-
1
-
-
0014070709
-
On the origin of mitosing cells
-
Sagan, L., On the origin of mitosing cells. J. Theor. Biol. 14 (1967), 255–274.
-
(1967)
J. Theor. Biol.
, vol.14
, pp. 255-274
-
-
Sagan, L.1
-
2
-
-
85017230204
-
Prion-like polymerization in immunity and inflammation
-
a023580
-
Cai, X., Xu, H., Chen, Z.J., Prion-like polymerization in immunity and inflammation. Cold Spring Harb. Persp. Biol., 9, 2017 a023580.
-
(2017)
Cold Spring Harb. Persp. Biol.
, vol.9
-
-
Cai, X.1
Xu, H.2
Chen, Z.J.3
-
3
-
-
73349091842
-
The role of mitochondria in apoptosis
-
Wang, C., Youle, R.J., The role of mitochondria in apoptosis. Annu. Rev. Genet. 43 (2009), 95–118.
-
(2009)
Annu. Rev. Genet.
, vol.43
, pp. 95-118
-
-
Wang, C.1
Youle, R.J.2
-
4
-
-
16844366524
-
Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging
-
Lemasters, J.J., Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuven. Res. 8 (2005), 3–5.
-
(2005)
Rejuven. Res.
, vol.8
, pp. 3-5
-
-
Lemasters, J.J.1
-
5
-
-
85021656064
-
Proteasomal and autophagic degradation systems
-
Dikic, I., Proteasomal and autophagic degradation systems. Annu. Rev. Biochem 86 (2017), 193–224.
-
(2017)
Annu. Rev. Biochem
, vol.86
, pp. 193-224
-
-
Dikic, I.1
-
6
-
-
84884361493
-
Autophagy and mitophagy participate in ocular lens organelle degradation
-
Costello, M.J., Brennan, L.A., Basu, S., Chauss, D., Mohamed, A., Gilliland, K.O., Johnsen, S., Menko, A.S., Kantorow, M., Autophagy and mitophagy participate in ocular lens organelle degradation. Exp. Eye Res. 116 (2013), 141–150.
-
(2013)
Exp. Eye Res.
, vol.116
, pp. 141-150
-
-
Costello, M.J.1
Brennan, L.A.2
Basu, S.3
Chauss, D.4
Mohamed, A.5
Gilliland, K.O.6
Johnsen, S.7
Menko, A.S.8
Kantorow, M.9
-
7
-
-
0017718492
-
The effects of hibernation on cone visual cells in the ground squirrel. Invest. Ophthalmol
-
Reme, C.E., Young, R.W., The effects of hibernation on cone visual cells in the ground squirrel. Invest. Ophthalmol. Vis. Sci. 16 (1977), 815–840.
-
(1977)
Vis. Sci.
, vol.16
, pp. 815-840
-
-
Reme, C.E.1
Young, R.W.2
-
9
-
-
0038156122
-
The proapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation
-
Aerbajinai, W., Giattina, M., Lee, Y.T., Raffeld, M., Miller, J.L., The proapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation. Blood 102 (2003), 712–717.
-
(2003)
Blood
, vol.102
, pp. 712-717
-
-
Aerbajinai, W.1
Giattina, M.2
Lee, Y.T.3
Raffeld, M.4
Miller, J.L.5
-
10
-
-
34249852766
-
Unrestrained erythroblast development in Nix-/- mice reveals a mechanism for apoptotic modulation of erythropoiesis
-
Diwan, A., Koesters, A.G., Odley, A.M., Pushkaran, S., Baines, C.P., Spike, B.T., Daria, D., Jegga, A.G., Geiger, H., Aronow, B.J., et al. Unrestrained erythroblast development in Nix-/- mice reveals a mechanism for apoptotic modulation of erythropoiesis. Proc. Natl. Acad. Sci. USA 104 (2007), 6794–6799.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 6794-6799
-
-
Diwan, A.1
Koesters, A.G.2
Odley, A.M.3
Pushkaran, S.4
Baines, C.P.5
Spike, B.T.6
Daria, D.7
Jegga, A.G.8
Geiger, H.9
Aronow, B.J.10
-
11
-
-
37649017266
-
NIX is required for programmed mitochondrial clearance during reticulocyte maturation
-
Schweers, R.L., Zhang, J., Randall, M.S., Loyd, M.R., Li, W., Dorsey, F.C., Kundu, M., Opferman, J.T., Cleveland, J.L., Miller, J.L., et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl. Acad. Sci. USA 104 (2007), 19500–19505.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 19500-19505
-
-
Schweers, R.L.1
Zhang, J.2
Randall, M.S.3
Loyd, M.R.4
Li, W.5
Dorsey, F.C.6
Kundu, M.7
Opferman, J.T.8
Cleveland, J.L.9
Miller, J.L.10
-
12
-
-
47049100413
-
Essential role for Nix in autophagic maturation of erythroid cells
-
Sandoval, H., Thiagarajan, P., Dasgupta, S.K., Schumacher, A., Prchal, J.T., Chen, M., Wang, J., Essential role for Nix in autophagic maturation of erythroid cells. Nature 454 (2008), 232–235.
-
(2008)
Nature
, vol.454
, pp. 232-235
-
-
Sandoval, H.1
Thiagarajan, P.2
Dasgupta, S.K.3
Schumacher, A.4
Prchal, J.T.5
Chen, M.6
Wang, J.7
-
13
-
-
67650219052
-
Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy
-
dSchwarten, M., Mohrluder, J., Ma, P., Stoldt, M., Thielmann, Y., Stangler, T., Hersch, N., Hoffmann, B., Merkel, R., Willbold, D., Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy 5 (2009), 690–698.
-
(2009)
Autophagy
, vol.5
, pp. 690-698
-
-
dSchwarten, M.1
Mohrluder, J.2
Ma, P.3
Stoldt, M.4
Thielmann, Y.5
Stangler, T.6
Hersch, N.7
Hoffmann, B.8
Merkel, R.9
Willbold, D.10
-
14
-
-
74049153002
-
Nix is a selective autophagy receptor for mitochondrial clearance
-
Novak, I., Kirkin, V., McEwan, D.G., Zhang, J., Wild, P., Rozenknop, A., Rogov, V., Lohr, F., Popovic, D., Occhipinti, A., et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11 (2010), 45–51.
-
(2010)
EMBO Rep
, vol.11
, pp. 45-51
-
-
Novak, I.1
Kirkin, V.2
McEwan, D.G.3
Zhang, J.4
Wild, P.5
Rozenknop, A.6
Rogov, V.7
Lohr, F.8
Popovic, D.9
Occhipinti, A.10
-
15
-
-
84866543686
-
A short linear motif in BNIP3L (NIX) mediates mitochondrial clearance in reticulocytes
-
Zhang, J., Loyd, M.R., Randall, M.S., Waddell, M.B., Kriwacki, R.W., Ney, P.A., A short linear motif in BNIP3L (NIX) mediates mitochondrial clearance in reticulocytes. Autophagy 8 (2012), 1325–1332.
-
(2012)
Autophagy
, vol.8
, pp. 1325-1332
-
-
Zhang, J.1
Loyd, M.R.2
Randall, M.S.3
Waddell, M.B.4
Kriwacki, R.W.5
Ney, P.A.6
-
16
-
-
84902007678
-
Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes
-
Honda, S., Arakawa, S., Nishida, Y., Yamaguchi, H., Ishii, E., Shimizu, S., Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes. Nat. Commun, 5, 2014, 4004.
-
(2014)
Nat. Commun
, vol.5
, pp. 4004
-
-
Honda, S.1
Arakawa, S.2
Nishida, Y.3
Yamaguchi, H.4
Ishii, E.5
Shimizu, S.6
-
17
-
-
70349634803
-
Autophagy-dependent and -independent mechanisms of mitochondrial clearance during reticulocyte maturation
-
Zhang, J., Ney, P.A., Autophagy-dependent and -independent mechanisms of mitochondrial clearance during reticulocyte maturation. Autophagy 5 (2009), 1064–1065.
-
(2009)
Autophagy
, vol.5
, pp. 1064-1065
-
-
Zhang, J.1
Ney, P.A.2
-
18
-
-
51649124519
-
Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation
-
Kundu, M., Lindsten, T., Yang, C.Y., Wu, J., Zhao, F., Zhang, J., Selak, M.A., Ney, P.A., Thompson, C.B., Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112 (2008), 1493–1502.
-
(2008)
Blood
, vol.112
, pp. 1493-1502
-
-
Kundu, M.1
Lindsten, T.2
Yang, C.Y.3
Wu, J.4
Zhao, F.5
Zhang, J.6
Selak, M.A.7
Ney, P.A.8
Thompson, C.B.9
-
19
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan, D.F., Shackelford, D.B., Mihaylova, M.M., Gelino, S., Kohnz, R.A., Mair, W., Vasquez, D.S., Joshi, A., Gwinn, D.M., Taylor, R., et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331 (2011), 456–461.
