-
1
-
-
84905007179
-
Myeloperoxidase in human neutrophil host defence
-
Nauseef W.M. Myeloperoxidase in human neutrophil host defence. Cell Microbiol. 2014, 16:1146-1155. 10.1111/cmi.12312.
-
(2014)
Cell Microbiol.
, vol.16
, pp. 1146-1155
-
-
Nauseef, W.M.1
-
2
-
-
78650894319
-
Crosstalk of reactive oxygen species and NF-κB signaling
-
Morgan M.J., Liu Z.-G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011, 21:103-115. 10.1038/cr.2010.178.
-
(2011)
Cell Res.
, vol.21
, pp. 103-115
-
-
Morgan, M.J.1
Liu, Z.-G.2
-
3
-
-
33846432787
-
Novel cell death program leads to neutrophil extracellular traps
-
Fuchs T.A., Abed U., Goosmann C., Hurwitz R., Schulze I., Wahn V., et al. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 2007, 176:231-241. 10.1083/jcb.200606027.
-
(2007)
J. Cell Biol.
, vol.176
, pp. 231-241
-
-
Fuchs, T.A.1
Abed, U.2
Goosmann, C.3
Hurwitz, R.4
Schulze, I.5
Wahn, V.6
-
4
-
-
79953138339
-
The many roles of NOX2 NADPH oxidase-derived ROS in immunity
-
Lam G.Y., Huang J., Brumell J.H. The many roles of NOX2 NADPH oxidase-derived ROS in immunity. Semin Immunopathol. 2010, 32:415-430. 10.1007/s00281-010-0221-0.
-
(2010)
Semin Immunopathol.
, vol.32
, pp. 415-430
-
-
Lam, G.Y.1
Huang, J.2
Brumell, J.H.3
-
5
-
-
84555195856
-
Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling
-
Lee J., Giordano S., Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J. 2012, 441:523-540. 10.1042/BJ20111451.
-
(2012)
Biochem. J.
, vol.441
, pp. 523-540
-
-
Lee, J.1
Giordano, S.2
Zhang, J.3
-
6
-
-
79957597757
-
Mitochondria in innate immune responses
-
West A.P., Shadel G.S., Ghosh S. Mitochondria in innate immune responses. Nat. Rev. Immunol. 2011, 11:389-402. 10.1038/nri2975.
-
(2011)
Nat. Rev. Immunol.
, vol.11
, pp. 389-402
-
-
West, A.P.1
Shadel, G.S.2
Ghosh, S.3
-
7
-
-
79952184583
-
Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS)
-
Bulua A.C., Simon A., Maddipati R., Pelletier M., Park H., Kim K.-Y., et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J. Exp. Med. 2011, 208:519-533. 10.1084/jem.20102049.
-
(2011)
J. Exp. Med.
, vol.208
, pp. 519-533
-
-
Bulua, A.C.1
Simon, A.2
Maddipati, R.3
Pelletier, M.4
Park, H.5
Kim, K.-Y.6
-
8
-
-
84872006971
-
Where killers meet-permeabilization of the outer mitochondrial membrane during apoptosis
-
a011106-a011106
-
Bender T., Martinou J.-C. Where killers meet-permeabilization of the outer mitochondrial membrane during apoptosis. Cold Spring Harb. Perspect. Biol. 2013, 5. a011106-a011106. 10.1101/cshperspect.a011106.
-
(2013)
Cold Spring Harb. Perspect. Biol.
, vol.5
-
-
Bender, T.1
Martinou, J.-C.2
-
9
-
-
84874260968
-
A ROS rheostat for cell fate regulation
-
Maryanovich M., Gross A. A ROS rheostat for cell fate regulation. Trends Cell Biol. 2013, 23:129-134. 10.1016/j.tcb.2012.09.007.
-
(2013)
Trends Cell Biol.
, vol.23
, pp. 129-134
-
-
Maryanovich, M.1
Gross, A.2
-
10
-
-
67549084381
-
Superoxide is the major reactive oxygen species regulating autophagy
-
Chen Y., Azad M.B., Gibson S.B. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ. 2009, 16:1040-1052. 10.1038/cdd.2009.49.
-
(2009)
Cell Death Differ.
, vol.16
, pp. 1040-1052
-
-
Chen, Y.1
Azad, M.B.2
Gibson, S.B.3
-
11
-
-
84924585055
-
Mitochondria: diversity in the regulation of the NLRP3 inflammasome
-
Gurung P., Lukens J.R., Kanneganti T.-D. Mitochondria: diversity in the regulation of the NLRP3 inflammasome. Trends Mol.r Med. 2015, 21:193-201. 10.1016/j.molmed.2014.11.008.
-
(2015)
Trends Mol.r Med.
, vol.21
, pp. 193-201
-
-
Gurung, P.1
Lukens, J.R.2
Kanneganti, T.-D.3
-
12
-
-
84899473768
-
Succinate: a metabolic signal in inflammation
-
Mills E., O'Neill L.A.J. Succinate: a metabolic signal in inflammation. Trends Cell Biol. 2014, 24:313-320. 10.1016/j.tcb.2013.11.008.
-
(2014)
Trends Cell Biol.
, vol.24
, pp. 313-320
-
-
Mills, E.1
O'Neill, L.A.J.2
-
13
-
-
84894073629
-
Reactive oxygen species in inflammation and tissue injury
-
Mittal M., Siddiqui M.R., Tran K., Reddy S.P., Malik A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014, 20:1126-1167. 10.1089/ars.2012.5149.
-
(2014)
Antioxid. Redox Signal.
, vol.20
, pp. 1126-1167
-
-
Mittal, M.1
Siddiqui, M.R.2
Tran, K.3
Reddy, S.P.4
Malik, A.B.5
-
14
-
-
49449116792
-
Oxidative innate immune defenses by Nox/Duox family NADPH oxidases
-
Rada B., Leto T.L. Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib. Microbiol. 2008, 15:164-187. 10.1159/000136357.
-
(2008)
Contrib. Microbiol.
, vol.15
, pp. 164-187
-
-
Rada, B.1
Leto, T.L.2
-
15
-
-
84863875650
-
Mycobacteria and the intraphagosomal environment: take it with a pinch of salt(s)!
-
Soldati T., Neyrolles O. Mycobacteria and the intraphagosomal environment: take it with a pinch of salt(s)!. Traffic 2012, 13:1042-1052. 10.1111/j.1600-0854.2012.01358.x.
-
(2012)
Traffic
, vol.13
, pp. 1042-1052
-
-
Soldati, T.1
Neyrolles, O.2
-
16
-
-
80052263264
-
Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling
-
Al Ghouleh I., Khoo N.K.H., Knaus U.G., Griendling K.K., Touyz R.M., Thannickal V.J., et al. Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radic. Biol. Med. 2011, 51:1271-1288. 10.1016/j.freeradbiomed.2011.06.011.
-
(2011)
Free Radic. Biol. Med.
, vol.51
, pp. 1271-1288
-
-
Al Ghouleh, I.1
Khoo, N.K.H.2
Knaus, U.G.3
Griendling, K.K.4
Touyz, R.M.5
Thannickal, V.J.6
-
18
-
-
58149388349
-
NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells
-
Mantegazza A.R., Savina A., Vermeulen M., Pérez L., Geffner J., Hermine O., et al. NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells. Blood 2008, 112:4712-4722. 10.1182/blood-2008-01-134791.
-
(2008)
Blood
, vol.112
, pp. 4712-4722
-
-
Mantegazza, A.R.1
Savina, A.2
Vermeulen, M.3
Pérez, L.4
Geffner, J.5
Hermine, O.6
-
19
-
-
77953782625
-
NADPH oxidase activity controls phagosomal proteolysis in macrophages through modulation of the lumenal redox environment of phagosomes
-
Rybicka J.M., Balce D.R., Khan M.F., Krohn R.M., Yates R.M. NADPH oxidase activity controls phagosomal proteolysis in macrophages through modulation of the lumenal redox environment of phagosomes. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:10496-10501. 10.1073/pnas.0914867107.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 10496-10501
-
-
Rybicka, J.M.1
Balce, D.R.2
Khan, M.F.3
Krohn, R.M.4
Yates, R.M.5
-
20
-
-
47149084362
-
Genetics and immunopathology of chronic granulomatous disease
-
Stasia M.J., Li X.J. Genetics and immunopathology of chronic granulomatous disease. Semin. Immunopathol. 2008, 30:209-235. 10.1007/s00281-008-0121-8.
-
(2008)
Semin. Immunopathol.
, vol.30
, pp. 209-235
-
-
Stasia, M.J.1
Li, X.J.2
-
21
-
-
0031713092
-
Clinical manifestation of myeloperoxidase deficiency
-
Lanza F. Clinical manifestation of myeloperoxidase deficiency. J. Mol. Med. 1998, 76:676-681.
-
(1998)
J. Mol. Med.
, vol.76
, pp. 676-681
-
-
Lanza, F.1
-
22
-
-
84876906830
-
TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species
-
Roca F.J., Ramakrishnan L. TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell 2013, 153:521-534. 10.1016/j.cell.2013.03.022.
-
(2013)
Cell
, vol.153
, pp. 521-534
-
-
Roca, F.J.1
Ramakrishnan, L.2
-
23
-
-
34547643550
-
Nuclear receptor ERR alpha and coactivator PGC-1 beta are effectors of IFN-gamma-induced host defense
-
Sonoda J., Laganiere J., Mehl I.R., Barish G.D., Chong L.W., Li X., et al. Nuclear receptor ERR alpha and coactivator PGC-1 beta are effectors of IFN-gamma-induced host defense. Genes Devt. 2007, 21:1909-1920. 10.1101/gad.1553007.
-
(2007)
Genes Devt.
, vol.21
, pp. 1909-1920
-
-
Sonoda, J.1
Laganiere, J.2
Mehl, I.R.3
Barish, G.D.4
Chong, L.W.5
Li, X.6
-
24
-
-
84884834986
-
ROS production in phagocytes: why, when, and where?
-
Dupre-Crochet S., Erard M., Nüße O. ROS production in phagocytes: why, when, and where?. J. Leukoc. Biol. 2013, 94:657-670. 10.1189/jlb.1012544.
-
(2013)
J. Leukoc. Biol.
, vol.94
, pp. 657-670
-
-
Dupre-Crochet, S.1
Erard, M.2
Nüße, O.3
-
25
-
-
84872045564
-
Mucosal reactive oxygen species decrease virulence by disrupting Campylobacter jejuni phosphotyrosine signaling
-
Corcionivoschi N., Alvarez L.A.J., Sharp T.H., Strengert M., Alemka A., Mantell J., et al. Mucosal reactive oxygen species decrease virulence by disrupting Campylobacter jejuni phosphotyrosine signaling. Cell Host Microbe 2012, 12:47-59. 10.1016/j.chom.2012.05.018.
