메뉴 건너뛰기




Volumn 22, Issue 3, 2015, Pages 377-388

Oxidative stress and autophagy: The clash between damage and metabolic needs

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACID; CATALASE; CELL NUCLEUS DNA; GENOMIC DNA; GLUCOSE; GLUTAMINE; GLUTATHIONE PEROXIDASE; KELCH LIKE ECH ASSOCIATED PROTEIN 1; LEUCINE; PROCOLLAGEN PROLINE 2 OXOGLUTARATE 4 DIOXYGENASE; PROTEIN P62; REACTIVE NITROGEN SPECIES; SUPEROXIDE DISMUTASE; TRANSCRIPTION FACTOR NRF2;

EID: 84922489435     PISSN: 13509047     EISSN: 14765403     Source Type: Journal    
DOI: 10.1038/cdd.2014.150     Document Type: Review
Times cited : (1607)

References (131)
  • 1
    • 77049269955 scopus 로고
    • Tissue fractionation studies. VIII. Cellular localization of bound enzymes
    • Baudhuin P, Berleur AN, De Duve C, Wattiaux R. Tissue fractionation studies. VIII. Cellular localization of bound enzymes. Biochem J 1956; 63: 608-612.
    • (1956) Biochem J , vol.63 , pp. 608-612
    • Baudhuin, P.1    Berleur, A.N.2    De Duve, C.3    Wattiaux, R.4
  • 3
    • 0011188890 scopus 로고
    • Reproducibility of differential centrifugation experiments in tissue fractionation
    • De Duve C, Berthet J. Reproducibility of differential centrifugation experiments in tissue fractionation. Nature 1953; 172: 1142.
    • (1953) Nature , vol.172 , pp. 1142
    • De Duve, C.1    Berthet, J.2
  • 5
    • 0013897667 scopus 로고
    • Peroxisomes (microbodies and related particles)
    • De Duve C, Baudhuin P. Peroxisomes (microbodies and related particles). Physiol Rev 1966; 46: 323-357.
    • (1966) Physiol Rev , vol.46 , pp. 323-357
    • De Duve, C.1    Baudhuin, P.2
  • 6
    • 84873787526 scopus 로고
    • Toxic effects of oxygen and of hydrogen peroxide on brain metabolism
    • Mann PJ, Quastel JH. Toxic effects of oxygen and of hydrogen peroxide on brain metabolism. Biochem J 1946; 40: 139-144.
    • (1946) Biochem J , vol.40 , pp. 139-144
    • Mann, P.J.1    Quastel, J.H.2
  • 7
    • 0023655369 scopus 로고
    • Protein damage and degradation by oxygen radicals. I. General aspects
    • Davies KJ. Protein damage and degradation by oxygen radicals. I. general aspects. J Biol Chem 1987; 262: 9895-9901.
    • (1987) J Biol Chem , vol.262 , pp. 9895-9901
    • Davies, K.J.1
  • 8
    • 0017939393 scopus 로고
    • Biochemical mechanisms accounting for the toxic action of oxygen on living organisms: The key role of superoxide dismutase
    • Halliwell B. Biochemical mechanisms accounting for the toxic action of oxygen on living organisms: the key role of superoxide dismutase. Cell Biol Int Rep 1978; 2: 113-128.
    • (1978) Cell Biol Int Rep , vol.2 , pp. 113-128
    • Halliwell, B.1
  • 9
    • 0023886170 scopus 로고
    • DNA damage and oxygen radical toxicity
    • Imlay JA, Linn S. DNA damage and oxygen radical toxicity. Science 1988; 240: 1302-1309.
    • (1988) Science , vol.240 , pp. 1302-1309
    • Imlay, J.A.1    Linn, S.2
  • 10
    • 77049308856 scopus 로고
    • Aging: A theory based on free radical and radiation chemistry
    • Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11: 298-300.
    • (1956) J Gerontol , vol.11 , pp. 298-300
    • Harman, D.1
  • 11
    • 78649338141 scopus 로고    scopus 로고
    • Autophagy and the integrated stress response
    • Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell 2010; 40: 280-293.
    • (2010) Mol Cell , vol.40 , pp. 280-293
    • Kroemer, G.1    Marino, G.2    Levine, B.3
  • 12
    • 77951214016 scopus 로고    scopus 로고
    • Mammalian autophagy: Core molecular machinery and signaling regulation
    • Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 2010; 22: 124-131.
    • (2010) Curr Opin Cell Biol , vol.22 , pp. 124-131
    • Yang, Z.1    Klionsky, D.J.2
  • 13
    • 84864828634 scopus 로고    scopus 로고
    • Autophagy and cell growth-the yin and yang of nutrient responses
    • Neufeld TP. Autophagy and cell growth-the yin and yang of nutrient responses. J Cell Sci 2012; 125: 2359-2368.
    • (2012) J Cell Sci , vol.125 , pp. 2359-2368
    • Neufeld, T.P.1
  • 14
    • 78650510609 scopus 로고    scopus 로고
    • mTOR: From growth signal integration to cancer, diabetes and ageing
    • Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12: 21-35.