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
Shackelford, D.B.2
Mihaylova, M.M.3
Gelino, S.4
Kohnz, R.A.5
Mair, W.6
Vasquez, D.S.7
Joshi, A.8
Gwinn, D.M.9
Taylor, R.10
-
20
-
-
0031929515
-
Isolation, mapping, and functional analysis of a novel human cDNA (BNIP3L) encoding a protein homologous to human NIP3. Genes Chrom
-
Matsushima, M., Fujiwara, T., Takahashi, E., Minaguchi, T., Eguchi, Y., Tsujimoto, Y., Suzumori, K., Nakamura, Y., Isolation, mapping, and functional analysis of a novel human cDNA (BNIP3L) encoding a protein homologous to human NIP3. Genes Chrom. Cancer 21 (1998), 230–235.
-
(1998)
Cancer
, vol.21
, pp. 230-235
-
-
Matsushima, M.1
Fujiwara, T.2
Takahashi, E.3
Minaguchi, T.4
Eguchi, Y.5
Tsujimoto, Y.6
Suzumori, K.7
Nakamura, Y.8
-
21
-
-
34548235820
-
BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy
-
Tracy, K., Dibling, B.C., Spike, B.T., Knabb, J.R., Schumacker, P., Macleod, K.F., BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol. Cell. Biol. 27 (2007), 6229–6242.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 6229-6242
-
-
Tracy, K.1
Dibling, B.C.2
Spike, B.T.3
Knabb, J.R.4
Schumacker, P.5
Macleod, K.F.6
-
22
-
-
33845511362
-
Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy
-
Hamacher-Brady, A., Brady, N.R., Logue, S.E., Sayen, M.R., Jinno, M., Kirshenbaum, L.A., Gottlieb, R.A., Gustafsson, A.B., Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Diff 14 (2007), 146–157.
-
(2007)
Cell Death Diff
, vol.14
, pp. 146-157
-
-
Hamacher-Brady, A.1
Brady, N.R.2
Logue, S.E.3
Sayen, M.R.4
Jinno, M.5
Kirshenbaum, L.A.6
Gottlieb, R.A.7
Gustafsson, A.B.8
-
23
-
-
0035884701
-
HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors
-
Sowter, H.M., Ratcliffe, P.J., Watson, P., Greenberg, A.H., Harris, A.L., HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res. 61 (2001), 6669–6673.
-
(2001)
Cancer Res.
, vol.61
, pp. 6669-6673
-
-
Sowter, H.M.1
Ratcliffe, P.J.2
Watson, P.3
Greenberg, A.H.4
Harris, A.L.5
-
24
-
-
0034255036
-
Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia
-
Bruick, R.K., Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc. Natl. Acad. Sci. USA 97 (2000), 9082–9087.
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 9082-9087
-
-
Bruick, R.K.1
-
25
-
-
84872291490
-
Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis
-
Zhu, Y., Massen, S., Terenzio, M., Lang, V., Chen-Lindner, S., Eils, R., Novak, I., Dikic, I., Hamacher-Brady, A., Brady, N.R., Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J. Biol. Chem. 288 (2013), 1099–1113.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 1099-1113
-
-
Zhu, Y.1
Massen, S.2
Terenzio, M.3
Lang, V.4
Chen-Lindner, S.5
Eils, R.6
Novak, I.7
Dikic, I.8
Hamacher-Brady, A.9
Brady, N.R.10
-
26
-
-
84861733247
-
Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy
-
Hanna, R.A., Quinsay, M.N., Orogo, A.M., Giang, K., Rikka, S., Gustafsson, A.B., Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J. Biol. Chem. 287 (2012), 19094–19104.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 19094-19104
-
-
Hanna, R.A.1
Quinsay, M.N.2
Orogo, A.M.3
Giang, K.4
Rikka, S.5
Gustafsson, A.B.6
-
27
-
-
27944470616
-
Phylogenomics of life-or-death switches in multicellular animals: Bcl-2, BH3-Only, and BNip families of apoptotic regulators
-
Aouacheria, A., Brunet, F., Gouy, M., Phylogenomics of life-or-death switches in multicellular animals: Bcl-2, BH3-Only, and BNip families of apoptotic regulators. Mol. Biol. Evol. 22 (2005), 2395–2416.
-
(2005)
Mol. Biol. Evol.
, vol.22
, pp. 2395-2416
-
-
Aouacheria, A.1
Brunet, F.2
Gouy, M.3
-
28
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra, D., Tanaka, A., Suen, D.F., Youle, R.J., Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183 (2008), 795–803.
-
(2008)
J. Cell Biol.
, vol.183
, pp. 795-803
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.F.3
Youle, R.J.4
-
29
-
-
84940956493
-
Parkinson's disease
-
Kalia, L.V., Lang, A.E., Parkinson's disease. Lancet 386 (2015), 896–912.
-
(2015)
Lancet
, vol.386
, pp. 896-912
-
-
Kalia, L.V.1
Lang, A.E.2
-
30
-
-
0024390719
-
Mitochondrial complex I deficiency in Parkinson's disease
-
Schapira, A.H., Cooper, J.M., Dexter, D., Jenner, P., Clark, J.B., Marsden, C.D., Mitochondrial complex I deficiency in Parkinson's disease. Lancet, 1, 1989, 1269.
-
(1989)
Lancet
, vol.1
, pp. 1269
-
-
Schapira, A.H.1
Cooper, J.M.2
Dexter, D.3
Jenner, P.4
Clark, J.B.5
Marsden, C.D.6
-
31
-
-
33646375711
-
High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease
-
Bender, A., Krishnan, K.J., Morris, C.M., Taylor, G.A., Reeve, A.K., Perry, R.H., Jaros, E., Hersheson, J.S., Betts, J., Klopstock, T., et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat. Genet. 38 (2006), 515–517.
-
(2006)
Nat. Genet.
, vol.38
, pp. 515-517
-
-
Bender, A.1
Krishnan, K.J.2
Morris, C.M.3
Taylor, G.A.4
Reeve, A.K.5
Perry, R.H.6
Jaros, E.7
Hersheson, J.S.8
Betts, J.9
Klopstock, T.10
-
32
-
-
33646351299
-
Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons
-
Kraytsberg, Y., Kudryavtseva, E., McKee, A.C., Geula, C., Kowall, N.W., Khrapko, K., Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nature Genet. 38 (2006), 518–520.
-
(2006)
Nature Genet.
, vol.38
, pp. 518-520
-
-
Kraytsberg, Y.1
Kudryavtseva, E.2
McKee, A.C.3
Geula, C.4
Kowall, N.W.5
Khrapko, K.6
-
33
-
-
33745589773
-
Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin
-
Clark, I.E., Dodson, M.W., Jiang, C., Cao, J.H., Huh, J.R., Seol, J.H., Yoo, S.J., Hay, B.A., Guo, M., Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441 (2006), 1162–1166.
-
(2006)
Nature
, vol.441
, pp. 1162-1166
-
-
Clark, I.E.1
Dodson, M.W.2
Jiang, C.3
Cao, J.H.4
Huh, J.R.5
Seol, J.H.6
Yoo, S.J.7
Hay, B.A.8
Guo, M.9
-
34
-
-
0037386532
-
Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants
-
Greene, J.C., Whitworth, A.J., Kuo, I., Andrews, L.A., Feany, M.B., Pallanck, L.J., Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl. Acad. Sci. USA 100 (2003), 4078–4083.
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 4078-4083
-
-
Greene, J.C.1
Whitworth, A.J.2
Kuo, I.3
Andrews, L.A.4
Feany, M.B.5
Pallanck, L.J.6
-
35
-
-
33745602748
-
Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin
-
Park, J., Lee, S.B., Lee, S., Kim, Y., Song, S., Kim, S., Bae, E., Kim, J., Shong, M., Kim, J.M., et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441 (2006), 1157–1161.
-
(2006)
Nature
, vol.441
, pp. 1157-1161
-
-
Park, J.1
Lee, S.B.2
Lee, S.3
Kim, Y.4
Song, S.5
Kim, S.6
Bae, E.7
Kim, J.8
Shong, M.9
Kim, J.M.10
-
36
-
-
78649685455
-
Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J
-
Jin, S.M., Lazarou, M., Wang, C., Kane, L.A., Narendra, D.P., Youle, R.J., Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191 (2010), 933–942.
-
(2010)
Cell Biol.
, vol.191
, pp. 933-942
-
-
Jin, S.M.1
Lazarou, M.2
Wang, C.3
Kane, L.A.4
Narendra, D.P.5
Youle, R.J.6
-
37
-
-
79551574736
-
PINK1 cleavage at position A103 by the mitochondrial protease PARL
-
Deas, E., Plun-Favreau, H., Gandhi, S., Desmond, H., Kjaer, S., Loh, S.H., Renton, A.E., Harvey, R.J., Whitworth, A.J., Martins, L.M., et al. PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum. Mol. Genet. 20 (2011), 867–879.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 867-879
-
-
Deas, E.1
Plun-Favreau, H.2
Gandhi, S.3
Desmond, H.4
Kjaer, S.5
Loh, S.H.6
Renton, A.E.7
Harvey, R.J.8
Whitworth, A.J.9
Martins, L.M.10
-
38
-
-
79955667485
-
The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking
-
Meissner, C., Lorenz, H., Weihofen, A., Selkoe, D.J., Lemberg, M.K., The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J. Neurochem 117 (2011), 856–867.