-
(2012)
Cell Host Microbe
, vol.12
, pp. 47-59
-
-
Corcionivoschi, N.1
Alvarez, L.A.J.2
Sharp, T.H.3
Strengert, M.4
Alemka, A.5
Mantell, J.6
-
26
-
-
84892604268
-
Disparate impact of oxidative host defenses determines the fate of Salmonella during systemic infection in mice
-
Burton N.A., Schurmann N., Casse O., Steeb A.K., Claudi B., Zankl J., et al. Disparate impact of oxidative host defenses determines the fate of Salmonella during systemic infection in mice. Cell Host Microbé 2014, 15:72-83. 10.1016/j.chom.2013.12.006.
-
(2014)
Cell Host Microbé
, vol.15
, pp. 72-83
-
-
Burton, N.A.1
Schurmann, N.2
Casse, O.3
Steeb, A.K.4
Claudi, B.5
Zankl, J.6
-
27
-
-
77957157893
-
Gut inflammation provides a respiratory electron acceptor for Salmonella
-
Winter S.E., Thiennimitr P., Winter M.G., Butler B.P., Huseby D.L., Crawford R.W., et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 2010, 467:426-429. 10.1038/nature09415.
-
(2010)
Nature
, vol.467
, pp. 426-429
-
-
Winter, S.E.1
Thiennimitr, P.2
Winter, M.G.3
Butler, B.P.4
Huseby, D.L.5
Crawford, R.W.6
-
28
-
-
76749105131
-
Salmonella regulation of intestinal stem cells through the Wnt/beta-catenin pathway
-
Liu X., Lu R., Wu S., Sun J. Salmonella regulation of intestinal stem cells through the Wnt/beta-catenin pathway. FEBS Lett. 2010, 584:911-916. 10.1016/j.febslet.2010.01.024.
-
(2010)
FEBS Lett.
, vol.584
, pp. 911-916
-
-
Liu, X.1
Lu, R.2
Wu, S.3
Sun, J.4
-
29
-
-
77954851049
-
Wnt signaling regulates mitochondrial physiology and insulin sensitivity
-
Yoon J.C., Ng A., Kim B.H., Bianco A., Xavier R.J., Elledge S.J. Wnt signaling regulates mitochondrial physiology and insulin sensitivity. Genes Dev. 2010, 24:1507-1518. 10.1101/gad.1924910.
-
(2010)
Genes Dev.
, vol.24
, pp. 1507-1518
-
-
Yoon, J.C.1
Ng, A.2
Kim, B.H.3
Bianco, A.4
Xavier, R.J.5
Elledge, S.J.6
-
30
-
-
84908213474
-
Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel?
-
Sabharwal S.S., Schumacker P.T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel?. Nat. Rev. Cancer 2014, 14:709-721. 10.1038/nrc3803.
-
(2014)
Nat. Rev. Cancer
, vol.14
, pp. 709-721
-
-
Sabharwal, S.S.1
Schumacker, P.T.2
-
31
-
-
84896935583
-
The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I
-
Quinlan C.L., Goncalves R.L., Hey-Mogensen M., Yadava N., Bunik V.I., Brand M.D. The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I. J. Biol. Chem. 2014, 289:8312-8325. 10.1074/jbc.M113.545301.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 8312-8325
-
-
Quinlan, C.L.1
Goncalves, R.L.2
Hey-Mogensen, M.3
Yadava, N.4
Bunik, V.I.5
Brand, M.D.6
-
32
-
-
84891758878
-
Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension
-
Dikalov S.I., Nazarewicz R.R., Bikineyeva A., Hilenski L., Lassègue B., Griendling K.K., et al. Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Antioxid. Redox Signal. 2014, 20:281-294. 10.1089/ars.2012.4918.
-
(2014)
Antioxid. Redox Signal.
, vol.20
, pp. 281-294
-
-
Dikalov, S.I.1
Nazarewicz, R.R.2
Bikineyeva, A.3
Hilenski, L.4
Lassègue, B.5
Griendling, K.K.6
-
33
-
-
84885658340
-
Nox2 as a potential target of mitochondrial superoxide and its role in endothelial oxidative stress
-
H1131-40
-
Nazarewicz R.R., Dikalova A.E., Bikineyeva A., Dikalov S.I. Nox2 as a potential target of mitochondrial superoxide and its role in endothelial oxidative stress. Am. J. Physiol. Heart Circ. Physiol. 2013, 305. H1131-40. 10.1152/ajpheart.00063.2013.
-
(2013)
Am. J. Physiol. Heart Circ. Physiol.
, vol.305
-
-
Nazarewicz, R.R.1
Dikalova, A.E.2
Bikineyeva, A.3
Dikalov, S.I.4
-
34
-
-
84890307737
-
Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species-studies in white blood cells and in animal models
-
Kröller-Schön S., Steven S., Kossmann S., Scholz A., Daub S., Oelze M., et al. Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species-studies in white blood cells and in animal models. Antioxid. Redox Signal. 2014, 20:247-266. 10.1089/ars.2012.4953.
-
(2014)
Antioxid. Redox Signal.
, vol.20
, pp. 247-266
-
-
Kröller-Schön, S.1
Steven, S.2
Kossmann, S.3
Scholz, A.4
Daub, S.5
Oelze, M.6
-
35
-
-
84885118956
-
Nox4 NADPH oxidase mediates peroxynitrite-dependent uncoupling of endothelial nitric-oxide synthase and fibronectin expression in response to angiotensin II: role of mitochondrial reactive oxygen species
-
Lee D.-Y., Wauquier F., Eid A.A., Roman L.J., Ghosh-Choudhury G., Khazim K., et al. Nox4 NADPH oxidase mediates peroxynitrite-dependent uncoupling of endothelial nitric-oxide synthase and fibronectin expression in response to angiotensin II: role of mitochondrial reactive oxygen species. J. Biol. Chem. 2013, 288:28668-28686. 10.1074/jbc.M113.470971.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 28668-28686
-
-
Lee, D.-Y.1
Wauquier, F.2
Eid, A.A.3
Roman, L.J.4
Ghosh-Choudhury, G.5
Khazim, K.6
-
36
-
-
84877756855
-
Mitochondrial respiratory chain complex I is inactivated by NADPH oxidase Nox4
-
Kozieł R., Pircher H., Kratochwil M., Lener B., Hermann M., Dencher N.A., et al. Mitochondrial respiratory chain complex I is inactivated by NADPH oxidase Nox4. Biochem. J. 2013, 452:231-239. 10.1042/BJ20121778.
-
(2013)
Biochem. J.
, vol.452
, pp. 231-239
-
-
Kozieł, R.1
Pircher, H.2
Kratochwil, M.3
Lener, B.4
Hermann, M.5
Dencher, N.A.6
-
37
-
-
77957081642
-
Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space
-
Kawamata H., Manfredi G. Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space. Antioxid. Redox Signal. 2010, 13:1375-1384. 10.1089/ars.2010.3212.
-
(2010)
Antioxid. Redox Signal.
, vol.13
, pp. 1375-1384
-
-
Kawamata, H.1
Manfredi, G.2
-
38
-
-
84881228813
-
Mammalian SOD2 is exclusively located in mitochondria and not present in peroxisomes
-
Karnati S., Luers G., Pfreimer S., Baumgart-Vogt E. Mammalian SOD2 is exclusively located in mitochondria and not present in peroxisomes. Histochem Cell Biol. 2013, 140:105-117. 10.1007/s00418-013-1099-4.
-
(2013)
Histochem Cell Biol.
, vol.140
, pp. 105-117
-
-
Karnati, S.1
Luers, G.2
Pfreimer, S.3
Baumgart-Vogt, E.4
-
39
-
-
84895516620
-
The cellular distribution of extracellular superoxide dismutase in macrophages is altered by cellular activation but unaffected by the naturally occurring R213G substitution
-
Gottfredsen R.H., Goldstrohm D.A., Hartney J.M., Larsen U.G., Bowler R.P., Petersen S.V. The cellular distribution of extracellular superoxide dismutase in macrophages is altered by cellular activation but unaffected by the naturally occurring R213G substitution. Free Radic. Biol. Med. 2014, 69:348-356. 10.1016/j.freeradbiomed.2014.01.038.
-
(2014)
Free Radic. Biol. Med.
, vol.69
, pp. 348-356
-
-
Gottfredsen, R.H.1
Goldstrohm, D.A.2
Hartney, J.M.3
Larsen, U.G.4
Bowler, R.P.5
Petersen, S.V.6
-
40
-
-
84920508024
-
Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance
-
Tsang C.K., Liu Y., Thomas J., Zhang Y., Zheng X.F. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nat. Commun. 2014, 5:3446. 10.1038/ncomms4446.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3446
-
-
Tsang, C.K.1
Liu, Y.2
Thomas, J.3
Zhang, Y.4
Zheng, X.F.5
-
41
-
-
0037458619
-
Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol
-
Han D., Antunes F., Canali R., Rettori D., Cadenas E. Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J. Biol. Chem. 2003, 278:5557-5563. 10.1074/jbc.M210269200.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 5557-5563
-
-
Han, D.1
Antunes, F.2
Canali, R.3
Rettori, D.4
Cadenas, E.5
-
42
-
-
84861211045
-
Mitochondrial redox signalling at a glance
-
Collins Y., Chouchani E.T., James A.M., Menger K.E., Cocheme H.M., Murphy M.P. Mitochondrial redox signalling at a glance. J. Cell Sci. 2012, 125:801-806. 10.1242/jcs.098475.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 801-806
-
-
Collins, Y.1
Chouchani, E.T.2
James, A.M.3
Menger, K.E.4
Cocheme, H.M.5
Murphy, M.P.6
-
43
-
-
33747596652
-
Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia
-
Guzy R.D., Schumacker P.T. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp. Physiol. 2006, 91:807-819. 10.1113/expphysiol.2006.033506.
-
(2006)
Exp. Physiol.
, vol.91
, pp. 807-819
-
-
Guzy, R.D.1
Schumacker, P.T.2
-
44
-
-
79953000879
-
Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells
-
Mandal S., Lindgren A.G., Srivastava A.S., Clark A.T., Banerjee U. Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells. Stem Cells 2011, 29:486-495. 10.1002/stem.590.
-
(2011)
Stem Cells
, vol.29
, pp. 486-495
-
-
Mandal, S.1
Lindgren, A.G.2
Srivastava, A.S.3
Clark, A.T.4
Banerjee, U.5
-
45
-
-
78651393239
-
A role for mitochondria in NLRP3 inflammasome activation
-
Zhou R., Yazdi A.S., Menu P., Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011, 469:221-225. 10.1038/nature09663.
