메뉴 건너뛰기




Volumn 29, Issue 6, 2014, Pages 1311-1321

Bone cell senescence: Mechanisms and perspectives

Author keywords

AGING; AUTOPHAGY; CELL CELL COMMUNICATIONS; EPIGENETICS; LOCAL FACTORS; NICHES; PROTEASOME; SENESCENCE

Indexed keywords

DNA; PROTEASOME;

EID: 84901254305     PISSN: 08840431     EISSN: 15234681     Source Type: Journal    
DOI: 10.1002/jbmr.2190     Document Type: Review
Times cited : (69)

References (182)
  • 1
    • 84865335258 scopus 로고    scopus 로고
    • Niche science: The aging stem cell
    • Jasper H, Kennedy BK., Niche science: the aging stem cell. Cell Cycle. 2012; 11: 2959-60.
    • (2012) Cell Cycle. , vol.11 , pp. 2959-2960
    • Jasper, H.1    Kennedy, B.K.2
  • 3
    • 80054970881 scopus 로고    scopus 로고
    • Forum on aging and skeletal health: Summary of the proceedings of an ASBMR workshop
    • Khosla S, Bellido TM, Drezner MK, et al. Forum on aging and skeletal health: summary of the proceedings of an ASBMR workshop. J Bone Miner Res. 2011; 26: 2565-78.
    • (2011) J Bone Miner Res. , vol.26 , pp. 2565-2578
    • Khosla, S.1    Bellido, T.M.2    Et Al., K.D.M.3
  • 6
    • 77952105389 scopus 로고    scopus 로고
    • Inflammatory networks during cellular senescence: Causes and consequences
    • Freund A, Orjalo AV, Desprez PY, Campisi J., Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010; 16: 238-46.
    • (2010) Trends Mol Med. , vol.16 , pp. 238-246
    • Freund, A.1    Orjalo, A.V.2    Desprez, P.Y.3    Campisi, J.4
  • 7
    • 79952599578 scopus 로고    scopus 로고
    • Senescence-associated intrinsic mechanisms of osteoblast dysfunctions
    • Kassem M, Marie PJ., Senescence-associated intrinsic mechanisms of osteoblast dysfunctions. Aging Cell. 2011; 10 (2): 191-7.
    • (2011) Aging Cell. , vol.10 , Issue.2 , pp. 191-197
    • Kassem, M.1    Marie, P.J.2
  • 8
    • 79952296675 scopus 로고    scopus 로고
    • Extrinsic mechanisms involved in age-related defective bone formation
    • Marie PJ, Kassem M., Extrinsic mechanisms involved in age-related defective bone formation. J Clin Endocrinol Metab. 2011; 96: 600-9.
    • (2011) J Clin Endocrinol Metab. , vol.96 , pp. 600-609
    • Marie, P.J.1    Kassem, M.2
  • 9
    • 79959412176 scopus 로고    scopus 로고
    • Osteoblasts in osteoporosis: Past, emerging and future anabolic targets
    • Marie PJ, Kassem M., Osteoblasts in osteoporosis: past, emerging and future anabolic targets. Eur J Endocrinol. 2011; 165 (1): 1-10.
    • (2011) Eur J Endocrinol. , vol.165 , Issue.1 , pp. 1-10
    • Marie, P.J.1    Kassem, M.2
  • 10
    • 24944460598 scopus 로고    scopus 로고
    • Shelterin: The protein complex that shapes and safeguards human telomeres
    • de Lange T., Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005; 19: 2100-10.
    • (2005) Genes Dev. , vol.19 , pp. 2100-2110
    • De Lange, T.1
  • 11
    • 84872912456 scopus 로고    scopus 로고
    • Finding the end: Recruitment of telomerase to telomeres
    • Nandakumar J, Cech TR., Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol. 2013; 14: 69-82.
    • (2013) Nat Rev Mol Cell Biol. , vol.14 , pp. 69-82
    • Nandakumar, J.1    Cech, T.R.2
  • 12
    • 0034774859 scopus 로고    scopus 로고
    • Cellular senescence, cancer and aging: The telomere connection
    • Campisi J, Kim SH, Lim CS, Rubio M., Cellular senescence, cancer and aging: the telomere connection. Exp Gerontol. 2001; 36: 1619-37.
    • (2001) Exp Gerontol. , vol.36 , pp. 1619-1637
    • Campisi, J.1    Kim, S.H.2    Lim, C.S.3    Rubio, M.4
  • 13
    • 38349192848 scopus 로고    scopus 로고
    • Defects in telomere maintenance molecules impair osteoblast differentiation and promote osteoporosis
    • Pignolo RJ, Suda RK, McMillan EA, et al. Defects in telomere maintenance molecules impair osteoblast differentiation and promote osteoporosis. Aging Cell. 2008; 7: 23-31.
    • (2008) Aging Cell. , vol.7 , pp. 23-31
    • Pignolo, R.J.1    Suda, R.K.2    Et Al., A.M.E.3
  • 14
    • 79959509852 scopus 로고    scopus 로고
    • Telomerase-deficient mice exhibit bone loss owing to defects in osteoblasts and increased osteoclastogenesis by inflammatory microenvironment
    • Saeed H, Abdallah BM, Ditzel N, et al. Telomerase-deficient mice exhibit bone loss owing to defects in osteoblasts and increased osteoclastogenesis by inflammatory microenvironment. J Bone Miner Res. 2011; 26: 1494-505.
    • (2011) J Bone Miner Res. , vol.26 , pp. 1494-1505
    • Saeed, H.1    Abdallah, B.M.2    Et Al., D.N.3
  • 15
    • 84864020793 scopus 로고    scopus 로고
    • Impairment of osteoblast differentiation due to proliferation-independent telomere dysfunction in mouse models of accelerated aging
    • Wang H, Chen Q, Lee SH, Choi Y, Johnson FB, Pignolo RJ., Impairment of osteoblast differentiation due to proliferation-independent telomere dysfunction in mouse models of accelerated aging. Aging Cell. 2012; 11: 704-13.
    • (2012) Aging Cell. , vol.11 , pp. 704-713
    • Wang, H.1    Chen, Q.2    Lee, S.H.3    Choi, Y.4    Johnson, F.B.5    Pignolo, R.J.6
  • 16
    • 0034925471 scopus 로고    scopus 로고
    • Reconstituting telomerase activity using the telomerase catalytic subunit prevents the telomere shorting and replicative senescence in human osteoblasts
    • Yudoh K, Matsuno H, Nakazawa F, Katayama R, Kimura T., Reconstituting telomerase activity using the telomerase catalytic subunit prevents the telomere shorting and replicative senescence in human osteoblasts. J Bone Miner Res. 2001; 16: 1453-64.
    • (2001) J Bone Miner Res. , vol.16 , pp. 1453-1464
    • Yudoh, K.1    Matsuno, H.2    Nakazawa, F.3    Katayama, R.4    Kimura, T.5
  • 17
    • 0038424780 scopus 로고    scopus 로고
    • Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of CBFA1, osterix, and osteocalcin
    • Gronthos S, Chen S, Wang CY, Robey PG, Shi S., Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of CBFA1, osterix, and osteocalcin. J Bone Miner Res. 2003; 18: 716-22.
    • (2003) J Bone Miner Res. , vol.18 , pp. 716-722
    • Gronthos, S.1    Chen, S.2    Wang, C.Y.3    Robey, P.G.4    Shi, S.5
  • 18
    • 2942718540 scopus 로고    scopus 로고
    • Telomerized presenescent osteoblasts prevent bone mass loss in vivo
    • Yudoh K, Nishioka K., Telomerized presenescent osteoblasts prevent bone mass loss in vivo. Gene Ther. 2004; 11: 909-15.
    • (2004) Gene Ther. , vol.11 , pp. 909-915
    • Yudoh, K.1    Nishioka, K.2
  • 19
    • 0035984715 scopus 로고    scopus 로고
    • Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression
    • Shi S, Gronthos S, Chen S, et al. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat Biotechnol. 2002; 20: 587-91.
    • (2002) Nat Biotechnol. , vol.20 , pp. 587-591
    • Shi, S.1    Gronthos, S.2    Et Al., C.S.3
  • 20
    • 0035984714 scopus 로고    scopus 로고
    • Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells
    • Simonsen JL, Rosada C, Serakinci N, et al. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol. 2002; 20: 592-6.
    • (2002) Nat Biotechnol. , vol.20 , pp. 592-596
    • Simonsen, J.L.1    Rosada, C.2    Et Al., S.N.3
  • 21
    • 84864823834 scopus 로고    scopus 로고
    • Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer
    • Bernardes de Jesus B, Vera E, Schneeberger K, et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med. 2012; 4: 691-704.
    • (2012) EMBO Mol Med. , vol.4 , pp. 691-704
    • Bernardes De Jesus, B.1    Vera, E.2    Et Al., S.K.3
  • 22
    • 0034455103 scopus 로고    scopus 로고
    • Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis
    • Manolagas SC., Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000; 21: 115-37.
    • (2000) Endocr Rev. , vol.21 , pp. 115-137
    • Manolagas, S.C.1
  • 23
    • 35648929883 scopus 로고    scopus 로고
    • Gone with the Wnts: Beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism
    • Manolagas SC, Almeida M., Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol. 2007; 21: 2605-14.
