-
2
-
-
84862728161
-
Vertebrate protein glycosylation: Diversity, synthesis and function
-
Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 2012;13:448-462.
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, pp. 448-462
-
-
Moremen, K.W.1
Tiemeyer, M.2
Nairn, A.V.3
-
3
-
-
84859341928
-
Targeting protein lipidation in disease
-
Resh MD. Targeting protein lipidation in disease. Trends Mol Med 2012;18:206-214.
-
(2012)
Trends Mol Med
, vol.18
, pp. 206-214
-
-
Resh, M.D.1
-
4
-
-
84857895434
-
Protein kinases and phosphatases in the control of cell fate
-
Bononi A, Agnoletto C, De ME, et al. Protein kinases and phosphatases in the control of cell fate. Enzyme Res 2011;2011:329098.
-
(2011)
Enzyme Res
, vol.2011
, pp. 329098
-
-
Bononi, A.1
Agnoletto, C.2
De, M.E.3
-
5
-
-
27644484061
-
Autophagy: Molecular machinery for selfeating
-
Yorimitsu T, Klionsky DJ. Autophagy: molecular machinery for selfeating. Cell Death Differ 2005;12(Suppl 2):1542-1552.
-
(2005)
Cell Death Differ
, vol.12
, pp. 1542-1552
-
-
Yorimitsu, T.1
Klionsky, D.J.2
-
6
-
-
84879047011
-
Cellular metabolic and autophagic pathways: Traffic control by redox signaling
-
Dodson M, Darley-Usmar V, Zhang J. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med 2013;63:207-221.
-
(2013)
Free Radic Biol Med
, vol.63
, pp. 207-221
-
-
Dodson, M.1
Darley-Usmar, V.2
Zhang, J.3
-
7
-
-
84865592978
-
Amino acids and mTORC1: From lysosomes to disease
-
Efeyan A, Zoncu R, Sabatini DM. Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med 2012;18:524-533.
-
(2012)
Trends Mol Med
, vol.18
, pp. 524-533
-
-
Efeyan, A.1
Zoncu, R.2
Sabatini, D.M.3
-
8
-
-
84884819157
-
Autophagosome formation-The role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage
-
Wirth M, Joachim J, Tooze SA. Autophagosome formation-the role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage. Semin Cancer Biol 2013;23:301-309.
-
(2013)
Semin Cancer Biol
, vol.23
, pp. 301-309
-
-
Wirth, M.1
Joachim, J.2
Tooze, S.A.3
-
9
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008;30: 214-226.
-
(2008)
Mol Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
-
10
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan DF, Shackelford DB, Mihaylova MM, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011;331:456-461.
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
Shackelford, D.B.2
Mihaylova, M.M.3
-
11
-
-
79954576039
-
ULK1, mammalian target of rapamycin, and mitochondria: Linking nutrient availability and autophagy
-
Kundu M. ULK1, mammalian target of rapamycin, and mitochondria: linking nutrient availability and autophagy. Antioxid Redox Signal 2011;14:1953-1958.
-
(2011)
Antioxid Redox Signal
, vol.14
, pp. 1953-1958
-
-
Kundu, M.1
-
12
-
-
0037205048
-
The phosphoinositide 3-kinase pathway
-
Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002; 296:1655-1657.
-
(2002)
Science
, vol.296
, pp. 1655-1657
-
-
Cantley, L.C.1
-
13
-
-
33847397874
-
Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40
-
Vander HE, Lee SI, Bandhakavi S, et al. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 2007;9: 316-323.
-
(2007)
Nat Cell Biol
, vol.9
, pp. 316-323
-
-
Vander, H.E.1
Lee, S.I.2
Bandhakavi, S.3
-
14
-
-
33947264077
-
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
-
Sancak Y, Thoreen CC, Peterson TR, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 2007;25:903-915.
-
(2007)
Mol Cell
, vol.25
, pp. 903-915
-
-
Sancak, Y.1
Thoreen, C.C.2
Peterson, T.R.3
-
15
-
-
0031026639
-
Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase. Substrate presentation by phosphatidylinositol transfer protein to the p150. Ptdins 3-kinase complex
-
Panaretou C, Domin J, Cockcroft S, et al. Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase. Substrate presentation by phosphatidylinositol transfer protein to the p150. Ptdins 3-kinase complex. J Biol Chem 1997;272: 2477-2485.
-
(1997)
J Biol Chem
, vol.272
, pp. 2477-2485
-
-
Panaretou, C.1
Domin, J.2
Cockcroft, S.3
-
16
-
-
77955884684
-
Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
-
Itakura E, Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 2010;6:764-776.
-
(2010)
Autophagy
, vol.6
, pp. 764-776
-
-
Itakura, E.1
Mizushima, N.2
-
17
-
-
4944247868
-
Alfy, a novel FYVE domain-containing protein associated with protein granules and autophagic membranes
-
Simonsen A, Birkeland HC, Gillooly DJ, et al. Alfy, a novel FYVE domain-containing protein associated with protein granules and autophagic membranes. J Cell Sci 2004;117:4239-4251.
-
(2004)
J Cell Sci
, vol.117
, pp. 4239-4251
-
-
Simonsen, A.1
Birkeland, H.C.2
Gillooly, D.J.3
-
18
-
-
79952628267
-
The Beclin 1 network regulates autophagy and apoptosis
-
Kang R, Zeh HJ, Lotze MT, et al. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 2011;18:571-580.
-
(2011)
Cell Death Differ
, vol.18
, pp. 571-580
-
-
Kang, R.1
Zeh, H.J.2
Lotze, M.T.3
-
19
-
-
44949237240
-
JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy
-
Wei Y, Pattingre S, Sinha S, et al. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 2008;30: 678-688.
-
(2008)
Mol Cell
, vol.30
, pp. 678-688
-
-
Wei, Y.1
Pattingre, S.2
Sinha, S.3
-
20
-
-
67650270918
-
Phosphorylation of beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL
-
Zalckvar E, Berissi H, Eisenstein M, et al. Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy 2009;5:720-722.