-
(2011)
Nature
, vol.469
, pp. 221-225
-
-
Zhou, R.1
Yazdi, A.S.2
Menu, P.3
Tschopp, J.4
-
46
-
-
79959819034
-
SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production
-
Bell E.L., Emerling B.M., Ricoult S.J., Guarente L. SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production. Oncogene 2011, 30:2986-2996. 10.1038/onc.2011.37.
-
(2011)
Oncogene
, vol.30
, pp. 2986-2996
-
-
Bell, E.L.1
Emerling, B.M.2
Ricoult, S.J.3
Guarente, L.4
-
47
-
-
14644418500
-
Mitochondria-derived reactive oxygen species and vascular MAP kinases: comparison of angiotensin II and diazoxide
-
Kimura S., Zhang G.-X., Nishiyama A., Shokoji T., Yao L., Fan Y.-Y., et al. Mitochondria-derived reactive oxygen species and vascular MAP kinases: comparison of angiotensin II and diazoxide. Hypertension 2005, 45:438-444. 10.1161/01.HYP.0000157169.27818.ae.
-
(2005)
Hypertension
, vol.45
, pp. 438-444
-
-
Kimura, S.1
Zhang, G.-X.2
Nishiyama, A.3
Shokoji, T.4
Yao, L.5
Fan, Y.-Y.6
-
48
-
-
77954698808
-
Therapeutic targeting of mitochondrial superoxide in hypertension
-
Dikalova A.E., Bikineyeva A.T., Budzyn K., Nazarewicz R.R., McCann L., Lewis W., et al. Therapeutic targeting of mitochondrial superoxide in hypertension. Circ. Res. 2010, 107:106-116. 10.1161/CIRCRESAHA.109.214601.
-
(2010)
Circ. Res.
, vol.107
, pp. 106-116
-
-
Dikalova, A.E.1
Bikineyeva, A.T.2
Budzyn, K.3
Nazarewicz, R.R.4
McCann, L.5
Lewis, W.6
-
49
-
-
84898611787
-
Autophagosomes, phagosomes, autolysosomes, phagolysosomes, autophagolysosomes wait, I'm confused
-
Klionsky D.J., Eskelinen E.L., Deretic V. Autophagosomes, phagosomes, autolysosomes, phagolysosomes, autophagolysosomes wait, I'm confused. Autophagy 2014, 10:549-551. 10.4161/auto.28448.
-
(2014)
Autophagy
, vol.10
, pp. 549-551
-
-
Klionsky, D.J.1
Eskelinen, E.L.2
Deretic, V.3
-
50
-
-
0034537290
-
Autophagy as a regulated pathway of cellular degradation
-
Klionsky D.J., Emr S.D. Autophagy as a regulated pathway of cellular degradation. Science 2000, 290:1717-1721.
-
(2000)
Science
, vol.290
, pp. 1717-1721
-
-
Klionsky, D.J.1
Emr, S.D.2
-
51
-
-
84880376355
-
Emerging regulation and functions of autophagy
-
Boya P., Reggiori F., Codogno P. Emerging regulation and functions of autophagy. Nat. Cell Biol. 2013, 15:713-720. 10.1038/ncb2788.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 713-720
-
-
Boya, P.1
Reggiori, F.2
Codogno, P.3
-
52
-
-
84897852467
-
The protein-vesicle network of autophagy
-
Ge L., Baskaran S., Schekman R., Hurley J.H. The protein-vesicle network of autophagy. Curr. Opin. Cell Biol. 2014, 29:18-24. 10.1016/j.ceb.2014.02.005.
-
(2014)
Curr. Opin. Cell Biol.
, vol.29
, pp. 18-24
-
-
Ge, L.1
Baskaran, S.2
Schekman, R.3
Hurley, J.H.4
-
53
-
-
79959415069
-
Biogenesis and cargo selectivity of autophagosomes
-
Weidberg H., Shvets E., Elazar Z. Biogenesis and cargo selectivity of autophagosomes. Annu. Rev. Biochem. 2011, 80:125-156. 10.1146/annurev-biochem-052709-094552.
-
(2011)
Annu. Rev. Biochem.
, vol.80
, pp. 125-156
-
-
Weidberg, H.1
Shvets, E.2
Elazar, Z.3
-
54
-
-
84869210001
-
Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation
-
Romanov J., Walczak M., Ibiricu I., Schuchner S., Ogris E., Kraft C., et al. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J. 2012, 31:4304-4317. 10.1038/emboj.2012.278.
-
(2012)
EMBO J.
, vol.31
, pp. 4304-4317
-
-
Romanov, J.1
Walczak, M.2
Ibiricu, I.3
Schuchner, S.4
Ogris, E.5
Kraft, C.6
-
55
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B., Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008, 132:27-42. 10.1016/j.cell.2007.12.018.
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
56
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
Mizushima N., Levine B., Cuervo A.M., Klionsky D.J. Autophagy fights disease through cellular self-digestion. Nature. 2008, 451:1069-1075. 10.1038/nature06639.
-
(2008)
Nature.
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
57
-
-
80051813164
-
Eating the strangers within: host control of intracellular bacteria via xenophagy
-
Knodler L.A., Celli J. Eating the strangers within: host control of intracellular bacteria via xenophagy. Cell Microbiol. 2011, 13:1319-1327. 10.1111/j.1462-5822.2011.01632.x.
-
(2011)
Cell Microbiol.
, vol.13
, pp. 1319-1327
-
-
Knodler, L.A.1
Celli, J.2
-
58
-
-
84877610008
-
Bacterial subversion of host innate immune pathways
-
Baxt L.A., Garza-Mayers A.C., Goldberg M.B. Bacterial subversion of host innate immune pathways. Science. 2013, 340:697-701. 10.1126/science.1235771.
-
(2013)
Science.
, vol.340
, pp. 697-701
-
-
Baxt, L.A.1
Garza-Mayers, A.C.2
Goldberg, M.B.3
-
59
-
-
77951256153
-
Autophagy in infection
-
Deretic V. Autophagy in infection. Curr. Opin. Cell Biol. 2010, 22:252-262. 10.1016/j.ceb.2009.12.009.
-
(2010)
Curr. Opin. Cell Biol.
, vol.22
, pp. 252-262
-
-
Deretic, V.1
-
60
-
-
78751672975
-
Autophagy in immunity and inflammation
-
Levine B., Mizushima N., Virgin H.W. Autophagy in immunity and inflammation. Nature 2011, 469:323-335. 10.1038/nature09782.
-
(2011)
Nature
, vol.469
, pp. 323-335
-
-
Levine, B.1
Mizushima, N.2
Virgin, H.W.3
-
61
-
-
84922489435
-
Oxidative stress and autophagy: the clash between damage and metabolic needs
-
Filomeni G., De Zio D., Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2014, 10.1038/cdd.2014.150.
-
(2014)
Cell Death Differ.
-
-
Filomeni, G.1
De Zio, D.2
Cecconi, F.3
-
62
-
-
84925652601
-
Streptococcus pneumoniae induces autophagy through the inhibition of the PI3K-I/Akt/mTOR pathway and ROS hypergeneration in A549 cells
-
Li P., Shi J., He Q., Hu Q., Wang Y.Y., Zhang L.J., et al. Streptococcus pneumoniae induces autophagy through the inhibition of the PI3K-I/Akt/mTOR pathway and ROS hypergeneration in A549 cells. PLoS ONE 2015, 10:e0122753. 10.1371/journal.pone.0122753.
-
(2015)
PLoS ONE
, vol.10
, pp. e0122753
-
-
Li, P.1
Shi, J.2
He, Q.3
Hu, Q.4
Wang, Y.Y.5
Zhang, L.J.6
-
63
-
-
84924629739
-
Superoxide dismutase of Streptococcus suis serotype 2 plays a role in anti-autophagic response by scavenging reactive oxygen species in infected macrophages
-
Fang L., Shen H., Tang Y., Fang W. Superoxide dismutase of Streptococcus suis serotype 2 plays a role in anti-autophagic response by scavenging reactive oxygen species in infected macrophages. Vet. Microbiol. 2015, 176:328-336. 10.1016/j.vetmic.2015.02.006.
-
(2015)
Vet. Microbiol.
, vol.176
, pp. 328-336
-
-
Fang, L.1
Shen, H.2
Tang, Y.3
Fang, W.4
-
64
-
-
78651226124
-
Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling
-
Shin D.-M., Jeon B.-Y., Lee H.-M., Jin H.S., Yuk J.-M., Song C.-H., et al. Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS Pathog. 2010, 6:e1001230. 10.1371/journal.ppat.1001230.
-
(2010)
PLoS Pathog.
, vol.6
, pp. e1001230
-
-
Shin, D.-M.1
Jeon, B.-Y.2
Lee, H.-M.3
Jin, H.S.4
Yuk, J.-M.5
Song, C.-H.6
-
65
-
-
84861210566
-
Mycobacterium tuberculosis eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7
-
Kim K.H., An D.R., Song J., Yoon J.Y., Kim H.S., Yoon H.J., et al. Mycobacterium tuberculosis eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:7729-7734. 10.1073/pnas.1120251109.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 7729-7734
-
-
Kim, K.H.1
An, D.R.2
Song, J.3
Yoon, J.Y.4
Kim, H.S.5
Yoon, H.J.6
-
66
-
-
84929997383
-
A mycobacterial phosphoribosyltransferase promotes bacillary survival by inhibiting oxidative stress and autophagy pathways in macrophages and zebrafish
-
Mohanty S., Jagannathan L., Ganguli G., Padhi A., Roy D., Alaridah N., et al. A mycobacterial phosphoribosyltransferase promotes bacillary survival by inhibiting oxidative stress and autophagy pathways in macrophages and zebrafish. J. Biol. Chem. 2015, 290:13321-13343. 10.1074/jbc.M114.598482.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 13321-13343
-
-
Mohanty, S.1
Jagannathan, L.2
Ganguli, G.3
Padhi, A.4
Roy, D.5
Alaridah, N.6
-
67
-
-
84861180818
-
Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action
-
Kim J.J., Lee H.M., Shin D.M., Kim W., Yuk J.M., Jin H.S., et al. Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell Host Microbe 2012, 11:457-468. 10.1016/j.chom.2012.03.008.
-
(2012)
Cell Host Microbe
, vol.11
, pp. 457-468
-
-
Kim, J.J.1
Lee, H.M.2
Shin, D.M.3
Kim, W.4
Yuk, J.M.5
Jin, H.S.6
-
68
-
-
1542287347
-
Neutrophil extracellular traps kill bacteria
-
Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., et al. Neutrophil extracellular traps kill bacteria. Science 2004, 303:1532-1535.
-
(2004)
Science
, vol.303
, pp. 1532-1535
-
-
Brinkmann, V.1
Reichard, U.2
Goosmann, C.3
Fauler, B.4
Uhlemann, Y.5
Weiss, D.S.6
-
69
-
-
34447525439
-
Beneficial suicide: why neutrophils die to make NETs
-
Brinkmann V., Zychlinsky A. Beneficial suicide: why neutrophils die to make NETs. Nat. Rev. Microbiol. 2007, 5:577-582. 10.1038/nrmicro1710.