    • (2007) Mol Endocrinol. , vol.21 , pp. 2605-2614
    • Manolagas, S.C.1    Almeida, M.2
  • 24
    • 84877806331 scopus 로고    scopus 로고
    • Oxidative stress activates a specific p53 transcriptional response that regulates cellular senescence and aging
    • Gambino V, De Michele G, Venezia O, et al. Oxidative stress activates a specific p53 transcriptional response that regulates cellular senescence and aging. Aging Cell. 2013; 12: 435-45.
    • (2013) Aging Cell. , vol.12 , pp. 435-445
    • Gambino, V.1    De Michele, G.2    Et Al., V.O.3
  • 25
    • 84899480054 scopus 로고    scopus 로고
    • Aging mechanisms in bone
    • Almeida M., Aging mechanisms in bone. Bonekey Rep. 2012; 1: 102.
    • (2012) Bonekey Rep. , vol.1 , pp. 102
    • Almeida, M.1
  • 26
    • 80055002537 scopus 로고    scopus 로고
    • Cytoplasmic superoxide causes bone fragility owing to low-turnover osteoporosis and impaired collagen cross-linking
    • Nojiri H, Saita Y, Morikawa D, et al. Cytoplasmic superoxide causes bone fragility owing to low-turnover osteoporosis and impaired collagen cross-linking. J Bone Miner Res. 2011; 26: 2682-94.
    • (2011) J Bone Miner Res. , vol.26 , pp. 2682-2694
    • Nojiri, H.1    Saita, Y.2    Et Al., M.D.3
  • 27
    • 84886863695 scopus 로고    scopus 로고
    • Cytoplasmic reactive oxygen species and SOD1 regulate bone mass during mechanical unloading
    • Morikawa D, Nojiri H, Saita Y, et al. Cytoplasmic reactive oxygen species and SOD1 regulate bone mass during mechanical unloading. J Bone Miner Res. 2013; 28: 2368-80.
    • (2013) J Bone Miner Res. , vol.28 , pp. 2368-2380
    • Morikawa, D.1    Nojiri, H.2    Et Al., S.Y.3
  • 28
    • 84866325660 scopus 로고    scopus 로고
    • New insights into osteoporosis: The bone-fat connection
    • Kawai M, de Paula FJ, Rosen CJ., New insights into osteoporosis: the bone-fat connection. J Intern Med. 2012; 272: 317-29.
    • (2012) J Intern Med. , vol.272 , pp. 317-329
    • Kawai, M.1    De Paula, F.J.2    Rosen, C.J.3
  • 29
    • 70350451479 scopus 로고    scopus 로고
    • Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-gamma expression, and diminished pro-osteogenic Wnt signaling in the skeleton
    • Almeida M, Ambrogini E, Han L, Manolagas SC, Jilka RL., Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-gamma expression, and diminished pro-osteogenic Wnt signaling in the skeleton. J Biol Chem. 2009; 284: 27438-48.
    • (2009) J Biol Chem. , vol.284 , pp. 27438-27448
    • Almeida, M.1    Ambrogini, E.2    Han, L.3    Manolagas, S.C.4    Jilka, R.L.5
  • 30
    • 77953271453 scopus 로고    scopus 로고
    • Endogenous glucocorticoids decrease skeletal angiogenesis, vascularity, hydration, and strength in aged mice
    • Weinstein RS, Wan C, Liu Q, et al. Endogenous glucocorticoids decrease skeletal angiogenesis, vascularity, hydration, and strength in aged mice. Aging Cell. 2010; 9: 147-61.
    • (2010) Aging Cell. , vol.9 , pp. 147-161
    • Weinstein, R.S.1    Wan, C.2    Et Al., L.Q.3
  • 31
    • 75149115329 scopus 로고    scopus 로고
    • FoxO1 is a positive regulator of bone formation by favoring protein synthesis and resistance to oxidative stress in osteoblasts
    • Rached MT, Kode A, Xu L, et al. FoxO1 is a positive regulator of bone formation by favoring protein synthesis and resistance to oxidative stress in osteoblasts. Cell Metab. 2010; 11: 147-60.
    • (2010) Cell Metab. , vol.11 , pp. 147-160
    • Rached, M.T.1    Kode, A.2    Et Al., X.L.3
  • 32
    • 34848814178 scopus 로고    scopus 로고
    • Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription
    • Almeida M, Han L, Martin-Millan M, O'Brien CA, Manolagas SC., Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J Biol Chem. 2007; 282: 27298-305.
    • (2007) J Biol Chem. , vol.282 , pp. 27298-27305
    • Almeida, M.1    Han, L.2    Martin-Millan, M.3    O'Brien, C.A.4    Manolagas, S.C.5
  • 33
    • 84873558051 scopus 로고    scopus 로고
    • WNT signaling in bone homeostasis and disease: From human mutations to treatments
    • Baron R, Kneissel M., WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013; 19: 179-92.
    • (2013) Nat Med. , vol.19 , pp. 179-192
    • Baron, R.1    Kneissel, M.2
  • 34
    • 84881231465 scopus 로고    scopus 로고
    • FOXOs attenuate bone formation by suppressing Wnt signaling
    • Iyer S, Ambrogini E, Bartell SM, et al. FOXOs attenuate bone formation by suppressing Wnt signaling. J Clin Invest. 2013; 123: 3409-19.
    • (2013) J Clin Invest. , vol.123 , pp. 3409-3419
    • Iyer, S.1    Ambrogini, E.2    Et Al., M.B.S.3
  • 35
    • 0025236484 scopus 로고
    • Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo
    • Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR., Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest. 1990; 85: 632-9.
    • (1990) J Clin Invest. , vol.85 , pp. 632-639
    • Garrett, I.R.1    Boyce, B.F.2    Oreffo, R.O.3    Bonewald, L.4    Poser, J.5    Mundy, G.R.6
  • 36
    • 85027957985 scopus 로고    scopus 로고
    • Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures
    • Baek KH, Oh KW, Lee WY, et al. Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif Tissue Int. 2010; 87: 226-35.
    • (2010) Calcif Tissue Int. , vol.87 , pp. 226-235
    • Baek, K.H.1    Oh, K.W.2    Et Al., Y.L.W.3
  • 37
    • 77950640257 scopus 로고    scopus 로고
    • Functions of nuclear factor kappaB in bone
    • Boyce BF, Yao Z, Xing L., Functions of nuclear factor kappaB in bone. Ann NY Acad Sci. 2010; 1192: 367-75.
    • (2010) Ann NY Acad Sci. , vol.1192 , pp. 367-375
    • Boyce, B.F.1    Yao, Z.2    Xing, L.3
  • 39
    • 78650858041 scopus 로고    scopus 로고
    • Role of NF-kappaB in the skeleton
    • Novack DV., Role of NF-kappaB in the skeleton. Cell Res. 2011; 21: 169-82.
    • (2011) Cell Res. , vol.21 , pp. 169-182
    • Novack, D.V.1
  • 40
    • 84876698868 scopus 로고    scopus 로고
    • DNA damage drives accelerated bone aging via an NF-kappaB-dependent mechanism
    • Chen Q, Liu K, Robinson AR, et al. DNA damage drives accelerated bone aging via an NF-kappaB-dependent mechanism. J Bone Miner Res. 2013; 28: 1214-28.
    • (2013) J Bone Miner Res. , vol.28 , pp. 1214-1228
    • Chen, Q.1    Liu, K.2    Et Al., R.R.A.3
  • 41
    • 0142186681 scopus 로고    scopus 로고
    • A crucial role for thiol antioxidants in estrogen-deficiency bone loss
    • Lean JM, Davies JT, Fuller K, et al. A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J Clin Invest. 2003; 112: 915-23.
    • (2003) J Clin Invest. , vol.112 , pp. 915-923
    • Lean, J.M.1    Davies, J.T.2    Et Al., F.K.3
  • 42
    • 11144248825 scopus 로고    scopus 로고
    • Tumor necrosis factor-alpha mediates osteopenia caused by depletion of antioxidants
    • Jagger CJ, Lean JM, Davies JT, Chambers TJ., Tumor necrosis factor-alpha mediates osteopenia caused by depletion of antioxidants. Endocrinology. 2005; 146: 113-8.
    • (2005) Endocrinology. , vol.146 , pp. 113-118
    • Jagger, C.J.1    Lean, J.M.2    Davies, J.T.3    Chambers, T.J.4
  • 43
    • 84878823021 scopus 로고    scopus 로고
    • Treatment of hydrogen molecule abates oxidative stress and alleviates bone loss induced by modeled microgravity in rats
    • Sun Y, Shuang F, Chen DM, Zhou RB., Treatment of hydrogen molecule abates oxidative stress and alleviates bone loss induced by modeled microgravity in rats. Osteoporos Int. 2013; 24: 969-78.
    • (2013) Osteoporos Int. , vol.24 , pp. 969-978
    • Sun, Y.1    Shuang, F.2    Chen, D.M.3    Zhou, R.B.4
  • 44
    • 78349266526 scopus 로고    scopus 로고
    • Decreased oxidative stress and greater bone anabolism in the aged, when compared to the young, murine skeleton with parathyroid hormone administration
    • Jilka RL, Almeida M, Ambrogini E, et al. Decreased oxidative stress and greater bone anabolism in the aged, when compared to the young, murine skeleton with parathyroid hormone administration. Aging Cell. 2010; 9: 851-67.
    • (2010) Aging Cell. , vol.9 , pp. 851-867
    • Jilka, R.L.1    Almeida, M.2    Et Al., A.E.3
  • 45
    • 34848878406 scopus 로고    scopus 로고
    • Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids
    • Almeida M, Han L, Martin-Millan M, et al. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem. 2007; 282: 27285-97.