-
(2009)
Autophagy
, vol.5
, pp. 720-722
-
-
Zalckvar, E.1
Berissi, H.2
Eisenstein, M.3
-
21
-
-
84869147050
-
Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation
-
Wang RC, Wei Y, An Z, et al. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 2012;338:956-959.
-
(2012)
Science
, vol.338
, pp. 956-959
-
-
Wang, R.C.1
Wei, Y.2
An, Z.3
-
22
-
-
84887581571
-
TRAPPIII is responsible for vesicular transport from early endosomes to Golgi, facilitating Atg9 cycling in autophagy
-
Shirahama-Noda K, Kira S, Yoshimori T, et al. TRAPPIII is responsible for vesicular transport from early endosomes to Golgi, facilitating Atg9 cycling in autophagy. J Cell Sci 2013;126:4963-4973.
-
(2013)
J Cell Sci
, vol.126
, pp. 4963-4973
-
-
Shirahama-Noda, K.1
Kira, S.2
Yoshimori, T.3
-
23
-
-
59449097721
-
Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy
-
He C, Baba M, Cao Y, et al. Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. Mol Biol Cell 2008;19:5506-5516.
-
(2008)
Mol Biol Cell
, vol.19
, pp. 5506-5516
-
-
He, C.1
Baba, M.2
Cao, Y.3
-
24
-
-
33750366092
-
Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes
-
Young AR, Chan EY, Hu XW, et al. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 2006;119:3888-3900.
-
(2006)
J Cell Sci
, vol.119
, pp. 3888-3900
-
-
Young, A.R.1
Chan, E.Y.2
Hu, X.W.3
-
25
-
-
84893742616
-
Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase
-
Papinski D, Schuschnig M, Reiter W, et al. Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. Mol Cell 2014;53:471-483.
-
(2014)
Mol Cell
, vol.53
, pp. 471-483
-
-
Papinski, D.1
Schuschnig, M.2
Reiter, W.3
-
26
-
-
0034727876
-
Interaction of the Unc-51-like kinase and microtubule-associated protein light chain 3 related proteins in the brain: Possible role of vesicular transport in axonal elongation
-
Okazaki N, Yan J, Yuasa S, et al. Interaction of the Unc-51-like kinase and microtubule-associated protein light chain 3 related proteins in the brain: possible role of vesicular transport in axonal elongation. Brain Res Mol Brain Res 2000;85:1-12.
-
(2000)
Brain Res Mol Brain Res
, vol.85
, pp. 1-12
-
-
Okazaki, N.1
Yan, J.2
Yuasa, S.3
-
27
-
-
77955875002
-
Regulation of the autophagy protein LC3 by phosphorylation
-
Cherra III SJ, Kulich SM, Uechi G, et al. Regulation of the autophagy protein LC3 by phosphorylation. J Cell Biol 2010;190:533-539.
-
(2010)
J Cell Biol
, vol.190
, pp. 533-539
-
-
Cherra, S.J.1
Kulich, S.M.2
Uechi, G.3
-
28
-
-
77952111333
-
Protein kinase C inhibits autophagy and phosphorylates LC3
-
Jiang H, Cheng D, Liu W, et al. Protein kinase C inhibits autophagy and phosphorylates LC3. Biochem Biophys Res Commun 2010;395: 471-476.
-
(2010)
Biochem Biophys Res Commun
, vol.395
, pp. 471-476
-
-
Jiang, H.1
Cheng, D.2
Liu, W.3
-
29
-
-
84870938108
-
MAPK15/ERK8 stimulates autophagy by interacting with LC3 and GABARAP proteins 1
-
Colecchia D, Strambi A, Sanzone S, et al. MAPK15/ERK8 stimulates autophagy by interacting with LC3 and GABARAP proteins 1. Autophagy 2012;8:1724-1740.
-
(2012)
Autophagy
, vol.8
, pp. 1724-1740
-
-
Colecchia, D.1
Strambi, A.2
Sanzone, S.3
-
30
-
-
84869222326
-
ATG8 family proteins act as scaffolds for assembly of the ULK complex: Sequence requirements for LC3-interacting region (LIR) motifs
-
Alemu EA, Lamark T, Torgersen KM, et al. ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs. J Biol Chem 2012;287: 39275-39290.
-
(2012)
J Biol Chem
, vol.287
, pp. 39275-39290
-
-
Alemu, E.A.1
Lamark, T.2
Torgersen, K.M.3
-
31
-
-
82455172117
-
Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins
-
Matsumoto G, Wada K, Okuno M, et al. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol Cell 2011;44:279-289.
-
(2011)
Mol Cell
, vol.44
, pp. 279-289
-
-
Matsumoto, G.1
Wada, K.2
Okuno, M.3
-
32
-
-
84881091197
-
Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation 2
-
Mao K, Chew LH, Inoue-Aono Y, et al. Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation 2. Proc Natl Acad Sci USA 2013;110:E2875-E2884.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. E2875-E2884
-
-
Mao, K.1
Chew, L.H.2
Inoue-Aono, Y.3
-
33
-
-
70349739560
-
Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae
-
Kabeya Y, Noda NN, Fujioka Y, et al. Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2009;389:612-615.
-
(2009)
Biochem Biophys Res Commun
, vol.389
, pp. 612-615
-
-
Kabeya, Y.1
Noda, N.N.2
Fujioka, Y.3
-
34
-
-
84869388804
-
Integration of cellular bioenergetics with mitochondrial quality control and autophagy
-
Hill BG, Benavides GA, Lancaster Jr. JR, et al. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol Chem 2012;393:1485-1512.
-
(2012)
Biol Chem
, vol.393
, pp. 1485-1512
-
-
Hill, B.G.1
Benavides, G.A.2
Lancaster, J.R.3
-
35
-
-
77951181836
-
PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
-
Matsuda N, Sato S, Shiba K, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 2010;189:211-221.
-
(2010)
J Cell Biol
, vol.189
, pp. 211-221
-
-
Matsuda, N.1
Sato, S.2
Shiba, K.3
-
36
-
-
84876531457
-
PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
-
Chen Y, Dorn GW. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 2013;340:471-475.
