메뉴 건너뛰기




Volumn 32, Issue 4, 2014, Pages 902-912

MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells

Author keywords

DifferentiationBone formation; Human stromal stem cells; MicroRNA 34a; Osteoblast

Indexed keywords

CYCLIN DEPENDENT KINASE 4; CYCLIN DEPENDENT KINASE 6; JAGGED1; MICRORNA 34A; NOTCH1 RECEPTOR; TRANSCRIPTION FACTOR E2F; CALCIUM BINDING PROTEIN; CELL CYCLE PROTEIN; MEMBRANE PROTEIN; MICRORNA; MIRN34 MICRORNA, HUMAN; NOTCH1 PROTEIN, HUMAN; SERRATE PROTEINS; SIGNAL PEPTIDE;

EID: 84896373668     PISSN: 10665099     EISSN: 15494918     Source Type: Journal    
DOI: 10.1002/stem.1615     Document Type: Article
Times cited : (169)

References (49)
  • 1
    • 79959412176 scopus 로고    scopus 로고
    • Osteoblasts in osteoporosis: Past, emerging, and future anabolic targets
    • Marie PJ, Kassem M,. Osteoblasts in osteoporosis: Past, emerging, and future anabolic targets. Eur J Endocrinol 2011; 165: 1-10.
    • (2011) Eur J Endocrinol , vol.165 , pp. 1-10
    • Marie, P.J.1    Kassem, M.2
  • 2
    • 79952599578 scopus 로고    scopus 로고
    • Senescence-associated intrinsic mechanisms of osteoblast dysfunctions
    • Kassem M, Marie PJ,. Senescence-associated intrinsic mechanisms of osteoblast dysfunctions. Aging Cell 2011; 10: 191-197.
    • (2011) Aging Cell , vol.10 , pp. 191-197
    • Kassem, M.1    Marie, P.J.2
  • 3
    • 0346727524 scopus 로고    scopus 로고
    • MicroRNAs modulate hematopoietic lineage differentiation
    • Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science (New York, Ny) 2004; 303: 83-86.
    • (2004) Science (New York, Ny) , vol.303 , pp. 83-86
    • Chen, C.Z.1    Li, L.2    Lodish, H.F.3
  • 4
    • 29644432901 scopus 로고    scopus 로고
    • MicroRNAs and endocrine biology
    • Cuellar TL, McManus MT,. MicroRNAs and endocrine biology. J Endocrinol 2005; 187: 327-332.
    • (2005) J Endocrinol , vol.187 , pp. 327-332
    • Cuellar, T.L.1    McManus, M.T.2
  • 5
    • 9144270691 scopus 로고    scopus 로고
    • A pancreatic islet-specific microRNA regulates insulin secretion
    • Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004; 432: 226-230.
    • (2004) Nature , vol.432 , pp. 226-230
    • Poy, M.N.1    Eliasson, L.2    Krutzfeldt, J.3
  • 6
    • 34249294856 scopus 로고    scopus 로고
    • Energizing miRNA research: A review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways
    • Wilfred BR, Wang WX, Nelson PT,. Energizing miRNA research: A review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab 2007; 91: 209-217.
    • (2007) Mol Genet Metab , vol.91 , pp. 209-217
    • Wilfred, B.R.1    Wang, W.X.2    Nelson, P.T.3
  • 7
    • 33846277696 scopus 로고    scopus 로고
    • Repression of protein synthesis by miRNAs: How many mechanisms
    • Pillai RS, Bhattacharyya SN, Filipowicz W,. Repression of protein synthesis by miRNAs: How many mechanisms Trends Cell Biol 2007; 17: 118-126.
    • (2007) Trends Cell Biol , vol.17 , pp. 118-126
    • Pillai, R.S.1    Bhattacharyya, S.N.2    Filipowicz, W.3
  • 8
    • 0347444723 scopus 로고    scopus 로고
    • MicroRNAs: Genomics, biogenesis, mechanism, and function
    • Bartel DP,. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-297.
