메뉴 건너뛰기




Volumn 82, Issue , 2013, Pages 471-496

Hydrogen tunneling links protein dynamics to enzyme catalysis

Author keywords

Enzyme catalysis; Hydrogen tunneling; Protein dynamics

Indexed keywords

ALANINE; ALCOHOL DEHYDROGENASE; CARBON; CATECHOL METHYLTRANSFERASE; DIHYDROFOLATE REDUCTASE; GLYCINE; HYDROGEN; S ADENOSYLMETHIONINE; VALINE;

EID: 84875665271     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-051710-133623     Document Type: Review
Times cited : (274)

References (153)
  • 1
    • 84912208190 scopus 로고
    • Chemical achievement and hope for the future
    • Pauling L. 1948. Chemical achievement and hope for the future. Am. Sci. 36:51-58
    • (1948) Am. Sci. , vol.36 , pp. 51-58
    • Pauling, L.1
  • 2
    • 33748592810 scopus 로고    scopus 로고
    • Degrees of difficulty of water-consuming reactions in the absence of enzymes
    • Wolfenden R. 2006. Degrees of difficulty of water-consuming reactions in the absence of enzymes. Chem. Rev. 106:3379-96
    • (2006) Chem. Rev. , vol.106 , pp. 3379-3396
    • Wolfenden, R.1
  • 3
    • 0033791659 scopus 로고    scopus 로고
    • Critical analysis of antibody catalysis
    • Hilvert D. 2000. Critical analysis of antibody catalysis. Annu. Rev. Biochem. 69:751-93
    • (2000) Annu. Rev. Biochem. , vol.69 , pp. 751-793
    • Hilvert, D.1
  • 4
    • 50849111095 scopus 로고    scopus 로고
    • Conformational relaxation following hydride transfer plays a limiting role in dihydrofolate reductase catalysis
    • Boehr DD, Dyson HJ, Wright PE. 2008. Conformational relaxation following hydride transfer plays a limiting role in dihydrofolate reductase catalysis. Biochemistry 47:9227-33
    • (2008) Biochemistry , vol.47 , pp. 9227-9233
    • Boehr, D.D.1    Dyson, H.J.2    Wright, P.E.3
  • 6
    • 0029000872 scopus 로고
    • Dynamics of the flexible loop of triosephosphate isomerase: The loop motion is not ligand gated
    • Williams JC, McDermott AE. 1995. Dynamics of the flexible loop of triosephosphate isomerase: The loop motion is not ligand gated. Biochemistry 34:8309-19
    • (1995) Biochemistry , vol.34 , pp. 8309-8319
    • Williams, J.C.1    McDermott, A.E.2
  • 7
    • 37249032102 scopus 로고    scopus 로고
    • Dynamic personalities of proteins
    • Henzler-Wildman K, Kern D. 2007. Dynamic personalities of proteins. Nature 450:964-72
    • (2007) Nature , vol.450 , pp. 964-972
    • Henzler-Wildman, K.1    Kern, D.2
  • 8
    • 71449103005 scopus 로고    scopus 로고
    • Hidden alternative structures of proline isomerase essential for catalysis
    • Fraser JS, Clarkson MW, Degnan SC, Erion R, Kern D, Alber T. 2009. Hidden alternative structures of proline isomerase essential for catalysis. Nature 462:669-73
    • (2009) Nature , vol.462 , pp. 669-673
    • Fraser, J.S.1    Clarkson, M.W.2    Degnan, S.C.3    Erion, R.4    Kern, D.5    Alber, T.6
  • 9
    • 0001858251 scopus 로고
    • Application of a theory of enzyme specificity to protein synthesis
    • Koshland DE Jr. 1958. Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. USA 44:98-104
    • (1958) Proc. Natl. Acad. Sci. USA , vol.44 , pp. 98-104
    • Koshland Jr., D.E.1
  • 10
    • 33750639677 scopus 로고
    • The key-lock theory and the induced fit theory
    • Koshland DE Jr. 1994. The key-lock theory and the induced fit theory. Angew. Chem. Int. Ed. 33:2375-78
    • (1994) Angew. Chem. Int. Ed. , vol.33 , pp. 2375-2378
    • Koshland Jr., D.E.1
  • 11
    • 80052149070 scopus 로고    scopus 로고
    • Catalysis by dihydrofolate reductase and other enzymes arises from electrostatic preorganization, not conformational motions
    • Adamczyk AJ, Cao J, Kamerlin SC, Warshel A. 2011. Catalysis by dihydrofolate reductase and other enzymes arises from electrostatic preorganization, not conformational motions. Proc. Natl. Acad. Sci. USA 108:14115-20
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 14115-14120
    • Adamczyk, A.J.1    Cao, J.2    Kamerlin, S.C.3    Warshel, A.4
  • 13
    • 84857515422 scopus 로고    scopus 로고
    • Good vibrations in enzyme-catalysed reactions
    • Hay S, Scrutton NS. 2012. Good vibrations in enzyme-catalysed reactions. Nat. Chem. 4:161-68
    • (2012) Nat. Chem. , vol.4 , pp. 161-168
    • Hay, S.1    Scrutton, N.S.2
  • 14
    • 84856077205 scopus 로고    scopus 로고
    • Biochemistry. Enzymes in coherent motion
    • Lu HP. 2012. Biochemistry. Enzymes in coherent motion. Science 335:300-1
    • (2012) Science , vol.335 , pp. 300-301
    • Lu, H.P.1
  • 15
    • 0032484096 scopus 로고    scopus 로고
    • Single-molecule enzymatic dynamics
    • Lu HP, Xun L, Xie XS. 1998. Single-molecule enzymatic dynamics. Science 282:1877-82
    • (1998) Science , vol.282 , pp. 1877-1882
    • Lu, H.P.1    Xun, L.2    Xie, X.S.3
  • 16
    • 78751674331 scopus 로고    scopus 로고
    • Seeing the forest for the trees: Fluorescence studies of single enzymes in the context of ensemble experiments
    • Tan YW, Yang H. 2011. Seeing the forest for the trees: fluorescence studies of single enzymes in the context of ensemble experiments. Phys. Chem. Chem. Phys. 13:1709-21
    • (2011) Phys. Chem. Chem. Phys. , vol.13 , pp. 1709-1721
    • Tan, Y.W.1    Yang, H.2
  • 18
    • 0020435222 scopus 로고
    • The use of isotope effects to determine transition-state structure for enzymic reactions
    • Cleland WW. 1982. The use of isotope effects to determine transition-state structure for enzymic reactions. Methods Enzymol. 87:625-41
    • (1982) Methods Enzymol , vol.87 , pp. 625-641
    • Cleland, W.W.1
  • 21
    • 0019330801 scopus 로고
    • Kinetic and chemical mechanisms of yeast formate dehydrogenase
    • Blanchard JS, Cleland WW. 1980. Kinetic and chemical mechanisms of yeast formate dehydrogenase. Biochemistry 19:3543-50
    • (1980) Biochemistry , vol.19 , pp. 3543-3550
    • Blanchard, J.S.1    Cleland, W.W.2
  • 22
    • 0008251476 scopus 로고
    • Evidence from multiple isotope effect determinations for coupled hydrogen motion and tunneling in the reaction catalyzed by glucose-6-phosphate dehydrogenase
    • Hermes JD, Cleland WW. 1984. Evidence from multiple isotope effect determinations for coupled hydrogen motion and tunneling in the reaction catalyzed by glucose-6-phosphate dehydrogenase. J. Am. Chem. Soc. 106:7263-64
    • (1984) J. Am. Chem. Soc. , vol.106 , pp. 7263-7264
    • Hermes, J.D.1    Cleland, W.W.2
  • 23
    • 0024573393 scopus 로고
    • Hydrogen tunneling in enzyme reactions
    • Cha Y, Murray CJ, Klinman JP. 1989. Hydrogen tunneling in enzyme reactions. Science 243:1325-30
    • (1989) Science , vol.243 , pp. 1325-1330
    • Cha, Y.1    Murray, C.J.2    Klinman, J.P.3
  • 25
    • 0002845355 scopus 로고
    • The effect of pressure on kinetic isotope effects
    • ed. E Buncel, CC Lee, London Elsevier
    • Isaacs NS. 1984. The effect of pressure on kinetic isotope effects. In Isotope Effects in Organic Chemistry, ed. E Buncel, CC Lee, pp. 67-105. London: Elsevier
    • (1984) Isotope Effects in Organic Chemistry , pp. 67-105
    • Isaacs, N.S.1
  • 26
    • 0000205312 scopus 로고    scopus 로고
    • Enzyme catalysis: Beyond classical paradigms