    • (2011) Nat Rev Mol Cell Biol , vol.12 , pp. 21-35
    • Zoncu, R.1    Efeyan, A.2    Sabatini, D.M.3
  • 15
    • 84883235992 scopus 로고    scopus 로고
    • mTOR AMBRA1, and autophagy: An intricate relationship
    • Nazio F, Cecconi F. mTOR AMBRA1, and autophagy: an intricate relationship. Cell Cycle 2013; 12: 2524-2525.
    • (2013) Cell Cycle , vol.12 , pp. 2524-2525
    • Nazio, F.1    Cecconi, F.2
  • 16
    • 78650833257 scopus 로고    scopus 로고
    • Unleashing the Ambra1-Beclin 1 complex from dynein chains: Ulk1 sets Ambra1 free to induce autophagy
    • Fimia GM, Di Bartolomeo S, Piacentini M, Cecconi F. Unleashing the Ambra1-Beclin 1 complex from dynein chains: Ulk1 sets Ambra1 free to induce autophagy. Autophagy 2011; 7: 115-117.
    • (2011) Autophagy , vol.7 , pp. 115-117
    • Fimia, G.M.1    Di Bartolomeo, S.2    Piacentini, M.3    Cecconi, F.4
  • 17
  • 18
    • 59049100116 scopus 로고    scopus 로고
    • An amino acid shuffle activates mTORC1
    • Cohen A, Hall MN. An amino acid shuffle activates mTORC1. Cell 2009; 136: 399-400.
    • (2009) Cell , vol.136 , pp. 399-400
    • Cohen, A.1    Hall, M.N.2
  • 19
    • 2642525364 scopus 로고    scopus 로고
    • What are the essential elements needed for the determination of amino acid requirements in humans?
    • Furst P, Stehle P. What are the essential elements needed for the determination of amino acid requirements in humans? J Nutr 2004; 134: 1558S-1565S.
    • (2004) J Nutr , vol.134 , pp. 1558S-1565S
    • Furst, P.1    Stehle, P.2
  • 23
    • 84894523716 scopus 로고    scopus 로고
    • Making new contacts: The mTOR network in metabolism and signalling crosstalk
    • Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 2014; 15: 155-162.
    • (2014) Nat Rev Mol Cell Biol , vol.15 , pp. 155-162
    • Shimobayashi, M.1    Hall, M.N.2
  • 24
    • 80555143078 scopus 로고    scopus 로고
    • mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H (+)-ATPase
    • Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H (+)-ATPase. Science 2011; 334: 678-683.
    • (2011) Science , vol.334 , pp. 678-683
    • Zoncu, R.1    Bar-Peled, L.2    Efeyan, A.3    Wang, S.4    Sancak, Y.5    Sabatini, D.M.6
  • 25
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141: 290-303.
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1    Bar-Peled, L.2    Zoncu, R.3    Markhard, A.L.4    Nada, S.5    Sabatini, D.M.6
  • 27
    • 84884597394 scopus 로고    scopus 로고
    • HIF-independent role of prolyl hydroxylases in the cellular response to amino acids
    • Duran RV, MacKenzie ED, Boulahbel H, Frezza C, Heiserich L, Tardito S et al. HIF-independent role of prolyl hydroxylases in the cellular response to amino acids. Oncogene 2013; 32: 4549-4556.
    • (2013) Oncogene , vol.32 , pp. 4549-4556
    • Duran, R.V.1    MacKenzie, E.D.2    Boulahbel, H.3    Frezza, C.4    Heiserich, L.5    Tardito, S.6
  • 28
    • 80053035284 scopus 로고    scopus 로고
    • AMP-activated protein kinase: An energy sensor that regulates all aspects of cell function
    • Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 2011; 25: 1895-1908.
    • (2011) Genes Dev , vol.25 , pp. 1895-1908
    • Hardie, D.G.1
  • 29
    • 79959338922 scopus 로고    scopus 로고
    • AMPK is a direct adenylate charge-regulated protein kinase
    • Oakhill JS, Steel R, Chen ZP, Scott JW, Ling N, Tam S et al. AMPK is a direct adenylate charge-regulated protein kinase. Science 2011; 332: 1433-1435.
    • (2011) Science , vol.332 , pp. 1433-1435
    • Oakhill, J.S.1    Steel, R.2    Chen, Z.P.3    Scott, J.W.4    Ling, N.5    Tam, S.6
  • 30
    • 84862849835 scopus 로고    scopus 로고
    • Redox implications of AMPK-mediated signal transduction beyond energetic clues
    • Cardaci S, Filomeni G, Ciriolo MR. Redox implications of AMPK-mediated signal transduction beyond energetic clues. J Cell Sci 2012; 125: 2115-2125.
    • (2012) J Cell Sci , vol.125 , pp. 2115-2125
    • Cardaci, S.1    Filomeni, G.2    Ciriolo, M.R.3
  • 31
    • 33748153690 scopus 로고    scopus 로고
    • TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth
    • Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006; 126: 955-968.
    • (2006) Cell , vol.126 , pp. 955-968
    • Inoki, K.1    Ouyang, H.2    Zhu, T.3    Lindvall, C.4    Wang, Y.5    Zhang, X.6
  • 33
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011; 13: 132-141.
    • (2011) Nat Cell Biol , vol.13 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.L.4
  • 34
    • 84894105147 scopus 로고    scopus 로고
    • Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition
    • Roberts DJ, Tan-Sah VP, Ding EY, Smith JM, Miyamoto S. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol Cell 2014; 53: 521-533.