-
(2013)
Science
, vol.340
, pp. 471-475
-
-
Chen, Y.1
Dorn, G.W.2
-
37
-
-
75949130828
-
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
-
Geisler S, Holmstrom KM, Skujat D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 2010;12:119-131.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 119-131
-
-
Geisler, S.1
Holmstrom, K.M.2
Skujat, D.3
-
38
-
-
78649463381
-
Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy
-
Gegg ME, Cooper JM, Chau KY, et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet 2010;19:4861-4870.
-
(2010)
Hum Mol Genet
, vol.19
, pp. 4861-4870
-
-
Gegg, M.E.1
Cooper, J.M.2
Chau, K.Y.3
-
39
-
-
84857850213
-
Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy
-
Itakura E, Kishi-Itakura C, Koyama-Honda I, et al. Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J Cell Sci 2012;125:1488-1499.
-
(2012)
J Cell Sci
, vol.125
, pp. 1488-1499
-
-
Itakura, E.1
Kishi-Itakura, C.2
Koyama-Honda, I.3
-
40
-
-
84899789746
-
ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy
-
Wu W, Tian W, Hu Z, et al. ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep 2014;15: 566-575.
-
(2014)
EMBO Rep
, vol.15
, pp. 566-575
-
-
Wu, W.1
Tian, W.2
Hu, Z.3
-
41
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre C, Di MC, Polito VA, et al. TFEB links autophagy to lysosomal biogenesis. Science 2011;332:1429-1433.
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
Di, M.C.2
Polito, V.A.3
-
42
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
Settembre C, Zoncu R, Medina DL, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 2012;31:1095-1108.
-
(2012)
EMBO J
, vol.31
, pp. 1095-1108
-
-
Settembre, C.1
Zoncu, R.2
Medina, D.L.3
-
43
-
-
84864874958
-
MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
-
Martina JA, Chen Y, Gucek M, et al. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 2012;8:903-914.
-
(2012)
Autophagy
, vol.8
, pp. 903-914
-
-
Martina, J.A.1
Chen, Y.2
Gucek, M.3
-
44
-
-
0030907389
-
Reduced O glycosylation of Sp1 is associated with increased proteasome susceptibility
-
Han I, Kudlow JE. Reduced O glycosylation of Sp1 is associated with increased proteasome susceptibility. Mol Cell Biol 1997;17: 2550-2558.
-
(1997)
Mol Cell Biol
, vol.17
, pp. 2550-2558
-
-
Han, I.1
Kudlow, J.E.2
-
45
-
-
2342539803
-
O-GlcNAc modification: A nutritional sensor that modulates proteasome function
-
Zachara NE, Hart GW. O-GlcNAc modification: a nutritional sensor that modulates proteasome function. Trends Cell Biol 2004;14: 218-221.
-
(2004)
Trends Cell Biol
, vol.14
, pp. 218-221
-
-
Zachara, N.E.1
Hart, G.W.2
-
46
-
-
3042613480
-
O-GlcNAc a sensor of cellular state: The role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress
-
Zachara NE, Hart GW. O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim Biophys Acta 2004;1673: 13-28.
-
(2004)
Biochim Biophys Acta
, vol.1673
, pp. 13-28
-
-
Zachara, N.E.1
Hart, G.W.2
-
47
-
-
30044438532
-
O-GlcNAc cycling: How a single sugar post-translational modification is changing the way we think about signaling networks
-
Slawson C, Housley MP, Hart GW. O-GlcNAc cycling: how a single sugar post-translational modification is changing the way we think about signaling networks. J Cell Biochem 2006;97:71-83.
-
(2006)
J Cell Biochem
, vol.97
, pp. 71-83
-
-
Slawson, C.1
Housley, M.P.2
Hart, G.W.3
-
48
-
-
84857627624
-
Protein O-linked beta-Nacetylglucosamine: A novel effector of cardiomyocyte metabolism and function
-
Darley-Usmar VM, Ball LE, Chatham JC. Protein O-linked beta-Nacetylglucosamine: a novel effector of cardiomyocyte metabolism and function. J Mol Cell Cardiol 2012;52:538-549.
-
(2012)
J Mol Cell Cardiol
, vol.52
, pp. 538-549
-
-
Darley-Usmar, V.M.1
Ball, L.E.2
Chatham, J.C.3
-
49
-
-
33644874204
-
The hexosamine signaling pathway: Deciphering the "O-GlcNAc code"
-
Love DC, Hanover JA. The hexosamine signaling pathway: deciphering the "O-GlcNAc code". Sci STKE 2005;2005:re13.
-
(2005)
Sci STKE
, vol.2005
, pp. re13
-
-
Love, D.C.1
Hanover, J.A.2
-
50
-
-
2442687675
-
70-kDa-heat shock protein presents an adjustable lectinic activity towards O-linked N-acetylglucosamine
-
Guinez C, Lemoine J, Michalski JC, et al. 70-kDa-heat shock protein presents an adjustable lectinic activity towards O-linked N-acetylglucosamine. Biochem Biophys Res Commun 2004;319:21-26.
-
(2004)
Biochem Biophys Res Commun
, vol.319
, pp. 21-26
-
-
Guinez, C.1
Lemoine, J.2
Michalski, J.C.3
-
51
-
-
0032734974
-
O-GlcNAc and the control of gene expression
-
Comer FI, Hart GW. O-GlcNAc and the control of gene expression. Biochim Biophys Acta 1999;1473:161-171.
-
(1999)
Biochim Biophys Acta
, vol.1473
, pp. 161-171
-
-
Comer, F.I.1
Hart, G.W.2
-
52
-
-
2542446200
-
Accumulation of protein O-GlcNAc modification inhibits proteasomes in the brain and coincides with neuronal apoptosis in brain areas with high O-GlcNAc metabolism
-
Liu K, Paterson AJ, Zhang F, et al. Accumulation of protein O-GlcNAc modification inhibits proteasomes in the brain and coincides with neuronal apoptosis in brain areas with high O-GlcNAc metabolism. J Neurochem 2004;89:1044-1055.