-
(2011)
J. Neurochem
, vol.117
, pp. 856-867
-
-
Meissner, C.1
Lorenz, H.2
Weihofen, A.3
Selkoe, D.J.4
Lemberg, M.K.5
-
39
-
-
84887453820
-
PINK1 is degraded through the N-end rule pathway
-
Yamano, K., Youle, R.J., PINK1 is degraded through the N-end rule pathway. Autophagy 9 (2013), 1758–1769.
-
(2013)
Autophagy
, vol.9
, pp. 1758-1769
-
-
Yamano, K.1
Youle, R.J.2
-
40
-
-
84857032953
-
Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
-
Lazarou, M., Jin, S.M., Kane, L.A., Youle, R.J., Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell 22 (2012), 320–333.
-
(2012)
Dev. Cell
, vol.22
, pp. 320-333
-
-
Lazarou, M.1
Jin, S.M.2
Kane, L.A.3
Youle, R.J.4
-
41
-
-
84890957474
-
A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment
-
Okatsu, K., Uno, M., Koyano, F., Go, E., Kimura, M., Oka, T., Tanaka, K., Matsuda, N., A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment. J. Biol. Chem. 288 (2013), 36372–36384.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 36372-36384
-
-
Okatsu, K.1
Uno, M.2
Koyano, F.3
Go, E.4
Kimura, M.5
Oka, T.6
Tanaka, K.7
Matsuda, N.8
-
42
-
-
84890429468
-
High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy
-
Hasson, S.A., Kane, L.A., Yamano, K., Huang, C.H., Sliter, D.A., Buehler, E., Wang, C., Heman-Ackah, S.M., Hessa, T., Guha, R., et al. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504 (2013), 291–295.
-
(2013)
Nature
, vol.504
, pp. 291-295
-
-
Hasson, S.A.1
Kane, L.A.2
Yamano, K.3
Huang, C.H.4
Sliter, D.A.5
Buehler, E.6
Wang, C.7
Heman-Ackah, S.M.8
Hessa, T.9
Guha, R.10
-
43
-
-
84864267876
-
PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
-
Kondapalli, C., Kazlauskaite, A., Zhang, N., Woodroof, H.I., Campbell, D.G., Gourlay, R., Burchell, L., Walden, H., Macartney, T.J., Deak, M., et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol., 2, 2012, 120080.
-
(2012)
Open Biol.
, vol.2
, pp. 120080
-
-
Kondapalli, C.1
Kazlauskaite, A.2
Zhang, N.3
Woodroof, H.I.4
Campbell, D.G.5
Gourlay, R.6
Burchell, L.7
Walden, H.8
Macartney, T.J.9
Deak, M.10
-
44
-
-
84871891737
-
PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy
-
Shiba-Fukushima, K., Imai, Y., Yoshida, S., Ishihama, Y., Kanao, T., Sato, S., Hattori, N., PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci. Rep, 2, 2012, 1002.
-
(2012)
Sci. Rep
, vol.2
, pp. 1002
-
-
Shiba-Fukushima, K.1
Imai, Y.2
Yoshida, S.3
Ishihama, Y.4
Kanao, T.5
Sato, S.6
Hattori, N.7
-
45
-
-
84879251778
-
Structure of parkin reveals mechanisms for ubiquitin ligase activation
-
Trempe, J.F., Sauve, V., Grenier, K., Seirafi, M., Tang, M.Y., Menade, M., Al-Abdul-Wahid, S., Krett, J., Wong, K., Kozlov, G., et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340 (2013), 1451–1455.
-
(2013)
Science
, vol.340
, pp. 1451-1455
-
-
Trempe, J.F.1
Sauve, V.2
Grenier, K.3
Seirafi, M.4
Tang, M.Y.5
Menade, M.6
Al-Abdul-Wahid, S.7
Krett, J.8
Wong, K.9
Kozlov, G.10
-
46
-
-
84922434418
-
Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis
-
Ordureau, A., Sarraf, S.A., Duda, D.M., Heo, J.M., Jedrychowski, M.P., Sviderskiy, V.O., Olszewski, J.L., Koerber, J.T., Xie, T., Beausoleil, S.A., et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56 (2014), 360–375.
-
(2014)
Mol. Cell
, vol.56
, pp. 360-375
-
-
Ordureau, A.1
Sarraf, S.A.2
Duda, D.M.3
Heo, J.M.4
Jedrychowski, M.P.5
Sviderskiy, V.O.6
Olszewski, J.L.7
Koerber, J.T.8
Xie, T.9
Beausoleil, S.A.10
-
47
-
-
84879674444
-
Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases
-
Riley, B.E., Lougheed, J.C., Callaway, K., Velasquez, M., Brecht, E., Nguyen, L., Shaler, T., Walker, D., Yang, Y., Regnstrom, K., et al. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat. Commun, 4, 2013, 1982.
-
(2013)
Nat. Commun
, vol.4
, pp. 1982
-
-
Riley, B.E.1
Lougheed, J.C.2
Callaway, K.3
Velasquez, M.4
Brecht, E.5
Nguyen, L.6
Shaler, T.7
Walker, D.8
Yang, Y.9
Regnstrom, K.10
-
48
-
-
84881477223
-
Structure of the human Parkin ligase domain in an autoinhibited state
-
Wauer, T., Komander, D., Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J 32 (2013), 2099–2112.
-
(2013)
EMBO J
, vol.32
, pp. 2099-2112
-
-
Wauer, T.1
Komander, D.2
-
49
-
-
84899539731
-
PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
-
Kane, L.A., Lazarou, M., Fogel, A.I., Li, Y., Yamano, K., Sarraf, S.A., Banerjee, S., Youle, R.J., PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205 (2014), 143–153.
-
(2014)
J. Cell Biol.
, vol.205
, pp. 143-153
-
-
Kane, L.A.1
Lazarou, M.2
Fogel, A.I.3
Li, Y.4
Yamano, K.5
Sarraf, S.A.6
Banerjee, S.7
Youle, R.J.8
-
50
-
-
84899421556
-
Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
-
Kazlauskaite, A., Kondapalli, C., Gourlay, R., Campbell, D.G., Ritorto, M.S., Hofmann, K., Alessi, D.R., Knebel, A., Trost, M., Muqit, M.M., Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 460 (2014), 127–139.
-
(2014)
Biochem. J.
, vol.460
, pp. 127-139
-
-
Kazlauskaite, A.1
Kondapalli, C.2
Gourlay, R.3
Campbell, D.G.4
Ritorto, M.S.5
Hofmann, K.6
Alessi, D.R.7
Knebel, A.8
Trost, M.9
Muqit, M.M.10
-
51
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parkin
-
Koyano, F., Okatsu, K., Kosako, H., Tamura, Y., Go, E., Kimura, M., Kimura, Y., Tsuchiya, H., Yoshihara, H., Hirokawa, T., et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510 (2014), 162–166.
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, F.1
Okatsu, K.2
Kosako, H.3
Tamura, Y.4
Go, E.5
Kimura, M.6
Kimura, Y.7
Tsuchiya, H.8
Yoshihara, H.9
Hirokawa, T.10
-
52
-
-
84919629959
-
Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering
-
Shiba-Fukushima, K., Arano, T., Matsumoto, G., Inoshita, T., Yoshida, S., Ishihama, Y., Ryu, K.Y., Nukina, N., Hattori, N., Imai, Y., Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering. PLoS Genet., 10, 2014, e1004861.
-
(2014)
PLoS Genet.
, vol.10
, pp. e1004861
-
-
Shiba-Fukushima, K.1
Arano, T.2
Matsumoto, G.3
Inoshita, T.4
Yoshida, S.5
Ishihama, Y.6
Ryu, K.Y.7
Nukina, N.8
Hattori, N.9
Imai, Y.10
-
53
-
-
84939804206
-
The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
-
Lazarou, M., Sliter, D.A., Kane, L.A., Sarraf, S.A., Wang, C., Burman, J.L., Sideris, D.P., Fogel, A.I., Youle, R.J., The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524 (2015), 309–314.
-
(2015)
Nature
, vol.524
, pp. 309-314
-
-
Lazarou, M.1
Sliter, D.A.2
Kane, L.A.3
Sarraf, S.A.4
Wang, C.5
Burman, J.L.6
Sideris, D.P.7
Fogel, A.I.8
Youle, R.J.9
-
54
-
-
84922794336
-
Phosphorylated ubiquitin chain is the genuine Parkin receptor. J
-
Okatsu, K., Koyano, F., Kimura, M., Kosako, H., Saeki, Y., Tanaka, K., Matsuda, N., Phosphorylated ubiquitin chain is the genuine Parkin receptor. J. Cell Biol. 209 (2015), 111–128.
-
(2015)
Cell Biol.
