; 2011.
-
(2011)
Antioxid. Redox Signaling
, vol.14
, pp. 2179-2190
-
-
Hariharan, N.1
Zhai, P.2
Sadoshima, J.3
-
149
-
-
84863192578
-
Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury
-
Ma, X.; Liu, H.; Foyil, S. R.; Godar, R. J.; Weinheimer, C. J.; Hill, J. A.; Diwan, A. Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation 125:3170-3181; 2012.
-
(2012)
Circulation
, vol.125
, pp. 3170-3181
-
-
Ma, X.1
Liu, H.2
Foyil, S.R.3
Godar, R.J.4
Weinheimer, C.J.5
Hill, J.A.6
Diwan, A.7
-
150
-
-
12344276944
-
Superoxide dismutase evolution and life span regulation
-
DOI 10.1016/j.mad.2004.08.012, PII S0047637404001733
-
Landis, G. N.; Tower, J. Superoxide dismutase evolution and life span regulation. Mech. Ageing Dev. 126:365-379; 2005. (Pubitemid 40128170)
-
(2005)
Mechanisms of Ageing and Development
, vol.126
, Issue.3
, pp. 365-379
-
-
Landis, G.N.1
Tower, J.2
-
151
-
-
83455243339
-
Autophagy dysregulation in amyotrophic lateral sclerosis
-
Chen, S.; Zhang, X.; Song, L.; Le, W. Autophagy dysregulation in amyotrophic lateral sclerosis. Brain Pathol. 22:110-116; 2012.
-
(2012)
Brain Pathol
, vol.22
, pp. 110-116
-
-
Chen, S.1
Zhang, X.2
Song, L.3
Le, W.4
-
152
-
-
67549084381
-
Superoxide is the major reactive oxygen species regulating autophagy
-
Chen, Y.; Azad, M. B.; Gibson, S. B. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ. 16:1040-1052; 2009.
-
(2009)
Cell Death Differ
, vol.16
, pp. 1040-1052
-
-
Chen, Y.1
Azad, M.B.2
Gibson, S.B.3
-
153
-
-
34247186472
-
Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
-
DOI 10.1038/sj.emboj.7601623, PII 7601623
-
Scherz-Shouval, R.; Shvets, E.; Fass, E.; Shorer, H.; Gil, L.; Elazar, Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 26:1749-1760; 2007. (Pubitemid 46624042)
-
(2007)
EMBO Journal
, vol.26
, Issue.7
, pp. 1749-1760
-
-
Scherz-Shouval, R.1
Shvets, E.2
Fass, E.3
Shorer, H.4
Gil, L.5
Elazar, Z.6
-
154
-
-
33645521571
-
Autophagic programmed cell death by selective catalase degradation
-
Yu, L.; Wan, F.; Dutta, S.; Welsh, S.; Liu, Z.; Freundt, E.; Baehrecke, E. H.; Lenardo, M. Autophagic programmed cell death by selective catalase degradation. Proc. Natl. Acad. Sci. USA 103:4952-4957; 2006.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 4952-4957
-
-
Yu, L.1
Wan, F.2
Dutta, S.3
Welsh, S.4
Liu, Z.5
Freundt, E.6
Baehrecke, E.H.7
Lenardo, M.8
-
155
-
-
58149086894
-
Dihydrocapsaicin (DHC), a saturated structural analog of capsaicin, induces autophagy in human cancer cells in a catalase-regulated manner
-
Oh, S. H.; Kim, Y. S.; Lim, S. C.; Hou, Y. F.; Chang, I. Y.; You, H. J. Dihydrocapsaicin (DHC), a saturated structural analog of capsaicin, induces autophagy in human cancer cells in a catalase-regulated manner. Autophagy 4:1009-1019; 2008.
-
(2008)
Autophagy
, vol.4
, pp. 1009-1019
-
-
Oh, S.H.1
Kim, Y.S.2
Lim, S.C.3
Hou, Y.F.4
Chang, I.Y.5
You, H.J.6
-
156
-
-
77953541592
-
Selective induction of catalase-mediated autophagy by dihydrocapsaicin in lung cell lines
-
Choi, C. H.; Jung, Y. K.; Oh, S. H. Selective induction of catalase-mediated autophagy by dihydrocapsaicin in lung cell lines. Free Radic. Biol. Med. 49:245-257; 2010.
-
(2010)
Free Radic. Biol. Med
, vol.49
, pp. 245-257
-
-
Choi, C.H.1
Jung, Y.K.2
Oh, S.H.3
-
157
-
-
77954382142
-
Nox4-derived H2O2 mediates endoplasmic reticulum signaling through local Ras activation
-
Wu, R. F.; Ma, Z.; Liu, Z.; Terada, L. S. Nox4-derived H2O2 mediates endoplasmic reticulum signaling through local Ras activation. Mol. Cell. Biol. 30:3553-3568; 2010.