    • Kohen A, Klinman JP. 1998. Enzyme catalysis: beyond classical paradigms. Acc. Chem. Res. 31:397-404
    • (1998) Acc. Chem. Res. , vol.31 , pp. 397-404
    • Kohen, A.1    Klinman, J.P.2
  • 29
    • 84862948033 scopus 로고    scopus 로고
    • 3-Picolyl azide adenine dinucleotide as a probe of femtosecond to picosecond enzyme dynamics
    • Dutta S, Li YL, Rock W, Houtman JC, Kohen A, Cheatum CM. 2012. 3-Picolyl azide adenine dinucleotide as a probe of femtosecond to picosecond enzyme dynamics. J. Phys. Chem. B 116:542-48
    • (2012) J. Phys. Chem. B , vol.116 , pp. 542-548
    • Dutta, S.1    Li, Y.L.2    Rock, W.3    Houtman, J.C.4    Kohen, A.5    Cheatum, C.M.6
  • 30
    • 77955164557 scopus 로고    scopus 로고
    • Enzymatic tunneling and kinetic isotope effects: Chemistry at the crossroads
    • Sen A, Kohen A. 2010. Enzymatic tunneling and kinetic isotope effects: chemistry at the crossroads. J. Phys. Org. Chem. 23:613-19
    • (2010) J. Phys. Org. Chem. , vol.23 , pp. 613-619
    • Sen, A.1    Kohen, A.2
  • 31
    • 78650117855 scopus 로고    scopus 로고
    • Update 1 of: Tunneling and dynamics in enzymatic hydride transfer
    • Nagel ZD, Klinman JP. 2010. Update 1 of: Tunneling and dynamics in enzymatic hydride transfer. Chem. Rev. 110:PR41-67
    • (2010) Chem. Rev. , vol.110
    • Nagel, Z.D.1    Klinman, J.P.2
  • 32
    • 33748601471 scopus 로고    scopus 로고
    • Tunneling and dynamics in enzymatic hydride transfer
    • Nagel ZD, Klinman JP. 2006. Tunneling and dynamics in enzymatic hydride transfer. Chem. Rev. 106:3095-118
    • (2006) Chem. Rev. , vol.106 , pp. 3095-3118
    • Nagel, Z.D.1    Klinman, J.P.2
  • 33
    • 0033305793 scopus 로고    scopus 로고
    • Proton and hydrogen atom tunneling in hydrolytic and redox enzyme catalysis
    • Kuznetsov AM, Ulstrup J. 1999. Proton and hydrogen atom tunneling in hydrolytic and redox enzyme catalysis. Can. J. Chem. 77:1085-96
    • (1999) Can. J. Chem. , vol.77 , pp. 1085-1096
    • Kuznetsov, A.M.1    Ulstrup, J.2
  • 34
    • 0036301901 scopus 로고    scopus 로고
    • Environmentally coupled hydrogen tunneling. Linking catalysis to dynamics
    • Knapp MJ, Klinman JP. 2002. Environmentally coupled hydrogen tunneling. Linking catalysis to dynamics. Eur. J. Biochem. 269:3113-21
    • (2002) Eur. J. Biochem. , vol.269 , pp. 3113-3121
    • Knapp, M.J.1    Klinman, J.P.2
  • 35
    • 77955581308 scopus 로고    scopus 로고
    • Direct analysis of donor-acceptor distance and relationship to isotope effects and the force constant for barrier compression in enzymatic H-tunneling reactions
    • Pudney CR, Johannissen LO, Sutcliffe MJ, Hay S, Scrutton NS. 2010. Direct analysis of donor-acceptor distance and relationship to isotope effects and the force constant for barrier compression in enzymatic H-tunneling reactions. J. Am. Chem. Soc. 132:11329-35
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 11329-11335
    • Pudney, C.R.1    Johannissen, L.O.2    Sutcliffe, M.J.3    Hay, S.4    Scrutton, N.S.5
  • 37
    • 0001784518 scopus 로고
    • Proton transfer reactions
    • ed. A Cooper, J Houben, L Chien New York: Plenum
    • Borgis D, Hynes JT. 1989. Proton transfer reactions. In The Enzyme Catalysis Process, ed. A Cooper, J Houben, L Chien, pp. 293-303. New York: Plenum
    • (1989) The Enzyme Catalysis Process , pp. 293-303
    • Borgis, D.1    Hynes, J.T.2
  • 38
    • 0037123216 scopus 로고    scopus 로고
    • Temperature-dependent isotope effects in soybean lipoxygenase-1: Correlating hydrogen tunneling with protein dynamics
    • Knapp MJ, Rickert K, Klinman JP. 2002. Temperature-dependent isotope effects in soybean lipoxygenase-1: correlating hydrogen tunneling with protein dynamics. J. Am. Chem. Soc. 124:3865- 74
    • (2002) J. Am. Chem. Soc. , vol.124 , pp. 3865-3874
    • Knapp, M.J.1    Rickert, K.2    Klinman, J.P.3
  • 39
    • 28644449439 scopus 로고    scopus 로고
    • Modeling temperature dependent kinetic isotope effects for hydrogen transfer in a series of soybean lipoxygenase mutants: The effect of anharmonicity upon transfer distance
    • Meyer MP, Klinman JP. 2005. Modeling temperature dependent kinetic isotope effects for hydrogen transfer in a series of soybean lipoxygenase mutants: the effect of anharmonicity upon transfer distance. Chem. Phys. 319:283-96
    • (2005) Chem. Phys. , vol.319 , pp. 283-296
    • Meyer, M.P.1    Klinman, J.P.2
  • 40
    • 39549094013 scopus 로고    scopus 로고
    • Enzyme structure and dynamics affect hydrogen tunneling: The impact of a remote side chain (I553) in soybean lipoxygenase-1
    • Meyer MP, Tomchick DR, Klinman JP. 2008. Enzyme structure and dynamics affect hydrogen tunneling: the impact of a remote side chain (I553) in soybean lipoxygenase-1. Proc. Natl. Acad. Sci. USA105:1146-51
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 1146-1151
    • Meyer, M.P.1    Tomchick, D.R.2    Klinman, J.P.3
  • 42
    • 11344269742 scopus 로고    scopus 로고
    • Kinetic isotope effects for nonadiabatic proton transfer reactions in a polar environment. 1. Interpretation of tunneling kinetic isotopic effects
    • Kiefer PM, Hynes JT. 2004. Kinetic isotope effects for nonadiabatic proton transfer reactions in a polar environment. 1. Interpretation of tunneling kinetic isotopic effects. J. Phys. Chem. A 108:11793-808
    • (2004) J. Phys. Chem. A , vol.108 , pp. 11793-11808
    • Kiefer, P.M.1    Hynes, J.T.2
  • 43
    • 0242489464 scopus 로고    scopus 로고
    • Kinetic isotope effects for adiabatic proton transfer reactions in a polar environment
    • Kiefer PM, Hynes JT. 2003. Kinetic isotope effects for adiabatic proton transfer reactions in a polar environment. J. Phys. Chem. A 107:9022-39
    • (2003) J. Phys. Chem. A , vol.107 , pp. 9022-9039
    • Kiefer, P.M.1    Hynes, J.T.2
  • 44
    • 1542317813 scopus 로고    scopus 로고
    • Simulations of the large kinetic isotope effect and the temperature dependence of the hydrogen atom transfer in lipoxygenase
    • Olsson MH, Siegbahn PE, Warshel A. 2004. Simulations of the large kinetic isotope effect and the temperature dependence of the hydrogen atom transfer in lipoxygenase. J. Am. Chem. Soc. 126:2820-28
    • (2004) J. Am. Chem. Soc. , vol.126 , pp. 2820-2828
    • Olsson, M.H.1    Siegbahn, P.E.2    Warshel, A.3
  • 45
    • 34249104188 scopus 로고    scopus 로고
    • The catalytic effect of dihydrofolate reductase and its mutants is determined by reorganization energies
    • Liu H, Warshel A. 2007. The catalytic effect of dihydrofolate reductase and its mutants is determined by reorganization energies. Biochemistry 46:6011-25
    • (2007) Biochemistry , vol.46 , pp. 6011-6025
    • Liu, H.1    Warshel, A.2
  • 46
    • 34547456661 scopus 로고    scopus 로고
    • Origin of the temperature dependence of isotope effects in enzymatic reactions: The case of dihydrofolate reductase
    • Liu H, Warshel A. 2007. Origin of the temperature dependence of isotope effects in enzymatic reactions: the case of dihydrofolate reductase. J. Phys. Chem. B 111:7852-61
    • (2007) J. Phys. Chem. B , vol.111 , pp. 7852-7861
    • Liu, H.1    Warshel, A.2