    • (2004) Cell , vol.116 , pp. 281-297
    • Bartel, D.P.1
  • 9
    • 3042767202 scopus 로고    scopus 로고
    • MicroRNAs: Small RNAs with a big role in gene regulation
    • He L, Hannon GJ,. MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev 2004; 5: 522-531.
    • (2004) Nat Rev , vol.5 , pp. 522-531
    • He, L.1    Hannon, G.J.2
  • 10
    • 13944282215 scopus 로고    scopus 로고
    • Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs
    • Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433: 769-773.
    • (2005) Nature , vol.433 , pp. 769-773
    • Lim, L.P.1    Lau, N.C.2    Garrett-Engele, P.3
  • 11
    • 60149095444 scopus 로고    scopus 로고
    • Most mammalian mRNAs are conserved targets of microRNAs
    • Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19: 92-105.
    • (2009) Genome Res , vol.19 , pp. 92-105
    • Friedman, R.C.1    Farh, K.K.2    Burge, C.B.3
  • 12
    • 84857978205 scopus 로고    scopus 로고
    • Mechanisms in endocrinology: Micro-RNAs: Targets for enhancing osteoblast differentiation and bone formation
    • Taipaleenmaki H, Bjerre Hokland L, Chen L, et al. Mechanisms in endocrinology: Micro-RNAs: Targets for enhancing osteoblast differentiation and bone formation. Eur J Endocrinol 2012; 166: 359-371.
    • (2012) Eur J Endocrinol , vol.166 , pp. 359-371
    • Taipaleenmaki, H.1    Bjerre Hokland, L.2    Chen, L.3
  • 13
    • 52949114558 scopus 로고    scopus 로고
    • A microRNA signature for a BMP2-induced osteoblast lineage commitment program
    • Li Z, Hassan MQ, Volinia S, et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci USA 2008; 105: 13906-13911.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 13906-13911
    • Li, Z.1    Hassan, M.Q.2    Volinia, S.3
  • 14
    • 77149136767 scopus 로고    scopus 로고
    • MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation
    • Huang J, Zhao L, Xing L, et al. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells (Dayton, Ohio) 28: 357-364.
    • Stem Cells (Dayton, Ohio) , vol.28 , pp. 357-364
    • Huang, J.1    Zhao, L.2    Xing, L.3
  • 15
    • 79955016827 scopus 로고    scopus 로고
    • MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo
    • Eskildsen T, Taipaleenmaki H, Stenvang J, et al. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci USA 108: 6139-6144.
    • Proc Natl Acad Sci USA , vol.108 , pp. 6139-6144
    • Eskildsen, T.1    Taipaleenmaki, H.2    Stenvang, J.3
  • 16
    • 80655125005 scopus 로고    scopus 로고
    • MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix
    • Zhang JF, Fu WM, He ML, et al. MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Mol Biol Cell 2011; 22: 3955-3961.
    • (2011) Mol Biol Cell , vol.22 , pp. 3955-3961
    • Zhang, J.F.1    Fu, W.M.2    He, M.L.3
  • 17
    • 0035984714 scopus 로고    scopus 로고
    • Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells
    • Simonsen JL, Rosada C, Serakinci N, et al. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol 2002; 20: 592-596.
    • (2002) Nat Biotechnol , vol.20 , pp. 592-596
    • Simonsen, J.L.1    Rosada, C.2    Serakinci, N.3
  • 18
    • 77954514636 scopus 로고    scopus 로고
    • Parameters in three-dimensional osteospheroids of telomerized human mesenchymal (stromal) stem cells grown on osteoconductive scaffolds that predict in vivo bone-forming potential
    • Burns JS, Rasmussen PL, Larsen KH, et al. Parameters in three-dimensional osteospheroids of telomerized human mesenchymal (stromal) stem cells grown on osteoconductive scaffolds that predict in vivo bone-forming potential. Tissue Eng 2010; 16: 2331-2342.
    • (2010) Tissue Eng , vol.16 , pp. 2331-2342
    • Burns, J.S.1    Rasmussen, P.L.2    Larsen, K.H.3
  • 19
    • 0037311919 scopus 로고    scopus 로고
    • TM4: A free, open-source system for microarray data management and analysis
    • Saeed AI, Sharov V, White J, et al. TM4: A free, open-source system for microarray data management and analysis. Biotechniques 2003; 34: 374-378.