-
(2004)
J Neurochem
, vol.89
, pp. 1044-1055
-
-
Liu, K.1
Paterson, A.J.2
Zhang, F.3
-
54
-
-
52949123249
-
Cross-talk between GlcNAcylation and phosphorylation: Site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc
-
Wang Z, Gucek M, Hart GW. Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc Natl Acad Sci USA 2008;105:13793-13798.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 13793-13798
-
-
Wang, Z.1
Gucek, M.2
Hart, G.W.3
-
55
-
-
0034705030
-
The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny
-
Shafi R, Iyer SP, Ellies LG, et al. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc Natl Acad Sci USA 2000;97:5735-5739.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 5735-5739
-
-
Shafi, R.1
Iyer, S.P.2
Ellies, L.G.3
-
56
-
-
84860872762
-
O-GlcNAcase is essential for embryonic development and maintenance of genomic stability
-
Yang YR, Song M, Lee H, et al. O-GlcNAcase is essential for embryonic development and maintenance of genomic stability. Aging Cell 2012;11:439-448.
-
(2012)
Aging Cell
, vol.11
, pp. 439-448
-
-
Yang, Y.R.1
Song, M.2
Lee, H.3
-
57
-
-
84867908726
-
O-GlcNAc cycling mutants modulate proteotoxicity in Caenorhabditis elegans models of human neurodegenerative diseases
-
Wang P, Lazarus BD, Forsythe ME, et al. O-GlcNAc cycling mutants modulate proteotoxicity in Caenorhabditis elegans models of human neurodegenerative diseases. Proc Natl Acad Sci USA 2012;109:17669-17674.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 17669-17674
-
-
Wang, P.1
Lazarus, B.D.2
Forsythe, M.E.3
-
58
-
-
84875210462
-
Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart
-
Marsh SA, Powell PC, Dell'italia LJ, et al. Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart. Life Sci 2013;92: 648-656.
-
(2013)
Life Sci
, vol.92
, pp. 648-656
-
-
Marsh, S.A.1
Powell, P.C.2
Dell'italia, L.J.3
-
59
-
-
84898613353
-
Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK)
-
Bullen JW, Balsbaugh JL, Chanda D, et al. Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). J Biol Chem 2014;289: 10592-10606.
-
(2014)
J Biol Chem
, vol.289
, pp. 10592-10606
-
-
Bullen, J.W.1
Balsbaugh, J.L.2
Chanda, D.3
-
60
-
-
84861306218
-
Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates Akt signaling
-
Wang S, Huang X, Sun D, et al. Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates Akt signaling. PLoS ONE 2012;7:e37427.
-
(2012)
PLoS ONE
, vol.7
, pp. e37427
-
-
Wang, S.1
Huang, X.2
Sun, D.3
-
61
-
-
0344642959
-
Localization of the O-GlcNAc transferase and O-GlcNAc-modified proteins in rat cerebellar cortex
-
Akimoto Y, Comer FI, Cole RN, et al. Localization of the O-GlcNAc transferase and O-GlcNAc-modified proteins in rat cerebellar cortex. Brain Res 2003;966:194-205.
-
(2003)
Brain Res
, vol.966
, pp. 194-205
-
-
Akimoto, Y.1
Comer, F.I.2
Cole, R.N.3
-
62
-
-
0035971182
-
Dynamic O-glycosylation of nuclear and cytosolic proteins: Cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain
-
Gao Y, Wells L, Comer FI, et al. Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J Biol Chem 2001;276:9838-9845.
-
(2001)
J Biol Chem
, vol.276
, pp. 9838-9845
-
-
Gao, Y.1
Wells, L.2
Comer, F.I.3
-
63
-
-
43249097865
-
Aging leads to increased levels of protein O-linked N-acetylglucosamine in heart, aorta, brain and skeletal muscle in Brown-Norway rats
-
Fulop N, Feng W, Xing D, et al. Aging leads to increased levels of protein O-linked N-acetylglucosamine in heart, aorta, brain and skeletal muscle in Brown-Norway rats. Biogerontology 2008;9:139-151.
-
(2008)
Biogerontology
, vol.9
, pp. 139-151
-
-
Fulop, N.1
Feng, W.2
Xing, D.3
-
64
-
-
84865191053
-
Developmental regulation of protein O-GlcNAcylation, O-GlcNAc transferase, and O-GlcNAcase in mammalian brain
-
Liu Y, Li X, Yu Y, et al. Developmental regulation of protein O-GlcNAcylation, O-GlcNAc transferase, and O-GlcNAcase in mammalian brain. PLoS ONE 2012;7:e43724.
-
(2012)
PLoS ONE
, vol.7
, pp. e43724
-
-
Liu, Y.1
Li, X.2
Yu, Y.3
-
65
-
-
16644369554
-
The potential role of tau protein O-glycosylation in Alzheimer's disease
-
Robertson LA, Moya KL, Breen KC. The potential role of tau protein O-glycosylation in Alzheimer's disease. J Alzheimers. Dis 2004;6: 489-495.
-
(2004)
J Alzheimers. Dis
, vol.6
, pp. 489-495
-
-
Robertson, L.A.1
Moya, K.L.2
Breen, K.C.3
-
66
-
-
67650072530
-
Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer's disease
-
Liu F, Shi J, Tanimukai H, et al. Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer's disease. Brain 2009;132:1820-1832.
-
(2009)
Brain
, vol.132
, pp. 1820-1832
-
-
Liu, F.1
Shi, J.2
Tanimukai, H.3
-
67
-
-
84858664547
-
Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation
-
Yuzwa SA, Shan X, Macauley MS, et al. Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat Chem Biol 2012;8:393-399.
-
(2012)
Nat Chem Biol
, vol.8
, pp. 393-399
-
-
Yuzwa, S.A.1
Shan, X.2
MacAuley, M.S.3
-
68
-
-
47649114560
-
A potent mechanisminspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo
-
Yuzwa SA, Macauley MS, Heinonen JE, et al. A potent mechanisminspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat Chem Biol 2008;4:483-490.