    • (2007) J Biol Chem. , vol.282 , pp. 27285-27297
    • Almeida, M.1    Han, L.2    Et Al., M.M.3
  • 46
    • 0035937121 scopus 로고    scopus 로고
    • A new superoxide-generating oxidase in murine osteoclasts
    • Yang S, Madyastha P, Bingel S, Ries W, Key L., A new superoxide- generating oxidase in murine osteoclasts. J Biol Chem. 2001; 276: 5452-8.
    • (2001) J Biol Chem. , vol.276 , pp. 5452-5458
    • Yang, S.1    Madyastha, P.2    Bingel, S.3    Ries, W.4    Key, L.5
  • 47
    • 84887489588 scopus 로고    scopus 로고
    • NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis
    • Goettsch C, Babelova A, Trummer O, et al. NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis. J Clin Invest. 2013; 123: 4731-8.
    • (2013) J Clin Invest. , vol.123 , pp. 4731-4738
    • Goettsch, C.1    Babelova, A.2    Et Al., T.O.3
  • 48
    • 68149183508 scopus 로고    scopus 로고
    • Genetic and epigenetic regulation of aging
    • Fraga MF., Genetic and epigenetic regulation of aging. Curr Opin Immunol. 2009; 21: 446-53.
    • (2009) Curr Opin Immunol. , vol.21 , pp. 446-453
    • Fraga, M.F.1
  • 51
    • 0036197327 scopus 로고    scopus 로고
    • Reduced CpG methylation is associated with transcriptional activation of the bone-specific rat osteocalcin gene in osteoblasts
    • Villagra A, Gutierrez J, Paredes R, et al. Reduced CpG methylation is associated with transcriptional activation of the bone-specific rat osteocalcin gene in osteoblasts. J Cell Biochem. 2002; 85: 112-22.
    • (2002) J Cell Biochem. , vol.85 , pp. 112-122
    • Villagra, A.1    Gutierrez, J.2    Et Al., P.R.3
  • 52
    • 84876434818 scopus 로고    scopus 로고
    • Epigenetic regulation of BMP2 by 1,25-dihydroxyvitamin D3 through DNA methylation and histone modification
    • Fu B, Wang H, Wang J, et al. Epigenetic regulation of BMP2 by 1,25-dihydroxyvitamin D3 through DNA methylation and histone modification. PLoS One. 2013; 8: e61423.
    • (2013) PLoS One. , vol.8
    • Fu, B.1    Wang, H.2    Et Al., W.J.3
  • 53
    • 84858713611 scopus 로고    scopus 로고
    • DNA methylation contributes to the regulation of sclerostin expression in human osteocytes
    • Delgado-Calle J, Sanudo C, Bolado A, et al. DNA methylation contributes to the regulation of sclerostin expression in human osteocytes. J Bone Miner Res. 2012; 27: 926-37.
    • (2012) J Bone Miner Res. , vol.27 , pp. 926-937
    • Delgado-Calle, J.1    Sanudo, C.2    Et Al., B.A.3
  • 54
    • 84887490574 scopus 로고    scopus 로고
    • Dexamethasone shifts bone marrow stromal cells from osteoblasts to adipocytes by C/EBPalpha promoter methylation
    • Li J, Zhang N, Huang X, et al. Dexamethasone shifts bone marrow stromal cells from osteoblasts to adipocytes by C/EBPalpha promoter methylation. Cell Death Dis. 2013; 4: e832.
    • (2013) Cell Death Dis. , vol.4
    • Li, J.1    Zhang, N.2    Et Al., H.X.3
  • 55
    • 84886588706 scopus 로고    scopus 로고
    • PPARgamma forms a bridge between DNA methylation,histone acetylation at the C/EBPalpha gene promoter to regulate the balance between osteogenesis,adipogenesis of bone marrow stromal cells
    • Zhao QH, Wang SG, Liu SX, et al. PPARgamma forms a bridge between DNA methylation,histone acetylation at the C/EBPalpha gene promoter to regulate the balance between osteogenesis,adipogenesis of bone marrow stromal cells. FEBS.J. 2013; 280: 5801-14.
    • (2013) FEBS.J , vol.280 , pp. 5801-5814
    • Zhao, Q.H.1    Wang, S.G.2    Et Al., X.L.S.3
  • 56
    • 80055018787 scopus 로고    scopus 로고
    • Epigenetic regulation of osteoclast differentiation: Possible involvement of Jmjd3 in the histone demethylation of Nfatc1
    • Yasui T, Hirose J, Tsutsumi S, Nakamura K, Aburatani H, Tanaka S., Epigenetic regulation of osteoclast differentiation: possible involvement of Jmjd3 in the histone demethylation of Nfatc1. J Bone Miner Res. 2011; 26: 2665-71.
    • (2011) J Bone Miner Res. , vol.26 , pp. 2665-2671
    • Yasui, T.1    Hirose, J.2    Tsutsumi, S.3    Nakamura, K.4    Aburatani, H.5    Tanaka, S.6
  • 57
    • 78650511231 scopus 로고    scopus 로고
    • CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells
    • Wei Y, Chen YH, Li LY, et al. CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. Nat Cell Biol. 2011; 13: 87-94.
    • (2011) Nat Cell Biol. , vol.13 , pp. 87-94
    • Wei, Y.1    Chen, Y.H.2    Et Al., Y.L.L.3
  • 58
    • 84863633423 scopus 로고    scopus 로고
    • Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs
    • Ye L, Fan Z, Yu B, et al. Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs. Cell Stem Cell. 2012; 11: 50-61.
    • (2012) Cell Stem Cell. , vol.11 , pp. 50-61
    • Ye, L.1    Fan, Z.2    Et Al., Y.B.3
  • 59
    • 84901276640 scopus 로고    scopus 로고
    • Osterix and NO66 histone demethylase control the chromatin architecture of Osterix target genes during osteoblast differentiation
    • Sep 23. [Epub ahead of print]
    • Sinha KM, Yasuda H, Zhou X, Decrombrugghe B., Osterix and NO66 histone demethylase control the chromatin architecture of Osterix target genes during osteoblast differentiation. J Bone Miner Res. 2013 Sep 23. [Epub ahead of print]
    • (2013) J Bone Miner Res.
    • Sinha, K.M.1    Yasuda, H.2    Zhou, X.3    Decrombrugghe, B.4
  • 60
    • 84888323756 scopus 로고    scopus 로고
    • Histone demethylase Jmjd3 regulates osteoblast differentiation via transcription factors Runx2 and osterix
    • Yang D, Okamura H, Nakashima Y, Haneji T., Histone demethylase Jmjd3 regulates osteoblast differentiation via transcription factors Runx2 and osterix. J Biol Chem. 2013; 288: 33530-41.
    • (2013) J Biol Chem. , vol.288 , pp. 33530-33541
    • Yang, D.1    Okamura, H.2    Nakashima, Y.3    Haneji, T.4
  • 61
    • 35748960839 scopus 로고    scopus 로고
    • A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-gamma transactivation
    • Takada I, Mihara M, Suzawa M, et al. A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-gamma transactivation. Nat Cell Biol. 2007; 9: 1273-85.
    • (2007) Nat Cell Biol. , vol.9 , pp. 1273-1285
    • Takada, I.1    Mihara, M.2    Et Al., S.M.3
  • 63
    • 84885164156 scopus 로고    scopus 로고
    • Histone deacetylase inhibition promotes osteoblast maturation by altering the histone H4 epigenome and reduces Akt phosphorylation
    • Dudakovic A, Evans JM, Li Y, Middha S, McGee-Lawrence ME, van Wijnen AJ, Westendorf JJ., Histone deacetylase inhibition promotes osteoblast maturation by altering the histone H4 epigenome and reduces Akt phosphorylation. J Biol Chem. 2013; 288: 28783-91.
    • (2013) J Biol Chem. , vol.288 , pp. 28783-28791
    • Dudakovic, A.1    Evans, J.M.2    Li, Y.3    Middha, S.4    McGee-Lawrence, M.E.5    Van Wijnen, A.J.6    Westendorf, J.J.7
  • 64
    • 78650749107 scopus 로고    scopus 로고
    • Zfp521 controls bone mass by HDAC3-dependent attenuation of Runx2 activity
    • Hesse E, Saito H, Kiviranta R, et al. Zfp521 controls bone mass by HDAC3-dependent attenuation of Runx2 activity. J Cell Biol. 2010; 191: 1271-83.
    • (2010) J Cell Biol. , vol.191 , pp. 1271-1283
    • Hesse, E.1    Saito, H.2    Et Al., K.R.3
  • 65
    • 84878738557 scopus 로고    scopus 로고
    • Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model
    • Liu B, Wang Z, Zhang L, Ghosh S, Zheng H, Zhou Z., Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model. Nat Commun. 2013; 4: 1868.
    • (2013) Nat Commun. , vol.4 , pp. 1868
    • Liu, B.1    Wang, Z.2    Zhang, L.3    Ghosh, S.4    Zheng, H.5    Zhou, Z.6
  • 68
    • 82355190885 scopus 로고    scopus 로고
    • Sirt1 is a regulator of bone mass and a repressor of Sost encoding for sclerostin, a bone formation inhibitor
    • Cohen-Kfir E, Artsi H, Levin A, et al. Sirt1 is a regulator of bone mass and a repressor of Sost encoding for sclerostin, a bone formation inhibitor. Endocrinology. 2011; 152: 4514-24.