-
(2007)
Nat. Rev. Microbiol.
, vol.5
, pp. 577-582
-
-
Brinkmann, V.1
Zychlinsky, A.2
-
70
-
-
48849106973
-
ETosis: a novel cell death pathway
-
Wartha F., Henriques-Normark B. ETosis: a novel cell death pathway. Sci. Signal. 2008, 1:pe25. 10.1126/stke.121pe25.
-
(2008)
Sci. Signal.
, vol.1
, pp. pe25
-
-
Wartha, F.1
Henriques-Normark, B.2
-
71
-
-
79952622190
-
Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality
-
Remijsen Q., Kuijpers T.W., Wirawan E., Lippens S., Vandenabeele P., Vanden Berghe T. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ. 2011, 18:581-588. 10.1038/cdd.2011.1.
-
(2011)
Cell Death Differ.
, vol.18
, pp. 581-588
-
-
Remijsen, Q.1
Kuijpers, T.W.2
Wirawan, E.3
Lippens, S.4
Vandenabeele, P.5
Vanden Berghe, T.6
-
72
-
-
79651473201
-
Neutrophil extracellular trap cell death requires both autophagy and superoxide generation
-
Remijsen Q., Vanden Berghe T., Wirawan E., Asselbergh B., Parthoens E., De Rycke R., et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res. 2011, 21:290-304. 10.1038/cr.2010.150.
-
(2011)
Cell Res.
, vol.21
, pp. 290-304
-
-
Remijsen, Q.1
Vanden Berghe, T.2
Wirawan, E.3
Asselbergh, B.4
Parthoens, E.5
De Rycke, R.6
-
73
-
-
84902371792
-
Neutrophil extracellular traps promote differentiation and function of fibroblasts
-
Chrysanthopoulou A., Mitroulis I., Apostolidou E., Arelaki S., Mikroulis D., Konstantinidis T., et al. Neutrophil extracellular traps promote differentiation and function of fibroblasts. J. Pathol. 2014, 233:294-307. 10.1002/path.4359.
-
(2014)
J. Pathol.
, vol.233
, pp. 294-307
-
-
Chrysanthopoulou, A.1
Mitroulis, I.2
Apostolidou, E.3
Arelaki, S.4
Mikroulis, D.5
Konstantinidis, T.6
-
74
-
-
84929509338
-
Neutrophil extracellular trap formation is associated with autophagy-related signalling in ANCA-associated vasculitis
-
Tang S., Zhang Y., Yin S.W., Gao X.J., Shi W.W., Wang Y., et al. Neutrophil extracellular trap formation is associated with autophagy-related signalling in ANCA-associated vasculitis. Clin. Exp. Immunol. 2015, 10.1111/cei.12589.
-
(2015)
Clin. Exp. Immunol.
-
-
Tang, S.1
Zhang, Y.2
Yin, S.W.3
Gao, X.J.4
Shi, W.W.5
Wang, Y.6
-
75
-
-
84862301902
-
Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program
-
Tattoli I., Sorbara M.T., Vuckovic D., Ling A., Soares F., Carneiro L.A., et al. Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe 2012, 11:563-575. 10.1016/j.chom.2012.04.012.
-
(2012)
Cell Host Microbe
, vol.11
, pp. 563-575
-
-
Tattoli, I.1
Sorbara, M.T.2
Vuckovic, D.3
Ling, A.4
Soares, F.5
Carneiro, L.A.6
-
76
-
-
84880990119
-
Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy
-
C348-54
-
Itakura A., McCarty O.J. Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy. Am. J. Physiol. Cell Physiol. 2013, 305. C348-54. 10.1152/ajpcell.00108.2013.
-
(2013)
Am. J. Physiol. Cell Physiol.
, vol.305
-
-
Itakura, A.1
McCarty, O.J.2
-
77
-
-
84885925936
-
Neutrophil extracellular traps: A new link to cancer-associated thrombosis and potential implications for tumor progression
-
Demers M., Wagner D.D. Neutrophil extracellular traps: A new link to cancer-associated thrombosis and potential implications for tumor progression. Oncoimmunology 2013, 2:e22946. 10.4161/onci.22946.
-
(2013)
Oncoimmunology
, vol.2
, pp. e22946
-
-
Demers, M.1
Wagner, D.D.2
-
78
-
-
84864650304
-
Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis
-
Demers M., Krause D.S., Schatzberg D., Martinod K., Voorhees J.R., Fuchs T.A., et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:13076-13081. 10.1073/pnas.1200419109.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 13076-13081
-
-
Demers, M.1
Krause, D.S.2
Schatzberg, D.3
Martinod, K.4
Voorhees, J.R.5
Fuchs, T.A.6
-
79
-
-
84931569725
-
The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer
-
Boone B.A., Orlichenko L., Schapiro N.E., Loughran P., Gianfrate G.C., Ellis J.T., et al. The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Ther. 2015, 10.1038/cgt.2015.21.
-
(2015)
Cancer Gene Ther.
-
-
Boone, B.A.1
Orlichenko, L.2
Schapiro, N.E.3
Loughran, P.4
Gianfrate, G.C.5
Ellis, J.T.6
-
80
-
-
84866177387
-
Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus
-
Parker H., Dragunow M., Hampton M.B., Kettle A.J., Winterbourn C.C. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J. Leukoc. Biol. 2012, 92:841-849. 10.1189/jlb.1211601.
-
(2012)
J. Leukoc. Biol.
, vol.92
, pp. 841-849
-
-
Parker, H.1
Dragunow, M.2
Hampton, M.B.3
Kettle, A.J.4
Winterbourn, C.C.5
-
81
-
-
84924059048
-
SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx
-
Douda D.N., Khan M.A., Grasemann H., Palaniyar N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:2817-2822. 10.1073/pnas.1414055112.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 2817-2822
-
-
Douda, D.N.1
Khan, M.A.2
Grasemann, H.3
Palaniyar, N.4
-
82
-
-
84874236075
-
The expanding world of extracellular traps: not only neutrophils but much more
-
Goldmann O., Medina E. The expanding world of extracellular traps: not only neutrophils but much more. Front. Immunol. 2012, 3:420. 10.3389/fimmu.2012.00420.
-
(2012)
Front. Immunol.
, vol.3
, pp. 420
-
-
Goldmann, O.1
Medina, E.2
-
83
-
-
51349135381
-
Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense
-
Yousefi S., Gold J.A., Andina N., Lee J.J., Kelly A.M., Kozlowski E., et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat. Med. 2008, 14:949-953. 10.1038/nm.1855.
-
(2008)
Nat. Med.
, vol.14
, pp. 949-953
-
-
Yousefi, S.1
Gold, J.A.2
Andina, N.3
Lee, J.J.4
Kelly, A.M.5
Kozlowski, E.6
-
84
-
-
84924034834
-
Redox Regulation of NLRP3 inflammasomes: ROS as trigger or effector?
-
Abais J.M., Xia M., Zhang Y., Boini K.M., Li P.-L. Redox Regulation of NLRP3 inflammasomes: ROS as trigger or effector?. Antioxid. Redox Signal. 2015, 22:1111-1129. 10.1089/ars.2014.5994.
-
(2015)
Antioxid. Redox Signal.
, vol.22
, pp. 1111-1129
-
-
Abais, J.M.1
Xia, M.2
Zhang, Y.3
Boini, K.M.4
Li, P.-L.5
-
85
-
-
84923325462
-
Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy
-
Jabir M.S., Hopkins L., Ritchie N.D., Ullah I., Bayes H.K., Li D., et al. Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy. Autophagy 2015, 11:166-182. 10.4161/15548627.2014.981915.
-
(2015)
Autophagy
, vol.11
, pp. 166-182
-
-
Jabir, M.S.1
Hopkins, L.2
Ritchie, N.D.3
Ullah, I.4
Bayes, H.K.5
Li, D.6
-
86
-
-
84862777872
-
Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis
-
Shimada K., Crother T.R., Karlin J., Dagvadorj J., Chiba N., Chen S., et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012, 36:401-414. 10.1016/j.immuni.2012.01.009.
-
(2012)
Immunity
, vol.36
, pp. 401-414
-
-
Shimada, K.1
Crother, T.R.2
Karlin, J.3
Dagvadorj, J.4
Chiba, N.5
Chen, S.6
-
87
-
-
41949127121
-
Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms
-
Fink S.L., Bergsbaken T., Cookson B.T. Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:4312-4317. 10.1073/pnas.0707370105.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 4312-4317
-
-
Fink, S.L.1
Bergsbaken, T.2
Cookson, B.T.3
-
88
-
-
84911192502
-
RNA viruses promote activation of the NLRP3 inflammasome through a RIP1-RIP3-DRP1 signaling pathway
-
Wang X., Jiang W., Yan Y., Gong T., Han J., Tian Z., et al. RNA viruses promote activation of the NLRP3 inflammasome through a RIP1-RIP3-DRP1 signaling pathway. Nat. Immunol. 2014, 15:1126-1133. 10.1038/ni.3015.
-
(2014)
Nat. Immunol.
, vol.15
, pp. 1126-1133
-
-
Wang, X.1
Jiang, W.2
Yan, Y.3
Gong, T.4
Han, J.5
Tian, Z.6
-
89
-
-
84907494143
-
Cytosolic double-stranded RNA activates the NLRP3 inflammasome via MAVS-induced membrane permeabilization and K+ efflux
-
Franchi L., Eigenbrod T., Muñoz-Planillo R., Ozkurede U., Kim Y.-G., Chakrabarti A., et al. Cytosolic double-stranded RNA activates the NLRP3 inflammasome via MAVS-induced membrane permeabilization and K+ efflux. J. Immunol. 2014, 193:4214-4222. 10.4049/jimmunol.1400582.
-
(2014)
J. Immunol.
, vol.193
, pp. 4214-4222
-
-
Franchi, L.1
Eigenbrod, T.2
Muñoz-Planillo, R.3
Ozkurede, U.4
Kim, Y.-G.5
Chakrabarti, A.6
-
90
-
-
84887086945
-
Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection
-
Ichinohe T., Yamazaki T., Koshiba T., Yanagi Y. Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:17963-17968. 10.1073/pnas.1312571110.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 17963-17968
-
-
Ichinohe, T.1
Yamazaki, T.2
Koshiba, T.3
Yanagi, Y.4
-
91
-
-
32944470765
-
Cryopyrin activates the inflammasome in response to toxins and ATP
-
Mariathasan S., Weiss D.S., Newton K., McBride J., O'Rourke K., Roose-Girma M., et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 2006, 440:228-232. 10.1038/nature04515.