-
(2008)
Nat Chem Biol
, vol.4
, pp. 483-490
-
-
Yuzwa, S.A.1
MacAuley, M.S.2
Heinonen, J.E.3
-
69
-
-
84859819548
-
Differential effects of an O-GlcNAcase inhibitor on tau phosphorylation
-
Yu Y, Zhang L, Li X, et al. Differential effects of an O-GlcNAcase inhibitor on tau phosphorylation. PLoS ONE 2012;7:e35277.
-
(2012)
PLoS ONE
, vol.7
, pp. e35277
-
-
Yu, Y.1
Zhang, L.2
Li, X.3
-
70
-
-
84871257892
-
O-GlcNAc modification prevents peptide-dependent acceleration of alpha-synuclein aggregation
-
Marotta NP, Cherwien CA, Abeywardana T, et al. O-GlcNAc modification prevents peptide-dependent acceleration of alpha-synuclein aggregation. Chembiochem 2012;13:2665-2670.
-
(2012)
Chembiochem
, vol.13
, pp. 2665-2670
-
-
Marotta, N.P.1
Cherwien, C.A.2
Abeywardana, T.3
-
71
-
-
84900424968
-
Decreased O-linked GlcNAcylation protects from cytotoxicity mediated by huntingtin exon1 protein fragment
-
Kumar A, Singh PK, Parihar R, et al. Decreased O-linked GlcNAcylation protects from cytotoxicity mediated by huntingtin exon1 protein fragment. J Biol Chem 2014;289:13543-13553.
-
(2014)
J Biol Chem
, vol.289
, pp. 13543-13553
-
-
Kumar, A.1
Singh, P.K.2
Parihar, R.3
-
72
-
-
38049098543
-
The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy
-
Hanada T, Noda NN, Satomi Y, et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 2007;282:37298-37302.
-
(2007)
J Biol Chem
, vol.282
, pp. 37298-37302
-
-
Hanada, T.1
Noda, N.N.2
Satomi, Y.3
-
73
-
-
81855167585
-
DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(betaTrCP) E3 ubiquitin ligase and regulates survival and autophagy
-
Zhao Y, Xiong X, Sun Y. DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(betaTrCP) E3 ubiquitin ligase and regulates survival and autophagy. Mol Cell 2011;44:304-316.
-
(2011)
Mol Cell
, vol.44
, pp. 304-316
-
-
Zhao, Y.1
Xiong, X.2
Sun, Y.3
-
74
-
-
81855181738
-
MTOR drives its own activation via SCF(betaTrCP)-dependent degradation of the mTOR inhibitor DEPTOR
-
Gao D, Inuzuka H, Tan MK, et al. mTOR drives its own activation via SCF(betaTrCP)-dependent degradation of the mTOR inhibitor DEPTOR. Mol Cell 2011;44:290-303.
-
(2011)
Mol Cell
, vol.44
, pp. 290-303
-
-
Gao, D.1
Inuzuka, H.2
Tan, M.K.3
-
75
-
-
84868148976
-
Regulation of ATG4B stability by RNF5 limits basal levels of autophagy and influences susceptibility to bacterial infection
-
Kuang E, Okumura CY, Sheffy-Levin S, et al. Regulation of ATG4B stability by RNF5 limits basal levels of autophagy and influences susceptibility to bacterial infection. PLoS Genet 2012;8:e1003007.
-
(2012)
PLoS Genet
, vol.8
, pp. e1003007
-
-
Kuang, E.1
Okumura, C.Y.2
Sheffy-Levin, S.3
-
76
-
-
84876488191
-
MTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
-
Nazio F, Strappazzon F, Antonioli M, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 2013;15:406-416.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 406-416
-
-
Nazio, F.1
Strappazzon, F.2
Antonioli, M.3
-
77
-
-
77953858790
-
TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy
-
Shi CS, Kehrl JH. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci Signal 2010;3:ra42.
-
(2010)
Sci Signal
, vol.3
, pp. ra42
-
-
Shi, C.S.1
Kehrl, J.H.2
-
78
-
-
78649653044
-
Parkin mono-ubiquitinates Bcl-2 and regulates autophagy
-
Chen D, Gao F, Li B, et al. Parkin mono-ubiquitinates Bcl-2 and regulates autophagy. J Biol Chem 2010;285:38214-38223.
-
(2010)
J Biol Chem
, vol.285
, pp. 38214-38223
-
-
Chen, D.1
Gao, F.2
Li, B.3
-
79
-
-
84055219407
-
Nedd4-dependent lysine-11-linked polyubiquitination of the tumour suppressor Beclin 1
-
Platta HW, Abrahamsen H, Thoresen SB, et al. Nedd4-dependent lysine-11-linked polyubiquitination of the tumour suppressor Beclin 1. Biochem J 2012;441:399-406.
-
(2012)
Biochem J
, vol.441
, pp. 399-406
-
-
Platta, H.W.1
Abrahamsen, H.2
Thoresen, S.B.3
-
80
-
-
80052564638
-
RNF185, a novel mitochondrial ubiquitin E3 ligase, regulates autophagy through interaction with BNIP1
-
Tang F, Wang B, Li N, et al. RNF185, a novel mitochondrial ubiquitin E3 ligase, regulates autophagy through interaction with BNIP1. PLoS ONE 2011;6:e24367.
-
(2011)
PLoS ONE
, vol.6
, pp. e24367
-
-
Tang, F.1
Wang, B.2
Li, N.3
-
81
-
-
84874610790
-
UBR box N-recognin-4 (UBR4), an N-recognin of the N-end rule pathway, and its role in yolk sac vascular development and autophagy
-
Tasaki T, Kim ST, Zakrzewska A, et al. UBR box N-recognin-4 (UBR4), an N-recognin of the N-end rule pathway, and its role in yolk sac vascular development and autophagy. Proc Natl Acad Sci USA 2013;110:3800-3805.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 3800-3805
-
-
Tasaki, T.1
Kim, S.T.2
Zakrzewska, A.3
-
82
-
-
84896265496
-
Ubiquitylation by the Ltn1 E3 ligase protects 60S ribosomes from starvation-induced selective autophagy
-
Ossareh-Nazari B, Nino CA, Bengtson MH, et al. Ubiquitylation by the Ltn1 E3 ligase protects 60S ribosomes from starvation-induced selective autophagy. J Cell Biol 2014;204:909-917.