    • (2014) Mol Cell , vol.53 , pp. 521-533
    • Roberts, D.J.1    Tan-Sah, V.P.2    Ding, E.Y.3    Smith, J.M.4    Miyamoto, S.5
  • 35
    • 4544355934 scopus 로고    scopus 로고
    • Mitochondrial bound hexokinase activity as a preventive antioxidant defense: Steady-state ADP formation as a regulatory mechanism of membrane potential and reactive oxygen species generation in mitochondria
    • da-Silva WS, Gomez-Puyou A, de Gomez-Puyou MT, Moreno-Sanchez R, De Felice FG, de Meis L et al. Mitochondrial bound hexokinase activity as a preventive antioxidant defense: steady-state ADP formation as a regulatory mechanism of membrane potential and reactive oxygen species generation in mitochondria. J Biol Chem 2004; 279: 39846-39855.
    • (2004) J Biol Chem , vol.279 , pp. 39846-39855
    • Da-Silva, W.S.1    Gomez-Puyou, A.2    De Gomez-Puyou, M.T.3    Moreno-Sanchez, R.4    De Felice, F.G.5    De Meis, L.6
  • 36
    • 38549163731 scopus 로고    scopus 로고
    • Glucose phosphorylation and mitochondrial binding are required for the protective effects of hexokinases I and II
    • Sun L, Shukair S, Naik TJ, Moazed F, Ardehali H. Glucose phosphorylation and mitochondrial binding are required for the protective effects of hexokinases I and II. Mol Cell Biol 2008; 28: 1007-1017.
    • (2008) Mol Cell Biol , vol.28 , pp. 1007-1017
    • Sun, L.1    Shukair, S.2    Naik, T.J.3    Moazed, F.4    Ardehali, H.5
  • 37
    • 84863456083 scopus 로고    scopus 로고
    • Hexokinase II knockdown results in exaggerated cardiac hypertrophy via increased ROS production
    • Wu R, Wyatt E, Chawla K, Tran M, Ghanefar M, Laakso M et al. Hexokinase II knockdown results in exaggerated cardiac hypertrophy via increased ROS production. EMBO Mol Med 2012; 4: 633-646.
    • (2012) EMBO Mol Med , vol.4 , pp. 633-646
    • Wu, R.1    Wyatt, E.2    Chawla, K.3    Tran, M.4    Ghanefar, M.5    Laakso, M.6
  • 38
    • 0018776894 scopus 로고
    • Hydroperoxide metabolism in mammalian organs
    • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979; 59: 527-605.
    • (1979) Physiol Rev , vol.59 , pp. 527-605
    • Chance, B.1    Sies, H.2    Boveris, A.3
  • 40
    • 27944442839 scopus 로고    scopus 로고
    • Disulfide relays and phosphorylative cascades: Partners in redox-mediated signaling pathways
    • Filomeni G, Rotilio G, Ciriolo MR. Disulfide relays and phosphorylative cascades: partners in redox-mediated signaling pathways. Cell Death Differ 2005; 12: 1555-1563.
    • (2005) Cell Death Differ , vol.12 , pp. 1555-1563
    • Filomeni, G.1    Rotilio, G.2    Ciriolo, M.R.3
  • 41
    • 0036710563 scopus 로고    scopus 로고
    • Cell signalling and the glutathione redox system
    • Filomeni G, Rotilio G, Ciriolo MR. Cell signalling and the glutathione redox system. Biochem Pharmacol 2002; 64: 1057-1064.
    • (2002) Biochem Pharmacol , vol.64 , pp. 1057-1064
    • Filomeni, G.1    Rotilio, G.2    Ciriolo, M.R.3
  • 42
    • 77956207316 scopus 로고    scopus 로고
    • Changing paradigms in thiology from antioxidant defense toward redox regulation
    • Flohe L. Changing paradigms in thiology from antioxidant defense toward redox regulation. Methods Enzymol 2010; 473: 1-39.
    • (2010) Methods Enzymol , vol.473 , pp. 1-39
    • Flohe, L.1
  • 43
    • 46449110295 scopus 로고    scopus 로고
    • Thiol chemistry in peroxidase catalysis and redox signaling
    • Bindoli A, Fukuto JM, Forman HJ. Thiol chemistry in peroxidase catalysis and redox signaling. Antioxid Redox Signal 2008; 10: 1549-1564.
    • (2008) Antioxid Redox Signal , vol.10 , pp. 1549-1564
    • Bindoli, A.1    Fukuto, J.M.2    Forman, H.J.3
  • 44
    • 0029805172 scopus 로고    scopus 로고
    • Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly
    • Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996; 271: C1424-C1437.
    • (1996) Am J Physiol , vol.271 , pp. C1424-C1437
    • Beckman, J.S.1    Koppenol, W.H.2
  • 45
    • 84866234079 scopus 로고    scopus 로고
    • Established principles and emerging concepts on the interplay between mitochondrial physiology and S-(De)nitrosylation: Implications in cancer and neurodegeneration
    • Di Giacomo G, Rizza S, Montagna C, Filomeni G. Established principles and emerging concepts on the interplay between mitochondrial physiology and S-(De)nitrosylation: implications in cancer and neurodegeneration. Int J Cell Biol 2012; 2012: 361872.