    • (2003) Biotechniques , vol.34 , pp. 374-378
    • Saeed, A.I.1    Sharov, V.2    White, J.3
  • 20
    • 2342559147 scopus 로고    scopus 로고
    • An Alizarin red-based assay of mineralization by adherent cells in culture: Comparison with cetylpyridinium chloride extraction
    • Gregory CA, Gunn WG, Peister A, et al. An Alizarin red-based assay of mineralization by adherent cells in culture: Comparison with cetylpyridinium chloride extraction. Anal Biochem 2004; 329: 77-84.
    • (2004) Anal Biochem , vol.329 , pp. 77-84
    • Gregory, C.A.1    Gunn, W.G.2    Peister, A.3
  • 21
    • 4344572370 scopus 로고    scopus 로고
    • Aged human bone marrow stromal cells maintaining bone forming capacity in vivo evaluated using an improved method of visualization
    • Stenderup K, Rosada C, Justesen J, et al. Aged human bone marrow stromal cells maintaining bone forming capacity in vivo evaluated using an improved method of visualization. Biogerontology 2004; 5: 107-118.
    • (2004) Biogerontology , vol.5 , pp. 107-118
    • Stenderup, K.1    Rosada, C.2    Justesen, J.3
  • 22
    • 84934438330 scopus 로고    scopus 로고
    • Assessment of bone formation capacity using in vivo transplantation assays: Procedure and tissue analysis
    • Abdallah BM, Ditzel N, Kassem M,. Assessment of bone formation capacity using in vivo transplantation assays: Procedure and tissue analysis. Methods Mol Biol (Clifton, NJ) 2008; 455: 89-100.
    • (2008) Methods Mol Biol (Clifton, NJ) , vol.455 , pp. 89-100
    • Abdallah, B.M.1    Ditzel, N.2    Kassem, M.3
  • 23
    • 84862777464 scopus 로고    scopus 로고
    • MicroRNA control of bone formation and homeostasis
    • Lian JB, Stein GS, van Wijnen AJ, et al. MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol 2012; 8: 212-227.
    • (2012) Nat Rev Endocrinol , vol.8 , pp. 212-227
    • Lian, J.B.1    Stein, G.S.2    Van Wijnen, A.J.3
  • 25
    • 54449092239 scopus 로고    scopus 로고
    • Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells
    • Fujita Y, Kojima K, Hamada N, et al. Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun 2008; 377: 114-119.
    • (2008) Biochem Biophys Res Commun , vol.377 , pp. 114-119
    • Fujita, Y.1    Kojima, K.2    Hamada, N.3
  • 26
    • 74249123570 scopus 로고    scopus 로고
    • The miR-34 family in cancer and apoptosis
    • Hermeking H,. The miR-34 family in cancer and apoptosis. Cell Death Differ 2010; 17: 193-199.
    • (2010) Cell Death Differ , vol.17 , pp. 193-199
    • Hermeking, H.1
  • 27
    • 78650459322 scopus 로고    scopus 로고
    • C/EBPalpha regulated microRNA-34a targets E2F3 during granulopoiesis and is down-regulated in AML with CEBPA mutations
    • Pulikkan JA, Peramangalam PS, Dengler V, et al. C/EBPalpha regulated microRNA-34a targets E2F3 during granulopoiesis and is down-regulated in AML with CEBPA mutations. Blood 2010; 116: 5638-5649.
    • (2010) Blood , vol.116 , pp. 5638-5649
    • Pulikkan, J.A.1    Peramangalam, P.S.2    Dengler, V.3
  • 28
    • 34848868157 scopus 로고    scopus 로고
    • Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells
    • Tazawa H, Tsuchiya N, Izumiya M, et al. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 2007; 104: 15472-15477.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 15472-15477
    • Tazawa, H.1    Tsuchiya, N.2    Izumiya, M.3
  • 29
    • 49249121155 scopus 로고    scopus 로고
    • Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer
    • Toyota M, Suzuki H, Sasaki Y, et al. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 2008; 68: 4123-4132.