-
(2014)
J Cell Biol
, vol.204
, pp. 909-917
-
-
Ossareh-Nazari, B.1
Nino, C.A.2
Bengtson, M.H.3
-
83
-
-
84861204926
-
PINK1- and Parkin-mediated mitophagy at a glance
-
Jin SM, Youle RJ. PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci 2012;125:795-799.
-
(2012)
J Cell Sci
, vol.125
, pp. 795-799
-
-
Jin, S.M.1
Youle, R.J.2
-
84
-
-
78650729600
-
Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
-
Tanaka A, Cleland MM, Xu S, et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 2010;191:1367-1380.
-
(2010)
J Cell Biol
, vol.191
, pp. 1367-1380
-
-
Tanaka, A.1
Cleland, M.M.2
Xu, S.3
-
85
-
-
78649300971
-
P62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
-
Narendra D, Kane LA, Hauser DN, et al. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 2010;6:1090-1106.
-
(2010)
Autophagy
, vol.6
, pp. 1090-1106
-
-
Narendra, D.1
Kane, L.A.2
Hauser, D.N.3
-
86
-
-
84870013071
-
Voltage-dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy
-
Sun Y, Vashisht AA, Tchieu J, et al. Voltage-dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy. J Biol Chem 2012;287:40652-40660.
-
(2012)
J Biol Chem
, vol.287
, pp. 40652-40660
-
-
Sun, Y.1
Vashisht, A.A.2
Tchieu, J.3
-
87
-
-
60449108890
-
Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses
-
Macaskill AF, Rinholm JE, Twelvetrees AE, et al. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 2009;61:541-555.
-
(2009)
Neuron
, vol.61
, pp. 541-555
-
-
MacAskill, A.F.1
Rinholm, J.E.2
Twelvetrees, A.E.3
-
88
-
-
65649107618
-
Drosophila Miro is required for both anterograde and retrograde axonal mitochondrial transport
-
Russo GJ, Louie K, Wellington A, et al. Drosophila Miro is required for both anterograde and retrograde axonal mitochondrial transport. J Neurosci 2009;29:5443-5455.
-
(2009)
J Neurosci
, vol.29
, pp. 5443-5455
-
-
Russo, G.J.1
Louie, K.2
Wellington, A.3
-
89
-
-
79954520907
-
Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
-
Chan NC, Salazar AM, Pham AH, et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 2011;20:1726-1737.
-
(2011)
Hum Mol Genet
, vol.20
, pp. 1726-1737
-
-
Chan, N.C.1
Salazar, A.M.2
Pham, A.H.3
-
90
-
-
81055140895
-
PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
-
Wang X, Winter D, Ashrafi G, et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 2011;147:893-906.
-
(2011)
Cell
, vol.147
, pp. 893-906
-
-
Wang, X.1
Winter, D.2
Ashrafi, G.3
-
91
-
-
84901407276
-
K27 ubiquitination of the mitochondrial transport protein Miro is dependent on serine 65 of the Parkin ubiquitin ligase
-
Birsa N, Norkett R, Wauer T, et al. K27 ubiquitination of the mitochondrial transport protein Miro is dependent on serine 65 of the Parkin ubiquitin ligase. J Biol Chem 2014;289:14569-14582.
-
(2014)
J Biol Chem
, vol.289
, pp. 14569-14582
-
-
Birsa, N.1
Norkett, R.2
Wauer, T.3
-
92
-
-
84890339047
-
Hexokinase activity is required for recruitment of parkin to depolarized mitochondria
-
McCoy MK, Kaganovich A, Rudenko IN, et al. Hexokinase activity is required for recruitment of parkin to depolarized mitochondria. Hum Mol Genet 2014;23:145-156.
-
(2014)
Hum Mol Genet
, vol.23
, pp. 145-156
-
-
McCoy, M.K.1
Kaganovich, A.2
Rudenko, I.N.3
-
93
-
-
84868384387
-
Mitochondrial hexokinase HKI is a novel substrate of the Parkin ubiquitin ligase
-
Okatsu K, Iemura S, Koyano F, et al. Mitochondrial hexokinase HKI is a novel substrate of the Parkin ubiquitin ligase. Biochem Biophys Res Commun 2012;428:197-202.
-
(2012)
Biochem Biophys Res Commun
, vol.428
, pp. 197-202
-
-
Okatsu, K.1
Iemura, S.2
Koyano, F.3
-
94
-
-
84876296881
-
Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
-
Sarraf SA, Raman M, Guarani-Pereira V, et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 2013;496:372-376.
-
(2013)
Nature
, vol.496
, pp. 372-376
-
-
Sarraf, S.A.1
Raman, M.2
Guarani-Pereira, V.3
-
95
-
-
84903179483
-
The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy
-
Bingol B, Tea JS, Phu L, et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 2014;510: 370-375.
-
(2014)
Nature
, vol.510
, pp. 370-375
-
-
Bingol, B.1
Tea, J.S.2
Phu, L.3
-
96
-
-
84876524198
-
Regulation of mitophagy by the Gp78 E3 ubiquitin ligase
-
Fu M, St-Pierre P, Shankar J, et al. Regulation of mitophagy by the Gp78 E3 ubiquitin ligase. Mol Biol Cell 2013;24:1153-1162.
-
(2013)
Mol Biol Cell
, vol.24
, pp. 1153-1162
-
-
Fu, M.1
St-Pierre, P.2
Shankar, J.3
-
97
-
-
33749253910
-
MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology
-
Nakamura N, Kimura Y, Tokuda M, et al. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep 2006;7:1019-1022.
-
(2006)
EMBO Rep
, vol.7
, pp. 1019-1022
-
-
Nakamura, N.1
Kimura, Y.2
Tokuda, M.3
-
98
-
-
76649142385
-
Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynaminrelated protein 1 and mitofusin 1
-
Park YY, Lee S, Karbowski M, et al. Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynaminrelated protein 1 and mitofusin 1. J Cell Sci 2010;123:619-626.