, vol.209
, pp. 111-128
-
-
Okatsu, K.1
Koyano, F.2
Kimura, M.3
Kosako, H.4
Saeki, Y.5
Tanaka, K.6
Matsuda, N.7
-
55
-
-
84922235969
-
Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis
-
Wauer, T., Swatek, K.N., Wagstaff, J.L., Gladkova, C., Pruneda, J.N., Michel, M.A., Gersch, M., Johnson, C.M., Freund, S.M., Komander, D., Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J 34 (2015), 307–325.
-
(2015)
EMBO J
, vol.34
, pp. 307-325
-
-
Wauer, T.1
Swatek, K.N.2
Wagstaff, J.L.3
Gladkova, C.4
Pruneda, J.N.5
Michel, M.A.6
Gersch, M.7
Johnson, C.M.8
Freund, S.M.9
Komander, D.10
-
56
-
-
85017499246
-
Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity
-
Kumar, A., Chaugule, V.K., Condos, T.E.C., Barber, K.R., Johnson, C., Toth, R., Sundaramoorthy, R., Knebel, A., Shaw, G.S., Walden, H., Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity. Nat. Struc. Mol. Biol. 24 (2017), 475–483.
-
(2017)
Nat. Struc. Mol. Biol.
, vol.24
, pp. 475-483
-
-
Kumar, A.1
Chaugule, V.K.2
Condos, T.E.C.3
Barber, K.R.4
Johnson, C.5
Toth, R.6
Sundaramoorthy, R.7
Knebel, A.8
Shaw, G.S.9
Walden, H.10
-
57
-
-
84939795423
-
Mechanism of phospho-ubiquitin-induced PARKIN activation
-
Wauer, T., Simicek, M., Schubert, A., Komander, D., Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524 (2015), 370–374.
-
(2015)
Nature
, vol.524
, pp. 370-374
-
-
Wauer, T.1
Simicek, M.2
Schubert, A.3
Komander, D.4
-
58
-
-
84901815187
-
Cargo recognition and trafficking in selective autophagy
-
Stolz, A., Ernst, A., Dikic, I., Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16 (2014), 495–501.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 495-501
-
-
Stolz, A.1
Ernst, A.2
Dikic, I.3
-
59
-
-
75949130828
-
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
-
Geisler, S., Holmstrom, K.M., Skujat, D., Fiesel, F.C., Rothfuss, O.C., Kahle, P.J., Springer, W., PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12 (2010), 119–131.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 119-131
-
-
Geisler, S.1
Holmstrom, K.M.2
Skujat, D.3
Fiesel, F.C.4
Rothfuss, O.C.5
Kahle, P.J.6
Springer, W.7
-
60
-
-
78649300971
-
p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
-
Narendra, D., Kane, L.A., Hauser, D.N., Fearnley, I.M., Youle, R.J., p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6 (2010), 1090–1106.
-
(2010)
Autophagy
, vol.6
, pp. 1090-1106
-
-
Narendra, D.1
Kane, L.A.2
Hauser, D.N.3
Fearnley, I.M.4
Youle, R.J.5
-
61
-
-
77954695260
-
p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria
-
Okatsu, K., Saisho, K., Shimanuki, M., Nakada, K., Shitara, H., Sou, Y.S., Kimura, M., Sato, S., Hattori, N., Komatsu, M., et al. p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells 15 (2010), 887–900.
-
(2010)
Genes Cells
, vol.15
, pp. 887-900
-
-
Okatsu, K.1
Saisho, K.2
Shimanuki, M.3
Nakada, K.4
Shitara, H.5
Sou, Y.S.6
Kimura, M.7
Sato, S.8
Hattori, N.9
Komatsu, M.10
-
62
-
-
84951930787
-
The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy
-
Heo, J.M., Ordureau, A., Paulo, J.A., Rinehart, J., Harper, J.W., The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60 (2015), 7–20.
-
(2015)
Mol. Cell
, vol.60
, pp. 7-20
-
-
Heo, J.M.1
Ordureau, A.2
Paulo, J.A.3
Rinehart, J.4
Harper, J.W.5
-
63
-
-
84908065760
-
Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation
-
Wong, Y.C., Holzbaur, E.L., Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc. Natl. Acad. Sci. USA 111 (2014), E4439–4448.
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. E4439-4448
-
-
Wong, Y.C.1
Holzbaur, E.L.2
-
64
-
-
84974815636
-
Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy
-
Moore, A.S., Holzbaur, E.L., Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc. Natl. Acad. Sci. USA 113 (2016), E3349–3358.
-
(2016)
Proc. Natl. Acad. Sci. USA
, vol.113
, pp. E3349-3358
-
-
Moore, A.S.1
Holzbaur, E.L.2
-
65
-
-
84963566230
-
Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria
-
Richter, B., Sliter, D.A., Herhaus, L., Stolz, A., Wang, C., Beli, P., Zaffagnini, G., Wild, P., Martens, S., Wagner, S.A., et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl. Acad. Sci. USA 113 (2016), 4039–4044.
-
(2016)
Proc. Natl. Acad. Sci. USA
, vol.113
, pp. 4039-4044
-
-
Richter, B.1
Sliter, D.A.2
Herhaus, L.3
Stolz, A.4
Wang, C.5
Beli, P.6
Zaffagnini, G.7
Wild, P.8
Martens, S.9
Wagner, S.A.10
-
66
-
-
79960804104
-
Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
-
Wild, P., Farhan, H., McEwan, D.G., Wagner, S., Rogov, V.V., Brady, N.R., Richter, B., Korac, J., Waidmann, O., Choudhary, C., et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333 (2011), 228–233.
-
(2011)
Science
, vol.333
, pp. 228-233
-
-
Wild, P.1
Farhan, H.2
McEwan, D.G.3
Wagner, S.4
Rogov, V.V.5
Brady, N.R.6
Richter, B.7
Korac, J.8
Waidmann, O.9
Choudhary, C.10
-
67
-
-
84940753095
-
TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation
-
Matsumoto, G., Shimogori, T., Hattori, N., Nukina, N., TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. Hum. Mol. Genet. 24 (2015), 4429–4442.
-
(2015)
Hum. Mol. Genet.
, vol.24
, pp. 4429-4442
-
-
Matsumoto, G.1
Shimogori, T.2
Hattori, N.3
Nukina, N.4
-
68
-
-
85009198548
-
Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation
-
Nguyen, T.N., Padman, B.S., Usher, J., Oorschot, V., Ramm, G., Lazarou, M., Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. J. Cell Biol. 215 (2016), 857–874.
-
(2016)
J. Cell Biol.
, vol.215
, pp. 857-874
-
-
Nguyen, T.N.1
Padman, B.S.2
Usher, J.3
Oorschot, V.4
Ramm, G.5
Lazarou, M.6
-
69
-
-
84876296881
-
Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
-
Sarraf, S.A., Raman, M., Guarani-Pereira, V., Sowa, M.E., Huttlin, E.L., Gygi, S.P., Harper, J.W., Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496 (2013), 372–376.
-
(2013)
Nature
, vol.496
, pp. 372-376
-
-
Sarraf, S.A.1
Raman, M.2
Guarani-Pereira, V.3
Sowa, M.E.4
Huttlin, E.L.5
Gygi, S.P.6
Harper, J.W.7
-
70
-
-
85009178435
-
Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor
-
Wei, Y., Chiang, W.C., Sumpter, R. Jr., Mishra, P., Levine, B., Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168 (2017), 224–238.e210.
-
(2017)
Cell
, vol.168
, pp. 224-238.e210
-
-
Wei, Y.1
Chiang, W.C.2
Sumpter, R.3
Mishra, P.4
Levine, B.5
-
71
-
-
84946556916
-
Atypical mitochondrial inheritance patterns in eukaryotes
-
Breton, S., Stewart, D.T., Atypical mitochondrial inheritance patterns in eukaryotes. Genome 58 (2015), 423–431.
-
(2015)
Genome
, vol.58
, pp. 423-431
-
-
Breton, S.1
Stewart, D.T.2
-
72
-
-
84930801786
-
Extreme-depth re-sequencing of mitochondrial DNA finds no evidence of paternal transmission in humans
-
Pyle, A., Hudson, G., Wilson, I.J., Coxhead, J., Smertenko, T., Herbert, M., Santibanez-Koref, M., Chinnery, P.F., Extreme-depth re-sequencing of mitochondrial DNA finds no evidence of paternal transmission in humans. PLoS Genet., 11, 2015, e1005040.
-
(2015)
PLoS Genet.
, vol.11
, pp. e1005040
-
-
Pyle, A.1
Hudson, G.2
Wilson, I.J.3
Coxhead, J.4
Smertenko, T.5
Herbert, M.6
Santibanez-Koref, M.7
Chinnery, P.F.8
-
73
-
-
84867522393
-
Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition
-
Sharpley, M.S., Marciniak, C., Eckel-Mahan, K., McManus, M., Crimi, M., Waymire, K., Lin, C.S., Masubuchi, S., Friend, N., Koike, M., et al. Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell 151 (2012), 333–343.