    • (2012) Int J Cell Biol , vol.2012 , pp. 361872
    • Di Giacomo, G.1    Rizza, S.2    Montagna, C.3    Filomeni, G.4
  • 46
    • 0027104253 scopus 로고
    • Biochemistry of nitric oxide and its redox-activated forms
    • Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science 1992; 258: 1898-1902.
    • (1992) Science , vol.258 , pp. 1898-1902
    • Stamler, J.S.1    Singel, D.J.2    Loscalzo, J.3
  • 47
    • 61949480266 scopus 로고    scopus 로고
    • Two faces of nitric oxide: Implications for cellular mechanisms of oxygen toxicity
    • Allen BW, Demchenko IT, Piantadosi CA. Two faces of nitric oxide: implications for cellular mechanisms of oxygen toxicity. J Appl Physiol (1985) 2009; 106: 662-667.
    • (2009) J Appl Physiol (1985) , vol.106 , pp. 662-667
    • Allen, B.W.1    Demchenko, I.T.2    Piantadosi, C.A.3
  • 48
    • 55149107716 scopus 로고    scopus 로고
    • Radical-free biology of oxidative stress
    • Jones DP. Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 2008; 295: C849-C868.
    • (2008) Am J Physiol Cell Physiol , vol.295 , pp. C849-C868
    • Jones, D.P.1
  • 49
    • 84901316606 scopus 로고    scopus 로고
    • Cellular mechanisms and physiological consequences of redox-dependent signalling
    • Holmstrom KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 2014; 15: 411-421.
    • (2014) Nat Rev Mol Cell Biol , vol.15 , pp. 411-421
    • Holmstrom, K.M.1    Finkel, T.2
  • 50
    • 77957674533 scopus 로고    scopus 로고
    • Under the ROS. Thiol network is the principal suspect for autophagy commitment
    • Filomeni G, Desideri E, Cardaci S, Rotilio G, Ciriolo MR. Under the ROS. thiol network is the principal suspect for autophagy commitment. Autophagy 2010; 6: 999-1005.
    • (2010) Autophagy , vol.6 , pp. 999-1005
    • Filomeni, G.1    Desideri, E.2    Cardaci, S.3    Rotilio, G.4    Ciriolo, M.R.5
  • 51
    • 67549084381 scopus 로고    scopus 로고
    • Superoxide is the major reactive oxygen species regulating autophagy
    • Chen Y, Azad MB, Gibson SB. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 2009; 16: 1040-1052.
    • (2009) Cell Death Differ , vol.16 , pp. 1040-1052
    • Chen, Y.1    Azad, M.B.2    Gibson, S.B.3
  • 52
    • 34250825929 scopus 로고    scopus 로고
    • Oxidation as a post-translational modification that regulates autophagy
    • Scherz-Shouval R, Shvets E, Elazar Z. Oxidation as a post-translational modification that regulates autophagy. Autophagy 2007; 3: 371-373.
    • (2007) Autophagy , vol.3 , pp. 371-373
    • Scherz-Shouval, R.1    Shvets, E.2    Elazar, Z.3
  • 53
    • 84883827034 scopus 로고    scopus 로고
    • Calyxin Y induces hydrogen peroxide-dependent autophagy and apoptosis via JNK activation in human non-small cell lung cancer NCI-H460 cells
    • Zhang C, Yang L, Wang XB, Wang JS, Geng YD, Yang CS et al. Calyxin Y induces hydrogen peroxide-dependent autophagy and apoptosis via JNK activation in human non-small cell lung cancer NCI-H460 cells. Cancer Lett 2013; 340: 51-62.
    • (2013) Cancer Lett , vol.340 , pp. 51-62
    • Zhang, C.1    Yang, L.2    Wang, X.B.3    Wang, J.S.4    Geng, Y.D.5    Yang, C.S.6
  • 54
    • 84898785937 scopus 로고    scopus 로고
    • Redox regulation of antioxidants, autophagy, and the response to stress: Implications for electrophile therapeutics
    • Levonen AL, Hill BG, Kansanen E, Zhang J, Darley-Usmar VM. Redox regulation of antioxidants, autophagy, and the response to stress: Implications for electrophile therapeutics. Free Radic Biol Med 2014; 71C: 196-207.
    • (2014) Free Radic Biol Med , vol.71 C , pp. 196-207
    • Levonen, A.L.1    Hill, B.G.2    Kansanen, E.3    Zhang, J.4    Darley-Usmar, V.M.5
  • 56
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009; 417: 1-13.
    • (2009) Biochem J , vol.417 , pp. 1-13
    • Murphy, M.P.1
  • 57
    • 34848920863 scopus 로고    scopus 로고
    • ROS, mitochondria and the regulation of autophagy
    • Scherz-Shouval R, Z. Elazar. ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 2007; 17: 422-427.
    • (2007) Trends Cell Biol , vol.17 , pp. 422-427
    • Scherz-Shouval, R.1    Elazar, Z.2
  • 58
    • 84869147050 scopus 로고    scopus 로고
    • Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation
    • Wang RC,Wei Y, An Z, Zou Z, Xiao G, Bhagat G et al. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 2012; 338: 956-959.