  • 47
    • 77952523308 scopus 로고    scopus 로고
    • Impact of distal mutation on hydrogen transfer interface and substrate conformation in soybean lipoxygenase
    • Edwards SJ, Soudackov AV, Hammes-Schiffer S. 2010. Impact of distal mutation on hydrogen transfer interface and substrate conformation in soybean lipoxygenase. J. Phys. Chem. B 114:6653-60
    • (2010) J. Phys. Chem. B , vol.114 , pp. 6653-6660
    • Edwards, S.J.1    Soudackov, A.V.2    Hammes-Schiffer, S.3
  • 48
    • 33846047459 scopus 로고    scopus 로고
    • Proton-coupled electron transfer in soybean lipoxygenase: Dynamical behavior and temperature dependence of kinetic isotope effects
    • Hatcher E, Soudackov AV, Hammes-Schiffer S. 2007. Proton-coupled electron transfer in soybean lipoxygenase: dynamical behavior and temperature dependence of kinetic isotope effects. J. Am. Chem. Soc. 129:187-96
    • (2007) J. Am. Chem. Soc. , vol.129 , pp. 187-196
    • Hatcher, E.1    Soudackov, A.V.2    Hammes-Schiffer, S.3
  • 49
    • 84857542642 scopus 로고    scopus 로고
    • Taking Ockham's razor to enzyme dynamics and catalysis
    • Glowacki DR, Harvey JN, Mulholland AJ. 2012. Taking Ockham's razor to enzyme dynamics and catalysis. Nat. Chem. 4:169-76
    • (2012) Nat. Chem. , vol.4 , pp. 169-176
    • Glowacki, D.R.1    Harvey, J.N.2    Mulholland, A.J.3
  • 50
    • 84867514524 scopus 로고    scopus 로고
    • Hydrogen donor-acceptor fluctuations from kinetic isotope effects: A phenomenological model
    • Roston D, Cheatum CM, Kohen A. 2012. Hydrogen donor-acceptor fluctuations from kinetic isotope effects: a phenomenological model. Biochemistry 51:6860-70
    • (2012) Biochemistry , vol.51 , pp. 6860-6870
    • Roston, D.1    Cheatum, C.M.2    Kohen, A.3
  • 52
    • 51849095467 scopus 로고    scopus 로고
    • Incorporation of hydrostatic pressure into models of hydrogen tunneling highlights a role for pressure-modulated promoting vibrations
    • Hay S, Scrutton NS. 2008. Incorporation of hydrostatic pressure into models of hydrogen tunneling highlights a role for pressure-modulated promoting vibrations. Biochemistry 47:9880-87
    • (2008) Biochemistry , vol.47 , pp. 9880-9887
    • Hay, S.1    Scrutton, N.S.2
  • 53
    • 0033553158 scopus 로고    scopus 로고
    • Effects of high pressure on isotope effects and hydrogen tunneling
    • Northrop DB. 1999. Effects of high pressure on isotope effects and hydrogen tunneling. J. Am. Chem. Soc. 121:3521-24
    • (1999) J. Am. Chem. Soc. , vol.121 , pp. 3521-3524
    • Northrop, D.B.1
  • 54
    • 33846307373 scopus 로고    scopus 로고
    • Promoting motions in enzyme catalysis probed by pressure studies of kinetic isotope effects
    • Hay S, Sutcliffe MJ, Scrutton NS. 2007. Promoting motions in enzyme catalysis probed by pressure studies of kinetic isotope effects. Proc. Natl. Acad. Sci. USA 104:507-12
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 507-512
    • Hay, S.1    Sutcliffe, M.J.2    Scrutton, N.S.3
  • 55
    • 79951913324 scopus 로고    scopus 로고
    • How does pressure affect barrier compression and isotope effects in an enzymatic hydrogen tunneling reaction?
    • Johannissen LO, Scrutton NS, Sutcliffe MJ. 2011. How does pressure affect barrier compression and isotope effects in an enzymatic hydrogen tunneling reaction? Angew. Chem. Int. Ed. 50:2129-32
    • (2011) Angew. Chem. Int. Ed. , vol.50 , pp. 2129-2132
    • Johannissen, L.O.1    Scrutton, N.S.2    Sutcliffe, M.J.3
  • 56
    • 84862239089 scopus 로고    scopus 로고
    • Pressure effects on enzyme-catalyzed quantum tunneling events arise from protein-specific structural and dynamic changes
    • Hay S, Johannissen LO, Hothi P, Sutcliffe MJ, Scrutton NS. 2012. Pressure effects on enzyme-catalyzed quantum tunneling events arise from protein-specific structural and dynamic changes. J. Am. Chem. Soc. 134:9749-54
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 9749-9754
    • Hay, S.1    Johannissen, L.O.2    Hothi, P.3    Sutcliffe, M.J.4    Scrutton, N.S.5
  • 57
    • 79953823548 scopus 로고    scopus 로고
    • A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis
    • Bhabha G, Lee J, Ekiert DC, Gam J, Wilson IA, et al. 2011. A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science 332:234-38
    • (2011) Science , vol.332 , pp. 234-238
    • Bhabha, G.1    Lee, J.2    Ekiert, D.C.3    Gam, J.4    Wilson, I.A.5
  • 58
    • 33748344518 scopus 로고    scopus 로고
    • Linking protein structure and dynamics to catalysis: The role of hydrogen tunneling
    • Klinman JP. 2006. Linking protein structure and dynamics to catalysis: the role of hydrogen tunnelling. Philos. Trans. R. Soc. Lond. B 361:1323-31
    • (2006) Philos. Trans. R. Soc. Lond. B , vol.361 , pp. 1323-1331
    • Klinman, J.P.1
  • 59
    • 0033168713 scopus 로고    scopus 로고
    • Hydrogen tunneling in biology
    • Kohen A, Klinman JP. 1999. Hydrogen tunneling in biology. Chem. Biol. 6:R191-98
    • (1999) Chem. Biol. , vol.6
    • Kohen, A.1    Klinman, J.P.2
  • 60
    • 33748781457 scopus 로고    scopus 로고
    • The dynamic energy landscape of dihydrofolate reductase catalysis
    • Boehr DD, McElheny D, Dyson HJ, Wright PE. 2006. The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313:1638-42
    • (2006) Science , vol.313 , pp. 1638-1642
    • Boehr, D.D.1    McElheny, D.2    Dyson, H.J.3    Wright, P.E.4
  • 61
    • 70350453758 scopus 로고    scopus 로고
    • Enzyme millisecond conformational dynamics do not catalyze the chemical step
    • Pisliakov AV, Cao J, Kamerlin SC, Warshel A. 2009. Enzyme millisecond conformational dynamics do not catalyze the chemical step. Proc. Natl. Acad. Sci. USA 106:17359-64
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 17359-17364
    • Pisliakov, A.V.1    Cao, J.2    Kamerlin, S.C.3    Warshel, A.4
  • 63
    • 84255214322 scopus 로고    scopus 로고
    • Protein dynamics and enzymatic chemical barrier passage
    • Antoniou D, Schwartz SD. 2011. Protein dynamics and enzymatic chemical barrier passage. J. Phys. Chem. B 115:15147-58
    • (2011) J. Phys. Chem. B , vol.115 , pp. 15147-15158
    • Antoniou, D.1    Schwartz, S.D.2
  • 64
    • 84255214229 scopus 로고    scopus 로고
    • The promoting vibration in human heart lactate dehydrogenase is a preferred vibrational channel
    • Davarifar A, Antoniou D, Schwartz SD. 2011. The promoting vibration in human heart lactate dehydrogenase is a preferred vibrational channel. J. Phys. Chem. B 115:15439-44
    • (2011) J. Phys. Chem. B , vol.115 , pp. 15439-15444
    • Davarifar, A.1    Antoniou, D.2    Schwartz, S.D.3
  • 66
    • 81755172909 scopus 로고    scopus 로고
    • Femtosecond dynamics coupled to chemical barrier crossing in a Born-Oppenheimer enzyme
    • Silva RG, Murkin AS, Schramm VL. 2011. Femtosecond dynamics coupled to chemical barrier crossing in a Born-Oppenheimer enzyme. Proc. Natl. Acad. Sci. USA 108:18661-65
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 18661-18665
    • Silva, R.G.1    Murkin, A.S.2    Schramm, V.L.3
  • 67
    • 0000351816 scopus 로고
    • What limits the rate of an enzyme-catalyzed reaction?