-
(2006)
Nature
, vol.440
, pp. 228-232
-
-
Mariathasan, S.1
Weiss, D.S.2
Newton, K.3
McBride, J.4
O'Rourke, K.5
Roose-Girma, M.6
-
92
-
-
77954521853
-
Pathogenic Vibrio activate NLRP3 inflammasome via cytotoxins and TLR/nucleotide-binding oligomerization domain-mediated NF-kappa B signaling
-
Toma C., Higa N., Koizumi Y., Nakasone N., Ogura Y., McCoy A.J., et al. Pathogenic Vibrio activate NLRP3 inflammasome via cytotoxins and TLR/nucleotide-binding oligomerization domain-mediated NF-kappa B signaling. J. Immunol. 2010, 184:5287-5297. 10.4049/jimmunol.0903536.
-
(2010)
J. Immunol.
, vol.184
, pp. 5287-5297
-
-
Toma, C.1
Higa, N.2
Koizumi, Y.3
Nakasone, N.4
Ogura, Y.5
McCoy, A.J.6
-
93
-
-
84907205655
-
Helicobacter pylori-induced IL-1β secretion in innate immune cells is regulated by the NLRP3 inflammasome and requires the cag pathogenicity island
-
Semper R.P., Mejías-Luque R., Groß C., Anderl F., Müller A., Vieth M., et al. Helicobacter pylori-induced IL-1β secretion in innate immune cells is regulated by the NLRP3 inflammasome and requires the cag pathogenicity island. J. Immunol. 2014, 193:3566-3576. 10.4049/jimmunol.1400362.
-
(2014)
J. Immunol.
, vol.193
, pp. 3566-3576
-
-
Semper, R.P.1
Mejías-Luque, R.2
Groß, C.3
Anderl, F.4
Müller, A.5
Vieth, M.6
-
94
-
-
84924217271
-
Nflammasome activation in response to the Yersinia type III secretion system requires hyperinjection of translocon proteins YopB and YopD
-
e02095-14
-
Zwack E.E., Snyder A.G., Wynosky-Dolfi M.A., Ruthel G., Philip N.H., Marketon M.M., et al. nflammasome activation in response to the Yersinia type III secretion system requires hyperinjection of translocon proteins YopB and YopD. MBio 2015, 6. e02095-14. 10.1128/mBio.02095-14.
-
(2015)
MBio
, vol.6
-
-
Zwack, E.E.1
Snyder, A.G.2
Wynosky-Dolfi, M.A.3
Ruthel, G.4
Philip, N.H.5
Marketon, M.M.6
-
95
-
-
84897932260
-
Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome
-
Wynosky-Dolfi M.A., Snyder A.G., Philip N.H., Doonan P.J., Poffenberger M.C., Avizonis D., et al. Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome. J. Exp. Med. 2014, 211:653-668. 10.1084/jem.20130627.
-
(2014)
J. Exp. Med.
, vol.211
, pp. 653-668
-
-
Wynosky-Dolfi, M.A.1
Snyder, A.G.2
Philip, N.H.3
Doonan, P.J.4
Poffenberger, M.C.5
Avizonis, D.6
-
96
-
-
77957133396
-
Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome
-
Mishra B.B., Moura-Alves P., Sonawane A., Hacohen N., Griffiths G., Moita L.F., et al. Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell Microbiol. 2010, 12:1046-1063. 10.1111/j.1462-5822.2010.01450.x.
-
(2010)
Cell Microbiol.
, vol.12
, pp. 1046-1063
-
-
Mishra, B.B.1
Moura-Alves, P.2
Sonawane, A.3
Hacohen, N.4
Griffiths, G.5
Moita, L.F.6
-
97
-
-
68949092245
-
Fungal zymosan and mannan activate the cryopyrin inflammasome
-
Lamkanfi M., Malireddi R.K.S., Kanneganti T.-D. Fungal zymosan and mannan activate the cryopyrin inflammasome. J. Biol. Chem. 2009, 284:20574-20581. 10.1074/jbc.M109.023689.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 20574-20581
-
-
Lamkanfi, M.1
Malireddi, R.K.S.2
Kanneganti, T.-D.3
-
98
-
-
67349271142
-
Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence
-
Groß O., Poeck H., Bscheider M., Dostert C., Hannesschläger N., Endres S., et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 2009, 459:433-436. 10.1038/nature07965.
-
(2009)
Nature
, vol.459
, pp. 433-436
-
-
Groß, O.1
Poeck, H.2
Bscheider, M.3
Dostert, C.4
Hannesschläger, N.5
Endres, S.6
-
99
-
-
84903369192
-
Dual role for inflammasome sensors NLRP1 and NLRP3 in murine resistance to Toxoplasma gondii
-
e01117-13-e01117-13
-
Gorfu G., Cirelli K.M., Melo M.B., Mayer-Barber K., Crown D., Koller B.H., et al. Dual role for inflammasome sensors NLRP1 and NLRP3 in murine resistance to Toxoplasma gondii. MBio 2014, 5. e01117-13-e01117-13. 10.1128/mBio.01117-13.
-
(2014)
MBio
, vol.5
-
-
Gorfu, G.1
Cirelli, K.M.2
Melo, M.B.3
Mayer-Barber, K.4
Crown, D.5
Koller, B.H.6
-
100
-
-
78650544477
-
Schistosoma mansoni triggers Dectin-2, which activates the Nlrp3 inflammasome and alters adaptive immune responses
-
Ritter M., Groß O., Kays S., Ruland J., Nimmerjahn F., Saijo S., et al. Schistosoma mansoni triggers Dectin-2, which activates the Nlrp3 inflammasome and alters adaptive immune responses. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:20459-20464. 10.1073/pnas.1010337107.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 20459-20464
-
-
Ritter, M.1
Groß, O.2
Kays, S.3
Ruland, J.4
Nimmerjahn, F.5
Saijo, S.6
-
101
-
-
33644985564
-
Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1
-
Sutterwala F.S., Ogura Y., Szczepanik M., Lara-Tejero M., Lichtenberger G.S., Grant E.P., et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 2006, 24:317-327. 10.1016/j.immuni.2006.02.004.
-
(2006)
Immunity
, vol.24
, pp. 317-327
-
-
Sutterwala, F.S.1
Ogura, Y.2
Szczepanik, M.3
Lara-Tejero, M.4
Lichtenberger, G.S.5
Grant, E.P.6
-
102
-
-
79952747168
-
Cutting edge: cyclic polypeptide and aminoglycoside antibiotics trigger IL-1β secretion by activating the NLRP3 inflammasome
-
Allam R., Darisipudi M.N., Rupanagudi K.V., Lichtnekert J., Tschopp J., Anders H.-J. Cutting edge: cyclic polypeptide and aminoglycoside antibiotics trigger IL-1β secretion by activating the NLRP3 inflammasome. J. Immunol. 2011, 186:2714-2718. 10.4049/jimmunol.1002657.
-
(2011)
J. Immunol.
, vol.186
, pp. 2714-2718
-
-
Allam, R.1
Darisipudi, M.N.2
Rupanagudi, K.V.3
Lichtnekert, J.4
Tschopp, J.5
Anders, H.-J.6
-
103
-
-
47849097202
-
Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization
-
Hornung V., Bauernfeind F., Halle A., Samstad E.O., Kono H., Rock K.L., et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 2008, 9:847-856. 10.1038/ni.1631.
-
(2008)
Nat. Immunol.
, vol.9
, pp. 847-856
-
-
Hornung, V.1
Bauernfeind, F.2
Halle, A.3
Samstad, E.O.4
Kono, H.5
Rock, K.L.6
-
104
-
-
47849132947
-
The Nalp3 inflammasome is essential for the development of silicosis
-
Cassel S.L., Eisenbarth S.C., Iyer S.S., Sadler J.J., Colegio O.R., Tephly L.A., et al. The Nalp3 inflammasome is essential for the development of silicosis. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:9035-9040. 10.1073/pnas.0803933105.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 9035-9040
-
-
Cassel, S.L.1
Eisenbarth, S.C.2
Iyer, S.S.3
Sadler, J.J.4
Colegio, O.R.5
Tephly, L.A.6
-
105
-
-
43249125839
-
Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica
-
Dostert C., Pétrilli V., Van Bruggen R., Steele C., Mossman B.T., Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008, 320:674-677. 10.1126/science.1156995.
-
(2008)
Science
, vol.320
, pp. 674-677
-
-
Dostert, C.1
Pétrilli, V.2
Van Bruggen, R.3
Steele, C.4
Mossman, B.T.5
Tschopp, J.6
-
106
-
-
32944468985
-
Gout-associated uric acid crystals activate the NALP3 inflammasome
-
Martinon F., Pétrilli V., Mayor A., Tardivel A., Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006, 440:237-241. 10.1038/nature04516.
-
(2006)
Nature
, vol.440
, pp. 237-241
-
-
Martinon, F.1
Pétrilli, V.2
Mayor, A.3
Tardivel, A.4
Tschopp, J.5
-
107
-
-
79959732295
-
Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis
-
Freigang S., Ampenberger F., Spohn G., Heer S., Shamshiev A.T., Kisielow J., et al. Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis. Eur. J. Immunol. 2011, 41:2040-2051. 10.1002/eji.201041316.
-
(2011)
Eur. J. Immunol.
, vol.41
, pp. 2040-2051
-
-
Freigang, S.1
Ampenberger, F.2
Spohn, G.3
Heer, S.4
Shamshiev, A.T.5
Kisielow, J.6
-
108
-
-
77956958947
-
Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes
-
Masters S.L., Dunne A., Subramanian S.L., Hull R.L., Tannahill G.M., Sharp F.A., et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol. 2010, 11:897-904. 10.1038/ni.1935.
-
(2010)
Nat. Immunol.
, vol.11
, pp. 897-904
-
-
Masters, S.L.1
Dunne, A.2
Subramanian, S.L.3
Hull, R.L.4
Tannahill, G.M.5
Sharp, F.A.6
-
109
-
-
34548027736
-
Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration
-
Pétrilli V., Papin S., Dostert C., Mayor A., Martinon F., Tschopp J. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 2007, 14:1583-1589. 10.1038/sj.cdd.4402195.
-
(2007)
Cell Death Differ.
, vol.14
, pp. 1583-1589
-
-
Pétrilli, V.1
Papin, S.2
Dostert, C.3
Mayor, A.4
Martinon, F.5
Tschopp, J.6
-
112
-
-
84870508924
-
The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP
-
Lee G.-S., Subramanian N., Kim A.I., Aksentijevich I., Goldbach-Mansky R., Sacks D.B., et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 2012, 492:123-127. 10.1038/nature11588.