-
(2010)
J Cell Sci
, vol.123
, pp. 619-626
-
-
Park, Y.Y.1
Lee, S.2
Karbowski, M.3
-
99
-
-
84883187967
-
Emerging roles of E3 ubiquitin ligases in autophagy
-
Kuang E, Qi J, Ronai Z. Emerging roles of E3 ubiquitin ligases in autophagy. Trends Biochem Sci 2013;38:453-460.
-
(2013)
Trends Biochem Sci
, vol.38
, pp. 453-460
-
-
Kuang, E.1
Qi, J.2
Ronai, Z.3
-
100
-
-
79953163464
-
The Three Musketeers of Autophagy: Phosphorylation, ubiquitylation and acetylation
-
McEwan DG, Dikic I. The Three Musketeers of Autophagy: phosphorylation, ubiquitylation and acetylation. Trends Cell Biol 2011; 21:195-201.
-
(2011)
Trends Cell Biol
, vol.21
, pp. 195-201
-
-
McEwan, D.G.1
Dikic, I.2
-
101
-
-
84892859905
-
Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy
-
Rogov V, Dotsch V, Johansen T, et al. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 2014;53:167-178.
-
(2014)
Mol Cell
, vol.53
, pp. 167-178
-
-
Rogov, V.1
Dotsch, V.2
Johansen, T.3
-
102
-
-
84863609087
-
The E3-ubiquitin ligase TRIM50 interacts with HDAC6 and p62, and promotes the sequestration and clearance of ubiquitinated proteins into the aggresome
-
Fusco C, Micale L, Egorov M, et al. The E3-ubiquitin ligase TRIM50 interacts with HDAC6 and p62, and promotes the sequestration and clearance of ubiquitinated proteins into the aggresome. PLoS ONE 2012;7:e40440.
-
(2012)
PLoS ONE
, vol.7
, pp. e40440
-
-
Fusco, C.1
Micale, L.2
Egorov, M.3
-
103
-
-
77954599053
-
P62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription
-
Jain A, Lamark T, Sjottem E, et al. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 2010;285:22576-22591.
-
(2010)
J Biol Chem
, vol.285
, pp. 22576-22591
-
-
Jain, A.1
Lamark, T.2
Sjottem, E.3
-
104
-
-
77649265091
-
The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
-
Komatsu M, Kurokawa H, Waguri S, et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 2010;12:213-223.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 213-223
-
-
Komatsu, M.1
Kurokawa, H.2
Waguri, S.3
-
105
-
-
20644440418
-
The kinase domain of titin controls muscle gene expression and protein turnover
-
Lange S, Xiang F, Yakovenko A, et al. The kinase domain of titin controls muscle gene expression and protein turnover. Science 2005;308:1599-1603.
-
(2005)
Science
, vol.308
, pp. 1599-1603
-
-
Lange, S.1
Xiang, F.2
Yakovenko, A.3
-
106
-
-
77953366801
-
A noncanonical mechanism of Nrf2 activation by autophagy deficiency: Direct interaction between Keap1 and p62
-
Lau A, Wang XJ, Zhao F, et al. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol 2010;30:3275-3285.
-
(2010)
Mol Cell Biol
, vol.30
, pp. 3275-3285
-
-
Lau, A.1
Wang, X.J.2
Zhao, F.3
-
107
-
-
79960804104
-
Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
-
Wild P, Farhan H, McEwan DG, et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 2011;333:228-233.
-
(2011)
Science
, vol.333
, pp. 228-233
-
-
Wild, P.1
Farhan, H.2
McEwan, D.G.3
-
108
-
-
37649017266
-
NIX is required for programmed mitochondrial clearance during reticulocyte maturation
-
Schweers RL, Zhang J, Randall MS, et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 2007;104:19500-19505.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 19500-19505
-
-
Schweers, R.L.1
Zhang, J.2
Randall, M.S.3
-
109
-
-
47049100413
-
Essential role for Nix in autophagic maturation of erythroid cells
-
Sandoval H, Thiagarajan P, Dasgupta SK, et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 2008;454: 232-235.
-
(2008)
Nature
, vol.454
, pp. 232-235
-
-
Sandoval, H.1
Thiagarajan, P.2
Dasgupta, S.K.3
-
110
-
-
67549101188
-
Role of BNIP3 and NIX in cell death, autophagy, and mitophagy
-
Zhang J, Ney PA. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 2009;16:939-946.
-
(2009)
Cell Death Differ
, vol.16
, pp. 939-946
-
-
Zhang, J.1
Ney, P.A.2
-
111
-
-
84862789618
-
Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
-
Liu L, Feng D, Chen G, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 2012;14:177-185.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 177-185
-
-
Liu, L.1
Feng, D.2
Chen, G.3
-
112
-
-
84895755121
-
Nucleocytosolic depletion of the energy metabolite acetyl-coenzyme a stimulates autophagy and prolongs lifespan
-
Eisenberg T, Schroeder S, Andryushkova A, et al. Nucleocytosolic depletion of the energy metabolite acetyl-coenzyme a stimulates autophagy and prolongs lifespan. Cell Metab 2014;19:431-444.
-
(2014)
Cell Metab
, vol.19
, pp. 431-444
-
-
Eisenberg, T.1
Schroeder, S.2
Andryushkova, A.3
-
113
-
-
84896713080
-
Regulation of autophagy by cytosolic acetyl-coenzyme A
-
Marino G, Pietrocola F, Eisenberg T, et al. Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol Cell 2014;53:710-725.
-
(2014)
Mol Cell
, vol.53
, pp. 710-725
-
-
Marino, G.1
Pietrocola, F.2
Eisenberg, T.3
-
114
-
-
84882846112
-
The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy
-
Fullgrabe J, Lynch-Day MA, Heldring N, et al. The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy. Nature 2013;500:468-471.