    • (2011) Endocrinology. , vol.152 , pp. 4514-4524
    • Cohen-Kfir, E.1    Artsi, H.2    Et Al., L.A.3
  • 69
    • 3042681042 scopus 로고    scopus 로고
    • Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma
    • Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004; 429: 771-6.
    • (2004) Nature. , vol.429 , pp. 771-776
    • Picard, F.1    Kurtev, M.2    Et Al., C.N.3
  • 70
    • 80053214204 scopus 로고    scopus 로고
    • Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis
    • Tseng PC, Hou SM, Chen RJ, et al. Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. J Bone Miner Res. 2011; 26: 2552-63.
    • (2011) J Bone Miner Res. , vol.26 , pp. 2552-2563
    • Tseng, P.C.1    Hou, S.M.2    Et Al., J.C.R.3
  • 71
    • 84874680366 scopus 로고    scopus 로고
    • SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating beta-catenin
    • Simic P, Zainabadi K, Bell E, et al. SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating beta-catenin. EMBO Mol Med. 2013; 5: 430-40.
    • (2013) EMBO Mol Med. , vol.5 , pp. 430-440
    • Simic, P.1    Zainabadi, K.2    Et Al., B.E.3
  • 72
    • 84875309133 scopus 로고    scopus 로고
    • Silent information regulator (Sir)T1 inhibits NF-kappaB signaling to maintain normal skeletal remodeling
    • Edwards JR, Perrien DS, Fleming N, et al. Silent information regulator (Sir)T1 inhibits NF-kappaB signaling to maintain normal skeletal remodeling. J Bone Miner Res. 2013; 28: 960-9.
    • (2013) J Bone Miner Res. , vol.28 , pp. 960-969
    • Edwards, J.R.1    Perrien, D.S.2    Et Al., F.N.3
  • 73
    • 78649482634 scopus 로고    scopus 로고
    • SIRT1: Recent lessons from mouse models
    • Herranz D, Serrano M., SIRT1: recent lessons from mouse models. Nat Rev Cancer. 2010; 10: 819-23.
    • (2010) Nat Rev Cancer. , vol.10 , pp. 819-823
    • Herranz, D.1    Serrano, M.2
  • 74
    • 84867810635 scopus 로고    scopus 로고
    • MicroRNA in aging: From discovery to biology
    • Jung HJ, Suh Y., MicroRNA in aging: from discovery to biology. Curr Genomics. 2012; 13: 548-57.
    • (2012) Curr Genomics. , vol.13 , pp. 548-557
    • Jung, H.J.1    Suh, Y.2
  • 75
    • 84873298811 scopus 로고    scopus 로고
    • MicroRNAs in age-related diseases
    • Dimmeler S, Nicotera P., MicroRNAs in age-related diseases. EMBO Mol Med. 2013; 5: 180-90.
    • (2013) EMBO Mol Med. , vol.5 , pp. 180-190
    • Dimmeler, S.1    Nicotera, P.2
  • 77
  • 78
    • 84886865999 scopus 로고    scopus 로고
    • Realizing the potential of gene-based molecular therapies in bone repair
    • Rose L, Uludag H., Realizing the potential of gene-based molecular therapies in bone repair. J Bone Miner Res. 2013; 28: 2245-62.
    • (2013) J Bone Miner Res. , vol.28 , pp. 2245-2262
    • Rose, L.1    Uludag, H.2
  • 79
    • 72849121740 scopus 로고    scopus 로고
    • A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans
    • Li H, Xie H, Liu W, et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest. 2009; 119: 3666-77.
    • (2009) J Clin Invest. , vol.119 , pp. 3666-3677
    • Li, H.1    Xie, H.2    Et Al., L.W.3
  • 80
    • 84878609509 scopus 로고    scopus 로고
    • MicroRNA-29a protects against glucocorticoid-induced bone loss and fragility in rats by orchestrating bone acquisition and resorption
    • Wang FS, Chuang PC, Lin CL, et al. MicroRNA-29a protects against glucocorticoid-induced bone loss and fragility in rats by orchestrating bone acquisition and resorption. Arthritis Rheum. 2013; 65: 1530-40.
    • (2013) Arthritis Rheum. , vol.65 , pp. 1530-1540
    • Wang, F.S.1    Chuang, P.C.2    Et Al., L.L.C.3
  • 81
    • 80655125005 scopus 로고    scopus 로고
    • MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix
    • Zhang JF, Fu WM, He ML, et al. MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Mol Biol Cell. 2011; 22: 3955-61.
    • (2011) Mol Biol Cell. , vol.22 , pp. 3955-3961
    • Zhang, J.F.1    Fu, W.M.2    Et Al., L.H.M.3
  • 82
    • 84896373668 scopus 로고    scopus 로고
    • MicroRNA-34a Inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells
    • Chen L, Holmstrom K, Qiu W, et al. MicroRNA-34a Inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells. Stem Cells. 2014; 32: 902-12.
    • (2014) Stem Cells. , vol.32 , pp. 902-912
    • Chen, L.1    Holmstrom, K.2    Et Al., Q.W.3
  • 83
    • 84868503739 scopus 로고    scopus 로고
    • Histone deacetylase 3 is required for maintenance of bone mass during aging
    • McGee-Lawrence ME, Bradley EW, Dudakovic A, et al. Histone deacetylase 3 is required for maintenance of bone mass during aging. Bone. 2013; 52: 296-307.
    • (2013) Bone. , vol.52 , pp. 296-307
    • McGee-Lawrence, M.E.1    Bradley, E.W.2    Et Al., D.A.3
  • 84
    • 33745514431 scopus 로고    scopus 로고
    • Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells
    • Backesjo CM, Li Y, Lindgren U, Haldosen LA., Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. J Bone Miner Res. 2006; 21: 993-1002.
    • (2006) J Bone Miner Res. , vol.21 , pp. 993-1002
    • Backesjo, C.M.1    Li, Y.2    Lindgren, U.3    Haldosen, L.A.4
  • 85
    • 84859974018 scopus 로고    scopus 로고
    • Resveratrol mediated modulation of Sirt-1/Runx2 promotes osteogenic differentiation of mesenchymal stem cells: Potential role of Runx2 deacetylation
    • Shakibaei M, Shayan P, Busch F, et al. Resveratrol mediated modulation of Sirt-1/Runx2 promotes osteogenic differentiation of mesenchymal stem cells: potential role of Runx2 deacetylation. PLoS One. 2012; 7: e35712.
    • (2012) PLoS One. , vol.7
    • Shakibaei, M.1    Shayan, P.2    Et Al., B.F.3
  • 86
    • 84860759272 scopus 로고    scopus 로고
    • Sirt1 overexpression protects murine osteoblasts against TNF-alpha-induced injury in vitro by suppressing the NF-kappaB signaling pathway
    • Huang W, Shang WL, Wang HD, Wu WW, Hou SX., Sirt1 overexpression protects murine osteoblasts against TNF-alpha-induced injury in vitro by suppressing the NF-kappaB signaling pathway. Acta Pharmacol Sin. 2012; 33: 668-74.
    • (2012) Acta Pharmacol Sin. , vol.33 , pp. 668-674
    • Huang, W.1    Shang, W.L.2    Wang, H.D.3    Wu, W.W.4    Hou, S.X.5
  • 87
    • 48349144852 scopus 로고    scopus 로고
    • Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span
    • Pearson KJ, Baur JA, Lewis KN, et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 2008; 8: 157-68.
    • (2008) Cell Metab. , vol.8 , pp. 157-168
    • Pearson, K.J.1    Baur, J.A.2    Et Al., N.L.K.3
  • 88
    • 84870506099 scopus 로고    scopus 로고
    • Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria
    • Liu B, Ghosh S, Yang X, et al. Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Cell Metab. 2012; 16: 738-50.
    • (2012) Cell Metab. , vol.16 , pp. 738-750
    • Liu, B.1    Ghosh, S.2    Et Al., Y.X.3
  • 89
    • 84857489373 scopus 로고    scopus 로고
    • Autophagy in stem cell maintenance and differentiation
    • Vessoni AT, Muotri AR, Okamoto OK., Autophagy in stem cell maintenance and differentiation. Stem Cells Dev. 2012; 21: 513-20.
    • (2012) Stem Cells Dev. , vol.21 , pp. 513-520
    • Vessoni, A.T.1    Muotri, A.R.2    Okamoto, O.K.3
  • 91
    • 77951567048 scopus 로고    scopus 로고
    • Connecting autophagy to senescence in pathophysiology
    • Young AR, Narita M., Connecting autophagy to senescence in pathophysiology. Curr Opin Cell Biol. 2010; 22: 234-40.
    • (2010) Curr Opin Cell Biol. , vol.22 , pp. 234-240
    • Young, A.R.1    Narita, M.2
  • 92
    • 84858704659 scopus 로고    scopus 로고
    • Selective autophagy in the maintenance of cellular homeostasis in aging organisms
    • Hubbard VM, Valdor R, Macian F, Cuervo AM., Selective autophagy in the maintenance of cellular homeostasis in aging organisms. Biogerontology. 2012; 13: 21-35.
    • (2012) Biogerontology. , vol.13 , pp. 21-35
    • Hubbard, V.M.1    Valdor, R.2    Macian, F.3    Cuervo, A.M.4
  • 93
    • 84880376355 scopus 로고    scopus 로고
    • Emerging regulation and functions of autophagy
    • Boya P, Reggiori F, Codogno P., Emerging regulation and functions of autophagy. Nat Cell Biol. 2013; 15: 713-20.