    • (2012) Science , vol.338 , pp. 956-959
    • Wang, R.C.1    Wei, Y.2    An, Z.3    Zou, Z.4    Xiao, G.5    Bhagat, G.6
  • 59
    • 71049182336 scopus 로고    scopus 로고
    • A tail-anchored myotonic dystrophy protein kinase isoform induces perinuclear clustering of mitochondria, autophagy, and apoptosis
    • Oude Ophuis RJ, Wijers M, Bennink MB, van de Loo FA, Fransen JA, Wieringa B et al. A tail-anchored myotonic dystrophy protein kinase isoform induces perinuclear clustering of mitochondria, autophagy, and apoptosis. PLoS One 2009; 4: e8024.
    • (2009) PLoS One , vol.4 , pp. e8024
    • Oude Ophuis, R.J.1    Wijers, M.2    Bennink, M.B.3    Van De Loo, F.A.4    Fransen, J.A.5    Wieringa, B.6
  • 60
    • 84896733279 scopus 로고    scopus 로고
    • Mitochondrial dismissal in mammals, from protein degradation to mitophagy
    • Campello S, Strappazzon F, Cecconi F. Mitochondrial dismissal in mammals, from protein degradation to mitophagy. Biochim Biophys Acta 2014; 1837: 451-460.
    • (2014) Biochim Biophys Acta , vol.1837 , pp. 451-460
    • Campello, S.1    Strappazzon, F.2    Cecconi, F.3
  • 61
    • 79959987510 scopus 로고    scopus 로고
    • Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
    • Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA 2011; 108: 10190-10195.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 10190-10195
    • Rambold, A.S.1    Kostelecky, B.2    Elia, N.3    Lippincott-Schwartz, J.4
  • 62
    • 79955623510 scopus 로고    scopus 로고
    • During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
    • Gomes LC, Di Benedetto G, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 2011; 13: 589-598.
    • (2011) Nat Cell Biol , vol.13 , pp. 589-598
    • Gomes, L.C.1    Di Benedetto, G.2    Scorrano, L.3
  • 63
    • 67549101188 scopus 로고    scopus 로고
    • Role of BNIP3 and NIX in cell death, autophagy, and mitophagy
    • Zhang J, Ney PA. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 2009; 16: 939-946.
    • (2009) Cell Death Differ , vol.16 , pp. 939-946
    • Zhang, J.1    Ney, P.A.2
  • 68
    • 77951181836 scopus 로고    scopus 로고
    • PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
    • Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 2010; 189: 211-221.
    • (2010) J Cell Biol , vol.189 , pp. 211-221
    • Matsuda, N.1    Sato, S.2    Shiba, K.3    Okatsu, K.4    Saisho, K.5    Gautier, C.A.6
  • 70
    • 78649300971 scopus 로고    scopus 로고
    • p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
    • Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 2010; 6: 1090-1106.
    • (2010) Autophagy , vol.6 , pp. 1090-1106
    • Narendra, D.1    Kane, L.A.2    Hauser, D.N.3    Fearnley, I.M.4    Youle, R.J.5
  • 71
    • 0029809134 scopus 로고    scopus 로고
    • p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins
    • Vadlamudi RK, Joung I, Strominger JL, Shin J. p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins. J Biol Chem 1996; 271: 20235-20237.
    • (1996) J Biol Chem , vol.271 , pp. 20235-20237
    • Vadlamudi, R.K.1    Joung, I.2    Strominger, J.L.3    Shin, J.4
  • 72
    • 33645926989 scopus 로고    scopus 로고
    • p62/SQSTM1: A missing link between protein aggregates and the autophagy machinery
    • Bjorkoy G, Lamark T, Johansen T. p62/SQSTM1: a missing link between protein aggregates and the autophagy machinery. Autophagy 2006; 2: 138-139.
    • (2006) Autophagy , vol.2 , pp. 138-139
    • Bjorkoy, G.1    Lamark, T.2    Johansen, T.3
  • 75
    • 77958501463 scopus 로고    scopus 로고
    • Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase
    • Zmijewski JW, Banerjee S, Bae H, Friggeri A, Lazarowski ER, Abraham E. Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. J Biol Chem 2010; 285: 33154-33164.
    • (2010) J Biol Chem , vol.285 , pp. 33154-33164
    • Zmijewski, J.W.1    Banerjee, S.2    Bae, H.3    Friggeri, A.4    Lazarowski, E.R.5    Abraham, E.6
  • 76
    • 84870925187 scopus 로고    scopus 로고
    • Glutathione participates in the modulation of starvation-induced autophagy in carcinoma cells
    • Desideri E, Filomeni G, Ciriolo MR. Glutathione participates in the modulation of starvation-induced autophagy in carcinoma cells. Autophagy 2012; 8: 1769-1781.
    • (2012) Autophagy , vol.8 , pp. 1769-1781
    • Desideri, E.1    Filomeni, G.2    Ciriolo, M.R.3
  • 77
    • 0037472746 scopus 로고    scopus 로고
    • Redox catalysts as sensitisers towards oxidative stress
    • Giles NM, Gutowski NJ, Giles GI, Jacob C. Redox catalysts as sensitisers towards oxidative stress. FEBS Lett 2003; 535: 179-182.