-
(2012)
Nature
, vol.492
, pp. 123-127
-
-
Lee, G.-S.1
Subramanian, N.2
Kim, A.I.3
Aksentijevich, I.4
Goldbach-Mansky, R.5
Sacks, D.B.6
-
113
-
-
84863978096
-
Critical role for calcium mobilization in activation of the NLRP3 inflammasome
-
Murakami T., Ockinger J., Yu J., Byles V., McColl A., Hofer A.M., et al. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:11282-11287. 10.1073/pnas.1117765109.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 11282-11287
-
-
Murakami, T.1
Ockinger, J.2
Yu, J.3
Byles, V.4
McColl, A.5
Hofer, A.M.6
-
115
-
-
84897459496
-
Lysosomes integrate metabolic-inflammatory cross-talk in primary macrophage inflammasome activation
-
Weber K., Schilling J.D. Lysosomes integrate metabolic-inflammatory cross-talk in primary macrophage inflammasome activation. J. Biol. Chem. 2014, 289:9158-9171. 10.1074/jbc.M113.531202.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 9158-9171
-
-
Weber, K.1
Schilling, J.D.2
-
116
-
-
0038359740
-
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis
-
Fubini B., Hubbard A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic. Biol. Med. 2003, 34:1507-1516.
-
(2003)
Free Radic. Biol. Med.
, vol.34
, pp. 1507-1516
-
-
Fubini, B.1
Hubbard, A.2
-
117
-
-
84927724336
-
Initiation and perpetuation of NLRP3 inflammasome activation and assembly
-
Elliott E.I., Sutterwala F.S. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol. Rev. 2015, 265:35-52. 10.1111/imr.12286.
-
(2015)
Immunol. Rev.
, vol.265
, pp. 35-52
-
-
Elliott, E.I.1
Sutterwala, F.S.2
-
118
-
-
84926011028
-
Reactive oxygen species at the crossroads of inflammasome and inflammation
-
Harijith A., Ebenezer D.L., Natarajan V. Reactive oxygen species at the crossroads of inflammasome and inflammation. Front. Physiol. 2014, 5:352. 10.3389/fphys.2014.00352.
-
(2014)
Front. Physiol.
, vol.5
, pp. 352
-
-
Harijith, A.1
Ebenezer, D.L.2
Natarajan, V.3
-
119
-
-
84925047701
-
NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases
-
Abderrazak A., Syrovets T., Couchie D., El Hadri K., Friguet B., Simmet T., et al. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol. 2015, 4:296-307. 10.1016/j.redox.2015.01.008.
-
(2015)
Redox Biol.
, vol.4
, pp. 296-307
-
-
Abderrazak, A.1
Syrovets, T.2
Couchie, D.3
El Hadri, K.4
Friguet, B.5
Simmet, T.6
-
120
-
-
60749104683
-
The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis
-
Franchi L., Eigenbrod T., Muñoz-Planillo R., Núñez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol. 2009, 10:241-247. 10.1038/ni.1703.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 241-247
-
-
Franchi, L.1
Eigenbrod, T.2
Muñoz-Planillo, R.3
Núñez, G.4
-
121
-
-
33847376042
-
Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation
-
Faustin B., Lartigue L., Bruey J.-M., Luciano F., Sergienko E., Bailly-Maitre B., et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol. Cell 2007, 25:713-724. 10.1016/j.molcel.2007.01.032.
-
(2007)
Mol. Cell
, vol.25
, pp. 713-724
-
-
Faustin, B.1
Lartigue, L.2
Bruey, J.-M.3
Luciano, F.4
Sergienko, E.5
Bailly-Maitre, B.6
-
122
-
-
0346350694
-
Cutting edge: CIAS1/cryopyrin/PYPAF1/NALP3/CATERPILLER 1.1 is an inducible inflammatory mediator with NF-kappa B suppressive properties
-
O'Connor W., Harton J.A., Zhu X., Linhoff M.W., Ting J.P.-Y. Cutting edge: CIAS1/cryopyrin/PYPAF1/NALP3/CATERPILLER 1.1 is an inducible inflammatory mediator with NF-kappa B suppressive properties. J. Immunol. 2003, 171:6329-6333.
-
(2003)
J. Immunol.
, vol.171
, pp. 6329-6333
-
-
O'Connor, W.1
Harton, J.A.2
Zhu, X.3
Linhoff, M.W.4
Ting, J.P.-Y.5
-
123
-
-
70249110860
-
Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation
-
Franchi L., Eigenbrod T., Núñez G. Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J. Immunol. 2009, 183:792-796. 10.4049/jimmunol.0900173.
-
(2009)
J. Immunol.
, vol.183
, pp. 792-796
-
-
Franchi, L.1
Eigenbrod, T.2
Núñez, G.3
-
124
-
-
70249138036
-
Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression
-
Bauernfeind F.G., Horvath G., Stutz A., Alnemri E.S., MacDonald K., Speert D., et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 2009, 183:787-791. 10.4049/jimmunol.0901363.
-
(2009)
J. Immunol.
, vol.183
, pp. 787-791
-
-
Bauernfeind, F.G.1
Horvath, G.2
Stutz, A.3
Alnemri, E.S.4
MacDonald, K.5
Speert, D.6
-
125
-
-
79960542894
-
Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome
-
Bauernfeind F., Bartok E., Rieger A., Franchi L., Núñez G., Hornung V. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J. Immunol. 2011, 187:613-617. 10.4049/jimmunol.1100613.
-
(2011)
J. Immunol.
, vol.187
, pp. 613-617
-
-
Bauernfeind, F.1
Bartok, E.2
Rieger, A.3
Franchi, L.4
Núñez, G.5
Hornung, V.6
-
126
-
-
84869088114
-
Acute lipopolysaccharide priming boosts inflammasome activation independently of inflammasome sensor induction
-
Schroder K., Sagulenko V., Zamoshnikova A., Richards A.A., Cridland J.A., Irvine K.M., et al. Acute lipopolysaccharide priming boosts inflammasome activation independently of inflammasome sensor induction. Immunobiology 2012, 217:1325-1329. 10.1016/j.imbio.2012.07.020.
-
(2012)
Immunobiology
, vol.217
, pp. 1325-1329
-
-
Schroder, K.1
Sagulenko, V.2
Zamoshnikova, A.3
Richards, A.A.4
Cridland, J.A.5
Irvine, K.M.6
-
127
-
-
84867770402
-
Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation
-
Juliana C., Fernandes-Alnemri T., Kang S., Farias A., Qin F., Alnemri E.S. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J. Biol. Chem. 2012, 287:36617-36622. 10.1074/jbc.M112.407130.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 36617-36622
-
-
Juliana, C.1
Fernandes-Alnemri, T.2
Kang, S.3
Farias, A.4
Qin, F.5
Alnemri, E.S.6
-
128
-
-
84902440210
-
Nuclear factor E2-related factor-2 (Nrf2) is required for NLRP3 and AIM2 inflammasome activation
-
Zhao C., Gillette D.D., Li X., Zhang Z., Wen H. Nuclear factor E2-related factor-2 (Nrf2) is required for NLRP3 and AIM2 inflammasome activation. J. Biol. Chem. 2014, 289:17020-17029. 10.1074/jbc.M114.563114.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 17020-17029
-
-
Zhao, C.1
Gillette, D.D.2
Li, X.3
Zhang, Z.4
Wen, H.5
-
129
-
-
1642285783
-
NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder
-
Agostini L., Martinon F., Burns K., McDermott M.F., Hawkins P.N., Tschopp J. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 2004, 20:319-325. 10.1038/nri1357.
-
(2004)
Immunity
, vol.20
, pp. 319-325
-
-
Agostini, L.1
Martinon, F.2
Burns, K.3
McDermott, M.F.4
Hawkins, P.N.5
Tschopp, J.6
-
130
-
-
0344585401
-
Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation
-
Stehlik C., Lee S.H., Dorfleutner A., Stassinopoulos A., Sagara J., Reed J.C. Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation. J. Immunol. 2003, 171:6154-6163.
-
(2003)
J. Immunol.
, vol.171
, pp. 6154-6163
-
-
Stehlik, C.1
Lee, S.H.2
Dorfleutner, A.3
Stassinopoulos, A.4
Sagara, J.5
Reed, J.C.6
-
131
-
-
34047261260
-
ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages
-
Cruz C.M., Rinna A., Forman H.J., Ventura A.L.M., Persechini P.M., Ojcius D.M. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J. Biol. Chem. 2007, 282:2871-2879. 10.1074/jbc.M608083200.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 2871-2879
-
-
Cruz, C.M.1
Rinna, A.2
Forman, H.J.3
Ventura, A.L.M.4
Persechini, P.M.5
Ojcius, D.M.6
-
132
-
-
77956601381
-
Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease
-
Meissner F., Seger R.A., Moshous D., Fischer A., Reichenbach J., Zychlinsky A. Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood 2010, 116:1570-1573. 10.1182/blood-2010-01-264218.
-
(2010)
Blood
, vol.116
, pp. 1570-1573
-
-
Meissner, F.1
Seger, R.A.2
Moshous, D.3
Fischer, A.4
Reichenbach, J.5
Zychlinsky, A.6
-
133
-
-
77649260429
-
Reactive oxygen species-independent activation of the IL-1beta inflammasome in cells from patients with chronic granulomatous disease
-
van de Veerdonk F.L., Smeekens S.P., Joosten L.A.B., Kullberg B.J., Dinarello C.A., van der Meer J.W.M., et al. Reactive oxygen species-independent activation of the IL-1beta inflammasome in cells from patients with chronic granulomatous disease. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:3030-3033. 10.1073/pnas.0914795107.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 3030-3033
-
-
van de Veerdonk, F.L.1
Smeekens, S.P.2
Joosten, L.A.B.3
Kullberg, B.J.4
Dinarello, C.A.5
van der Meer, J.W.M.6
-
134
-
-
77955867246
-
Human NLRP3 inflammasome activation is Nox1-4 independent
-
Van Bruggen R., Köker M.Y., Jansen M., van Houdt M., Roos D., Kuijpers T.W., et al. Human NLRP3 inflammasome activation is Nox1-4 independent. Blood 2010, 115:5398-5400. 10.1182/blood-2009-10-250803.
-
(2010)
Blood
, vol.115
, pp. 5398-5400
-
-
Van Bruggen, R.1
Köker, M.Y.2
Jansen, M.3
van Houdt, M.4
Roos, D.5
Kuijpers, T.W.6
-
135
-
-
84869785875
-
Cutting edge: nitric oxide inhibits the NLRP3 inflammasome
-
Hernandez-Cuellar E., Tsuchiya K., Hara H., Fang R., Sakai S., Kawamura I., et al. Cutting edge: nitric oxide inhibits the NLRP3 inflammasome. J Immunol 2012, 189:5113-5117. 10.4049/jimmunol.1202479.
-
(2012)
J Immunol
, vol.189
, pp. 5113-5117
-
-
Hernandez-Cuellar, E.1
Tsuchiya, K.2
Hara, H.3
Fang, R.4
Sakai, S.5
Kawamura, I.6
-
136
-
-
84873710963
-
Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock
-
Mao K., Chen S., Chen M., Ma Y., Wang Y., Huang B., et al. Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Cell Res. 2013, 23:201-212. 10.1038/cr.2013.6.