-
(2012)
Cell
, vol.151
, pp. 333-343
-
-
Sharpley, M.S.1
Marciniak, C.2
Eckel-Mahan, K.3
McManus, M.4
Crimi, M.5
Waymire, K.6
Lin, C.S.7
Masubuchi, S.8
Friend, N.9
Koike, M.10
-
74
-
-
84892619949
-
Dynamics of mitochondrial inheritance in the evolution of binary mating types and two sexes
-
Hadjivasiliou, Z., Lane, N., Seymour, R.M., Pomiankowski, A., Dynamics of mitochondrial inheritance in the evolution of binary mating types and two sexes. Proc. Biol. Sci., 280, 2013, 20131920.
-
(2013)
Proc. Biol. Sci.
, vol.280
, pp. 20131920
-
-
Hadjivasiliou, Z.1
Lane, N.2
Seymour, R.M.3
Pomiankowski, A.4
-
75
-
-
0033883489
-
Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos
-
Sutovsky, P., Moreno, R.D., Ramalho-Santos, J., Dominko, T., Simerly, C., Schatten, G., Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol. Reprod 63 (2000), 582–590.
-
(2000)
Biol. Reprod
, vol.63
, pp. 582-590
-
-
Sutovsky, P.1
Moreno, R.D.2
Ramalho-Santos, J.3
Dominko, T.4
Simerly, C.5
Schatten, G.6
-
76
-
-
84881410399
-
Unique insights into maternal mitochondrial inheritance in mice
-
Luo, S.M., Ge, Z.J., Wang, Z.W., Jiang, Z.Z., Wang, Z.B., Ouyang, Y.C., Hou, Y., Schatten, H., Sun, Q.Y., Unique insights into maternal mitochondrial inheritance in mice. Proc. Natl. Acad. Sci. USA 110 (2013), 13038–13043.
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 13038-13043
-
-
Luo, S.M.1
Ge, Z.J.2
Wang, Z.W.3
Jiang, Z.Z.4
Wang, Z.B.5
Ouyang, Y.C.6
Hou, Y.7
Schatten, H.8
Sun, Q.Y.9
-
77
-
-
84985916502
-
Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization
-
Song, W.H., Yi, Y.J., Sutovsky, M., Meyers, S., Sutovsky, P., Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc. Natl. Acad. Sci. USA 113 (2016), E5261–E5270.
-
(2016)
Proc. Natl. Acad. Sci. USA
, vol.113
, pp. E5261-E5270
-
-
Song, W.H.1
Yi, Y.J.2
Sutovsky, M.3
Meyers, S.4
Sutovsky, P.5
-
78
-
-
84876070458
-
VCP is essential for mitochondrial quality control by PINK1/Parkin and this function is impaired by VCP mutations
-
Kim, N.C., Tresse, E., Kolaitis, R.M., Molliex, A., Thomas, R.E., Alami, N.H., Wang, B., Joshi, A., Smith, R.B., Ritson, G.P., et al. VCP is essential for mitochondrial quality control by PINK1/Parkin and this function is impaired by VCP mutations. Neuron 78 (2013), 65–80.
-
(2013)
Neuron
, vol.78
, pp. 65-80
-
-
Kim, N.C.1
Tresse, E.2
Kolaitis, R.M.3
Molliex, A.4
Thomas, R.E.5
Alami, N.H.6
Wang, B.7
Joshi, A.8
Smith, R.B.9
Ritson, G.P.10
-
79
-
-
78650729600
-
Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J
-
Tanaka, A., Cleland, M.M., Xu, S., Narendra, D.P., Suen, D.F., Karbowski, M., Youle, R.J., Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191 (2010), 1367–1380.
-
(2010)
Cell Biol.
, vol.191
, pp. 1367-1380
-
-
Tanaka, A.1
Cleland, M.M.2
Xu, S.3
Narendra, D.P.4
Suen, D.F.5
Karbowski, M.6
Youle, R.J.7
-
80
-
-
79551663809
-
The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover
-
Xu, S., Peng, G., Wang, Y., Fang, S., Karbowski, M., The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover. Mol. Biol. Cell 22 (2011), 291–300.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 291-300
-
-
Xu, S.1
Peng, G.2
Wang, Y.3
Fang, S.4
Karbowski, M.5
-
81
-
-
85000919223
-
Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1
-
Rojansky, R., Cha, M.Y., Chan, D.C., Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1. eLife, 5, 2016, e17896.
-
(2016)
eLife
, vol.5
, pp. e17896
-
-
Rojansky, R.1
Cha, M.Y.2
Chan, D.C.3
-
82
-
-
84875581921
-
Fis1 acts as a mitochondrial recruitment factor for TBC1D15 that is involved in regulation of mitochondrial morphology
-
Onoue, K., Jofuku, A., Ban-Ishihara, R., Ishihara, T., Maeda, M., Koshiba, T., Itoh, T., Fukuda, M., Otera, H., Oka, T., et al. Fis1 acts as a mitochondrial recruitment factor for TBC1D15 that is involved in regulation of mitochondrial morphology. J. Cell Sci. 126 (2013), 176–185.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 176-185
-
-
Onoue, K.1
Jofuku, A.2
Ban-Ishihara, R.3
Ishihara, T.4
Maeda, M.5
Koshiba, T.6
Itoh, T.7
Fukuda, M.8
Otera, H.9
Oka, T.10
-
83
-
-
84898652320
-
Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy
-
Yamano, K., Fogel, A.I., Wang, C., van der Bliek, A.M., Youle, R.J., Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. eLife, 3, 2014, e01612.
-
(2014)
eLife
, vol.3
, pp. e01612
-
-
Yamano, K.1
Fogel, A.I.2
Wang, C.3
van der Bliek, A.M.4
Youle, R.J.5
-
84
-
-
84900315972
-
Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila. Dev
-
Politi, Y., Gal, L., Kalifa, Y., Ravid, L., Elazar, Z., Arama, E., Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila. Dev. Cell 29 (2014), 305–320.
-
(2014)
Cell
, vol.29
, pp. 305-320
-
-
Politi, Y.1
Gal, L.2
Kalifa, Y.3
Ravid, L.4
Elazar, Z.5
Arama, E.6
-
85
-
-
82255183165
-
Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission
-
Al Rawi, S., Louvet-Vallee, S., Djeddi, A., Sachse, M., Culetto, E., Hajjar, C., Boyd, L., Legouis, R., Galy, V., Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334 (2011), 1144–1147.
-
(2011)
Science
, vol.334
, pp. 1144-1147
-
-
Al Rawi, S.1
Louvet-Vallee, S.2
Djeddi, A.3
Sachse, M.4
Culetto, E.5
Hajjar, C.6
Boyd, L.7
Legouis, R.8
Galy, V.9
-
86
-
-
84858200622
-
Barriers to male transmission of mitochondrial DNA in sperm development
-
DeLuca, S.Z., O'Farrell, P.H., Barriers to male transmission of mitochondrial DNA in sperm development. Dev. Cell 22 (2012), 660–668.
-
(2012)
Dev. Cell
, vol.22
, pp. 660-668
-
-
DeLuca, S.Z.1
O'Farrell, P.H.2
-
87
-
-
84976867195
-
Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization
-
Zhou, Q., Li, H., Li, H., Nakagawa, A., Lin, J.L., Lee, E.S., Harry, B.L., Skeen-Gaar, R.R., Suehiro, Y., William, D., et al. Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization. Science 353 (2016), 394–399.
-
(2016)
Science
, vol.353
, pp. 394-399
-
-
Zhou, Q.1
Li, H.2
Li, H.3
Nakagawa, A.4
Lin, J.L.5
Lee, E.S.6
Harry, B.L.7
Skeen-Gaar, R.R.8
Suehiro, Y.9
William, D.10
-
88
-
-
82255192465
-
Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos
-
Sato, M., Sato, K., Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334 (2011), 1141–1144.
-
(2011)
Science
, vol.334
, pp. 1141-1144
-
-
Sato, M.1
Sato, K.2
-
89
-
-
67650264633
-
Atg32 is a mitochondrial protein that confers selectivity during mitophagy
-
Kanki, T., Wang, K., Cao, Y., Baba, M., Klionsky, D.J., Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 17 (2009), 98–109.
-
(2009)
Dev. Cell
, vol.17
, pp. 98-109
-
-
Kanki, T.1
Wang, K.2
Cao, Y.3
Baba, M.4
Klionsky, D.J.5
-
90
-
-
67650246357
-
Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy
-
Okamoto, K., Kondo-Okamoto, N., Ohsumi, Y., Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 17 (2009), 87–97.
-
(2009)
Dev. Cell
, vol.17
, pp. 87-97
-
-
Okamoto, K.1
Kondo-Okamoto, N.2
Ohsumi, Y.3
-
91
-
-
84858988067
-
Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy
-
Kondo-Okamoto, N., Noda, N.N., Suzuki, S.W., Nakatogawa, H., Takahashi, I., Matsunami, M., Hashimoto, A., Inagaki, F., Ohsumi, Y., Okamoto, K., Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. J. Biol. Chem. 287 (2012), 10631–10638.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 10631-10638
-
-
Kondo-Okamoto, N.1
Noda, N.N.2
Suzuki, S.W.3
Nakatogawa, H.4
Takahashi, I.5
Matsunami, M.6
Hashimoto, A.7
Inagaki, F.8
Ohsumi, Y.9
Okamoto, K.10
-
92
-
-
0036901104
-
Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway
-
Shintani, T., Huang, W.P., Stromhaug, P.E., Klionsky, D.J., Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev. Cell 3 (2002), 825–837.