-
(2013)
Nature
, vol.500
, pp. 468-471
-
-
Fullgrabe, J.1
Lynch-Day, M.A.2
Heldring, N.3
-
115
-
-
84899444482
-
Reactive oxygen species, AMP-activated protein kinase, and the transcription cofactor p300 regulate alpha-Tubulin Acetyltransferase-1 (alphaTAT-1/MEC-17)- dependent microtubule hyperacetylation during cell stress
-
Mackeh R, Lorin S, Ratier A, et al. Reactive oxygen species, AMP-activated protein kinase, and the transcription cofactor p300 regulate alpha-Tubulin Acetyltransferase-1 (alphaTAT-1/MEC-17)- dependent microtubule hyperacetylation during cell stress. J Biol Chem 2014;289:11816-11828.
-
(2014)
J Biol Chem
, vol.289
, pp. 11816-11828
-
-
MacKeh, R.1
Lorin, S.2
Ratier, A.3
-
116
-
-
65249106104
-
Regulation of autophagy by the p300 acetyltransferase
-
Lee IH, Finkel T. Regulation of autophagy by the p300 acetyltransferase. J Biol Chem 2009;284:6322-6328.
-
(2009)
J Biol Chem
, vol.284
, pp. 6322-6328
-
-
Lee, I.H.1
Finkel, T.2
-
117
-
-
84860172051
-
GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy
-
Lin SY, Li TY, Liu Q, et al. GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science 2012;336:477-481.
-
(2012)
Science
, vol.336
, pp. 477-481
-
-
Lin, S.Y.1
Li, T.Y.2
Liu, Q.3
-
118
-
-
84888841680
-
LC3B-II deacetylation by histone deacetylase 6 is involved in serum-starvation-induced autophagic degradation
-
Liu KP, Zhou D, Ouyang DY, et al. LC3B-II deacetylation by histone deacetylase 6 is involved in serum-starvation-induced autophagic degradation. Biochem Biophys Res Commun 2013;441:970-975.
-
(2013)
Biochem Biophys Res Commun
, vol.441
, pp. 970-975
-
-
Liu, K.P.1
Zhou, D.2
Ouyang, D.Y.3
-
119
-
-
41549138483
-
A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy
-
Lee IH, Cao L, Mostoslavsky R, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 2008;105:3374-3379.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 3374-3379
-
-
Lee, I.H.1
Cao, L.2
Mostoslavsky, R.3
-
120
-
-
63049132756
-
Acetylation targets mutant huntingtin to autophagosomes for degradation
-
Jeong H, Then F, Melia Jr. TJ, et al. Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell 2009;137: 60-72.
-
(2009)
Cell
, vol.137
, pp. 60-72
-
-
Jeong, H.1
Then, F.2
Melia, T.J.3
-
121
-
-
84856729192
-
Mitochondrial thiols in antioxidant protection and redox signaling: Distinct roles for glutathionylation and other thiol modifications
-
Murphy MP. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 2012;16:476-495.
-
(2012)
Antioxid Redox Signal
, vol.16
, pp. 476-495
-
-
Murphy, M.P.1
-
122
-
-
84856762901
-
Redox-based regulation of apoptosis: S-glutathionylation as a regulatory mechanism to control cell death
-
Anathy V, Roberson EC, Guala AS, et al. Redox-based regulation of apoptosis: S-glutathionylation as a regulatory mechanism to control cell death. Antioxid Redox Signal 2012;16:496-505.
-
(2012)
Antioxid Redox Signal
, vol.16
, pp. 496-505
-
-
Anathy, V.1
Roberson, E.C.2
Guala, A.S.3
-
123
-
-
84555195856
-
Autophagy, mitochondria and oxidative stress: Cross-talk and redox signalling
-
Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 2012;441:523-540.
-
(2012)
Biochem J
, vol.441
, pp. 523-540
-
-
Lee, J.1
Giordano, S.2
Zhang, J.3
-
124
-
-
84898785937
-
Redox regulation of antioxidants, autophagy, and the response to stress: Implications for electrophile therapeutics
-
Levonen AL, Hill BG, Kansanen E, et al. Redox regulation of antioxidants, autophagy, and the response to stress: Implications for electrophile therapeutics. Free Radic Biol Med 2014;71C:196-207.
-
(2014)
Free Radic Biol Med
, vol.71 C
, pp. 196-207
-
-
Levonen, A.L.1
Hill, B.G.2
Kansanen, E.3
-
125
-
-
34247186472
-
Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
-
Scherz-Shouval R, Shvets E, Fass E, et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 2007;26:1749-1760.
-
(2007)
EMBO J
, vol.26
, pp. 1749-1760
-
-
Scherz-Shouval, R.1
Shvets, E.2
Fass, E.3
-
126
-
-
33745280651
-
Biochemical analysis of Parkinson's disease-causing variants of Parkin, an E3 ubiquitinprotein ligase with monoubiquitylation capacity
-
Hampe C, Ardila-Osorio H, Fournier M, et al. Biochemical analysis of Parkinson's disease-causing variants of Parkin, an E3 ubiquitinprotein ligase with monoubiquitylation capacity. Hum Mol Genet 2006;15:2059-2075.
-
(2006)
Hum Mol Genet
, vol.15
, pp. 2059-2075
-
-
Hampe, C.1
Ardila-Osorio, H.2
Fournier, M.3
-
127
-
-
84875910694
-
Sulfhydration mediates neuroprotective actions of parkin
-
Vandiver MS, Paul BD, Xu R, et al. Sulfhydration mediates neuroprotective actions of parkin. Nat Commun 2013;4:1626.
-
(2013)
Nat Commun
, vol.4
, pp. 1626
-
-
Vandiver, M.S.1
Paul, B.D.2
Xu, R.3
-
128
-
-
77949623516
-
Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson's disease-associated protein DJ-1
-
Krebiehl G, Ruckerbauer S, Burbulla LF, et al. Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson's disease-associated protein DJ-1. PLoS ONE 2010;5:e9367.
-
(2010)
PLoS ONE
, vol.5
, pp. e9367
-
-
Krebiehl, G.1
Ruckerbauer, S.2
Burbulla, L.F.3
-
129
-
-
84892163616
-
Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease
-
Giordano S, Darley-Usmar V, Zhang J. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease. Redox Biol 2014;2:82-90.
-
(2014)
Redox Biol
, vol.2
, pp. 82-90
-
-
Giordano, S.1
Darley-Usmar, V.2
Zhang, J.3
|