    • (2003) FEBS Lett , vol.535 , pp. 179-182
    • Giles, N.M.1    Gutowski, N.J.2    Giles, G.I.3    Jacob, C.4
  • 78
    • 84904007368 scopus 로고    scopus 로고
    • S-nitrosoglutathione reductase deficiency-induced S-nitrosylation results in neuromuscular dysfunction
    • Montagna C, Di Giacomo G, Rizza S, Cardaci S, Ferraro E, Grumati P et al. S-nitrosoglutathione reductase deficiency-induced S-nitrosylation results in neuromuscular dysfunction. Antioxid Redox Signal. 2014; 21(4): 570-587.
    • (2014) Antioxid Redox Signal , vol.21 , Issue.4 , pp. 570-587
    • Montagna, C.1    Di Giacomo, G.2    Rizza, S.3    Cardaci, S.4    Ferraro, E.5    Grumati, P.6
  • 80
    • 84894273991 scopus 로고    scopus 로고
    • Inducible nitric oxide synthase drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2
    • Lopez-Rivera E, Jayaraman P, Parikh F, Davies MA, Ekmekcioglu S, Izadmehr S et al. Inducible nitric oxide synthase drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2. Cancer Res 2014; 74: 1067-1078.
    • (2014) Cancer Res , vol.74 , pp. 1067-1078
    • Lopez-Rivera, E.1    Jayaraman, P.2    Parikh, F.3    Davies, M.A.4    Ekmekcioglu, S.5    Izadmehr, S.6
  • 82
    • 77649265091 scopus 로고    scopus 로고
    • The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
    • Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 2010; 12: 213-223.
    • (2010) Nat Cell Biol , vol.12 , pp. 213-223
    • Komatsu, M.1    Kurokawa, H.2    Waguri, S.3    Taguchi, K.4    Kobayashi, A.5    Ichimura, Y.6
  • 83
    • 77953366801 scopus 로고    scopus 로고
    • A noncanonical mechanism of Nrf2 activation by autophagy deficiency: Direct interaction between Keap1 and p62
    • Lau A, Wang XJ, Zhao F, Villeneuve NF, Wu T, Jiang T et al. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol 2010; 30: 3275-3285.
    • (2010) Mol Cell Biol , vol.30 , pp. 3275-3285
    • Lau, A.1    Wang, X.J.2    Zhao, F.3    Villeneuve, N.F.4    Wu, T.5    Jiang, T.6
  • 84
    • 84883830467 scopus 로고    scopus 로고
    • Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy
    • Ichimura Y,Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R et al. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 2013; 51: 618-631.
    • (2013) Mol Cell , vol.51 , pp. 618-631
    • Ichimura, Y.1    Waguri, S.2    Sou, Y.S.3    Kageyama, S.4    Hasegawa, J.5    Ishimura, R.6
  • 86
    • 84867034260 scopus 로고    scopus 로고
    • Role of nrf2 in oxidative stress and toxicity
    • Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 2013; 53: 401-426.
    • (2013) Annu Rev Pharmacol Toxicol , vol.53 , pp. 401-426
    • Ma, Q.1
  • 87
    • 84878009975 scopus 로고    scopus 로고
    • Antioxidant-mediated up-regulation of OGG1 via NRF2 induction is associated with inhibition of oxidative DNA damage in estrogen-induced breast cancer
    • Singh B, Chatterjee A, Ronghe AM, Bhat NK, Bhat HK. Antioxidant-mediated up-regulation of OGG1 via NRF2 induction is associated with inhibition of oxidative DNA damage in estrogen-induced breast cancer. BMC Cancer 2013; 13: 253.
    • (2013) BMC Cancer , vol.13 , pp. 253
    • Singh, B.1    Chatterjee, A.2    Ronghe, A.M.3    Bhat, N.K.4    Bhat, H.K.5
  • 88
    • 84867917942 scopus 로고    scopus 로고
    • Targeting of Nrf2 induces DNA damage signaling and protects colonic epithelial cells from ionizing radiation
    • Kim SB, Pandita RK, Eskiocak U, Ly P, Kaisani A, Kumar R et al. Targeting of Nrf2 induces DNA damage signaling and protects colonic epithelial cells from ionizing radiation. Proc Natl Acad Sci USA 2012; 109: E2949-E2955.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. E2949-E2955
    • Kim, S.B.1    Pandita, R.K.2    Eskiocak, U.3    Ly, P.4    Kaisani, A.5    Kumar, R.6
  • 89
    • 84872137966 scopus 로고    scopus 로고
    • Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage
    • Bae SH, Sung SH, Oh SY, Lim JM, Lee SK, Park YN et al. Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab 2013; 17: 73-84.
    • (2013) Cell Metab , vol.17 , pp. 73-84
    • Bae, S.H.1    Sung, S.H.2    Oh, S.Y.3    Lim, J.M.4    Lee, S.K.5    Park, Y.N.6
  • 90
    • 77749264562 scopus 로고    scopus 로고
    • Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies
    • Lee JH, Budanov AV, Park EJ, Birse R, Kim TE, Perkins GA et al. Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science 2010; 327: 1223-1228.
    • (2010) Science , vol.327 , pp. 1223-1228
    • Lee, J.H.1    Budanov, A.V.2    Park, E.J.3    Birse, R.4    Kim, T.E.5    Perkins, G.A.6
  • 92
    • 78650884699 scopus 로고    scopus 로고
    • Macroautophagy-mediated degradation of whole nuclei in the filamentous fungus Aspergillus oryzae
    • Shoji JY, Kikuma T, Arioka M, Kitamoto K. Macroautophagy-mediated degradation of whole nuclei in the filamentous fungus Aspergillus oryzae. PLoS One 2010; 5: e15650.