-
(2010)
Mol. Cell. Biol
, vol.30
, pp. 3553-3568
-
-
Wu, R.F.1
Ma, Z.2
Liu, Z.3
Terada, L.S.4
-
158
-
-
33645221489
-
Excess peroxisomes are degraded by autophagic machinery in mammals
-
DOI 10.1074/jbc.M512283200
-
Iwata, J.; Ezaki, J.; Komatsu, M.; Yokota, S.; Ueno, T.; Tanida, I.; Chiba, T.; Tanaka, K.; Kominami, E. Excess peroxisomes are degraded by autophagic machinery in mammals. J. Biol. Chem. 281:4035-4041; 2006. (Pubitemid 43847828)
-
(2006)
Journal of Biological Chemistry
, vol.281
, Issue.7
, pp. 4035-4041
-
-
Iwata, J.-I.1
Ezaki, J.2
Komatsu, M.3
Yokota, S.4
Ueno, T.5
Tanida, I.6
Chiba, T.7
Tanaka, K.8
Kominami, E.9
-
159
-
-
84879537948
-
Endothelial peroxisomal dysfunction and impaired pex-ophagy promotes oxidative damage in lipopolysaccharide-induced acute kidney injury
-
Jan 4. [Epub ahead of print]
-
Vasko, R.; Ratliff, B. B.; Bohr, S.; Nadel, E.; Chen, J.; Xavier, S.; Chander, P.; Goligorsky, M. S. Endothelial peroxisomal dysfunction and impaired pex-ophagy promotes oxidative damage in lipopolysaccharide-induced acute kidney injury. Antioxid. Redox Signaling; 2013. Jan 4. [Epub ahead of print].
-
(2013)
Antioxid. Redox Signaling
-
-
Vasko, R.1
Ratliff, B.B.2
Bohr, S.3
Nadel, E.4
Chen, J.5
Xavier, S.6
Chander, P.7
Goligorsky, M.S.8
-
160
-
-
58849163098
-
Oxidative stress and autophagy in the regulation of lysosome-dependent neuron death
-
Pivtoraiko, V. N.; Stone, S. L.; Roth, K. A.; Shacka, J. J. Oxidative stress and autophagy in the regulation of lysosome-dependent neuron death. Antioxid. Redox Signaling 11: 481-496; 2009.
-
(2009)
Antioxid. Redox Signaling
, vol.11
, pp. 481-496
-
-
Pivtoraiko, V.N.1
Stone, S.L.2
Roth, K.A.3
Shacka, J.J.4
-
161
-
-
0028060607
-
Inactivation of lysosomal proteases by oxidized low density lipoprotein is partially responsible for its poor degradation by mouse peritoneal macrophages
-
Hoppe, G.; O'Neil, J.; Hoff, H. F. Inactivation of lysosomal proteases by oxidized low density lipoprotein is partially responsible for its poor degradation by mouse peritoneal macrophages. J. Clin. Invest 94:1506-1512; 1994. (Pubitemid 24309871)
-
(1994)
Journal of Clinical Investigation
, vol.94
, Issue.4
, pp. 1506-1512
-
-
Hoppe, G.1
O'Neil, J.2
Hoff, H.F.3
-
163
-
-
0036710928
-
Lipofuscin: Mechanisms of age-related accumulation and influence on cell function
-
DOI 10.1016/S0891-5849(02)00959-0, PII S0891584902009590
-
Brunk, U. T.; Terman, A. Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic. Biol. Med. 33:611-619; 2002. (Pubitemid 35245833)
-
(2002)
Free Radical Biology and Medicine
, vol.33
, Issue.5
, pp. 611-619
-
-
Brunk, U.T.1
Terman, A.2
-
164
-
-
41049090468
-
The involvement of lysosomes in myocardial aging and disease
-
Terman, A.; Kurz, T.; Gustafsson, B.; Brunk, U. T. The involvement of lysosomes in myocardial aging and disease. Curr. Cardiol. Rev. 4:107-115; 2008.
-
(2008)
Curr. Cardiol. Rev
, vol.4
, pp. 107-115
-
-
Terman, A.1
Kurz, T.2
Gustafsson, B.3
Brunk, U.T.4
-
165
-
-
77953752629
-
What part of NO don't you understand? Some answers to the cardinal questions in nitric oxide biology
-
Hill, B. G.; Dranka, B. P.; Bailey, S. M.; Lancaster Jr J. R.; Darley-Usmar, V. M. What part of NO don't you understand? Some answers to the cardinal questions in nitric oxide biology J. Biol. Chem. 285:19699-19704; 2010.