    • (2013) Nat Cell Biol. , vol.15 , pp. 713-720
    • Boya, P.1    Reggiori, F.2    Codogno, P.3
  • 94
    • 84901281824 scopus 로고    scopus 로고
    • Modulation of cell death in age-related diseases
    • Sep 27. [Epub ahead of print]
    • Tezil T, Basaga H., Modulation of cell death in age-related diseases. Curr Pharm Des. 2013 Sep 27. [Epub ahead of print]
    • (2013) Curr Pharm Des.
    • Tezil, T.1    Basaga, H.2
  • 97
    • 83455245194 scopus 로고    scopus 로고
    • Osteoclast precursor differentiation by MCPIP via oxidative stress, endoplasmic reticulum stress, and autophagy
    • Wang K, Niu J, Kim H, Kolattukudy PE., Osteoclast precursor differentiation by MCPIP via oxidative stress, endoplasmic reticulum stress, and autophagy. J Mol Cell Biol. 2011; 3: 360-8.
    • (2011) J Mol Cell Biol. , vol.3 , pp. 360-368
    • Wang, K.1    Niu, J.2    Kim, H.3    Kolattukudy, P.E.4
  • 98
    • 83455173649 scopus 로고    scopus 로고
    • Autophagy proteins regulate the secretory component of osteoclastic bone resorption
    • DeSelm CJ, Miller BC, Zou W, et al. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell. 2011; 21: 966-74.
    • (2011) Dev Cell. , vol.21 , pp. 966-974
    • Deselm, C.J.1    Miller, B.C.2    Et Al., Z.W.3
  • 99
    • 84886819890 scopus 로고    scopus 로고
    • Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation
    • Liu F, Fang F, Yuan H, et al. Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation. J Bone Miner Res. 2013; 28: 2414-30.
    • (2013) J Bone Miner Res. , vol.28 , pp. 2414-2430
    • Liu, F.1    Fang, F.2    Et Al., Y.H.3
  • 100
    • 84879065741 scopus 로고    scopus 로고
    • Suppression of autophagy in osteocytes mimics skeletal aging
    • Onal M, Piemontese M, Xiong J, et al. Suppression of autophagy in osteocytes mimics skeletal aging. J Biol Chem. 2013; 288: 17432-40.
    • (2013) J Biol Chem. , vol.288 , pp. 17432-17440
    • Onal, M.1    Piemontese, M.2    Et Al., X.J.3
  • 101
    • 25144466132 scopus 로고    scopus 로고
    • Intracellular protein degradation: From a vague idea, through the lysosome and the ubiquitin-proteasome system, and onto human diseases and drug targeting (Nobel lecture)
    • Ciechanover A., Intracellular protein degradation: from a vague idea, through the lysosome and the ubiquitin-proteasome system, and onto human diseases and drug targeting (Nobel lecture). Angew Chem Int Ed Engl. 2005; 44: 5944-67.
    • (2005) Angew Chem Int Ed Engl. , vol.44 , pp. 5944-5967
    • Ciechanover, A.1
  • 102
    • 70349441058 scopus 로고    scopus 로고
    • Ubiquitin-binding domains-from structures to functions
    • Dikic I, Wakatsuki S, Walters KJ., Ubiquitin-binding domains-from structures to functions. Nat Rev Mol Cell Biol. 2009; 10: 659-71.
    • (2009) Nat Rev Mol Cell Biol. , vol.10 , pp. 659-671
    • Dikic, I.1    Wakatsuki, S.2    Walters, K.J.3
  • 103
    • 33644662970 scopus 로고    scopus 로고
    • Proteasome function in aging and oxidative stress: Implications in protein maintenance failure
    • Farout L, Friguet B., Proteasome function in aging and oxidative stress: implications in protein maintenance failure. Antioxid Redox Signal. 2006; 8: 205-16.
    • (2006) Antioxid Redox Signal. , vol.8 , pp. 205-216
    • Farout, L.1    Friguet, B.2
  • 104
    • 33751413608 scopus 로고    scopus 로고
    • Aging and the ubiquitinome: Traditional and non-traditional functions of ubiquitin in aging cells and tissues
    • Grillari J, Katinger H, Voglauer R., Aging and the ubiquitinome: traditional and non-traditional functions of ubiquitin in aging cells and tissues. Exp Gerontol. 2006; 41: 1067-79.
    • (2006) Exp Gerontol. , vol.41 , pp. 1067-1079
    • Grillari, J.1    Katinger, H.2    Voglauer, R.3
  • 105
    • 79955737369 scopus 로고    scopus 로고
    • The role of ubiquitin-proteasome system in ageing
    • Low P., The role of ubiquitin-proteasome system in ageing. Gen Comp Endocrinol. 2011; 172: 39-43.
    • (2011) Gen Comp Endocrinol. , vol.172 , pp. 39-43
    • Low, P.1
  • 106
    • 84862737923 scopus 로고    scopus 로고
    • Changes of the proteasomal system during the aging process
    • Baraibar MA, Friguet B., Changes of the proteasomal system during the aging process. Prog Mol Biol Transl Sci. 2012; 109: 249-75.
    • (2012) Prog Mol Biol Transl Sci. , vol.109 , pp. 249-275
    • Baraibar, M.A.1    Friguet, B.2
  • 107
    • 84872202144 scopus 로고    scopus 로고
    • E3 ubiquitin ligase-mediated regulation of bone formation and tumorigenesis
    • Sévère N, Dieudonné FX, Marie PJ., E3 ubiquitin ligase-mediated regulation of bone formation and tumorigenesis. Cell Death Dis. 2013; 4: e463.
    • (2013) Cell Death Dis. , vol.4
    • Sévère, N.1    Dieudonné, F.X.2    Marie, P.J.3
  • 108
    • 0038819051 scopus 로고    scopus 로고
    • Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro
    • Garrett IR, Chen D, Gutierrez G, et al. Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro. J Clin Invest. 2003; 111: 1771-82.
    • (2003) J Clin Invest. , vol.111 , pp. 1771-1782
    • Garrett, I.R.1    Chen, D.2    Et Al., G.G.3
  • 109
    • 38849130851 scopus 로고    scopus 로고
    • Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice
    • Mukherjee S, Raje N, Schoonmaker JA, et al. Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J Clin Invest. 2008; 118: 491-504.
    • (2008) J Clin Invest. , vol.118 , pp. 491-504
    • Mukherjee, S.1    Raje, N.2    Et Al., A.S.J.3
  • 110
    • 79959908795 scopus 로고    scopus 로고
    • The Casitas B lineage lymphoma (Cbl) mutant G306E enhances osteogenic differentiation in human mesenchymal stromal cells in part by decreased Cbl-mediated platelet-derived growth factor receptor alpha and fibroblast growth factor receptor 2 ubiquitination
    • Sévère N, Miraoui H, Marie PJ., The Casitas B lineage lymphoma (Cbl) mutant G306E enhances osteogenic differentiation in human mesenchymal stromal cells in part by decreased Cbl-mediated platelet-derived growth factor receptor alpha and fibroblast growth factor receptor 2 ubiquitination. J Biol Chem. 2011; 286: 24443-50.
    • (2011) J Biol Chem. , vol.286 , pp. 24443-24450
    • Sévère, N.1    Miraoui, H.2    Marie, P.J.3
  • 111
    • 84879936071 scopus 로고    scopus 로고
    • Promotion of osteoblast differentiation in mesenchymal cells through Cbl-mediated control of STAT5 activity
    • Dieudonné FX, Sévère N, Biosse-Duplan M, Weng JJ, Su Y, Marie PJ., Promotion of osteoblast differentiation in mesenchymal cells through Cbl-mediated control of STAT5 activity. Stem Cells. 2013; 31: 1340-9.
    • (2013) Stem Cells. , vol.31 , pp. 1340-1349
    • Dieudonné, F.X.1    Sévère, N.2    Biosse-Duplan, M.3    Weng, J.J.4    Su, Y.5    Marie, P.J.6
  • 112
    • 13844257282 scopus 로고    scopus 로고
    • Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: The role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways
    • Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B., Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell. 2004; 3: 379-89.
    • (2004) Aging Cell. , vol.3 , pp. 379-389
    • Moerman, E.J.1    Teng, K.2    Lipschitz, D.A.3    Lecka-Czernik, B.4
  • 113
    • 84863726841 scopus 로고    scopus 로고
    • Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells
    • Xian L, Wu X, Pang L, et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med. 2012; 18: 1095-101.
    • (2012) Nat Med. , vol.18 , pp. 1095-1101
    • Xian, L.1    Wu, X.2    Et Al., P.L.3
  • 116
    • 56749183660 scopus 로고    scopus 로고
    • Age-dependent Wnt gene expression in bone and during the course of osteoblast differentiation
    • Rauner M, Sipos W, Pietschmann P., Age-dependent Wnt gene expression in bone and during the course of osteoblast differentiation. Age (Dordr). 2008; 30: 273-82.
    • (2008) Age (Dordr). , vol.30 , pp. 273-282
    • Rauner, M.1    Sipos, W.2    Pietschmann, P.3
  • 117
    • 77957675698 scopus 로고    scopus 로고
    • Wnt10b deficiency results in age-dependent loss of bone mass and progressive reduction of mesenchymal progenitor cells
    • Stevens JR, Miranda-Carboni GA, Singer MA, Brugger SM, Lyons KM, Lane TF., Wnt10b deficiency results in age-dependent loss of bone mass and progressive reduction of mesenchymal progenitor cells. J Bone Miner Res. 2010; 25: 2138-47.