    • (2010) PLoS One , vol.5 , pp. e15650
    • Shoji, J.Y.1    Kikuma, T.2    Arioka, M.3    Kitamoto, K.4
  • 93
  • 94
    • 61649116589 scopus 로고    scopus 로고
    • Piecemeal microautophagy of the nucleus: Genetic and morphological traits
    • Krick R, Muhe Y, Prick T, Bredschneider M, Bremer S, Wenzel D et al. Piecemeal microautophagy of the nucleus: genetic and morphological traits. Autophagy 2009; 5: 270-272.
    • (2009) Autophagy , vol.5 , pp. 270-272
    • Krick, R.1    Muhe, Y.2    Prick, T.3    Bredschneider, M.4    Bremer, S.5    Wenzel, D.6
  • 96
    • 0030049032 scopus 로고    scopus 로고
    • Damage to DNA by reactive oxygen and nitrogen species: Role in inflammatory disease and progression to cancer
    • Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 1996; 313(Pt 1): 17-29.
    • (1996) Biochem J , vol.313 , pp. 17-29
    • Wiseman, H.1    Halliwell, B.2
  • 97
    • 0038799736 scopus 로고    scopus 로고
    • Oxidative DNA damage: Mechanisms, mutation, and disease
    • Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 2003; 17: 1195-1214.
    • (2003) FASEB J , vol.17 , pp. 1195-1214
    • Cooke, M.S.1    Evans, M.D.2    Dizdaroglu, M.3    Lunec, J.4
  • 99
    • 33646080824 scopus 로고    scopus 로고
    • Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products
    • Neeley WL, Essigmann JM. Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products. Chem Res Toxicol 2006; 19: 491-505.
    • (2006) Chem Res Toxicol , vol.19 , pp. 491-505
    • Neeley, W.L.1    Essigmann, J.M.2
  • 100
    • 2442456691 scopus 로고    scopus 로고
    • Defense mechanism to oxidative DNA damage in glial cells
    • Iida T, Furuta A, Nakabeppu Y, Iwaki T. Defense mechanism to oxidative DNA damage in glial cells. Neuropathology 2004; 24: 125-130.
    • (2004) Neuropathology , vol.24 , pp. 125-130
    • Iida, T.1    Furuta, A.2    Nakabeppu, Y.3    Iwaki, T.4
  • 101
    • 84859886931 scopus 로고    scopus 로고
    • Mitochondria and reactive oxygen species. Which role in physiology and pathology?
    • Lenaz G. Mitochondria and reactive oxygen species. Which role in physiology and pathology? Adv Exp Med Biol 2012; 942: 93-136.
    • (2012) Adv Exp Med Biol , vol.942 , pp. 93-136
    • Lenaz, G.1
  • 102
    • 78649336706 scopus 로고    scopus 로고
    • The DNA damage response: Making it safe to play with knives
    • Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell 2010; 40: 179-204.
    • (2010) Mol Cell , vol.40 , pp. 179-204
    • Ciccia, A.1    Elledge, S.J.2
  • 103
    • 84876093576 scopus 로고    scopus 로고
    • DNA damage-induced cell death: From specific DNA lesions to the DNA damage response and apoptosis
    • Roos WP, Kaina B. DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett 2013; 332: 237-248.
    • (2013) Cancer Lett , vol.332 , pp. 237-248
    • Roos, W.P.1    Kaina, B.2
  • 104
    • 84880652021 scopus 로고    scopus 로고
    • New insights into the link between DNA damage and apoptosis
    • De Zio D, Cianfanelli V, Cecconi F. New insights into the link between DNA damage and apoptosis. Antioxid Redox Signal 2013; 19: 559-571.
    • (2013) Antioxid Redox Signal , vol.19 , pp. 559-571
    • De Zio, D.1    Cianfanelli, V.2    Cecconi, F.3
  • 107
    • 84862777879 scopus 로고    scopus 로고
    • Role of autophagy in chemoresistance: Regulation of the ATM-mediated DNA-damage signaling pathway through activation of DNA-PKcs and PARP-1
    • Yoon JH, Ahn SG, Lee BH, Jung SH, Oh SH. Role of autophagy in chemoresistance: regulation of the ATM-mediated DNA-damage signaling pathway through activation of DNA-PKcs and PARP-1. Biochem Pharmacol 2012; 83: 747-757.
    • (2012) Biochem Pharmacol , vol.83 , pp. 747-757
    • Yoon, J.H.1    Ahn, S.G.2    Lee, B.H.3    Jung, S.H.4    Oh, S.H.5
  • 108
  • 110
    • 34548188741 scopus 로고    scopus 로고
    • Self-eating and self-killing: Crosstalk between autophagy and apoptosis
    • Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007; 8: 741-752.
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 741-752
    • Maiuri, M.C.1    Zalckvar, E.2    Kimchi, A.3    Kroemer, G.4
  • 111
    • 0345166111 scopus 로고    scopus 로고
    • Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor
    • Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 2003; 100: 15077-15082.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 15077-15082
    • Yue, Z.1    Jin, S.2    Yang, C.3    Levine, A.J.4    Heintz, N.5
  • 112
    • 33745751085 scopus 로고    scopus 로고
    • Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG
    • Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol. 2006; 8: 688-699.