-
(2002)
Dev. Cell
, vol.3
, pp. 825-837
-
-
Shintani, T.1
Huang, W.P.2
Stromhaug, P.E.3
Klionsky, D.J.4
-
93
-
-
57749121573
-
Mitophagy in yeast occurs through a selective mechanism
-
Kanki, T., Klionsky, D.J., Mitophagy in yeast occurs through a selective mechanism. J. Biol. Chem. 283 (2008), 32386–32393.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 32386-32393
-
-
Kanki, T.1
Klionsky, D.J.2
-
94
-
-
84880506979
-
The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy
-
Mao, K., Wang, K., Liu, X., Klionsky, D.J., The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. Dev. Cell 26 (2013), 9–18.
-
(2013)
Dev. Cell
, vol.26
, pp. 9-18
-
-
Mao, K.1
Wang, K.2
Liu, X.3
Klionsky, D.J.4
-
95
-
-
84878780410
-
Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast
-
Eiyama, A., Kondo-Okamoto, N., Okamoto, K., Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast. FEBS Lett. 587 (2013), 1787–1792.
-
(2013)
FEBS Lett.
, vol.587
, pp. 1787-1792
-
-
Eiyama, A.1
Kondo-Okamoto, N.2
Okamoto, K.3
-
96
-
-
80052197610
-
Phosphorylation of Serine 114 on Atg32 mediates mitophagy
-
Aoki, Y., Kanki, T., Hirota, Y., Kurihara, Y., Saigusa, T., Uchiumi, T., Kang, D., Phosphorylation of Serine 114 on Atg32 mediates mitophagy. Mol. Biol. Cell 22 (2011), 3206–3217.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 3206-3217
-
-
Aoki, Y.1
Kanki, T.2
Hirota, Y.3
Kurihara, Y.4
Saigusa, T.5
Uchiumi, T.6
Kang, D.7
-
97
-
-
4644273585
-
Uth1p is involved in the autophagic degradation of mitochondria
-
Kissova, I., Deffieu, M., Manon, S., Camougrand, N., Uth1p is involved in the autophagic degradation of mitochondria. J. Biol. Chem. 279 (2004), 39068–39074.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 39068-39074
-
-
Kissova, I.1
Deffieu, M.2
Manon, S.3
Camougrand, N.4
-
98
-
-
27944482199
-
Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast
-
Priault, M., Salin, B., Schaeffer, J., Vallette, F.M., di Rago, J.P., Martinou, J.C., Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast. Cell Death Diff. 12 (2005), 1613–1621.
-
(2005)
Cell Death Diff.
, vol.12
, pp. 1613-1621
-
-
Priault, M.1
Salin, B.2
Schaeffer, J.3
Vallette, F.M.4
di Rago, J.P.5
Martinou, J.C.6
-
99
-
-
84864293013
-
Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number
-
Campbell, C.T., Kolesar, J.E., Kaufman, B.A., Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim. Biophys. Acta 1819 (2012), 921–929.
-
(2012)
Biochim. Biophys. Acta
, vol.1819
, pp. 921-929
-
-
Campbell, C.T.1
Kolesar, J.E.2
Kaufman, B.A.3
-
100
-
-
41249086496
-
Nuclear respiratory factor 1 regulates all ten nuclear-encoded subunits of cytochrome c oxidase in neurons
-
Dhar, S.S., Ongwijitwat, S., Wong-Riley, M.T., Nuclear respiratory factor 1 regulates all ten nuclear-encoded subunits of cytochrome c oxidase in neurons. J. Biol. Chem. 283 (2008), 3120–3129.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 3120-3129
-
-
Dhar, S.S.1
Ongwijitwat, S.2
Wong-Riley, M.T.3
-
101
-
-
33646690296
-
Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs
-
Ongwijitwat, S., Liang, H.L., Graboyes, E.M., Wong-Riley, M.T., Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs. Gene 374 (2006), 39–49.
-
(2006)
Gene
, vol.374
, pp. 39-49
-
-
Ongwijitwat, S.1
Liang, H.L.2
Graboyes, E.M.3
Wong-Riley, M.T.4
-
102
-
-
0033538473
-
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
-
Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., Cinti, S., Lowell, B., Scarpulla, R.C., et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98 (1999), 115–124.
-
(1999)
Cell
, vol.98
, pp. 115-124
-
-
Wu, Z.1
Puigserver, P.2
Andersson, U.3
Zhang, C.4
Adelmant, G.5
Mootha, V.6
Troy, A.7
Cinti, S.8
Lowell, B.9
Scarpulla, R.C.10
-
103
-
-
0033803048
-
Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis
-
Lehman, J.J., Barger, P.M., Kovacs, A., Saffitz, J.E., Medeiros, D.M., Kelly, D.P., Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J. Clin. Invest. 106 (2000), 847–856.
-
(2000)
J. Clin. Invest.
, vol.106
, pp. 847-856
-
-
Lehman, J.J.1
Barger, P.M.2
Kovacs, A.3
Saffitz, J.E.4
Medeiros, D.M.5
Kelly, D.P.6
-
104
-
-
0036903174
-
Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1
-
Baar, K., Wende, A.R., Jones, T.E., Marison, M., Nolte, L.A., Chen, M., Kelly, D.P., Holloszy, J.O., Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J. 16 (2002), 1879–1886.
-
(2002)
FASEB J.
, vol.16
, pp. 1879-1886
-
-
Baar, K.1
Wende, A.R.2
Jones, T.E.3
Marison, M.4
Nolte, L.A.5
Chen, M.6
Kelly, D.P.7
Holloszy, J.O.8
-
105
-
-
0034596268
-
cDNA cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats
-
Goto, M., Terada, S., Kato, M., Katoh, M., Yokozeki, T., Tabata, I., Shimokawa, T., cDNA cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats. Biochem. Biophys. Res. Comm. 274 (2000), 350–354.
-
(2000)
Biochem. Biophys. Res. Comm.
, vol.274
, pp. 350-354
-
-
Goto, M.1
Terada, S.2
Kato, M.3
Katoh, M.4
Yokozeki, T.5
Tabata, I.6
Shimokawa, T.7
-
106
-
-
0037322888
-
Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle
-
Pilegaard, H., Saltin, B., Neufer, P.D., Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J. Physiol. 546 (2003), 851–858.
-
(2003)
J. Physiol.
, vol.546
, pp. 851-858
-
-
Pilegaard, H.1
Saltin, B.2
Neufer, P.D.3
-
107
-
-
22144434964
-
Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle
-
Arany, Z., He, H., Lin, J., Hoyer, K., Handschin, C., Toka, O., Ahmad, F., Matsui, T., Chin, S., Wu, P.H., et al. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab. 1 (2005), 259–271.
-
(2005)
Cell Metab.
, vol.1
, pp. 259-271
-
-
Arany, Z.1
He, H.2
Lin, J.3
Hoyer, K.4
Handschin, C.5
Toka, O.6
Ahmad, F.7
Matsui, T.8
Chin, S.9
Wu, P.H.10
-
108
-
-
85020822242
-
AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance
-
Garcia, D., Shaw, R.J., AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell 66 (2017), 789–800.
-
(2017)
Mol. Cell
, vol.66
, pp. 789-800
-
-
Garcia, D.1
Shaw, R.J.2
-
109
-
-
34547545892
-
AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha
-
Jager, S., Handschin, C., St-Pierre, J., Spiegelman, B.M., AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc. Natl. Acad. Sci. USA 104 (2007), 12017–12022.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 12017-12022
-
-
Jager, S.1
Handschin, C.2
St-Pierre, J.3
Spiegelman, B.M.4
-
110
-
-
38949196761
-
PGC-1alpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle
-
Leick, L., Wojtaszewski, J.F., Johansen, S.T., Kiilerich, K., Comes, G., Hellsten, Y., Hidalgo, J., Pilegaard, H., PGC-1alpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle. Am. J. Physiol. Endocrin. Metab. 294 (2008), E463–E474.
-
(2008)
Am. J. Physiol. Endocrin. Metab.
, vol.294
, pp. E463-E474
-
-
Leick, L.1
Wojtaszewski, J.F.2
Johansen, S.T.3
Kiilerich, K.4
Comes, G.5
Hellsten, Y.6
Hidalgo, J.7
Pilegaard, H.8
-
111
-
-
77951221542
-
The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin
-
Mizushima, N., The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin. Cell Biol. 22 (2010), 132–139.
-
(2010)
Cell Biol.
, vol.22
, pp. 132-139
-
-
Mizushima, N.1
-
112
-
-
84954318420
-
AMP-activated protein kinase mediates mitochondrial fission in response to energy stress
-
Toyama, E.Q., Herzig, S., Courchet, J., Lewis, T.L. Jr., Loson, O.C., Hellberg, K., Young, N.P., Chen, H., Polleux, F., Chan, D.C., et al. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351 (2016), 275–281.