    • (2010) J Bone Miner Res. , vol.25 , pp. 2138-2147
    • Stevens, J.R.1    Miranda-Carboni, G.A.2    Singer, M.A.3    Brugger, S.M.4    Lyons, K.M.5    Lane, T.F.6
  • 118
    • 84888021623 scopus 로고    scopus 로고
    • A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing
    • Florian MC, Nattamai KJ, Dorr K, et al. A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature. 2013; 503: 392-6.
    • (2013) Nature. , vol.503 , pp. 392-396
    • Florian, M.C.1    Nattamai, K.J.2    Et Al., D.K.3
  • 120
    • 1642515031 scopus 로고    scopus 로고
    • Plasticity and regulation of human bone marrow stromal osteoprogenitor cells: Potential implication in the treatment of age-related bone loss
    • Ahdjoudj S, Fromigué O, Marie PJ., Plasticity and regulation of human bone marrow stromal osteoprogenitor cells: potential implication in the treatment of age-related bone loss. Histol Histopathol. 2004; 19: 151-7.
    • (2004) Histol Histopathol. , vol.19 , pp. 151-157
    • Ahdjoudj, S.1    Fromigué, O.2    Marie, P.J.3
  • 121
    • 84892823844 scopus 로고    scopus 로고
    • Osteoblast-adipocyte lineage plasticity in tissue development, maintenance and pathology
    • Berendsen AD, Olsen BR., Osteoblast-adipocyte lineage plasticity in tissue development, maintenance and pathology. Cell Mol Life Sci. 2014; 71: 493-7.
    • (2014) Cell Mol Life Sci. , vol.71 , pp. 493-497
    • Berendsen, A.D.1    Olsen, B.R.2
  • 123
    • 42749103567 scopus 로고    scopus 로고
    • PPARs and bone metabolism
    • Lecka-Czernik B., PPARs and bone metabolism. PPAR Res. 2006; 2006: 18089.
    • (2006) PPAR Res. , vol.2006 , pp. 18089
    • Lecka-Czernik, B.1
  • 124
    • 2142652189 scopus 로고    scopus 로고
    • PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors
    • Akune T, Ohba S, Kamekura S, et al. PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest. 2004; 113: 846-55.
    • (2004) J Clin Invest. , vol.113 , pp. 846-855
    • Akune, T.1    Ohba, S.2    Et Al., K.S.3
  • 125
    • 79953042169 scopus 로고    scopus 로고
    • Glycogen synthase kinase-3alpha/beta inhibition promotes in vivo amplification of endogenous mesenchymal progenitors with osteogenic and adipogenic potential and their differentiation to the osteogenic lineage
    • Gambardella A, Nagaraju CK, O'Shea PJ, et al. Glycogen synthase kinase-3alpha/beta inhibition promotes in vivo amplification of endogenous mesenchymal progenitors with osteogenic and adipogenic potential and their differentiation to the osteogenic lineage. J Bone Miner Res. 2011; 26: 811-21.
    • (2011) J Bone Miner Res. , vol.26 , pp. 811-821
    • Gambardella, A.1    Nagaraju, C.K.2    Et Al., J.O.P.3
  • 126
    • 84873948364 scopus 로고    scopus 로고
    • Pharmacological inhibition of PPARgamma increases osteoblastogenesis and bone mass in male C57BL/6 mice
    • Duque G, Li W, Vidal C, Bermeo S, Rivas D, Henderson J., Pharmacological inhibition of PPARgamma increases osteoblastogenesis and bone mass in male C57BL/6 mice. J Bone Miner Res. 2013; 28: 639-48.
    • (2013) J Bone Miner Res. , vol.28 , pp. 639-648
    • Duque, G.1    Li, W.2    Vidal, C.3    Bermeo, S.4    Rivas, D.5    Henderson, J.6
  • 127
    • 84860514967 scopus 로고    scopus 로고
    • Interferon gamma inhibits adipogenesis in vitro and prevents marrow fat infiltration in oophorectomized mice
    • Vidal C, Bermeo S, Li W, Huang D, Kremer R, Duque G., Interferon gamma inhibits adipogenesis in vitro and prevents marrow fat infiltration in oophorectomized mice. Stem Cells. 2012; 30: 1042-8.
    • (2012) Stem Cells. , vol.30 , pp. 1042-1048
    • Vidal, C.1    Bermeo, S.2    Li, W.3    Huang, D.4    Kremer, R.5    Duque, G.6
  • 128
    • 77953469123 scopus 로고    scopus 로고
    • Growth hormone regulates the balance between bone formation and bone marrow adiposity
    • Menagh PJ, Turner RT, Jump DB, et al. Growth hormone regulates the balance between bone formation and bone marrow adiposity. J Bone Miner Res. 2010; 25: 757-68.
    • (2010) J Bone Miner Res. , vol.25 , pp. 757-768
    • Menagh, P.J.1    Turner, R.T.2    Et Al., B.J.D.3
  • 129
    • 34248506892 scopus 로고    scopus 로고
    • Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small molecule agonist of the PTH1 receptor inhibits adipocyte differentiation in human bone marrow stromal cells
    • Rickard DJ, Wang FL, Rodriguez-Rojas AM, et al. Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small molecule agonist of the PTH1 receptor inhibits adipocyte differentiation in human bone marrow stromal cells. Bone. 2006; 39: 1361-72.
    • (2006) Bone. , vol.39 , pp. 1361-1372
    • Rickard, D.J.1    Wang, F.L.2    Et Al., M.R.A.3
  • 130
    • 84860881103 scopus 로고    scopus 로고
    • Strontium ranelate rebalances bone marrow adipogenesis and osteoblastogenesis in senescent osteopenic mice through NFATc/Maf and Wnt signaling
    • Saidak Z, Haÿ E, Marty C, Barbara A, Marie PJ., Strontium ranelate rebalances bone marrow adipogenesis and osteoblastogenesis in senescent osteopenic mice through NFATc/Maf and Wnt signaling. Aging Cell. 2012; 11: 467-74.
    • (2012) Aging Cell. , vol.11 , pp. 467-474
    • Saidak, Z.1    Haÿ, E.2    Marty, C.3    Barbara, A.4    Marie, P.J.5
  • 131
    • 77955981309 scopus 로고    scopus 로고
    • Disruption of the Fgf2 gene activates the adipogenic and suppresses the osteogenic program in mesenchymal marrow stromal stem cells
    • Xiao L, Sobue T, Esliger A, et al. Disruption of the Fgf2 gene activates the adipogenic and suppresses the osteogenic program in mesenchymal marrow stromal stem cells. Bone. 2010; 47: 360-70.
    • (2010) Bone. , vol.47 , pp. 360-370
    • Xiao, L.1    Sobue, T.2    Et Al., E.A.3
  • 132
    • 0036128727 scopus 로고    scopus 로고
    • Transforming growth factor beta2 inhibits adipocyte differentiation induced by skeletal unloading in rat bone marrow stroma
    • Ahdjoudj S, Lasmoles F, Holy X, Zerath E, Marie PJ., Transforming growth factor beta2 inhibits adipocyte differentiation induced by skeletal unloading in rat bone marrow stroma. J Bone Miner Res. 2002; 17: 668-77.
    • (2002) J Bone Miner Res. , vol.17 , pp. 668-677
    • Ahdjoudj, S.1    Lasmoles, F.2    Holy, X.3    Zerath, E.4    Marie, P.J.5
  • 133
    • 34347235843 scopus 로고    scopus 로고
    • Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma
    • Kang S, Bennett CN, Gerin I, Rapp LA, Hankenson KD, Macdougald OA., Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. J Biol Chem. 2007; 282: 14515-24.
    • (2007) J Biol Chem. , vol.282 , pp. 14515-14524
    • Kang, S.1    Bennett, C.N.2    Gerin, I.3    Rapp, L.A.4    Hankenson, K.D.5    Macdougald, O.A.6
  • 134
    • 84867505259 scopus 로고    scopus 로고
    • Loss of wnt/beta-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes
    • Song L, Liu M, Ono N, Bringhurst FR, Kronenberg HM, Guo J., Loss of wnt/beta-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. J Bone Miner Res. 2012; 27: 2344-58.
    • (2012) J Bone Miner Res. , vol.27 , pp. 2344-2358
    • Song, L.1    Liu, M.2    Ono, N.3    Bringhurst, F.R.4    Kronenberg, H.M.5    Guo, J.6
  • 135
    • 84866001590 scopus 로고    scopus 로고
    • Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation
    • Liu Y, Berendsen AD, Jia S, et al. Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. J Clin Invest. 2012; 122: 3101-13.
    • (2012) J Clin Invest. , vol.122 , pp. 3101-3113
    • Liu, Y.1    Berendsen, A.D.2    Et Al., J.S.3
  • 136
    • 37649027738 scopus 로고    scopus 로고
    • PPAR gamma activity and control of bone mass in skeletal unloading
    • Marie PJ, Kaabeche K., PPAR gamma activity and control of bone mass in skeletal unloading. PPAR Res. 2006; 2006: 64807.
    • (2006) PPAR Res. , vol.2006 , pp. 64807
    • Marie, P.J.1    Kaabeche, K.2
  • 137
    • 34249776946 scopus 로고    scopus 로고
    • Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis
    • David V, Martin A, Lafage-Proust MH, et al. Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology. 2007; 148: 2553-62.