    • Cleland WW. 1975. What limits the rate of an enzyme-catalyzed reaction? Acc. Chem. Res. 8:145-51
    • (1975) Acc. Chem. Res. , vol.8 , pp. 145-151
    • Cleland, W.W.1
  • 68
    • 76549109225 scopus 로고    scopus 로고
    • Millisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands
    • Boehr DD, McElheny D, Dyson HJ, Wright PE. 2010. Millisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands. Proc. Natl. Acad. Sci. USA 107:1373-78
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 1373-1378
    • Boehr, D.D.1    McElheny, D.2    Dyson, H.J.3    Wright, P.E.4
  • 69
    • 0001222764 scopus 로고
    • Comparison of time-resolved fluorescence Stokes shift measurements to a molecular theory of solvation dynamics
    • Maroncelli M, Fleming GR. 1988. Comparison of time-resolved fluorescence Stokes shift measurements to a molecular theory of solvation dynamics. J. Chem. Phys. 89:875-81
    • (1988) J. Chem. Phys. , vol.89 , pp. 875-881
    • Maroncelli, M.1    Fleming, G.R.2
  • 71
    • 67651235292 scopus 로고    scopus 로고
    • Examination of enzymatic H-tunneling through kinetics and dynamics
    • Bandaria JN, Cheatum CM, Kohen A. 2009. Examination of enzymatic H-tunneling through kinetics and dynamics. J. Am. Chem. Soc. 131:10151-55
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 10151-10155
    • Bandaria, J.N.1    Cheatum, C.M.2    Kohen, A.3
  • 72
    • 33745159979 scopus 로고    scopus 로고
    • The role of protein dynamics in thymidylate synthase catalysis: Variants of conserved 2′-deoxyuridine 5′-monophosphate (dUMP)-binding Tyr-261
    • Newby Z, Lee TT, Morse RJ, Liu Y, Liu L, et al. 2006. The role of protein dynamics in thymidylate synthase catalysis: variants of conserved 2′-deoxyuridine 5′-monophosphate (dUMP)-binding Tyr-261. Biochemistry 45:7415-28
    • (2006) Biochemistry , vol.45 , pp. 7415-7428
    • Newby, Z.1    Lee, T.T.2    Morse, R.J.3    Liu, Y.4    Liu, L.5
  • 73
    • 0027250665 scopus 로고
    • Primary structure effects on peptide group hydrogen exchange
    • Bai Y, Milne JS, Mayne L, Englander SW. 1993. Primary structure effects on peptide group hydrogen exchange. Proteins 17:75-86
    • (1993) Proteins , vol.17 , pp. 75-86
    • Bai, Y.1    Milne, J.S.2    Mayne, L.3    Englander, S.W.4
  • 75
    • 0038810081 scopus 로고    scopus 로고
    • Protein structure change studied by hydrogen-deuterium exchange, functional labeling, and mass spectrometry
    • Englander JJ, Del Mar C, Li W, Englander SW, Kim JS, et al. 2003. Protein structure change studied by hydrogen-deuterium exchange, functional labeling, and mass spectrometry. Proc. Natl. Acad. Sci. USA 100:7057-62
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 7057-7062
    • Englander, J.J.1    Del Mar, C.2    Li, W.3    Englander, S.W.4    Kim, J.S.5
  • 77
    • 0033519723 scopus 로고    scopus 로고
    • Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase
    • Kohen A, Cannio R, Bartolucci S, Klinman JP. 1999. Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase. Nature 399:496-99
    • (1999) Nature , vol.399 , pp. 496-499
    • Kohen, A.1    Cannio, R.2    Bartolucci, S.3    Klinman, J.P.4
  • 78
    • 72249089538 scopus 로고    scopus 로고
    • Evidence to support the hypothesis that promoting vibrations enhance the rate of an enzyme catalyzed H-tunneling reaction
    • Pudney CR, Hay S, Levy C, Pang J, Sutcliffe MJ, et al. 2009. Evidence to support the hypothesis that promoting vibrations enhance the rate of an enzyme catalyzed H-tunneling reaction. J. Am. Chem. Soc. 131:17072-73
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 17072-17073
    • Pudney, C.R.1    Hay, S.2    Levy, C.3    Pang, J.4    Sutcliffe, M.J.5
  • 79
    • 0033537697 scopus 로고    scopus 로고
    • Enzymatic H-transfer requires vibration-driven extreme tunneling
    • Basran J, Sutcliffe MJ, Scrutton NS. 1999. Enzymatic H-transfer requires vibration-driven extreme tunneling. Biochemistry 38:3218-22
    • (1999) Biochemistry , vol.38 , pp. 3218-3222
    • Basran, J.1    Sutcliffe, M.J.2    Scrutton, N.S.3
  • 80
    • 0034673186 scopus 로고    scopus 로고
    • Kinetic studies of the mechanism of carbonhydrogen bond breakage by the heterotetrameric sarcosine oxidase of Arthrobacter sp. 1-IN
    • Harris RJ, Meskys R, Sutcliffe MJ, Scrutton NS. 2000. Kinetic studies of the mechanism of carbonhydrogen bond breakage by the heterotetrameric sarcosine oxidase of Arthrobacter sp. 1-IN. Biochemistry 39:1189-98
    • (2000) Biochemistry , vol.39 , pp. 1189-1198
    • Harris, R.J.1    Meskys, R.2    Sutcliffe, M.J.3    Scrutton, N.S.4
  • 81
    • 0034665586 scopus 로고    scopus 로고
    • Is hydrogen tunneling involved in acylCoA desaturase reactions? the case of a δ9 desaturase that transforms (E)-11-tetradecenoic acid into (Z, E)-9, 11-tetradecadienoic acid
    • Abad JL, Camps F, Fabrias G. 2000. Is hydrogen tunneling involved in acylCoA desaturase reactions? The case of a δ9 desaturase that transforms (E)-11-tetradecenoic acid into (Z, E)-9, 11-tetradecadienoic acid. Angew. Chem. Int. Ed. 39:3279-81
    • (2000) Angew. Chem. Int. Ed. , vol.39 , pp. 3279-3281
    • Abad, J.L.1    Camps, F.2    Fabrias, G.3
  • 83
    • 34249676309 scopus 로고    scopus 로고
    • An internal equilibrium preorganizes the enzyme-substrate complex for hydride tunneling in choline oxidase
    • Fan F, Gadda G. 2007. An internal equilibrium preorganizes the enzyme-substrate complex for hydride tunneling in choline oxidase. Biochemistry 46:6402-08
    • (2007) Biochemistry , vol.46 , pp. 6402-6408
    • Fan, F.1    Gadda, G.2
  • 84
    • 50249166700 scopus 로고    scopus 로고
    • Evidence for protein radical-mediated nuclear tunneling in fatty acid α-oxygenase
    • Gupta A, Mukherjee A, Matsui K, Roth JP. 2008. Evidence for protein radical-mediated nuclear tunneling in fatty acid α-oxygenase. J. Am. Chem. Soc. 130:11274-75
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 11274-11275