-
(2010)
J. Biol. Chem
, vol.285
, pp. 19699-19704
-
-
Hill, B.G.1
Dranka, B.P.2
Bailey, S.M.3
Lancaster Jr., J.R.4
Darley-Usmar, V.M.5
-
166
-
-
33846863589
-
Nitric oxide and peroxynitrite in health and disease
-
DOI 10.1152/physrev.00029.2006
-
Pacher, P.; Beckman, J. S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87:315-424; 2007. (Pubitemid 46217686)
-
(2007)
Physiological Reviews
, vol.87
, Issue.1
, pp. 315-424
-
-
Pacher, P.1
Beckman, J.S.2
Liaudet, L.3
-
167
-
-
79951587759
-
Peroxynitrite-induced nitrative and oxidative modifications alter tau filament formation
-
Vana, L.; Kanaan, N. M.; Hakala, K.; Weintraub, S. T.; Binder, L. I. Peroxynitrite-induced nitrative and oxidative modifications alter tau filament formation. Biochemistry 50:1203-1212; 2011.
-
(2011)
Biochemistry
, vol.50
, pp. 1203-1212
-
-
Vana, L.1
Kanaan, N.M.2
Hakala, K.3
Weintraub, S.T.4
Binder, L.I.5
-
168
-
-
46749118458
-
Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease
-
DOI 10.2353/ajpath.2008.080019
-
Pacher, P.; Szabo, C. Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. Am. J. Pathol. 173: 2-13; 2008. (Pubitemid 351947950)
-
(2008)
American Journal of Pathology
, vol.173
, Issue.1
, pp. 2-13
-
-
Pacher, P.1
Szabo, C.2
-
169
-
-
84862286914
-
Antioxidant pharmacological therapies for COPD
-
Rahman, I.; MacNee, W. Antioxidant pharmacological therapies for COPD. Curr. Opin. Pharmacol. 12:256-265; 2012.
-
(2012)
Curr. Opin. Pharmacol
, vol.12
, pp. 256-265
-
-
Rahman, I.1
Macnee, W.2
-
170
-
-
67650932715
-
Erdosteine and ebselen as useful agents in intestinal ischemia/ reperfusion injury
-
Tunc, T.; Uysal, B.; Atabek, C.; Kesik, V.; Caliskan, B.; Oztas, E.; Ersoz, N.; Oter, S.; Guven, A. Erdosteine and ebselen as useful agents in intestinal ischemia/ reperfusion injury. J. Surg. Res. 155:210-216; 2009.
-
(2009)
J. Surg. Res
, vol.155
, pp. 210-216
-
-
Tunc, T.1
Uysal, B.2
Atabek, C.3
Kesik, V.4
Caliskan, B.5
Oztas, E.6
Ersoz, N.7
Oter, S.8
Guven, A.9
-
171
-
-
58849147441
-
Nitric oxide in health and disease of the nervous system
-
Knott, A. B.; Bossy-Wetzel, E. Nitric oxide in health and disease of the nervous system. Antioxid. Redox Signaling 11: 541-554; 2009.
-
(2009)
Antioxid. Redox Signaling
, vol.11
, pp. 541-554
-
-
Knott, A.B.1
Bossy-Wetzel, E.2
-
172
-
-
33748028841
-
Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons
-
DOI 10.1038/sj.emboj.7601253, PII 7601253
-
Barsoum, M. J.; Yuan, H.; Gerencser, A. A.; Liot, G.; Kushnareva, Y.; Graber, S.; Kovacs, I.; Lee, W. D.; Waggoner, J.; Cui, J.; White, A. D.; Bossy, B.; Martinou, J. C.; Youle, R. J.; Lipton, S. A.; Ellisman, M. H.; Perkins, G. A.; Bossy-Wetzel, E. Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J. 25:3900-3911; 2006. (Pubitemid 44300275)
-
(2006)
EMBO Journal
, vol.25
, Issue.16
, pp. 3900-3911
-
-
Barsoum, M.J.1
Yuan, H.2
Gerencser, A.A.3
Liot, G.4
Kushnareva, Y.5
Graber, S.6
Kovacs, I.7
Lee, W.D.8
Waggoner, J.9
Cui, J.10
White, A.D.11
Bossy, B.12
Martinou, J.-C.13
Youle, R.J.14
Lipton, S.A.15
Ellisman, M.H.16
Perkins, G.A.17
Bossy-Wetzel, E.18
-
173
-
-
79959886743
-
Complex inhibitory effects of nitric oxide on autophagy
-
Sarkar, S.; Korolchuk, V. I.; Renna, M.; Imarisio, S.; Fleming, A.; Williams, A.; Garcia-Arencibia, M.; Rose, C.; Luo, S.; Underwood, B. R.; Kroemer, G.; O'Kane, C. J.; Rubinsztein, D. C. Complex inhibitory effects of nitric oxide on autophagy. Mol. Cell 43:19-32; 2011.