-
(2016)
Science
, vol.351
, pp. 275-281
-
-
Toyama, E.Q.1
Herzig, S.2
Courchet, J.3
Lewis, T.L.4
Loson, O.C.5
Hellberg, K.6
Young, N.P.7
Chen, H.8
Polleux, F.9
Chan, D.C.10
-
113
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre, C., Di Malta, C., Polito, V.A., Garcia Arencibia, M., Vetrini, F., Erdin, S., Erdin, S.U., Huynh, T., Medina, D., Colella, P., et al. TFEB links autophagy to lysosomal biogenesis. Science 332 (2011), 1429–1433.
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
Di Malta, C.2
Polito, V.A.3
Garcia Arencibia, M.4
Vetrini, F.5
Erdin, S.6
Erdin, S.U.7
Huynh, T.8
Medina, D.9
Colella, P.10
-
114
-
-
84977630118
-
TFEB at a glance. J
-
Napolitano, G., Ballabio, A., TFEB at a glance. J. Cell Sci. 129 (2016), 2475–2481.
-
(2016)
Cell Sci.
, vol.129
, pp. 2475-2481
-
-
Napolitano, G.1
Ballabio, A.2
-
115
-
-
84878606239
-
TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
-
Settembre, C., De Cegli, R., Mansueto, G., Saha, P.K., Vetrini, F., Visvikis, O., Huynh, T., Carissimo, A., Palmer, D., Klisch, T.J., et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15 (2013), 647–658.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 647-658
-
-
Settembre, C.1
De Cegli, R.2
Mansueto, G.3
Saha, P.K.4
Vetrini, F.5
Visvikis, O.6
Huynh, T.7
Carissimo, A.8
Palmer, D.9
Klisch, T.J.10
-
116
-
-
84863923855
-
PGC-1alpha rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function
-
142ra197
-
Tsunemi, T., Ashe, T.D., Morrison, B.E., Soriano, K.R., Au, J., Roque, R.A., Lazarowski, E.R., Damian, V.A., Masliah, E., La Spada, A.R., PGC-1alpha rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci. Transl. Med., 4, 2012 142ra197.
-
(2012)
Sci. Transl. Med.
, vol.4
-
-
Tsunemi, T.1
Ashe, T.D.2
Morrison, B.E.3
Soriano, K.R.4
Au, J.5
Roque, R.A.6
Lazarowski, E.R.7
Damian, V.A.8
Masliah, E.9
La Spada, A.R.10
-
117
-
-
84893500088
-
GCN5-like protein 1 (GCN5L1) controls mitochondrial content through coordinated regulation of mitochondrial biogenesis and mitophagy
-
Scott, I., Webster, B.R., Chan, C.K., Okonkwo, J.U., Han, K., Sack, M.N., GCN5-like protein 1 (GCN5L1) controls mitochondrial content through coordinated regulation of mitochondrial biogenesis and mitophagy. J. Biol. Chem. 289 (2014), 2864–2872.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 2864-2872
-
-
Scott, I.1
Webster, B.R.2
Chan, C.K.3
Okonkwo, J.U.4
Han, K.5
Sack, M.N.6
-
118
-
-
84939820927
-
MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J
-
Nezich, C.L., Wang, C., Fogel, A.I., Youle, R.J., MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J. Cell Biol. 210 (2015), 435–450.
-
(2015)
Cell Biol.
, vol.210
, pp. 435-450
-
-
Nezich, C.L.1
Wang, C.2
Fogel, A.I.3
Youle, R.J.4
-
119
-
-
84930040430
-
New roles for mitochondrial proteases in health, ageing and disease
-
Quiros, P.M., Langer, T., Lopez-Otin, C., New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 16 (2015), 345–359.
-
(2015)
Nat. Rev. Mol. Cell Biol.
, vol.16
, pp. 345-359
-
-
Quiros, P.M.1
Langer, T.2
Lopez-Otin, C.3
-
120
-
-
79960716413
-
Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation
-
Karbowski, M., Youle, R.J., Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation. Curr. Opin. Cell Biol. 23 (2011), 476–482.
-
(2011)
Curr. Opin. Cell Biol.
, vol.23
, pp. 476-482
-
-
Karbowski, M.1
Youle, R.J.2
-
121
-
-
33747613595
-
A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics
-
Yonashiro, R., Ishido, S., Kyo, S., Fukuda, T., Goto, E., Matsuki, Y., Ohmura-Hoshino, M., Sada, K., Hotta, H., Yamamura, H., et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 25 (2006), 3618–3626.
-
(2006)
EMBO J.
, vol.25
, pp. 3618-3626
-
-
Yonashiro, R.1
Ishido, S.2
Kyo, S.3
Fukuda, T.4
Goto, E.5
Matsuki, Y.6
Ohmura-Hoshino, M.7
Sada, K.8
Hotta, H.9
Yamamura, H.10
-
122
-
-
84902682891
-
MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin
-
Yun, J., Puri, R., Yang, H., Lizzio, M.A., Wu, C., Sheng, Z.H., Guo, M., MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin. eLife, 3, 2014, e01958.
-
(2014)
eLife
, vol.3
, pp. e01958
-
-
Yun, J.1
Puri, R.2
Yang, H.3
Lizzio, M.A.4
Wu, C.5
Sheng, Z.H.6
Guo, M.7
-
123
-
-
84870713042
-
Metabolic labeling reveals proteome dynamics of mouse mitochondria
-
Kim, T.Y., Wang, D., Kim, A.K., Lau, E., Lin, A.J., Liem, D.A., Zhang, J., Zong, N.C., Lam, M.P., Ping, P., Metabolic labeling reveals proteome dynamics of mouse mitochondria. Mol. Cell. Proteomics 11 (2012), 1586–1594.
-
(2012)
Mol. Cell. Proteomics
, vol.11
, pp. 1586-1594
-
-
Kim, T.Y.1
Wang, D.2
Kim, A.K.3
Lau, E.4
Lin, A.J.5
Liem, D.A.6
Zhang, J.7
Zong, N.C.8
Lam, M.P.9
Ping, P.10
-
124
-
-
77956271728
-
Analysis of proteome dynamics in the mouse brain
-
Price, J.C., Guan, S., Burlingame, A., Prusiner, S.B., Ghaemmaghami, S., Analysis of proteome dynamics in the mouse brain. Proc. Natl. Acad. Sci. USA 107 (2010), 14508–14513.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 14508-14513
-
-
Price, J.C.1
Guan, S.2
Burlingame, A.3
Prusiner, S.B.4
Ghaemmaghami, S.5
-
125
-
-
84876213313
-
The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo
-
Vincow, E.S., Merrihew, G., Thomas, R.E., Shulman, N.J., Beyer, R.P., MacCoss, M.J., Pallanck, L.J., The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc. Natl. Acad. Sci. USA 110 (2013), 6400–6405.
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 6400-6405
-
-
Vincow, E.S.1
Merrihew, G.2
Thomas, R.E.3
Shulman, N.J.4
Beyer, R.P.5
MacCoss, M.J.6
Pallanck, L.J.7
-
126
-
-
84890925982
-
Bit-by-bit autophagic removal of parkin-labelled mitochondria
-
Yang, J.Y., Yang, W.Y., Bit-by-bit autophagic removal of parkin-labelled mitochondria. Nat. Commun, 4, 2013, 2428.
-
(2013)
Nat. Commun
, vol.4
, pp. 2428
-
-
Yang, J.Y.1
Yang, W.Y.2
-
127
-
-
84887486172
-
The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria
-
Jin, S.M., Youle, R.J., The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy 9 (2013), 1750–1757.
-
(2013)
Autophagy
, vol.9
, pp. 1750-1757
-
-
Jin, S.M.1
Youle, R.J.2
-
128
-
-
85030264578
-
Mitochondrial fission facilitates the selective mitophagy of protein aggregates
-
Burman, J.L., Pickles, S., Wang, C., Sekine, S., Vargas, J.N.S., Zhang, Z., Youle, A.M., Nezich, C.L., Wu, X., Hammer, J.A., et al. Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J. Cell Biol. 216 (2017), 3231–3247.
-
(2017)
J. Cell Biol.
, vol.216
, pp. 3231-3247
-
-
Burman, J.L.1
Pickles, S.2
Wang, C.3
Sekine, S.4
Vargas, J.N.S.5
Zhang, Z.6
Youle, A.M.7
Nezich, C.L.8
Wu, X.9
Hammer, J.A.10
-
129
-
-
84901056259
-
Mitochondrial proteolytic stress induced by loss of mortalin function is rescued by Parkin and PINK1
-
Burbulla, L.F., Fitzgerald, J.C., Stegen, K., Westermeier, J., Thost, A.K., Kato, H., Mokranjac, D., Sauerwald, J., Martins, L.M., Woitalla, D., et al. Mitochondrial proteolytic stress induced by loss of mortalin function is rescued by Parkin and PINK1. Cell Death Dis., 5, 2014, e1180.
-
(2014)
Cell Death Dis.