    • Gupta, A.1    Mukherjee, A.2    Matsui, K.3    Roth, J.P.4
  • 85
    • 80053465271 scopus 로고    scopus 로고
    • Hydrogen tunneling steps in cyclooxygenase-2 catalysis
    • Danish HH, Doncheva IS, Roth JP. 2011. Hydrogen tunneling steps in cyclooxygenase-2 catalysis. J. Am. Chem. Soc. 133:15846-69
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 15846-15869
    • Danish, H.H.1    Doncheva, I.S.2    Roth, J.P.3
  • 86
    • 0024379962 scopus 로고
    • Evidence that both protium and deuterium undergo significant tunneling in the reaction catalyzed by bovine serum amine oxidase
    • Grant KL, Klinman JP. 1989. Evidence that both protium and deuterium undergo significant tunneling in the reaction catalyzed by bovine serum amine oxidase. Biochemistry 28:6597-605
    • (1989) Biochemistry , vol.28 , pp. 6597-6605
    • Grant, K.L.1    Klinman, J.P.2
  • 87
    • 0028601412 scopus 로고
    • Hydrogen tunneling in the flavoenzyme monoamine oxidase B
    • Jonsson T, Edmondson DE, Klinman JP. 1994. Hydrogen tunneling in the flavoenzyme monoamine oxidase B. Biochemistry 33:14871-78
    • (1994) Biochemistry , vol.33 , pp. 14871-14878
    • Jonsson, T.1    Edmondson, D.E.2    Klinman, J.P.3
  • 89
    • 0242267579 scopus 로고    scopus 로고
    • Evidence for environmentally coupled hydrogen tunneling during dihydrofolate reductase catalysis
    • Maglia G, Allemann RK. 2003. Evidence for environmentally coupled hydrogen tunneling during dihydrofolate reductase catalysis. J. Am. Chem. Soc. 125:13372-73
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 13372-13373
    • Maglia, G.1    Allemann, R.K.2
  • 90
    • 69849104100 scopus 로고    scopus 로고
    • Effect of a conservative mutation of an active site residue involved in substrate binding on the hydride tunneling reaction catalyzed by choline oxidase
    • Quaye O, Gadda G. 2009. Effect of a conservative mutation of an active site residue involved in substrate binding on the hydride tunneling reaction catalyzed by choline oxidase. Arch. Biochem. Biophys. 489:10-14
    • (2009) Arch. Biochem. Biophys. , vol.489 , pp. 10-14
    • Quaye, O.1    Gadda, G.2
  • 91
    • 33750441144 scopus 로고    scopus 로고
    • Coordinated effects of distal mutations on environmentally coupled tunneling in dihydrofolate reductase
    • Wang L, Goodey NM, Benkovic SJ, Kohen A. 2006. Coordinated effects of distal mutations on environmentally coupled tunneling in dihydrofolate reductase. Proc. Natl. Acad. Sci. USA 103:15753-58
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 15753-15758
    • Wang, L.1    Goodey, N.M.2    Benkovic, S.J.3    Kohen, A.4
  • 92
    • 84856247363 scopus 로고    scopus 로고
    • Effects of the donor-acceptor distance and dynamics on hydride tunneling in the dihydrofolate reductase catalyzed reaction
    • Stojkovic V, Perissinotti LL, Willmer D, Benkovic SJ, Kohen A. 2012. Effects of the donor-acceptor distance and dynamics on hydride tunneling in the dihydrofolate reductase catalyzed reaction. J. Am. Chem. Soc. 134:1738-45
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 1738-1745
    • Stojkovic, V.1    Perissinotti, L.L.2    Willmer, D.3    Benkovic, S.J.4    Kohen, A.5
  • 93
    • 0037046991 scopus 로고    scopus 로고
    • Comparison of rates and kinetic isotope effects using PEG-modified variants and glycoforms of glucose oxidase: The relationship of modification of the protein envelope to C-H activation and tunneling
    • Seymour SL, Klinman JP. 2002. Comparison of rates and kinetic isotope effects using PEG-modified variants and glycoforms of glucose oxidase: the relationship of modification of the protein envelope to C-H activation and tunneling. Biochemistry 41:8747-58
    • (2002) Biochemistry , vol.41 , pp. 8747-8758
    • Seymour, S.L.1    Klinman, J.P.2
  • 94
    • 0035916307 scopus 로고    scopus 로고
    • Probes of hydrogen tunneling with horse liver alcohol dehydrogenase at subzero temperatures
    • Tsai S, Klinman JP. 2001. Probes of hydrogen tunneling with horse liver alcohol dehydrogenase at subzero temperatures. Biochemistry 40:2303-11
    • (2001) Biochemistry , vol.40 , pp. 2303-2311
    • Tsai, S.1    Klinman, J.P.2
  • 95
    • 62249181529 scopus 로고    scopus 로고
    • An integrated model for enzyme catalysis emerges from studies of hydrogen tunneling
    • Klinman JP. 2009. An integrated model for enzyme catalysis emerges from studies of hydrogen tunneling. Chem. Phys. Lett. 471:179-93
    • (2009) Chem. Phys. Lett. , vol.471 , pp. 179-193
    • Klinman, J.P.1
  • 96
    • 68049085675 scopus 로고    scopus 로고
    • A 21st century revisionist's view at a turning point in enzymology
    • Nagel ZD, Klinman JP. 2009. A 21st century revisionist's view at a turning point in enzymology. Nat. Chem. Biol. 5:543-50
    • (2009) Nat. Chem. Biol. , vol.5 , pp. 543-550
    • Nagel, Z.D.1    Klinman, J.P.2
  • 97
    • 34047264783 scopus 로고    scopus 로고
    • Proton tunneling in aromatic amine dehydrogenase is driven by a short-range sub-picosecond promoting vibration: Consistency of simulation and theory with experiment
    • Johannissen LO, Hay S, Scrutton NS, Sutcliffe MJ. 2007. Proton tunneling in aromatic amine dehydrogenase is driven by a short-range sub-picosecond promoting vibration: consistency of simulation and theory with experiment. J. Phys. Chem. B 111:2631-38
    • (2007) J. Phys. Chem. B , vol.111 , pp. 2631-2638
    • Johannissen, L.O.1    Hay, S.2    Scrutton, N.S.3    Sutcliffe, M.J.4
  • 98
    • 33845287671 scopus 로고    scopus 로고
    • Enzymatic catalysis and transfers in solution. I. Theory and computations, a unified view
    • Marcus RA. 2006. Enzymatic catalysis and transfers in solution. I. Theory and computations, a unified view. J. Chem. Phys. 125:194504
    • (2006) J. Chem. Phys. , vol.125 , pp. 194504
    • Marcus, R.A.1
  • 99
    • 34547245308 scopus 로고    scopus 로고
    • Hand other transfers in enzymes and in solution: Theory and computations, a unified view. 2. Applications to experiment and computations