    • (2007) Endocrinology. , vol.148 , pp. 2553-2562
    • David, V.1    Martin, A.2    Et Al., H.L.M.3
  • 138
    • 84890920876 scopus 로고    scopus 로고
    • MTORC2 regulates mechanically induced cytoskeletal reorganization and lineage selection in marrow derived mesenchymal stem cells
    • Sen B, Xie Z, Case N, et al. mTORC2 regulates mechanically induced cytoskeletal reorganization and lineage selection in marrow derived mesenchymal stem cells. J Bone Miner Res. 2014; 29: 78-89.
    • (2014) J Bone Miner Res. , vol.29 , pp. 78-89
    • Sen, B.1    Xie, Z.2    Et Al., C.N.3
  • 139
    • 12144286871 scopus 로고    scopus 로고
    • Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist
    • van Bezooijen RL, Roelen BA, Visser A, et al. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med. 2004; 199: 805-14.
    • (2004) J Exp Med. , vol.199 , pp. 805-814
    • Van Bezooijen, R.L.1    Roelen, B.A.2    Et Al., V.A.3
  • 140
    • 80053938104 scopus 로고    scopus 로고
    • Evidence for osteocyte regulation of bone homeostasis through RANKL expression
    • Nakashima T, Hayashi M, Fukunaga T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011; 17: 1231-4.
    • (2011) Nat Med. , vol.17 , pp. 1231-1234
    • Nakashima, T.1    Hayashi, M.2    Et Al., F.T.3
  • 142
    • 84882688846 scopus 로고    scopus 로고
    • RANKL subcellular trafficking and regulatory mechanisms in osteocytes
    • Honma M, Ikebuchi Y, Kariya Y, et al. RANKL subcellular trafficking and regulatory mechanisms in osteocytes. J Bone Miner Res. 2013; 28: 1936-49.
    • (2013) J Bone Miner Res. , vol.28 , pp. 1936-1949
    • Honma, M.1    Ikebuchi, Y.2    Et Al., K.Y.3
  • 143
  • 144
    • 84883059455 scopus 로고    scopus 로고
    • Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation
    • Swift J, Ivanovska IL, Buxboim A, et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science. 2013; 341: 1240104.
    • (2013) Science. , vol.341 , pp. 1240104
    • Swift, J.1    Ivanovska, I.L.2    Et Al., B.A.3
  • 145
    • 58649084328 scopus 로고    scopus 로고
    • Effect of lamin A/C knockdown on osteoblast differentiation and function
    • Akter R, Rivas D, Geneau G, Drissi H, Duque G., Effect of lamin A/C knockdown on osteoblast differentiation and function. J Bone Miner Res. 2009; 24: 283-93.
    • (2009) J Bone Miner Res. , vol.24 , pp. 283-293
    • Akter, R.1    Rivas, D.2    Geneau, G.3    Drissi, H.4    Duque, G.5
  • 146
    • 58149087318 scopus 로고    scopus 로고
    • Inhibition of lamin A/C attenuates osteoblast differentiation and enhances RANKL-dependent osteoclastogenesis
    • Rauner M, Sipos W, Goettsch C, et al. Inhibition of lamin A/C attenuates osteoblast differentiation and enhances RANKL-dependent osteoclastogenesis. J Bone Miner Res. 2009; 24: 78-86.
    • (2009) J Bone Miner Res. , vol.24 , pp. 78-86
    • Rauner, M.1    Sipos, W.2    Et Al., G.C.3
  • 147
    • 79955558298 scopus 로고    scopus 로고
    • Decreased bone formation and osteopenia in lamin a/c-deficient mice
    • Li W, Yeo LS, Vidal C, et al. Decreased bone formation and osteopenia in lamin a/c-deficient mice. PLoS One. 2011; 6: e19313.
    • (2011) PLoS One. , vol.6
    • Li, W.1    Yeo, L.S.2    Et Al., V.C.3
  • 148
    • 84855869935 scopus 로고    scopus 로고
    • Lamin A/C deficiency is associated with fat infiltration of muscle and bone
    • Tong J, Li W, Vidal C, Yeo LS, Fatkin D, Duque G., Lamin A/C deficiency is associated with fat infiltration of muscle and bone. Mech Ageing Dev. 2011; 132: 552-9.
    • (2011) Mech Ageing Dev. , vol.132 , pp. 552-559
    • Tong, J.1    Li, W.2    Vidal, C.3    Yeo, L.S.4    Fatkin, D.5    Duque, G.6
  • 149
    • 39149086121 scopus 로고    scopus 로고
    • Stems cells and the pathways to aging and cancer
    • Rossi DJ, Jamieson CH, Weissman IL., Stems cells and the pathways to aging and cancer. Cell. 2008; 132: 681-96.
    • (2008) Cell. , vol.132 , pp. 681-696
    • Rossi, D.J.1    Jamieson, C.H.2    Weissman, I.L.3
  • 150
    • 34147097546 scopus 로고    scopus 로고
    • Hemopoietic stem cells with higher hemopoietic potential reside at the bone marrow endosteum
    • Haylock DN, Williams B, Johnston HM, et al. Hemopoietic stem cells with higher hemopoietic potential reside at the bone marrow endosteum. Stem Cells. 2007; 25: 1062-9.
    • (2007) Stem Cells. , vol.25 , pp. 1062-1069
    • Haylock, D.N.1    Williams, B.2    Et Al., M.J.H.3
  • 151
    • 67651098996 scopus 로고    scopus 로고
    • Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones
    • Kohler A, Schmithorst V, Filippi MD, et al. Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones. Blood. 2009; 114: 290-8.
    • (2009) Blood. , vol.114 , pp. 290-298
    • Kohler, A.1    Schmithorst, V.2    Et Al., D.F.M.3
  • 152
    • 33646422489 scopus 로고    scopus 로고
    • Modulation of connexin43 alters expression of osteoblastic differentiation markers
    • Li Z, Zhou Z, Saunders MM, Donahue HJ., Modulation of connexin43 alters expression of osteoblastic differentiation markers. Am J Physiol Cell Physiol. 2006; 290: C1248-55.
    • (2006) Am J Physiol Cell Physiol. , vol.290
    • Li, Z.1    Zhou, Z.2    Saunders, M.M.3    Donahue, H.J.4
  • 153
    • 84867625991 scopus 로고    scopus 로고
    • Beyond gap junctions: Connexin43 and bone cell signaling
    • Plotkin LI, Bellido T., Beyond gap junctions: Connexin43 and bone cell signaling. Bone. 2013; 52: 157-66.
    • (2013) Bone. , vol.52 , pp. 157-166
    • Plotkin, L.I.1    Bellido, T.2
  • 155
    • 84867566059 scopus 로고    scopus 로고
    • Connexin 43 deficiency attenuates loss of trabecular bone and prevents suppression of cortical bone formation during unloading
    • Lloyd SA, Lewis GS, Zhang Y, Paul EM, Donahue HJ., Connexin 43 deficiency attenuates loss of trabecular bone and prevents suppression of cortical bone formation during unloading. J Bone Miner Res. 2012; 27: 2359-72.
    • (2012) J Bone Miner Res. , vol.27 , pp. 2359-2372
    • Lloyd, S.A.1    Lewis, G.S.2    Zhang, Y.3    Paul, E.M.4    Donahue, H.J.5
  • 156
    • 84886811033 scopus 로고    scopus 로고
    • The G60S connexin 43 mutation activates the osteoblast lineage and results in a resorption-stimulating bone matrix and abrogation of old-age-related bone loss
    • Zappitelli T, Chen F, Moreno L, et al. The G60S connexin 43 mutation activates the osteoblast lineage and results in a resorption-stimulating bone matrix and abrogation of old-age-related bone loss. J Bone Miner Res. 2013; 28: 2400-13.
    • (2013) J Bone Miner Res. , vol.28 , pp. 2400-2413
    • Zappitelli, T.1    Chen, F.2    Et Al., M.L.3
  • 157
    • 84867841673 scopus 로고    scopus 로고
    • Age-related changes in gap junctional intercellular communication in osteoblastic cells
    • Genetos DC, Zhou Z, Li Z, Donahue HJ., Age-related changes in gap junctional intercellular communication in osteoblastic cells. J Orthop Res. 2012; 30: 1979-84.
    • (2012) J Orthop Res. , vol.30 , pp. 1979-1984
    • Genetos, D.C.1    Zhou, Z.2    Li, Z.3    Donahue, H.J.4
  • 158
    • 84870250538 scopus 로고    scopus 로고
    • Osteoblast and osteocyte-specific loss of Connexin43 results in delayed bone formation and healing during murine fracture healing
    • Loiselle AE, Paul EM, Lewis GS, Donahue HJ., Osteoblast and osteocyte-specific loss of Connexin43 results in delayed bone formation and healing during murine fracture healing. J Orthop Res. 2013; 31: 147-54.
    • (2013) J Orthop Res. , vol.31 , pp. 147-154
    • Loiselle, A.E.1    Paul, E.M.2    Lewis, G.S.3    Donahue, H.J.4
  • 159
    • 84856160446 scopus 로고    scopus 로고
    • Cell autonomous requirement of connexin 43 for osteocyte survival: Consequences for endocortical resorption and periosteal bone formation
    • Bivi N, Condon KW, Allen MR, et al. Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation. J Bone Miner Res. 2012; 27: 374-89.
    • (2012) J Bone Miner Res. , vol.27 , pp. 374-389
    • Bivi, N.1    Condon, K.W.2    Et Al., R.A.M.3
  • 160
    • 84879239589 scopus 로고    scopus 로고
    • Connexin 43 channels protect osteocytes against oxidative stress-induced cell death
    • Kar R, Riquelme MA, Werner S, Jiang JX., Connexin 43 channels protect osteocytes against oxidative stress-induced cell death. J Bone Miner Res. 2013; 28: 1611-21.