-
(2011)
Mol. Cell
, vol.43
, pp. 19-32
-
-
Sarkar, S.1
Korolchuk, V.I.2
Renna, M.3
Imarisio, S.4
Fleming, A.5
Williams, A.6
Garcia-Arencibia, M.7
Rose, C.8
Luo, S.9
Underwood, B.R.10
Kroemer, G.11
O'Kane, C.J.12
Rubinsztein, D.C.13
-
174
-
-
61949346360
-
LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection
-
Yuan, H.; Perry, C. N.; Huang, C.; Iwai-Kanai, E.; Carreira, R. S.; Glembotski, C. C.; Gottlieb, R. A. LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection. Am. J. Physiol. Heart Circ. Physiol 296:H470-479; 2009.
-
(2009)
Am. J. Physiol. Heart Circ. Physiol
, vol.296
-
-
Yuan, H.1
Perry, C.N.2
Huang, C.3
Iwai-Kanai, E.4
Carreira, R.S.5
Glembotski, C.C.6
Gottlieb, R.A.7
-
175
-
-
84864120303
-
Translational evidence that impaired autophagy contributes to arterial ageing
-
LaRocca, T. J.; Henson, G. D.; Thorburn, A.; Sindler, A. L.; Pierce, G. L.; Seals, D. R. Translational evidence that impaired autophagy contributes to arterial ageing. J. Physiol. 590:3305-3316; 2012.
-
(2012)
J. Physiol
, vol.590
, pp. 3305-3316
-
-
Larocca, T.J.1
Henson, G.D.2
Thorburn, A.3
Sindler, A.L.4
Pierce, G.L.5
Seals, D.R.6
-
176
-
-
79960367670
-
Regulation of the ischemia-induced autop-hagy-lysosome processes by nitrosative stress in endothelial cells
-
Han, F.; Chen, Y. X.; Lu, Y. M.; Huang, J. Y.; Zhang, G. S.; Tao, R. R.; Ji, Y. L.; Liao, M. H.; Fukunaga, K.; Qin, Z. H. Regulation of the ischemia-induced autop-hagy-lysosome processes by nitrosative stress in endothelial cells. J. Pineal Res. 51:124-135; 2011.
-
(2011)
J. Pineal Res
, vol.51
, pp. 124-135
-
-
Han, F.1
Chen, Y.X.2
Lu, Y.M.3
Huang, J.Y.4
Zhang, G.S.5
Tao, R.R.6
Ji, Y.L.7
Liao, M.H.8
Fukunaga, K.9
Qin, Z.H.10
-
177
-
-
84867041125
-
Angiogenesis impairment in diabetes: Role of methylglyoxal-induced receptor for advanced glycation endproducts, autop-hagy and vascular endothelial growth factor receptor 2
-
Liu, H.; Yu, S.; Zhang, H.; Xu, J. Angiogenesis impairment in diabetes: role of methylglyoxal-induced receptor for advanced glycation endproducts, autop-hagy and vascular endothelial growth factor receptor 2. PLoS One 7:e46720; 2012.
-
(2012)
PLoS One
, vol.7
-
-
Liu, H.1
Yu, S.2
Zhang, H.3
Xu, J.4
-
178
-
-
84863115908
-
Cathepsin cleavage of sirtuin 1 in endothelial progenitor cells mediates stress-induced premature senescence
-
Chen, J.; Xavier, S.; Moskowitz-Kassai, E.; Chen, R.; Lu, C. Y.; Sanduski, K.; Spes, A.; Turk, B.; Goligorsky, M. S. Cathepsin cleavage of sirtuin 1 in endothelial progenitor cells mediates stress-induced premature senescence. Am. J. Pathol. 180:973-983; 2012.
-
(2012)
Am. J. Pathol
, vol.180
, pp. 973-983
-
-
Chen, J.1
Xavier, S.2
Moskowitz-Kassai, E.3
Chen, R.4
Lu, C.Y.5
Sanduski, K.6
Spes, A.7
Turk, B.8
Goligorsky, M.S.9
-
179
-
-
64749100666
-
Peroxynitrite-mediated lipid oxidation and nitration: Mechanisms and consequences
-
Rubbo, H.; Trostchansky, A.; O'Donnell, V. B. Peroxynitrite-mediated lipid oxidation and nitration: mechanisms and consequences. Arch. Biochem. Biophys. 484:167-172; 2009.
-
(2009)
Arch. Biochem. Biophys
, vol.484
, pp. 167-172
-
-
Rubbo, H.1
Trostchansky, A.2
O'Donnell, V.B.3
-
180
-
-
77956569706
-
Chemistry and biochemistry of lipid peroxidation products
-
Gueraud, F.; Atalay, M.; Bresgen, N.; Cipak, A.; Eckl, P. M.; Huc, L.; Jouanin, I.; Siems, W.; Uchida, K. Chemistry and biochemistry of lipid peroxidation products. Free Radic. Res. 44:1098-1124; 2010.