    • Marcus RA. 2007. H and other transfers in enzymes and in solution: theory and computations, a unified view. 2. Applications to experiment and computations. J. Phys. Chem. B 111:6643-54
    • (2007) J. Phys. Chem. B , vol.111 , pp. 6643-6654
    • Marcus, R.A.1
  • 100
    • 0037181354 scopus 로고    scopus 로고
    • Quantum mechanics/molecular mechanics studies of triosephosphate isomerase-catalyzed reactions: Effect of geometry and tunneling on proton-transfer rate constants
    • Cui Q, Karplus M. 2002. Quantum mechanics/molecular mechanics studies of triosephosphate isomerase-catalyzed reactions: effect of geometry and tunneling on proton-transfer rate constants. J. Am. Chem. Soc. 124:3093-124
    • (2002) J. Am. Chem. Soc. , vol.124 , pp. 3093-3124
    • Cui, Q.1    Karplus, M.2
  • 103
    • 33748354485 scopus 로고    scopus 로고
    • The role of enzyme dynamics and tunnelling in catalysing hydride transfer: Studies of distal mutants of dihydrofolate reductase
    • Wang L, Goodey NM, Benkovic SJ, Kohen A. 2006. The role of enzyme dynamics and tunnelling in catalysing hydride transfer: studies of distal mutants of dihydrofolate reductase. Philos. Trans. R. Soc. Lond. B 361:1307-15
    • (2006) Philos. Trans. R. Soc. Lond. B , vol.361 , pp. 1307-1315
    • Wang, L.1    Goodey, N.M.2    Benkovic, S.J.3    Kohen, A.4
  • 105
    • 84861887134 scopus 로고    scopus 로고
    • Barrier crossing in dihydrofolate reductase does not involve a rate-promoting vibration
    • Dametto M, Antoniou D, Schwartz SD. 2012. Barrier crossing in dihydrofolate reductase does not involve a rate-promoting vibration. Mol. Phys. 110:531-36
    • (2012) Mol. Phys. , vol.110 , pp. 531-536
    • Dametto, M.1    Antoniou, D.2    Schwartz, S.D.3
  • 106
    • 84859582954 scopus 로고    scopus 로고
    • Momentum distribution as a fingerprint of quantum delocalization in enzymatic reactions: Open-chain path-integral simulations of model systems and the hydride transfer in dihydrofolate reductase
    • Engel H, Doron D, Kohen A, Major DT. 2012. Momentum distribution as a fingerprint of quantum delocalization in enzymatic reactions: open-chain path-integral simulations of model systems and the hydride transfer in dihydrofolate reductase. J. Chem. Theory Comput. 8:1223-34
    • (2012) J. Chem. Theory Comput. , vol.8 , pp. 1223-1234
    • Engel, H.1    Doron, D.2    Kohen, A.3    Major, D.T.4
  • 107
    • 70350131719 scopus 로고    scopus 로고
    • Rational modulation of conformational fluctuations in adenylate kinase reveals a local unfolding mechanism for allostery and functional adaptation in proteins
    • Schrank TP, Bolen DW, Hilser VJ. 2009. Rational modulation of conformational fluctuations in adenylate kinase reveals a local unfolding mechanism for allostery and functional adaptation in proteins. Proc. Natl. Acad. Sci. USA 106:16984-89
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 16984-16989
    • Schrank, T.P.1    Bolen, D.W.2    Hilser, V.J.3
  • 108
    • 84858234186 scopus 로고    scopus 로고
    • Agonism/antagonism switching in allosteric ensembles
    • Motlagh HN, Hilser VJ. 2012. Agonism/antagonism switching in allosteric ensembles. Proc. Natl. Acad. Sci. USA 109:4134-39
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 4134-4139
    • Motlagh, H.N.1    Hilser, V.J.2
  • 109
    • 79959935915 scopus 로고    scopus 로고
    • Converting structural information into an allosteric-energy-based picture for elongation factor Tu activation by the ribosome
    • Adamczyk AJ, Warshel A. 2011. Converting structural information into an allosteric-energy-based picture for elongation factor Tu activation by the ribosome. Proc. Natl. Acad. Sci. USA 108:9827-32
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 9827-9832
    • Adamczyk, A.J.1    Warshel, A.2
  • 110
    • 44349104122 scopus 로고    scopus 로고
    • Hydrogen-exchange mass spectrometry reveals activation-induced changes in the conformational mobility of p38α MAP kinase
    • Sours KM, Kwok SC, Rachidi T, Lee T, Ring A, et al. 2008. Hydrogen-exchange mass spectrometry reveals activation-induced changes in the conformational mobility of p38α MAP kinase. J. Mol. Biol. 379:1075-93
    • (2008) J. Mol. Biol. , vol.379 , pp. 1075-1093
    • Sours, K.M.1    Kwok, S.C.2    Rachidi, T.3    Lee, T.4    Ring, A.5
  • 111
    • 67849095470 scopus 로고    scopus 로고
    • Functionally important conformations of the Met20 loop in dihydrofolate reductase are populated by rapid thermal fluctuations
    • Arora K, Brooks CL 3rd. 2009. Functionally important conformations of the Met20 loop in dihydrofolate reductase are populated by rapid thermal fluctuations. J. Am. Chem. Soc. 131:5642-47
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 5642-5647
    • Arora, K.1    Brooks Iii, C.L.2
  • 113
    • 39949083747 scopus 로고    scopus 로고
    • Enzymatic reaction sequences as coupled multiple traces on a multidimensional landscape
    • Swint-Kruse L, Fisher HF. 2008. Enzymatic reaction sequences as coupled multiple traces on a multidimensional landscape. Trends Biochem. Sci. 33:104-12
    • (2008) Trends Biochem. Sci. , vol.33 , pp. 104-112
    • Swint-Kruse, L.1    Fisher, H.F.2
  • 114
    • 52949128744 scopus 로고    scopus 로고
    • On the relationship between folding and chemical landscapes in enzyme catalysis
    • Roca M, Messer B, Hilvert D, Warshel A. 2008. On the relationship between folding and chemical landscapes in enzyme catalysis. Proc. Natl. Acad. Sci. USA 105:13877-82
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 13877-13882
    • Roca, M.1    Messer, B.2    Hilvert, D.3    Warshel, A.4
  • 115
    • 79952746514 scopus 로고    scopus 로고
    • Quantum effects in enzyme kinetics
    • ed. RK Allemann, N Scrutton, London: R Soc Chem
    • Sen A, Kohen A. 2009. Quantum effects in enzyme kinetics. In Quantum Tunneling in Enzyme Catalyzed Reactions, ed. RK Allemann, N Scrutton, pp. 161-78. London: R. Soc. Chem.