    • (2013) J Bone Miner Res. , vol.28 , pp. 1611-1621
    • Kar, R.1    Riquelme, M.A.2    Werner, S.3    Jiang, J.X.4
  • 161
    • 84876756847 scopus 로고    scopus 로고
    • Targeting integrins to promote bone formation and repair
    • Marie PJ., Targeting integrins to promote bone formation and repair. Nat Rev Endocrinol. 2013; 9: 288-95.
    • (2013) Nat Rev Endocrinol. , vol.9 , pp. 288-295
    • Marie, P.J.1
  • 162
    • 84857738933 scopus 로고    scopus 로고
    • Mechanical stress-activated integrin alpha5beta1 induces opening of connexin 43 hemichannels
    • Batra N, Burra S, Siller-Jackson AJ, et al. Mechanical stress-activated integrin alpha5beta1 induces opening of connexin 43 hemichannels. Proc Natl Acad Sci USA. 2012; 109: 3359-64.
    • (2012) Proc Natl Acad Sci USA. , vol.109 , pp. 3359-3364
    • Batra, N.1    Burra, S.2    Et Al., J.S.A.3
  • 163
    • 0036158227 scopus 로고    scopus 로고
    • Role of N-cadherin in bone formation
    • Marie PJ., Role of N-cadherin in bone formation. J Cell Physiol. 2002; 190: 297-305.
    • (2002) J Cell Physiol. , vol.190 , pp. 297-305
    • Marie, P.J.1
  • 164
    • 33845227116 scopus 로고    scopus 로고
    • Cell-cell adhesion and signaling through cadherins: Connecting bone cells in their microenvironment
    • Mbalaviele G, Shin CS, Civitelli R., Cell-cell adhesion and signaling through cadherins: connecting bone cells in their microenvironment. J Bone Miner Res. 2006; 21: 1821-7.
    • (2006) J Bone Miner Res. , vol.21 , pp. 1821-1827
    • Mbalaviele, G.1    Shin, C.S.2    Civitelli, R.3
  • 165
    • 77950683362 scopus 로고    scopus 로고
    • Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling
    • Heuberger J, Birchmeier W., Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb Perspect Biol. 2010; 2: a002915.
    • (2010) Cold Spring Harb Perspect Biol. , vol.2
    • Heuberger, J.1    Birchmeier, W.2
  • 166
    • 59449095748 scopus 로고    scopus 로고
    • N-cadherin interacts with axin and LRP5 to negatively regulate Wnt/beta-catenin signaling, osteoblast function, and bone formation
    • Haÿ E, Laplantine E, Geoffroy V, et al. N-cadherin interacts with axin and LRP5 to negatively regulate Wnt/beta-catenin signaling, osteoblast function, and bone formation. Mol Cell Biol. 2009; 29: 953-64.
    • (2009) Mol Cell Biol. , vol.29 , pp. 953-964
    • Haÿ, E.1    Laplantine, E.2    Et Al., G.V.3
  • 167
    • 3242883440 scopus 로고    scopus 로고
    • Targeted expression of a dominant-negative N-cadherin in vivo delays peak bone mass and increases adipogenesis
    • Castro CH, Shin CS, Stains JP, et al. Targeted expression of a dominant-negative N-cadherin in vivo delays peak bone mass and increases adipogenesis. J Cell Sci. 2004; 117: 2853-64.
    • (2004) J Cell Sci. , vol.117 , pp. 2853-2864
    • Castro, C.H.1    Shin, C.S.2    Et Al., P.S.J.3
  • 168
    • 75349083520 scopus 로고    scopus 로고
    • Stem cells and the niche: A dynamic duo
    • Voog J, Jones DL., Stem cells and the niche: a dynamic duo. Cell Stem Cell. 2010; 6: 103-15.
    • (2010) Cell Stem Cell. , vol.6 , pp. 103-115
    • Voog, J.1    Jones, D.L.2
  • 169
    • 84866002474 scopus 로고    scopus 로고
    • The stem cell niche: Tissue physiology at a single cell level
    • Hoggatt J, Scadden DT., The stem cell niche: tissue physiology at a single cell level. J Clin Invest. 2012; 122: 3029-34.
    • (2012) J Clin Invest. , vol.122 , pp. 3029-3034
    • Hoggatt, J.1    Scadden, D.T.2
  • 170
    • 75349113973 scopus 로고    scopus 로고
    • Age-related changes in niche cells influence hematopoietic stem cell function
    • Oakley EJ, Van Zant G., Age-related changes in niche cells influence hematopoietic stem cell function. Cell Stem Cell. 2010; 6: 93-4.
    • (2010) Cell Stem Cell. , vol.6 , pp. 93-94
    • Oakley, E.J.1    Van Zant, G.2
  • 171
    • 65949115924 scopus 로고    scopus 로고
    • Role of the osteoblast lineage in the bone marrow hematopoietic niches
    • Wu JY, Scadden DT, Kronenberg HM., Role of the osteoblast lineage in the bone marrow hematopoietic niches. J Bone Miner Res. 2009; 24: 759-64.
    • (2009) J Bone Miner Res. , vol.24 , pp. 759-764
    • Wu, J.Y.1    Scadden, D.T.2    Kronenberg, H.M.3
  • 172
    • 84877966319 scopus 로고    scopus 로고
    • Concise review: Current concepts in bone marrow microenvironmental regulation of hematopoietic stem and progenitor cells
    • Smith JN, Calvi LM., Concise review: current concepts in bone marrow microenvironmental regulation of hematopoietic stem and progenitor cells. Stem Cells. 2013; 31: 1044-50.
    • (2013) Stem Cells. , vol.31 , pp. 1044-1050
    • Smith, J.N.1    Calvi, L.M.2
  • 173
    • 79955625821 scopus 로고    scopus 로고
    • Impact of maturational status on the ability of osteoblasts to enhance the hematopoietic function of stem and progenitor cells
    • Cheng YH, Chitteti BR, Streicher DA, et al. Impact of maturational status on the ability of osteoblasts to enhance the hematopoietic function of stem and progenitor cells. J Bone Miner Res. 2011; 26: 1111-21.
    • (2011) J Bone Miner Res. , vol.26 , pp. 1111-1121
    • Cheng, Y.H.1    Chitteti, B.R.2    Et Al., A.S.D.3
  • 174
    • 68149149784 scopus 로고    scopus 로고
    • What is the true nature of the osteoblastic hematopoietic stem cell niche
    • Askmyr M, Sims NA, Martin TJ, Purton LE., What is the true nature of the osteoblastic hematopoietic stem cell niche ? Trends Endocrinol Metab. 2009; 20: 303-9.
    • (2009) Trends Endocrinol Metab. , vol.20 , pp. 303-309
    • Askmyr, M.1    Sims, N.A.2    Martin, T.J.3    Purton, L.E.4
  • 175
    • 79956344963 scopus 로고    scopus 로고
    • Bone and the hematopoietic niche: A tale of two stem cells
    • Bianco P., Bone and the hematopoietic niche: a tale of two stem cells. Blood. 2011; 117: 5281-8.
    • (2011) Blood. , vol.117 , pp. 5281-5288
    • Bianco, P.1
  • 176
    • 84865362563 scopus 로고    scopus 로고
    • Role of N-cadherin in the regulation of hematopoietic stem cells in the bone marrow niche
    • Arai F, Hosokawa K, Toyama H, Matsumoto Y, Suda T., Role of N-cadherin in the regulation of hematopoietic stem cells in the bone marrow niche. Ann NY Acad Sci. 2012; 1266: 72-7.
    • (2012) Ann NY Acad Sci. , vol.1266 , pp. 72-77
    • Arai, F.1    Hosokawa, K.2    Toyama, H.3    Matsumoto, Y.4    Suda, T.5
  • 177
    • 0242363225 scopus 로고    scopus 로고
    • Identification of the haematopoietic stem cell niche and control of the niche size
    • Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003; 425: 836-41.
    • (2003) Nature. , vol.425 , pp. 836-841
    • Zhang, J.1    Niu, C.2    Et Al., Y.L.3
  • 178
    • 41449107903 scopus 로고    scopus 로고
    • N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells
    • Haug JS, He XC, Grindley JC, et al. N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells. Cell Stem Cell. 2008; 2: 367-79.
    • (2008) Cell Stem Cell. , vol.2 , pp. 367-379
    • Haug, J.S.1    He, X.C.2    Et Al., C.G.J.3
  • 179
    • 84861917517 scopus 로고    scopus 로고
    • Connexin-43 in the osteogenic BM niche regulates its cellular composition and the bidirectional traffic of hematopoietic stem cells and progenitors
    • Gonzalez-Nieto D, Li L, Kohler A, et al. Connexin-43 in the osteogenic BM niche regulates its cellular composition and the bidirectional traffic of hematopoietic stem cells and progenitors. Blood. 2012; 119: 5144-54.
    • (2012) Blood. , vol.119 , pp. 5144-5154
    • Gonzalez-Nieto, D.1    Li, L.2    Et Al., K.A.3
  • 180
    • 39149144034 scopus 로고    scopus 로고
    • Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life
    • Morrison SJ, Spradling AC., Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008; 132: 598-611.
    • (2008) Cell. , vol.132 , pp. 598-611
    • Morrison, S.J.1    Spradling, A.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.