    • (2006) Nat Cell Biol , vol.8 , pp. 688-699
    • Liang, C.1    Feng, P.2    Ku, B.3    Dotan, I.4    Canaani, D.5    Oh, B.H.6
  • 113
    • 34347404887 scopus 로고    scopus 로고
    • Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis
    • Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 2007; 21: 1621-1635.
    • (2007) Genes Dev , vol.21 , pp. 1621-1635
    • Karantza-Wadsworth, V.1    Patel, S.2    Kravchuk, O.3    Chen, G.4    Mathew, R.5    Jin, S.6
  • 114
    • 34249863298 scopus 로고    scopus 로고
    • Autophagy suppresses tumor progression by limiting chromosomal instability
    • Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 2007; 21: 1367-1381.
    • (2007) Genes Dev , vol.21 , pp. 1367-1381
    • Mathew, R.1    Kongara, S.2    Beaudoin, B.3    Karp, C.M.4    Bray, K.5    Degenhardt, K.6
  • 116
    • 80052841386 scopus 로고    scopus 로고
    • Suppression of autophagy by FIP200 deletion impairs DNA damage repair and increases cell death upon treatments with anticancer agents
    • Bae H, Guan JL. Suppression of autophagy by FIP200 deletion impairs DNA damage repair and increases cell death upon treatments with anticancer agents. Mol Cancer Res 2011; 9: 1232-1241.
    • (2011) Mol Cancer Res , vol.9 , pp. 1232-1241
    • Bae, H.1    Guan, J.L.2
  • 117
    • 77950510302 scopus 로고    scopus 로고
    • The Cvt pathway as a model for selective autophagy
    • Lynch-Day MA, Klionsky DJ. The Cvt pathway as a model for selective autophagy. FEBS Lett 2010; 584: 1359-1366.
    • (2010) FEBS Lett , vol.584 , pp. 1359-1366
    • Lynch-Day, M.A.1    Klionsky, D.J.2
  • 119
    • 79954549252 scopus 로고    scopus 로고
    • Autophagy-dependent regulation of the DNA damage response protein ribonucleotide reductase 1
    • Dyavaiah M, Rooney JP, Chittur SV, Lin Q, Begley TJ. Autophagy-dependent regulation of the DNA damage response protein ribonucleotide reductase 1. Mol Cancer Res 2011; 9: 462-475.
    • (2011) Mol Cancer Res , vol.9 , pp. 462-475
    • Dyavaiah, M.1    Rooney, J.P.2    Chittur, S.V.3    Lin, Q.4    Begley, T.J.5
  • 120
    • 79952270884 scopus 로고    scopus 로고
    • HDACs link the DNA damage response, processing of double-strand breaks and autophagy
    • Robert T, Vanoli F, Chiolo I, Shubassi G, Bernstein KA, Rothstein R et al. HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 2011; 471: 74-79.
    • (2011) Nature , vol.471 , pp. 74-79
    • Robert, T.1    Vanoli, F.2    Chiolo, I.3    Shubassi, G.4    Bernstein, K.A.5    Rothstein, R.6
  • 121
    • 33745713171 scopus 로고    scopus 로고
    • Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis
    • Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006; 10: 51-64.
    • (2006) Cancer Cell , vol.10 , pp. 51-64
    • Degenhardt, K.1    Mathew, R.2    Beaudoin, B.3    Bray, K.4    Anderson, D.5    Chen, G.6
  • 122
    • 66449099090 scopus 로고    scopus 로고
    • Autophagy suppresses tumorigenesis through elimination of p62
    • Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009; 137: 1062-1075.
    • (2009) Cell , vol.137 , pp. 1062-1075
    • Mathew, R.1    Karp, C.M.2    Beaudoin, B.3    Vuong, N.4    Chen, G.5    Chen, H.Y.6
  • 125
    • 33847779345 scopus 로고    scopus 로고
    • ATM and ATR: Components of an integrated circuit
    • Hurley PJ, F. Bunz. ATM and ATR: components of an integrated circuit. Cell Cycle 2007; 6: 414-417.
    • (2007) Cell Cycle , vol.6 , pp. 414-417
    • Hurley, P.J.1    Bunz, F.2
  • 128
    • 84877311822 scopus 로고    scopus 로고
    • Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses
    • Kenzelmann Broz D, Spano Mello S, Bieging KT, Jiang D, Dusek RL, Brady CA et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev 2013; 27: 1016-1031.
    • (2013) Genes Dev , vol.27 , pp. 1016-1031
    • Kenzelmann Broz, D.1    Spano Mello, S.2    Bieging, K.T.3    Jiang, D.4    Dusek, R.L.5    Brady, C.A.6
  • 129
    • 84891014899 scopus 로고    scopus 로고
    • The return of the nucleus: Transcriptional and epigenetic control of autophagy
    • Fullgrabe J, Klionsky DJ, Joseph B. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat Rev Mol Cell Biol 2014; 15: 65-74.
    • (2014) Nat Rev Mol Cell Biol , vol.15 , pp. 65-74
    • Fullgrabe, J.1    Klionsky, D.J.2    Joseph, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.