    • (2008) Cancer Res , vol.68 , pp. 4123-4132
    • Toyota, M.1    Suzuki, H.2    Sasaki, Y.3
  • 30
    • 84862624955 scopus 로고    scopus 로고
    • MiR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2
    • Wei J, Shi Y, Zheng L, et al. miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. J Cell Biol 2012; 197: 509-521.
    • (2012) J Cell Biol , vol.197 , pp. 509-521
    • Wei, J.1    Shi, Y.2    Zheng, L.3
  • 31
    • 34547458550 scopus 로고    scopus 로고
    • P53-mediated activation of miRNA34 candidate tumor-suppressor genes
    • Bommer GT, Gerin I, Feng Y, et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 2007; 17: 1298-1307.
    • (2007) Curr Biol , vol.17 , pp. 1298-1307
    • Bommer, G.T.1    Gerin, I.2    Feng, Y.3
  • 32
    • 34250851115 scopus 로고    scopus 로고
    • A microRNA component of the p53 tumour suppressor network
    • He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447: 1130-1134.
    • (2007) Nature , vol.447 , pp. 1130-1134
    • He, L.1    He, X.2    Lim, L.P.3
  • 33
    • 34249822779 scopus 로고    scopus 로고
    • Transcriptional activation of miR-34a contributes to p53-mediated apoptosis
    • Raver-Shapira N, Marciano E, Meiri E, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 2007; 26: 731-743.
    • (2007) Mol Cell , vol.26 , pp. 731-743
    • Raver-Shapira, N.1    Marciano, E.2    Meiri, E.3
  • 34
    • 34250868124 scopus 로고    scopus 로고
    • Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: MiR-34a is a p53 target that induces apoptosis and G1-arrest
    • Tarasov V, Jung P, Verdoodt B, et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: MiR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 2007; 6: 1586-1593.
    • (2007) Cell Cycle , vol.6 , pp. 1586-1593
    • Tarasov, V.1    Jung, P.2    Verdoodt, B.3
  • 35
    • 74249124132 scopus 로고    scopus 로고
    • P53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC
    • Christoffersen NR, Shalgi R, Frankel LB, et al. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 2010; 17: 236-245.
    • (2010) Cell Death Differ , vol.17 , pp. 236-245
    • Christoffersen, N.R.1    Shalgi, R.2    Frankel, L.B.3
  • 36
    • 77952330677 scopus 로고    scopus 로고
    • MicroRNA-34a inhibits cell proliferation by repressing mitogen-activated protein kinase kinase 1 during megakaryocytic differentiation of K562 cells
    • Ichimura A, Ruike Y, Terasawa K, et al. MicroRNA-34a inhibits cell proliferation by repressing mitogen-activated protein kinase kinase 1 during megakaryocytic differentiation of K562 cells. Mol Pharmacol 2010; 77: 1016-1024.
    • (2010) Mol Pharmacol , vol.77 , pp. 1016-1024
    • Ichimura, A.1    Ruike, Y.2    Terasawa, K.3
  • 37
    • 34249817549 scopus 로고    scopus 로고
    • Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis
    • Chang TC, Wentzel EA, Kent OA, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26: 745-752.
    • (2007) Mol Cell , vol.26 , pp. 745-752
    • Chang, T.C.1    Wentzel, E.A.2    Kent, O.A.3
  • 39
    • 76249108602 scopus 로고    scopus 로고
    • Association of JAG1 with bone mineral density and osteoporotic fractures: A genome-wide association study and follow-up replication studies
    • Kung AW, Xiao SM, Cherny S, et al. Association of JAG1 with bone mineral density and osteoporotic fractures: A genome-wide association study and follow-up replication studies. Am J Hum Genet 2010; 86: 229-239.
    • (2010) Am J Hum Genet , vol.86 , pp. 229-239
    • Kung, A.W.1    Xiao, S.M.2    Cherny, S.3
  • 40
    • 4444315488 scopus 로고    scopus 로고
    • Exon 6 of human Jagged-1 encodes an autonomously folding unit
    • Guarnaccia C, Pintar A, Pongor S,. Exon 6 of human Jagged-1 encodes an autonomously folding unit. FEBS Lett 2004; 574: 156-160.