-
(2010)
Free Radic. Res
, vol.44
, pp. 1098-1124
-
-
Gueraud, F.1
Atalay, M.2
Bresgen, N.3
Cipak, A.4
Eckl, P.M.5
Huc, L.6
Jouanin, I.7
Siems, W.8
Uchida, K.9
-
181
-
-
47049095632
-
Routes to 4-hydroxynonenal: Fundamental issues in the mechanisms of lipid peroxidation
-
Schneider, C.; Porter, N. A.; Brash, A. R. Routes to 4-hydroxynonenal: fundamental issues in the mechanisms of lipid peroxidation. J. Biol. Chem. 283:15539-15543; 2008.
-
(2008)
J. Biol. Chem
, vol.283
, pp. 15539-15543
-
-
Schneider, C.1
Porter, N.A.2
Brash, A.R.3
-
182
-
-
27544492751
-
Lipid peroxidation: Mechanisms, inhibition, and biological effects
-
DOI 10.1016/j.bbrc.2005.08.072, PII S0006291X05017766
-
Niki, E.; Yoshida, Y.; Saito, Y.; Noguchi, N. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem. Biophys. Res. Commun. 338:668-676; 2005. (Pubitemid 41540614)
-
(2005)
Biochemical and Biophysical Research Communications
, vol.338
, Issue.1
, pp. 668-676
-
-
Niki, E.1
Yoshida, Y.2
Saito, Y.3
Noguchi, N.4
-
183
-
-
77957742336
-
Role of 4-hydroxy-trans-2-nonenal in cell functions
-
Dubinina, E. E.; Dadali, V. A. Role of 4-hydroxy-trans-2-nonenal in cell functions. Biochemistry (Moscow) 75:1069-1087; 2010.
-
(2010)
Biochemistry (Moscow)
, vol.75
, pp. 1069-1087
-
-
Dubinina, E.E.1
Dadali, V.A.2
-
184
-
-
67650729358
-
Lipid peroxidation: Physiological levels and dual biological effects
-
Niki, E. Lipid peroxidation: physiological levels and dual biological effects. Free Radic. Biol. Med. 47:469-484; 2009.
-
(2009)
Free Radic. Biol. Med
, vol.47
, pp. 469-484
-
-
Niki, E.1
-
185
-
-
84876485620
-
Utilization of fluorescent probes for the quantification and identification of subcellular proteomes and biological processes regulated by lipid peroxida-tion products
-
Cummins, T. D.; Higdon, A. N.; Kramer, P. A.; Chacko, B. K.; Riggs, D. W.; Salabei, J. K.; Dell'italia, L. J.; Zhang, J.; Darley-Usmar, V. M.; Hill, B. G. Utilization of fluorescent probes for the quantification and identification of subcellular proteomes and biological processes regulated by lipid peroxida-tion products. Free Radic. Biol. Med. 59:56-68; 2013.
-
(2013)
Free Radic. Biol. Med
, vol.59
, pp. 56-68
-
-
Cummins, T.D.1
Higdon, A.N.2
Kramer, P.A.3
Chacko, B.K.4
Riggs, D.W.5
Salabei, J.K.6
Dell'Italia, L.J.7
Zhang, J.8
Darley-Usmar, V.M.9
Hill, B.G.10
-
186
-
-
0043172469
-
4-Hydroxynonenal as a bioactive marker of pathophysiological processes
-
DOI 10.1016/S0098-2997(03)00023-2
-
Zarkovic, N. 4-Hydroxynonenal as a bioactive marker of pathophysiological processes. Mol. Aspects Med 24:281-291; 2003. (Pubitemid 36945028)
-
(2003)
Molecular Aspects of Medicine
, vol.24
, Issue.4-5
, pp. 281-291
-
-
Zarkovic, N.1
-
187
-
-
70350694223
-
Importance of the bioenergetic reserve capacity in response to cardiomyo-cyte stress induced by 4-hydroxynonenal
-
Hill, B. G.; Dranka, B. P.; Zou, L.; Chatham, J. C.; Darley-Usmar, V. M. Importance of the bioenergetic reserve capacity in response to cardiomyo-cyte stress induced by 4-hydroxynonenal. Biochem. J. 424:99-107; 2009.
-
(2009)
Biochem. J
, vol.424
, pp. 99-107
-
-
Hill, B.G.1
Dranka, B.P.2
Zou, L.3
Chatham, J.C.4
Darley-Usmar, V.M.5
-
188
-
-
33646401792
-
Interaction of electrophilic lipid oxidation products with mitochondria in endothelial cells and formation of reactive oxygen species
-
Landar, A.; Zmijewski, J. W.; Dickinson, D. A.; Le Goffe, C.; Johnson, M. S.; Milne, G. L.; Zanoni, G.; Vidari, G.; Morrow, J. D.; Darley-Usmar, V. M. Interaction of electrophilic lipid oxidation products with mitochondria in endothelial cells and formation of reactive oxygen species. Am. J. Physiol. Heart Circ. Physiol 290:H1777-1787; 2006.