-
(2013)
Cell Res.
, vol.23
, pp. 201-212
-
-
Mao, K.1
Chen, S.2
Chen, M.3
Ma, Y.4
Wang, Y.5
Huang, B.6
-
137
-
-
84919725142
-
Cyclooxygenase-2 regulates NLRP3 inflammasome-derived IL-1β production
-
Hua K.-F., Chou J.-C., Ka S.-M., Tasi Y.-L., Chen A., Wu S.-H., et al. Cyclooxygenase-2 regulates NLRP3 inflammasome-derived IL-1β production. J. Cell Physiol. 2015, 230:863-874. 10.1002/jcp.24815.
-
(2015)
J. Cell Physiol.
, vol.230
, pp. 863-874
-
-
Hua, K.-F.1
Chou, J.-C.2
Ka, S.-M.3
Tasi, Y.-L.4
Chen, A.5
Wu, S.-H.6
-
138
-
-
79951642032
-
Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
-
Nakahira K., Haspel J.A., Rathinam V.A.K., Lee S.-J., Dolinay T., Lam H.C., et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 2011, 12:222-230. 10.1038/ni.1980.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 222-230
-
-
Nakahira, K.1
Haspel, J.A.2
Rathinam, V.A.K.3
Lee, S.-J.4
Dolinay, T.5
Lam, H.C.6
-
139
-
-
84875908991
-
TRPM2 links oxidative stress to NLRP3 inflammasome activation
-
Zhong Z., Zhai Y., Liang S., Mori Y., Han R., Sutterwala F.S., et al. TRPM2 links oxidative stress to NLRP3 inflammasome activation. Nat. Commun. 2013, 4:1611. 10.1038/ncomms2608.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1611
-
-
Zhong, Z.1
Zhai, Y.2
Liang, S.3
Mori, Y.4
Han, R.5
Sutterwala, F.S.6
-
140
-
-
84908544666
-
Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy
-
Yu J., Nagasu H., Murakami T., Hoang H., Broderick L., Hoffman H.M., et al. Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:15514-15519. 10.1073/pnas.1414859111.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 15514-15519
-
-
Yu, J.1
Nagasu, H.2
Murakami, T.3
Hoang, H.4
Broderick, L.5
Hoffman, H.M.6
-
141
-
-
84876685141
-
Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection
-
Lupfer C., Thomas P.G., Anand P.K., Vogel P., Milasta S., Martinez J., et al. Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection. Nat. Immunol. 2013, 14:480-488. 10.1038/ni.2563.
-
(2013)
Nat. Immunol.
, vol.14
, pp. 480-488
-
-
Lupfer, C.1
Thomas, P.G.2
Anand, P.K.3
Vogel, P.4
Milasta, S.5
Martinez, J.6
-
142
-
-
84882614243
-
Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation
-
Iyer S.S., He Q., Janczy J.R., Elliott E.I., Zhong Z., Olivier A.K., et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 2013, 39:311-323. 10.1016/j.immuni.2013.08.001.
-
(2013)
Immunity
, vol.39
, pp. 311-323
-
-
Iyer, S.S.1
He, Q.2
Janczy, J.R.3
Elliott, E.I.4
Zhong, Z.5
Olivier, A.K.6
-
143
-
-
79961013790
-
The rate of interleukin-1beta secretion in different myeloid cells varies with the extent of redox response to Toll-like receptor triggering
-
Carta S., Tassi S., Pettinati I., Delfino L., Dinarello C.A., Rubartelli A. The rate of interleukin-1beta secretion in different myeloid cells varies with the extent of redox response to Toll-like receptor triggering. J. Biol. Chem. 2011, 286:27069-27080. 10.1074/jbc.M110.203398.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 27069-27080
-
-
Carta, S.1
Tassi, S.2
Pettinati, I.3
Delfino, L.4
Dinarello, C.A.5
Rubartelli, A.6
-
144
-
-
70249117528
-
Pathogen-induced interleukin-1beta processing and secretion is regulated by a biphasic redox response
-
Tassi S., Carta S., Vené R., Delfino L., Ciriolo M.R., Rubartelli A. Pathogen-induced interleukin-1beta processing and secretion is regulated by a biphasic redox response. J. Immunol. 2009, 183:1456-1462. 10.4049/jimmunol.0900578.
-
(2009)
J. Immunol.
, vol.183
, pp. 1456-1462
-
-
Tassi, S.1
Carta, S.2
Vené, R.3
Delfino, L.4
Ciriolo, M.R.5
Rubartelli, A.6
-
145
-
-
77953105116
-
Altered redox state of monocytes from cryopyrin-associated periodic syndromes causes accelerated IL-1beta secretion
-
Tassi S., Carta S., Delfino L., Caorsi R., Martini A., Gattorno M., et al. Altered redox state of monocytes from cryopyrin-associated periodic syndromes causes accelerated IL-1beta secretion. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:9789-9794. 10.1073/pnas.1000779107.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 9789-9794
-
-
Tassi, S.1
Carta, S.2
Delfino, L.3
Caorsi, R.4
Martini, A.5
Gattorno, M.6
-
146
-
-
47849120473
-
Superoxide dismutase 1 regulates caspase-1 and endotoxic shock
-
Meissner F., Molawi K., Zychlinsky A. Superoxide dismutase 1 regulates caspase-1 and endotoxic shock. Nat. Immunol. 2008, 9:866-872. 10.1038/ni.1633.
-
(2008)
Nat. Immunol.
, vol.9
, pp. 866-872
-
-
Meissner, F.1
Molawi, K.2
Zychlinsky, A.3
-
147
-
-
0034658976
-
Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function
-
Junn E., Han S.H., Im J.Y., Yang Y., Cho E.W., Um H.D., et al. Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J. Immunol. 2000, 164:6287-6295.
-
(2000)
J. Immunol.
, vol.164
, pp. 6287-6295
-
-
Junn, E.1
Han, S.H.2
Im, J.Y.3
Yang, Y.4
Cho, E.W.5
Um, H.D.6
-
148
-
-
0033618398
-
Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression
-
Nishiyama A., Matsui M., Iwata S., Hirota K., Masutani H., Nakamura H., et al. Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J. Biol. Chem. 1999, 274:21645-21650.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 21645-21650
-
-
Nishiyama, A.1
Matsui, M.2
Iwata, S.3
Hirota, K.4
Masutani, H.5
Nakamura, H.6
-
149
-
-
75649096002
-
Thioredoxin-interacting protein links oxidative stress to inflammasome activation
-
Zhou R., Tardivel A., Thorens B., Choi I., Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 2009, 11:136-140. 10.1038/ni.1831.
-
(2009)
Nat. Immunol.
, vol.11
, pp. 136-140
-
-
Zhou, R.1
Tardivel, A.2
Thorens, B.3
Choi, I.4
Tschopp, J.5
-
150
-
-
84936146957
-
Monosodium urate crystals trigger Nrf2- and heme oxygenase-1-dependent inflammation in THP-1 cells
-
Jhang J.-J., Cheng Y.-T., Ho C.-Y., Yen G.-C. Monosodium urate crystals trigger Nrf2- and heme oxygenase-1-dependent inflammation in THP-1 cells. Cell. Mol. Immunol. 2014, 10.1038/cmi.2014.65.
-
(2014)
Cell. Mol. Immunol.
-
-
Jhang, J.-J.1
Cheng, Y.-T.2
Ho, C.-Y.3
Yen, G.-C.4
-
151
-
-
84907588640
-
Nod-like receptor protein 3 (NLRP3) inflammasome activation and podocyte injury via thioredoxin-interacting protein (TXNIP) during hyperhomocysteinemia
-
Abais J.M., Xia M., Li G., Chen Y., Conley S.M., Gehr T.W.B., et al. Nod-like receptor protein 3 (NLRP3) inflammasome activation and podocyte injury via thioredoxin-interacting protein (TXNIP) during hyperhomocysteinemia. J. Biol. Chem. 2014, 289:27159-27168. 10.1074/jbc.M114.567537.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 27159-27168
-
-
Abais, J.M.1
Xia, M.2
Li, G.3
Chen, Y.4
Conley, S.M.5
Gehr, T.W.B.6
-
152
-
-
84884474591
-
NLRP3 inflammasome activation in D-galactosamine and lipopolysaccharide-induced acute liver failure: role of heme oxygenase-1
-
Kim S.-J., Lee S.-M. NLRP3 inflammasome activation in D-galactosamine and lipopolysaccharide-induced acute liver failure: role of heme oxygenase-1. Free Radic. Biol. Med. 2013, 65:997-1004. 10.1016/j.freeradbiomed.2013.08.178.
-
(2013)
Free Radic. Biol. Med.
, vol.65
, pp. 997-1004
-
-
Kim, S.-J.1
Lee, S.-M.2
-
153
-
-
84887284753
-
TXNIP deficiency exacerbates endotoxic shock via the induction of excessive nitric oxide synthesis
-
Park Y.-J., Yoon S.-J., Suh H.-W., Kim D.O., Park J.-R., Jung H., et al. TXNIP deficiency exacerbates endotoxic shock via the induction of excessive nitric oxide synthesis. PLoS Pathog. 2013, 9:e1003646. 10.1371/journal.ppat.1003646.
-
(2013)
PLoS Pathog.
, vol.9
, pp. e1003646
-
-
Park, Y.-J.1
Yoon, S.-J.2
Suh, H.-W.3
Kim, D.O.4
Park, J.-R.5
Jung, H.6
-
154
-
-
84871188736
-
Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β
-
Mishra B.B., Rathinam V.A.K., Martens G.W., Martinot A.J., Kornfeld H., Fitzgerald K.A., et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β. Nat. Immunol. 2013, 14:52-60. 10.1038/ni.2474.
-
(2013)
Nat. Immunol.
, vol.14
, pp. 52-60
-
-
Mishra, B.B.1
Rathinam, V.A.K.2
Martens, G.W.3
Martinot, A.J.4
Kornfeld, H.5
Fitzgerald, K.A.6
-
155
-
-
80655144737
-
Crystal structure of NALP3 protein pyrin domain (PYD) and its implications in inflammasome assembly
-
Bae J.Y., Park H.H. Crystal structure of NALP3 protein pyrin domain (PYD) and its implications in inflammasome assembly. J. Biol. Chem. 2011, 286:39528-39536. 10.1074/jbc.M111.278812.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 39528-39536
-
-
Bae, J.Y.1
Park, H.H.2
-
156
-
-
84874764451
-
Thioredoxin-interacting protein gene expression via MondoA is rapidly and transiently suppressed during inflammatory responses
-
Kanari Y., Sato Y., Aoyama S., Muta T. Thioredoxin-interacting protein gene expression via MondoA is rapidly and transiently suppressed during inflammatory responses. PLoS One. 2013, 8:e59026. 10.1371/journal.pone.0059026.