    • (2009) Quantum Tunneling in Enzyme Catalyzed Reactions , pp. 161-178
    • Sen, A.1    Kohen, A.2
  • 116
    • 0028949615 scopus 로고
    • Proteins and temperature
    • Somero GN. 1995. Proteins and temperature. Annu. Rev. Physiol. 57:43-68
    • (1995) Annu. Rev. Physiol. , vol.57 , pp. 43-68
    • Somero, G.N.1
  • 117
    • 0034327617 scopus 로고    scopus 로고
    • Protein flexibilty correlates with degree of hydrogen tunneling in thermophilic and mesophilic alcohol dehydrogenases
    • Kohen A, Klinman JP. 2000. Protein flexibilty correlates with degree of hydrogen tunneling in thermophilic and mesophilic alcohol dehydrogenases. J. Am. Chem. Soc. 122:10738-39
    • (2000) J. Am. Chem. Soc. , vol.122 , pp. 10738-10739
    • Kohen, A.1    Klinman, J.P.2
  • 118
    • 8744220635 scopus 로고    scopus 로고
    • Evidence for increased local flexibility in psychrophilic alcohol dehydrogenase relative to its thermophilic homologue
    • Liang ZX, Tsigos I, Lee T, Bouriotis V, Resing KA, et al. 2004. Evidence for increased local flexibility in psychrophilic alcohol dehydrogenase relative to its thermophilic homologue. Biochemistry 43:14676-83
    • (2004) Biochemistry , vol.43 , pp. 14676-14683
    • Liang, Z.X.1    Tsigos, I.2    Lee, T.3    Bouriotis, V.4    Resing, K.A.5
  • 119
    • 3042709505 scopus 로고    scopus 로고
    • Thermal-activated protein mobility and its correlation with catalysis in thermophilic alcohol dehydrogenase
    • Liang ZX, Lee T, Resing KA, Ahn NG, Klinman JP. 2004. Thermal-activated protein mobility and its correlation with catalysis in thermophilic alcohol dehydrogenase. Proc. Natl. Acad. Sci. USA 101:9556-61
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 9556-9561
    • Liang, Z.X.1    Lee, T.2    Resing, K.A.3    Ahn, N.G.4    Klinman, J.P.5
  • 120
    • 2442555149 scopus 로고    scopus 로고
    • Crystal structure and amide H/D exchange of binary complexes of alcohol dehydrogenase from Bacillus stearothermophilus: Insight into thermostability and cofactor binding
    • Ceccarelli C, Liang ZX, Strickler M, Prehna G, Goldstein BM, et al. 2004. Crystal structure and amide H/D exchange of binary complexes of alcohol dehydrogenase from Bacillus stearothermophilus: insight into thermostability and cofactor binding. Biochemistry 43:5266-77
    • (2004) Biochemistry , vol.43 , pp. 5266-5277
    • Ceccarelli, C.1    Liang, Z.X.2    Strickler, M.3    Prehna, G.4    Goldstein, B.M.5
  • 121
    • 3543146757 scopus 로고    scopus 로고
    • Impact of protein flexibility on hydride-transfer parameters in thermophilic and psychrophilic alcohol dehydrogenases
    • Liang ZX, Tsigos I, Bouriotis V, Klinman JP. 2004. Impact of protein flexibility on hydride-transfer parameters in thermophilic and psychrophilic alcohol dehydrogenases. J. Am. Chem. Soc. 126:9500-01
    • (2004) J. Am. Chem. Soc. , vol.126 , pp. 9500-9501
    • Liang, Z.X.1    Tsigos, I.2    Bouriotis, V.3    Klinman, J.P.4
  • 122
    • 79960580073 scopus 로고    scopus 로고
    • Impaired protein conformational landscapes as revealed in anomalous Arrhenius prefactors
    • Nagel ZD, Dong M, Bahnson BJ, Klinman JP. 2011. Impaired protein conformational landscapes as revealed in anomalous Arrhenius prefactors. Proc. Natl. Acad. Sci. USA 108:10520-25
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 10520-10525
    • Nagel, Z.D.1    Dong, M.2    Bahnson, B.J.3    Klinman, J.P.4
  • 123
    • 84861379052 scopus 로고    scopus 로고
    • Active site hydrophobic residues impact hydrogen tunneling differently in a thermophilic alcohol dehydrogenase at optimal versus nonoptimal temperatures
    • Nagel ZD, Meadows CW, Dong M, Bahnson BJ, Klinman JP. 2012. Active site hydrophobic residues impact hydrogen tunneling differently in a thermophilic alcohol dehydrogenase at optimal versus nonoptimal temperatures. Biochemistry 51:4147-56
    • (2012) Biochemistry , vol.51 , pp. 4147-4156
    • Nagel, Z.D.1    Meadows, C.W.2    Dong, M.3    Bahnson, B.J.4    Klinman, J.P.5
  • 124
    • 23944518876 scopus 로고    scopus 로고
    • Structure and hydride transfer mechanism of a moderate thermophilic dihydrofolate reductase from Bacillus stearothermophilus and comparison to its mesophilic and hyperthermophilic homologues
    • Kim HS, Damo SM, Lee SY, Wemmer D, Klinman JP. 2005. Structure and hydride transfer mechanism of a moderate thermophilic dihydrofolate reductase from Bacillus stearothermophilus and comparison to its mesophilic and hyperthermophilic homologues. Biochemistry 44:11428-39
    • (2005) Biochemistry , vol.44 , pp. 11428-11439
    • Kim, H.S.1    Damo, S.M.2    Lee, S.Y.3    Wemmer, D.4    Klinman, J.P.5
  • 125
    • 77953386194 scopus 로고    scopus 로고
    • Temperature dependence of protein motions in a thermophilic dihydrofolate reductase and its relationship to catalytic efficiency
    • Oyeyemi OA, Sours KM, Lee T, Resing KA, Ahn NG, Klinman JP. 2010. Temperature dependence of protein motions in a thermophilic dihydrofolate reductase and its relationship to catalytic efficiency. Proc. Natl. Acad. Sci. USA 107:10074-79
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 10074-10079
    • Oyeyemi, O.A.1    Sours, K.M.2    Lee, T.3    Resing, K.A.4    Ahn, N.G.5    Klinman, J.P.6
  • 126
    • 80053000013 scopus 로고    scopus 로고
    • Comparative hydrogen-deuterium exchange for a mesophilic versus thermophilic dihydrofolate reductase at 25°C: Identification of a single active site region with enhanced flexibility in the mesophilic protein
    • Oyeyemi OA, Sours KM, Lee T, Kohen A, Resing KA, et al. 2011. Comparative hydrogen-deuterium exchange for a mesophilic versus thermophilic dihydrofolate reductase at 25°C: identification of a single active site region with enhanced flexibility in the mesophilic protein. Biochemistry 50:8251-60
    • (2011) Biochemistry , vol.50 , pp. 8251-8260
    • Oyeyemi, O.A.1    Sours, K.M.2    Lee, T.3    Kohen, A.4    Resing, K.A.5
  • 128
    • 63649139679 scopus 로고    scopus 로고
    • Nuclear quantum tunneling in the light-activated enzyme protochlorophyllide oxidoreductase
    • Heyes DJ, Sakuma M, de Visser SP, Scrutton NS. 2009. Nuclear quantum tunneling in the light-activated enzyme protochlorophyllide oxidoreductase. J. Biol. Chem. 284:3762-67
    • (2009) J. Biol. Chem. , vol.284 , pp. 3762-3767
    • Heyes, D.J.1    Sakuma, M.2    De Visser, S.P.3    Scrutton, N.S.4
  • 129
    • 57049101441 scopus 로고    scopus 로고
    • Proton-coupled electron transfer in solution, proteins, and electrochemistry
    • Hammes-Schiffer S, Soudackov AV. 2008. Proton-coupled electron transfer in solution, proteins, and electrochemistry. J. Phys. Chem. B 112:14108-123
    • (2008) J. Phys. Chem. B , vol.112 , pp. 14108-14123
    • Hammes-Schiffer, S.1    Soudackov, A.V.2
  • 132
    • 0001073823 scopus 로고
    • α-Deuterium and carbon-13 isotope effects for methyl transfer catalyzed by catecholO-methyltransferase. SN2-like transition state
    • Hegazi MF, Borchardt RT, Schowen RL. 1979. α-Deuterium and carbon-13 isotope effects for methyl transfer catalyzed by catecholO- methyltransferase. SN2-like transition state. J. Am. Chem. Soc. 101:4359- 65
    • (1979) J. Am. Chem. Soc. , vol.101 , pp. 4359-4365
    • Hegazi, M.F.1    Borchardt, R.T.2    Schowen, R.L.3
  • 133
    • 84961978260 scopus 로고    scopus 로고
    • Direct evidence for methyl group coordination by carbon-oxygen hydrogen bonds in the lysine methyltransferase SET7/9
    • Horowitz S, Yesselman JD, Al-Hashimi HM, Trievel RC. 2011. Direct evidence for methyl group coordination by carbon-oxygen hydrogen bonds in the lysine methyltransferase SET7/9. J. Biol. Chem. 286:18658-63