-
(2006)
Am. J. Physiol. Heart Circ. Physiol
, vol.290
-
-
Landar, A.1
Zmijewski, J.W.2
Dickinson, D.A.3
Le Goffe, C.4
Johnson, M.S.5
Milne, G.L.6
Zanoni, G.7
Vidari, G.8
Morrow, J.D.9
Darley-Usmar, V.M.10
-
189
-
-
0032079802
-
Metabolism of the lipid peroxidation product, 4-hydroxy-trans-2-nonenal, in isolated perfused rat heart
-
DOI 10.1074/jbc.273.18.10893
-
Srivastava, S.; Chandra, A.; Wang, L. F.; Seifert Jr W. E.; DaGue, B. B.; Ansari, N. H.; Srivastava, S. K.; Bhatnagar, A. Metabolism of the lipid peroxidation product, 4-hydroxy-trans-2-nonenal, in isolated perfused rat heart. J. Biol. Chem. 273:10893-10900; 1998. (Pubitemid 28204926)
-
(1998)
Journal of Biological Chemistry
, vol.273
, Issue.18
, pp. 10893-10900
-
-
Srivastava, S.1
Chandra, A.2
Wang, L.-F.3
Seifert Jr., W.E.4
DaGue, B.B.5
Ansari, N.H.6
Srivastava, S.K.7
Bhatnagar, A.8
-
190
-
-
42449119839
-
2 adduct formation with Keap1 over time: Effects on potency for intracellular antioxidant defence induction
-
DOI 10.1042/BJ20071189
-
Oh, J. Y.; Giles, N.; Landar, A.; Darley-Usmar, V. Accumulation of 15-deoxy-delta(12,14)-prostaglandin J2 adduct formation with Keap1 over time: effects on potency for intracellular antioxidant defence induction. Biochem. J 411:297-306; 2008. (Pubitemid 351580182)
-
(2008)
Biochemical Journal
, vol.411
, Issue.2
, pp. 297-306
-
-
Oh, J.Y.1
Giles, N.2
Landar, A.3
Darley-Usmar, V.4
-
191
-
-
76549096602
-
Mitochondrial targeting of the electrophilic lipid 15-deoxy-Delta12,14- prostaglandin J2 increases apoptotic efficacy via redox cell signalling mechanisms
-
Diers, A. R.; Higdon, A. N.; Ricart, K. C.; Johnson, M. S.; Agarwal, A.; Kalyanaraman, B.; Landar, A.; Darley-Usmar, V. M. Mitochondrial targeting of the electrophilic lipid 15-deoxy-Delta12,14-prostaglandin J2 increases apoptotic efficacy via redox cell signalling mechanisms. Biochem. J. 426:31-41; 2010.
-
(2010)
Biochem. J
, vol.426
, pp. 31-41
-
-
Diers, A.R.1
Higdon, A.N.2
Ricart, K.C.3
Johnson, M.S.4
Agarwal, A.5
Kalyanaraman, B.6
Landar, A.7
Darley-Usmar, V.M.8
-
192
-
-
41149116150
-
Unsaturated lipid peroxidation-derived aldehydes activate autophagy in vascular smooth-muscle cells
-
DOI 10.1042/BJ20071063
-
Hill, B. G.; Haberzettl, P.; Ahmed, Y.; Srivastava, S.; Bhatnagar, A. Unsaturated lipid peroxidation-derived aldehydes activate autophagy in vascular smooth-muscle cells. Biochem. J. 410:525-534; 2008. (Pubitemid 351429023)
-
(2008)
Biochemical Journal
, vol.410
, Issue.3
, pp. 525-534
-
-
Hill, B.G.1
Haberzettl, P.2
Ahmed, Y.3
Srivastava, S.4
Bhatnagar, A.5
-
193
-
-
0041342065
-
Proteins modified by malondialdehyde, 4-hydroxynonenal, or advanced glycation end products in lipofuscin of human retinal pigment epithelium
-
DOI 10.1167/iovs.03-0172
-
Schutt, F.; Bergmann, M.; Holz, F. G.; Kopitz, J. Proteins modified by malondialdehyde, 4-hydroxynonenal, or advanced glycation end products in lipofuscin of human retinal pigment epithelium. Invest. Ophthalmol. Visual Sci. 44:3663-3668; 2003. (Pubitemid 36909809)
-
(2003)
Investigative Ophthalmology and Visual Science
, vol.44
, Issue.8
, pp. 3663-3668
-
-
Schutt, F.1
Bergmann, M.2
Holz, F.G.3
Kopitz, J.4
-
194
-
-
51349095898
-
Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function
-
Zhang, C.; Cuervo, A. M. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat. Med 14:959-965; 2008.