-
(2013)
PLoS One.
, vol.8
, pp. e59026
-
-
Kanari, Y.1
Sato, Y.2
Aoyama, S.3
Muta, T.4
-
157
-
-
10044228504
-
Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex
-
Zhang D.D., Lo S.-C., Cross J.V., Templeton D.J., Hannink M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol. Cell. Biol. 2004, 24:10941-10953. 10.1128/MCB.24.24.10941-10953.2004.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 10941-10953
-
-
Zhang, D.D.1
Lo, S.-C.2
Cross, J.V.3
Templeton, D.J.4
Hannink, M.5
-
158
-
-
3543008924
-
Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2
-
Kobayashi A., Kang M.-I., Okawa H., Ohtsuji M., Zenke Y., Chiba T., et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell. Biol. 2004, 24:7130-7139. 10.1128/MCB.24.16.7130-7139.2004.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 7130-7139
-
-
Kobayashi, A.1
Kang, M.-I.2
Okawa, H.3
Ohtsuji, M.4
Zenke, Y.5
Chiba, T.6
-
159
-
-
4544294365
-
The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase
-
Cullinan S.B., Gordan J.D., Jin J., Harper J.W., Diehl J.A. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol. Cell. Biol. 2004, 24:8477-8486. 10.1128/MCB.24.19.8477-8486.2004.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 8477-8486
-
-
Cullinan, S.B.1
Gordan, J.D.2
Jin, J.3
Harper, J.W.4
Diehl, J.A.5
-
160
-
-
84867034260
-
Role of nrf2 in oxidative stress and toxicity
-
Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53:401-426. 10.1146/annurev-pharmtox-011112-140320.
-
(2013)
Annu. Rev. Pharmacol. Toxicol.
, vol.53
, pp. 401-426
-
-
Ma, Q.1
-
161
-
-
42649130014
-
PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mitochondria
-
Lo S.-C., Hannink M. PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mitochondria. Exp. Cell Res. 2008, 314:1789-1803. 10.1016/j.yexcr.2008.02.014.
-
(2008)
Exp. Cell Res.
, vol.314
, pp. 1789-1803
-
-
Lo, S.-C.1
Hannink, M.2
-
162
-
-
84920982736
-
The ubiquitin-conjugating enzyme UBE2E3 and its import receptor importin-11 regulate the localization and activity of the antioxidant transcription factor NRF2
-
Plafker K.S., Plafker S.M. The ubiquitin-conjugating enzyme UBE2E3 and its import receptor importin-11 regulate the localization and activity of the antioxidant transcription factor NRF2. Mol. Biol. Cell. 2015, 26:327-338. 10.1091/mbc.E14-06-1057.
-
(2015)
Mol. Biol. Cell.
, vol.26
, pp. 327-338
-
-
Plafker, K.S.1
Plafker, S.M.2
-
163
-
-
77649265091
-
The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
-
Komatsu M., Kurokawa H., Waguri S., Taguchi K., Kobayashi A., Ichimura Y., et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 2010, 12:213-223. 10.1038/ncb2021.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 213-223
-
-
Komatsu, M.1
Kurokawa, H.2
Waguri, S.3
Taguchi, K.4
Kobayashi, A.5
Ichimura, Y.6
-
164
-
-
77954599053
-
P62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription
-
Jain A., Lamark T., Sjøttem E., Larsen K.B., Awuh J.A., Øvervatn A., et al. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J. Biol. Chem. 2010, 285:22576-22591. 10.1074/jbc.M110.118976.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 22576-22591
-
-
Jain, A.1
Lamark, T.2
Sjøttem, E.3
Larsen, K.B.4
Awuh, J.A.5
Øvervatn, A.6
-
165
-
-
84908610651
-
Macrophages sense and kill bacteria through carbon monoxide-dependent inflammasome activation
-
Wegiel B., Larsen R., Gallo D., Chin B.Y., Harris C., Mannam P., et al. Macrophages sense and kill bacteria through carbon monoxide-dependent inflammasome activation. J. Clin. Invest. 2014, 124:4926-4940. 10.1172/JCI72853.
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 4926-4940
-
-
Wegiel, B.1
Larsen, R.2
Gallo, D.3
Chin, B.Y.4
Harris, C.5
Mannam, P.6
-
166
-
-
84867777934
-
Redox regulation by nuclear factor erythroid 2-related factor 2: gatekeeping for the basal and diabetes-induced expression of thioredoxin-interacting protein
-
He X., Ma Q. Redox regulation by nuclear factor erythroid 2-related factor 2: gatekeeping for the basal and diabetes-induced expression of thioredoxin-interacting protein. Mol. Pharmacol. 2012, 82:887-897. 10.1124/mol.112.081133.
-
(2012)
Mol. Pharmacol.
, vol.82
, pp. 887-897
-
-
He, X.1
Ma, Q.2
-
167
-
-
79955542142
-
Heme oxygenase-1 couples activation of mitochondrial biogenesis to anti-inflammatory cytokine expression
-
Piantadosi C.A., Withers C.M., Bartz R.R., MacGarvey N.C., Fu P., Sweeney T.E., et al. Heme oxygenase-1 couples activation of mitochondrial biogenesis to anti-inflammatory cytokine expression. J. Biol. Chem. 2011, 286:16374-16385. 10.1074/jbc.M110.207738.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 16374-16385
-
-
Piantadosi, C.A.1
Withers, C.M.2
Bartz, R.R.3
MacGarvey, N.C.4
Fu, P.5
Sweeney, T.E.6
-
168
-
-
84876567161
-
Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome
-
Misawa T., Takahama M., Kozaki T., Lee H., Zou J., Saitoh T., et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat. Immunol. 2013, 14:454-460. 10.1038/ni.2550.
-
(2013)
Nat. Immunol.
, vol.14
, pp. 454-460
-
-
Misawa, T.1
Takahama, M.2
Kozaki, T.3
Lee, H.4
Zou, J.5
Saitoh, T.6
-
169
-
-
3242719545
-
Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase
-
Yeung F., Hoberg J.E., Ramsey C.S., Keller M.D., Jones D.R., Frye R.A., et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004, 23:2369-2380. 10.1038/sj.emboj.7600244.
-
(2004)
EMBO J.
, vol.23
, pp. 2369-2380
-
-
Yeung, F.1
Hoberg, J.E.2
Ramsey, C.S.3
Keller, M.D.4
Jones, D.R.5
Frye, R.A.6
-
170
-
-
79953225194
-
Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization
-
Kawai Y., Garduño L., Theodore M., Yang J., Arinze I.J. Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization. J. Biol. Chem. 2011, 286:7629-7640. 10.1074/jbc.M110.208173.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 7629-7640
-
-
Kawai, Y.1
Garduño, L.2
Theodore, M.3
Yang, J.4
Arinze, I.J.5
-
171
-
-
84876285741
-
Succinate is an inflammatory signal that induces IL-1β through HIF-1α
-
Tannahill G.M., Curtis A.M., Adamik J., Palsson-McDermott E.M., McGettrick A.F., Goel G., et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 2013, 496:238-242. 10.1038/nature11986.
-
(2013)
Nature
, vol.496
, pp. 238-242
-
-
Tannahill, G.M.1
Curtis, A.M.2
Adamik, J.3
Palsson-McDermott, E.M.4
McGettrick, A.F.5
Goel, G.6
-
172
-
-
80052170775
-
The mitochondrial citrate carrier: a new player in inflammation
-
Infantino V., Convertini P., Cucci L., Panaro M.A., Di Noia M.A., Calvello R., et al. The mitochondrial citrate carrier: a new player in inflammation. Biochem. J. 2011, 438:433-436. 10.1042/BJ20111275.
-
(2011)
Biochem. J.
, vol.438
, pp. 433-436
-
-
Infantino, V.1
Convertini, P.2
Cucci, L.3
Panaro, M.A.4
Di Noia, M.A.5
Calvello, R.6
-
173
-
-
24144461689
-
Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3
-
Seth R.B., Sun L., Ea C.-K., Chen Z.J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 2005, 122:669-682. 10.1016/j.cell.2005.08.012.
-
(2005)
Cell
, vol.122
, pp. 669-682
-
-
Seth, R.B.1
Sun, L.2
Ea, C.-K.3
Chen, Z.J.4
-
174
-
-
84876237736
-
The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation
-
Subramanian N., Natarajan K., Clatworthy M.R., Wang Z., Germain R.N. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell 2013, 153:348-361. 10.1016/j.cell.2013.02.054.
-
(2013)
Cell
, vol.153
, pp. 348-361
-
-
Subramanian, N.1
Natarajan, K.2
Clatworthy, M.R.3
Wang, Z.4
Germain, R.N.5
-
175
-
-
84894490723
-
LC3 binds externalized cardiolipin on injured mitochondria to signal mitophagy in neurons: implications for Parkinson disease
-
Chu C.T., Bayir H., Kagan V.E. LC3 binds externalized cardiolipin on injured mitochondria to signal mitophagy in neurons: implications for Parkinson disease. Autophagy 2014, 10:376-378. 10.4161/auto.27191.
-
(2014)
Autophagy
, vol.10
, pp. 376-378
-
-
Chu, C.T.1
Bayir, H.2
Kagan, V.E.3
-
176
-
-
84927050914
-
RNase L activates the NLRP3 inflammasome during viral infections
-
Chakrabarti A., Banerjee S., Franchi L., Loo Y.-M., Gale M., Núñez G., et al. RNase L activates the NLRP3 inflammasome during viral infections. Cell Host Microbe 2015, 17:466-477. 10.1016/j.chom.2015.02.010.
-
(2015)
Cell Host Microbe
, vol.17
, pp. 466-477
-
-
Chakrabarti, A.1
Banerjee, S.2
Franchi, L.3
Loo, Y.-M.4
Gale, M.5
Núñez, G.6
-
177
-
-
81355146675
-
Interplay between redox status and inflammasome activation
-
Rubartelli A., Gattorno M., Netea M.G., Dinarello C.A. Interplay between redox status and inflammasome activation. Trends Immunol. 2011, 32:559-566. 10.1016/j.it.2011.08.005.
-
(2011)
Trends Immunol.
, vol.32
, pp. 559-566
-
-
Rubartelli, A.1
Gattorno, M.2
Netea, M.G.3
Dinarello, C.A.4
-
178
-
-
84868314921
-
Redox control of NLRP3 inflammasome activation in health and disease
-
Rubartelli A. Redox control of NLRP3 inflammasome activation in health and disease. J. Leukoc. Biol. 2012, 92:951-958. 10.1189/jlb.0512265.
-
(2012)
J. Leukoc. Biol.
, vol.92
, pp. 951-958
-
-
Rubartelli, A.1
|