    • (2011) J. Biol. Chem. , vol.286 , pp. 18658-18663
    • Horowitz, S.1    Yesselman, J.D.2    Al-Hashimi, H.M.3    Trievel, R.C.4
  • 134
    • 80054999742 scopus 로고    scopus 로고
    • Enzymatic methyl transfer: Role of an active site residue in generating active site compaction that correlates with catalytic efficiency
    • Zhang J, Klinman JP. 2011. Enzymatic methyl transfer: role of an active site residue in generating active site compaction that correlates with catalytic efficiency. J. Am. Chem. Soc. 133:17134-37
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 17134-17137
    • Zhang, J.1    Klinman, J.P.2
  • 135
    • 0042905762 scopus 로고    scopus 로고
    • A compelling experimental test of the hypothesis that enzymes have evolved to enhance quantum mechanical tunneling in hydrogen transfer reactions: The β-neopentylcobalamin system combined with prior adocobalamin data
    • Doll KM, Finke RG. 2003. A compelling experimental test of the hypothesis that enzymes have evolved to enhance quantum mechanical tunneling in hydrogen transfer reactions: the β-neopentylcobalamin system combined with prior adocobalamin data. Inorg. Chem. 42:4849-56
    • (2003) Inorg. Chem. , vol.42 , pp. 4849-4856
    • Doll, K.M.1    Finke, R.G.2
  • 136
    • 0043236031 scopus 로고    scopus 로고
    • The first experimental test of the hypothesis that enzymes have evolved to enhance hydrogen tunneling
    • Doll KM, Bender BR, Finke RG. 2003. The first experimental test of the hypothesis that enzymes have evolved to enhance hydrogen tunneling. J. Am. Chem. Soc. 125:10877-84
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 10877-10884
    • Doll, K.M.1    Bender, B.R.2    Finke, R.G.3
  • 137
    • 0008306350 scopus 로고
    • Observations on the geometry of hydrogen transfer in [1,5] sigmatropic rearrangements
    • Kwart H, Briechbiel MW, Acheson RM, Ward DC. 1982. Observations on the geometry of hydrogen transfer in [1, 5] sigmatropic rearrangements. J. Am. Chem. Soc. 104:4671-72
    • (1982) J Am Chem Soc , vol.104 , pp. 4671-4672
    • Kwart, H.1    Briechbiel, M.W.2    Acheson, R.M.3    Ward, D.C.4
  • 138
    • 0000805321 scopus 로고
    • Temperature dependence of the primary kinetic hydrogen isotope effect as amechanistic criterion
    • Kwart H. 1982. Temperature dependence of the primary kinetic hydrogen isotope effect as amechanistic criterion. Acc. Chem. Res. 15:401-08
    • (1982) Acc. Chem. Res. , vol.15 , pp. 401-408
    • Kwart, H.1
  • 139
    • 0013971929 scopus 로고
    • Hydrogen displacements. IV. Kinetic isotope effect of the 1. 5 hydrogen displacement in cis-pentadiene-(1. 3)
    • (In German)
    • Roth WR, König J. 1966. Hydrogen displacements. IV. Kinetic isotope effect of the 1. 5 hydrogen displacement in cis-pentadiene-(1. 3). Justus Liebigs Ann. Chem. 699:24-32 (In German)
    • (1966) Justus Liebigs Ann. Chem. , vol.699 , pp. 24-32
    • Roth, W.R.1    König, J.2
  • 141
    • 33748367252 scopus 로고    scopus 로고
    • Arrhenius curves of hydrogen transfers: Tunnel effects, isotope effects and effects of pre-equilibria
    • Limbach HH, Miguel Lopez J, Kohen A. 2006. Arrhenius curves of hydrogen transfers: tunnel effects, isotope effects and effects of pre-equilibria. Philos. Trans. R. Soc. Lond. B 361:1399-415
    • (2006) Philos. Trans. R. Soc. Lond. B , vol.361 , pp. 1399-1415
    • Limbach, H.H.1    Miguel Lopez, J.2    Kohen, A.3
  • 142
    • 43949138259 scopus 로고    scopus 로고
    • Experimental evidence for enzyme-enhanced coupled motion/ quantum mechanical hydrogen tunneling by ketosteroid isomerase
    • Wilde TC, Blotny G, Pollack RM. 2008. Experimental evidence for enzyme-enhanced coupled motion/ quantum mechanical hydrogen tunneling by ketosteroid isomerase. J. Am. Chem. Soc. 130:6577-85
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 6577-6585
    • Wilde, T.C.1    Blotny, G.2    Pollack, R.M.3
  • 143
    • 77953113857 scopus 로고    scopus 로고
    • Elusive transition state of alcohol dehydrogenase unveiled
    • Roston D, Kohen A. 2010. Elusive transition state of alcohol dehydrogenase unveiled. Proc. Natl. Acad. Sci. USA 107:9572-77
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 9572-9577
    • Roston, D.1    Kohen, A.2
  • 144
    • 79959521412 scopus 로고    scopus 로고
    • The importance of developing metal complexes with pronounced catalaselike activity
    • Mahammed A, Gross Z. 2011. The importance of developing metal complexes with pronounced catalaselike activity. Catal. Sci. Technol. 1:535-40
    • (2011) Catal. Sci. Technol. , vol.1 , pp. 535-540
    • Mahammed, A.1    Gross, Z.2
  • 145
    • 79959513009 scopus 로고    scopus 로고
    • Design strategies for engineering selectivity in bio-inspired heterogeneous catalysts
    • Xuereb DJ, Raja R. 2011. Design strategies for engineering selectivity in bio-inspired heterogeneous catalysts. Catal. Sci. Technol. 1:517-34
    • (2011) Catal. Sci. Technol. , vol.1 , pp. 517-534
    • Xuereb, D.J.1    Raja, R.2
  • 146
    • 84857564588 scopus 로고    scopus 로고
    • Mimicking nature's strategies for the design of nanocatalysts
    • Bhandari R, Coppage R, Knecht MR. 2012. Mimicking nature's strategies for the design of nanocatalysts. Catal. Sci. Technol. 2:256-66
    • (2012) Catal. Sci. Technol. , vol.2 , pp. 256-266
    • Bhandari, R.1    Coppage, R.2    Knecht, M.R.3
  • 148
    • 27944458409 scopus 로고    scopus 로고
    • Enzymatic transition states and transition state analogues
    • Schramm VL. 2005. Enzymatic transition states and transition state analogues. Curr. Opin. Struct. Biol. 15:604-13
    • (2005) Curr. Opin. Struct. Biol. , vol.15 , pp. 604-613
    • Schramm, V.L.1
  • 149
    • 0028153517 scopus 로고
    • Extremely large isotope effects in the soybean lipoxygenase-linoleic acid reaction
    • Glickman MH, Klinman JP. 1994. Extremely large isotope effects in the soybean lipoxygenase-linoleic acid reaction. J. Am. Chem. Soc. 116:793-94
    • (1994) J. Am. Chem. Soc. , vol.116 , pp. 793-794
    • Glickman, M.H.1    Klinman, J.P.2
  • 150
    • 77950817925 scopus 로고    scopus 로고
    • An active-site phenylalanine directs substrate binding and C-Hcleavage in the α-ketoglutarate-dependent dioxygenase TauD
    • McCusker KP, Klinman JP. 2010. An active-site phenylalanine directs substrate binding and C-Hcleavage in the α-ketoglutarate-dependent dioxygenase TauD. J. Am. Chem. Soc. 132:5114-20
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 5114-5120
    • McCusker, K.P.1    Klinman, J.P.2
  • 151
    • 84890390426 scopus 로고    scopus 로고
    • Relationship of femtosecond-picosecond dynamics to enzyme catalyzed H-transfer
    • ed. S Hammes-Schiffer, JP Klinman. Heidelberg, Ger. Springer
    • Cheatum CM, Kohen A. 2013. Relationship of femtosecond-picosecond dynamics to enzyme catalyzed H-transfer. In Topics in Current Chemistry: Dynamics in Enzyme Catalysis, ed. S Hammes-Schiffer, JP Klinman. Heidelberg, Ger. : Springer
    • (2013) Topics in Current Chemistry: Dynamics in Enzyme Catalysis
    • Cheatum, C.M.1    Kohen, A.2
  • 153
    • 84877899739 scopus 로고    scopus 로고
    • Identification of a long-range protein network that modulates active site dynamics in extremophilic alcohol dehydrogenases
    • In press
    • Nagel ZD, Cun S, Klinman JP. 2013. Identification of a long-range protein network that modulates active site dynamics in extremophilic alcohol dehydrogenases. J. Biol. Chem. In press
    • (2013) J. Biol. Chem.
    • Nagel, Z.D.1    Cun, S.2    Klinman, J.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.