-
(2008)
Nat. Med
, vol.14
, pp. 959-965
-
-
Zhang, C.1
Cuervo, A.M.2
-
195
-
-
78049467743
-
Autophagy reduces acute ethanol-induced hepa-totoxicity and steatosis in mice
-
Ding, W. X.; Li, M.; Chen, X.; Ni, H. M.; Lin, C. W.; Gao, W.; Lu, B.; Stolz, D. B.; Clemens, D. L.; Yin, X. M. Autophagy reduces acute ethanol-induced hepa-totoxicity and steatosis in mice. Gastroenterology 139:1740-1752; 2010.
-
(2010)
Gastroenterology
, vol.139
, pp. 1740-1752
-
-
Ding, W.X.1
Li, M.2
Chen, X.3
Ni, H.M.4
Lin, C.W.5
Gao, W.6
Lu, B.7
Stolz, D.B.8
Clemens, D.L.9
Yin, X.M.10
-
196
-
-
0036326071
-
Stimulatory effect of vitamin C on autophagy in glial cells
-
DOI 10.1046/j.1471-4159.2002.00978.x
-
Martin, A.; Joseph, J. A.; Cuervo, A. M. Stimulatory effect of vitamin C on autophagy in glial cells. J. Neurochem. 82:538-549; 2002. (Pubitemid 34831493)
-
(2002)
Journal of Neurochemistry
, vol.82
, Issue.3
, pp. 538-549
-
-
Martin, A.1
Joseph, J.A.2
Cuervo, A.M.3
-
197
-
-
77950929253
-
Vitamin e as a novel enhancer of macroautophagy in rat hepatocytes and H4-II-E cells
-
Karim, M. R.; Fujimura, S.; Kadowaki, M. Vitamin E as a novel enhancer of macroautophagy in rat hepatocytes and H4-II-E cells. Biochem. Biophys. Res. Commun. 394:981-987; 2010.
-
(2010)
Biochem. Biophys. Res. Commun
, vol.394
, pp. 981-987
-
-
Karim, M.R.1
Fujimura, S.2
Kadowaki, M.3
-
198
-
-
84863924675
-
The vitamin e analogue alpha-TEA stimulates tumor autophagy and enhances antigen cross-presentation
-
Li, Y.; Hahn, T.; Garrison, K.; Cui, Z. H.; Thorburn, A.; Thorburn, J.; Hu, H. M.; Akporiaye, E. T. The vitamin E analogue alpha-TEA stimulates tumor autophagy and enhances antigen cross-presentation. Cancer Res. 72:3535-3545; 2012.
-
(2012)
Cancer Res
, vol.72
, pp. 3535-3545
-
-
Li, Y.1
Hahn, T.2
Garrison, K.3
Cui, Z.H.4
Thorburn, A.5
Thorburn, J.6
Hu, H.M.7
Akporiaye, E.T.8
-
199
-
-
85027923474
-
N-acetylcysteine protects against hypoxia mimetic-induced autophagy by targeting the HIF-1a pathway in retinal ganglion cells
-
Yang, L.; Tan, P.; Zhou, W.; Zhu, X.; Cui, Y.; Zhu, L.; Feng, X.; Qi, H.; Zheng, J.; Gu, P.; Fan, X.; Chen, H. N-acetylcysteine protects against hypoxia mimetic-induced autophagy by targeting the HIF-1a pathway in retinal ganglion cells. Cell. Mol. Neurobiol. 32:1275-1285; 2012.
-
(2012)
Cell. Mol. Neurobiol
, vol.32
, pp. 1275-1285
-
-
Yang, L.1
Tan, P.2
Zhou, W.3
Zhu, X.4
Cui, Y.5
Zhu, L.6
Feng, X.7
Qi, H.8
Zheng, J.9
Gu, P.10
Fan, X.11
Chen, H.12
-
200
-
-
84860995005
-
Neuregulin promotes incomplete autophagy of prostate cancer cells that is independent of mTOR pathway inhibition
-
Schmukler, E.; Shai, B.; Ehrlich, M.; Pinkas-Kramarski, R. Neuregulin promotes incomplete autophagy of prostate cancer cells that is independent of mTOR pathway inhibition. PLoS One 7:e36828; 2012.
-
(2012)
PLoS One
, vol.7
-
-
Schmukler, E.1
Shai, B.2
Ehrlich, M.3
Pinkas-Kramarski, R.4
-
201
-
-
84867786709
-
N-acetyl cysteine protects against methamphetamine-induced dopaminergic neurodegeneration via modulation of redox status and autophagy in dopa-minergic cells
-
Chandramani Shivalingappa, P.; Jin, H.; Anantharam, V.; Kanthasamy, A. N-acetyl cysteine protects against methamphetamine-induced dopaminergic neurodegeneration via modulation of redox status and autophagy in dopa-minergic cells. Parkinsons Dis 2012:424285; 2012.