    • (2004) FEBS Lett , vol.574 , pp. 156-160
    • Guarnaccia, C.1    Pintar, A.2    Pongor, S.3
  • 41
    • 31444441172 scopus 로고    scopus 로고
    • Jagged1 protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes
    • Li H, Yu B, Zhang Y, et al. Jagged1 protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes. Biochem Biophys Res Commun 2006; 341: 320-325.
    • (2006) Biochem Biophys Res Commun , vol.341 , pp. 320-325
    • Li, H.1    Yu, B.2    Zhang, Y.3
  • 42
    • 65549140672 scopus 로고    scopus 로고
    • Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer
    • Rodilla V, Villanueva A, Obrador-Hevia A, et al. Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer. Proc Natl Acad Sci USA 2009; 106: 6315-6320.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 6315-6320
    • Rodilla, V.1    Villanueva, A.2    Obrador-Hevia, A.3
  • 43
    • 84863531464 scopus 로고    scopus 로고
    • MiRNA-34c regulates Notch signaling during bone development
    • Bae Y, Yang T, Zeng HC, et al. miRNA-34c regulates Notch signaling during bone development. Hum Mol Genet 2012; 21: 2991-3000.
    • (2012) Hum Mol Genet , vol.21 , pp. 2991-3000
    • Bae, Y.1    Yang, T.2    Zeng, H.C.3
  • 44
    • 70350221952 scopus 로고    scopus 로고
    • MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes
    • Li Y, Guessous F, Zhang Y, et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res 2009; 69: 7569-7576.
    • (2009) Cancer Res , vol.69 , pp. 7569-7576
    • Li, Y.1    Guessous, F.2    Zhang, Y.3
  • 45
    • 84877263242 scopus 로고    scopus 로고
    • A microRNA miR-34a-regulated bimodal switch targets notch in colon cancer stem cells
    • Bu P, Chen KY, Chen JH, et al. A microRNA miR-34a-regulated bimodal switch targets notch in colon cancer stem cells. Cell Stem Cell 2013; 12: 602-615.
    • (2013) Cell Stem Cell , vol.12 , pp. 602-615
    • Bu, P.1    Chen, K.Y.2    Chen, J.H.3
  • 46
    • 84877258007 scopus 로고    scopus 로고
    • Treatment of HCV Infection by Targeting MicroRNA
    • Janssen HL, Reesink HW, Lawitz EJ, et al. Treatment of HCV Infection by Targeting MicroRNA. New Engl J Med 2013; 368: 1685-1694.
    • (2013) New Engl J Med , vol.368 , pp. 1685-1694
    • Janssen, H.L.1    Reesink, H.W.2    Lawitz, E.J.3
  • 47
    • 73949133943 scopus 로고    scopus 로고
    • A microRNA regulatory mechanism of osteoblast differentiation
    • Inose H, Ochi H, Kimura A, et al. A microRNA regulatory mechanism of osteoblast differentiation. Proc Natl Acad Sci USA 2009; 106: 20794-20799.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 20794-20799
    • Inose, H.1    Ochi, H.2    Kimura, A.3
  • 48
    • 72849121740 scopus 로고    scopus 로고
    • A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans
    • Li H, Xie H, Liu W, et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Investig 2009; 119: 3666-3677.
    • (2009) J Clin Investig , vol.119 , pp. 3666-3677
    • Li, H.1    Xie, H.2    Liu, W.3
  • 49
    • 78049465948 scopus 로고    scopus 로고
    • SiRNA nanoparticle functionalization of nanostructured scaffolds enables controlled multilineage differentiation of stem cells
    • Andersen MO, Nygaard JV, Burns JS, et al. siRNA nanoparticle functionalization of nanostructured scaffolds enables controlled multilineage differentiation of stem cells. Mol Therapy 2010; 18: 2018-2027.
    • (2010) Mol Therapy , vol.18 , pp. 2018-2027
    • Andersen, M.O.1    Nygaard, J.V.2    Burns, J.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.