-
(2012)
Parkinsons Dis
, vol.2012
, pp. 424285
-
-
Chandramani Shivalingappa, P.1
Jin, H.2
Anantharam, V.3
Kanthasamy, A.4
-
202
-
-
21744450416
-
Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury
-
DOI 10.1096/fj.05-3718com
-
Adlam, V. J.; Harrison, J. C.; Porteous, C. M.; James, A. M.; Smith, R. A.; Murphy, M. P.; Sammut, I. A. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J 19:1088-1095; 2005. (Pubitemid 40946434)
-
(2005)
FASEB Journal
, vol.19
, Issue.9
, pp. 1088-1095
-
-
Adlam, V.J.1
Harrison, J.C.2
Porteous, C.M.3
James, A.M.4
Smith, R.A.J.5
Murphy, M.P.6
Sammut, I.A.7
-
203
-
-
78649755150
-
Prevention of diabetic nephropathy in Ins2(+/)(-)(AkitaJ) mice by the mitochondria-targeted therapy MitoQ
-
Chacko, B. K.; Reily, C.; Srivastava, A.; Johnson, M. S.; Ye, Y.; Ulasova, E.; Agarwal, A.; Zinn, K. R.; Murphy, M. P.; Kalyanaraman, B.; Darley-Usmar, V. Prevention of diabetic nephropathy in Ins2(+/)(-)(AkitaJ) mice by the mitochondria-targeted therapy MitoQ. Biochem. J. 432:9-19; 2010.
-
(2010)
Biochem. J
, vol.432
, pp. 9-19
-
-
Chacko, B.K.1
Reily, C.2
Srivastava, A.3
Johnson, M.S.4
Ye, Y.5
Ulasova, E.6
Agarwal, A.7
Zinn, K.R.8
Murphy, M.P.9
Kalyanaraman, B.10
Darley-Usmar, V.11
-
204
-
-
79959538979
-
Mitochondria-targeted ubiquinone (MitoQ) decreases ethanol-dependent micro and macro hepatosteatosis
-
Chacko, B. K.; Srivastava, A.; Johnson, M. S.; Benavides, G. A.; Chang, M. J.; Ye, Y.; Jhala, N.; Murphy, M. P.; Kalyanaraman, B.; Darley-Usmar, V. M. Mitochondria-targeted ubiquinone (MitoQ) decreases ethanol-dependent micro and macro hepatosteatosis. Hepatology 54:153-163; 2011.
-
(2011)
Hepatology
, vol.54
, pp. 153-163
-
-
Chacko, B.K.1
Srivastava, A.2
Johnson, M.S.3
Benavides, G.A.4
Chang, M.J.5
Ye, Y.6
Jhala, N.7
Murphy, M.P.8
Kalyanaraman, B.9
Darley-Usmar, V.M.10
-
205
-
-
56049120778
-
The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis
-
Lowes, D. A.; Thottakam, B. M.; Webster, N. R.; Murphy, M. P.; Galley, H. F. The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis. Free Radic. Biol. Med. 45:1559-1565; 2008.
-
(2008)
Free Radic. Biol. Med
, vol.45
, pp. 1559-1565
-
-
Lowes, D.A.1
Thottakam, B.M.2
Webster, N.R.3
Murphy, M.P.4
Galley, H.F.5
-
206
-
-
80155148269
-
The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer's disease
-
McManus, M. J.; Murphy, M. P.; Franklin, J. L. The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer's disease. J. Neurosci 31:15703-15715; 2011.
-
(2011)
J. Neurosci
, vol.31
, pp. 15703-15715
-
-
McManus, M.J.1
Murphy, M.P.2
Franklin, J.L.3
-
208
-
-
34250664327
-
MitoQ - A mitochondria-targeted antioxidant
-
Tauskela, J. S. MitoQ-a mitochondria-targeted antioxidant. IDrugs 10:399-412; 2007. (Pubitemid 46944310)
-
(2007)
IDrugs
, vol.10
, Issue.6
, pp. 399-412
-
-
Tauskela, J.S.1
-
209
-
-
78049398265
-
The antioxidant transcription factor Nrf2 negatively regulates autophagy and growth arrest induced by the anticancer redox agent mitoquinone
-
Rao, V. A.; Klein, S. R.; Bonar, S. J.; Zielonka, J.; Mizuno, N.; Dickey, J. S.; Keller, P. W.; Joseph, J.; Kalyanaraman, B.; Shacter, E. The antioxidant transcription factor Nrf2 negatively regulates autophagy and growth arrest induced by the anticancer redox agent mitoquinone. J. Biol. Chem. 285:34447-34459; 2010.
-
(2010)
J. Biol. Chem
, vol.285
, pp. 34447-34459
-
-
Rao, V.A.1
Klein, S.R.2
Bonar, S.J.3
Zielonka, J.4
Mizuno, N.5
Dickey, J.S.6
Keller, P.W.7
Joseph, J.8
Kalyanaraman, B.9
Shacter, E.10
|