, vol.5
, pp. e1180
-
-
Burbulla, L.F.1
Fitzgerald, J.C.2
Stegen, K.3
Westermeier, J.4
Thost, A.K.5
Kato, H.6
Mokranjac, D.7
Sauerwald, J.8
Martins, L.M.9
Woitalla, D.10
-
130
-
-
84889652177
-
Stress-regulated translational attenuation adapts mitochondrial protein import through Tim17A degradation
-
Rainbolt, T.K., Atanassova, N., Genereux, J.C., Wiseman, R.L., Stress-regulated translational attenuation adapts mitochondrial protein import through Tim17A degradation. Cell Metab. 18 (2013), 908–919.
-
(2013)
Cell Metab.
, vol.18
, pp. 908-919
-
-
Rainbolt, T.K.1
Atanassova, N.2
Genereux, J.C.3
Wiseman, R.L.4
-
131
-
-
85008889019
-
Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy
-
Yamashita, S.I., Jin, X., Furukawa, K., Hamasaki, M., Nezu, A., Otera, H., Saigusa, T., Yoshimori, T., Sakai, Y., Mihara, K., et al. Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy. J. Cell Biol. 215 (2016), 649–665.
-
(2016)
J. Cell Biol.
, vol.215
, pp. 649-665
-
-
Yamashita, S.I.1
Jin, X.2
Furukawa, K.3
Hamasaki, M.4
Nezu, A.5
Otera, H.6
Saigusa, T.7
Yoshimori, T.8
Sakai, Y.9
Mihara, K.10
-
132
-
-
84856221632
-
A vesicular transport pathway shuttles cargo from mitochondria to lysosomes
-
Soubannier, V., McLelland, G.L., Zunino, R., Braschi, E., Rippstein, P., Fon, E.A., McBride, H.M., A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 22 (2012), 135–141.
-
(2012)
Curr. Biol.
, vol.22
, pp. 135-141
-
-
Soubannier, V.1
McLelland, G.L.2
Zunino, R.3
Braschi, E.4
Rippstein, P.5
Fon, E.A.6
McBride, H.M.7
-
133
-
-
84897863239
-
Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control
-
McLelland, G.L., Soubannier, V., Chen, C.X., McBride, H.M., Fon, E.A., Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33 (2014), 282–295.
-
(2014)
EMBO J.
, vol.33
, pp. 282-295
-
-
McLelland, G.L.1
Soubannier, V.2
Chen, C.X.3
McBride, H.M.4
Fon, E.A.5
-
134
-
-
84980027958
-
Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system
-
McLelland, G.L., Lee, S.A., McBride, H.M., Fon, E.A., Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system. J. Cell Biol. 214 (2016), 275–291.
-
(2016)
J. Cell Biol.
, vol.214
, pp. 275-291
-
-
McLelland, G.L.1
Lee, S.A.2
McBride, H.M.3
Fon, E.A.4
-
135
-
-
84888163960
-
Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy
-
Abeliovich, H., Zarei, M., Rigbolt, K.T., Youle, R.J., Dengjel, J., Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy. Nat. Commun., 4, 2013, 2789.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2789
-
-
Abeliovich, H.1
Zarei, M.2
Rigbolt, K.T.3
Youle, R.J.4
Dengjel, J.5
-
136
-
-
84971519354
-
Selective sorting and destruction of mitochondrial membrane proteins in aged yeast
-
Hughes, A.L., Hughes, C.E., Henderson, K.A., Yazvenko, N., Gottschling, D.E., Selective sorting and destruction of mitochondrial membrane proteins in aged yeast. eLife, 5, 2016, e13943.
-
(2016)
eLife
, vol.5
, pp. e13943
-
-
Hughes, A.L.1
Hughes, C.E.2
Henderson, K.A.3
Yazvenko, N.4
Gottschling, D.E.5
-
137
-
-
84864744900
-
Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation
-
Nargund, A.M., Pellegrino, M.W., Fiorese, C.J., Baker, B.M., Haynes, C.M., Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337 (2012), 587–590.
-
(2012)
Science
, vol.337
, pp. 587-590
-
-
Nargund, A.M.1
Pellegrino, M.W.2
Fiorese, C.J.3
Baker, B.M.4
Haynes, C.M.5
-
138
-
-
33748901113
-
Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response
-
Benedetti, C., Haynes, C.M., Yang, Y., Harding, H.P., Ron, D., Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics 174 (2006), 229–239.
-
(2006)
Genetics
, vol.174
, pp. 229-239
-
-
Benedetti, C.1
Haynes, C.M.2
Yang, Y.3
Harding, H.P.4
Ron, D.5
-
139
-
-
34848861368
-
ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans
-
Haynes, C.M., Petrova, K., Benedetti, C., Yang, Y., Ron, D., ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev. Cell 13 (2007), 467–480.
-
(2007)
Dev. Cell
, vol.13
, pp. 467-480
-
-
Haynes, C.M.1
Petrova, K.2
Benedetti, C.3
Yang, Y.4
Ron, D.5
-
140
-
-
84926180334
-
Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt)
-
Nargund, A.M., Fiorese, C.J., Pellegrino, M.W., Deng, P., Haynes, C.M., Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt). Mol. Cell 58 (2015), 123–133.
-
(2015)
Mol. Cell
, vol.58
, pp. 123-133
-
-
Nargund, A.M.1
Fiorese, C.J.2
Pellegrino, M.W.3
Deng, P.4
Haynes, C.M.5
-
141
-
-
84990040254
-
Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation
-
Munch, C., Harper, J.W., Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation. Nature 534 (2016), 710–713.
-
(2016)
Nature
, vol.534
, pp. 710-713
-
-
Munch, C.1
Harper, J.W.2
-
142
-
-
0029825891
-
Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome
-
Martinus, R.D., Garth, G.P., Webster, T.L., Cartwright, P., Naylor, D.J., Hoj, P.B., Hoogenraad, N.J., Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome. Eur. J. Biochem. 240 (1996), 98–103.
-
(1996)
Eur. J. Biochem.
, vol.240
, pp. 98-103
-
-
Martinus, R.D.1
Garth, G.P.2
Webster, T.L.3
Cartwright, P.4
Naylor, D.J.5
Hoj, P.B.6
Hoogenraad, N.J.7
-
143
-
-
0037009521
-
A mitochondrial specific stress response in mammalian cells
-
Zhao, Q., Wang, J., Levichkin, I.V., Stasinopoulos, S., Ryan, M.T., Hoogenraad, N.J., A mitochondrial specific stress response in mammalian cells. EMBO J. 21 (2002), 4411–4419.
-
(2002)
EMBO J.
, vol.21
, pp. 4411-4419
-
-
Zhao, Q.1
Wang, J.2
Levichkin, I.V.3
Stasinopoulos, S.4
Ryan, M.T.5
Hoogenraad, N.J.6
-
144
-
-
37849048003
-
Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements
-
Aldridge, J.E., Horibe, T., Hoogenraad, N.J., Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements. PLoS One, 2, 2007, e874.
-
(2007)
PLoS One
, vol.2
, pp. e874
-
-
Aldridge, J.E.1
Horibe, T.2
Hoogenraad, N.J.3
-
145
-
-
84978821914
-
The transcription factor ATF5 mediates a mammalian mitochondrial UPR
-
Fiorese, C.J., Schulz, A.M., Lin, Y.F., Rosin, N., Pellegrino, M.W., Haynes, C.M., The transcription factor ATF5 mediates a mammalian mitochondrial UPR. Curr. Biol. 26 (2016), 2037–2043.
-
(2016)
Curr. Biol.
, vol.26
, pp. 2037-2043
-
-
Fiorese, C.J.1
Schulz, A.M.2
Lin, Y.F.3
Rosin, N.4
Pellegrino, M.W.5
Haynes, C.M.6
-
146
-
-
85021857064
-
Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals
-
Quiros, P.M., Prado, M.A., Zamboni, N., D'Amico, D., Williams, R.W., Finley, D., Gygi, S.P., Auwerx, J., Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J. Cell Biol. 216 (2017), 2027–2045.
-
(2017)
J. Cell Biol.
, vol.216
, pp. 2027-2045
-
-
Quiros, P.M.1
Prado, M.A.2
Zamboni, N.3
D'Amico, D.4
Williams, R.W.5
Finley, D.6
Gygi, S.P.7
Auwerx, J.8
-
147
-
-
84940556804
-
Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol
-
Wrobel, L., Topf, U., Bragoszewski, P., Wiese, S., Sztolsztener, M.E., Oeljeklaus, S., Varabyova, A., Lirski, M., Chroscicki, P., Mroczek, S., et al. Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol. Nature 524 (2015), 485–488.
-
(2015)
Nature
, vol.524
, pp. 485-488
-
-
Wrobel, L.1
Topf, U.2
Bragoszewski, P.3
Wiese, S.4
Sztolsztener, M.E.5
Oeljeklaus, S.6
Varabyova, A.7
Lirski, M.8
Chroscicki, P.9
Mroczek, S.10
-
148
-
-
84940517301
-
A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death
-
Wang, X., Chen, X.J., A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death. Nature 524 (2015), 481–484.
-
(2015)
Nature
, vol.524
, pp. 481-484
-
-
Wang, X.1
Chen, X.J.2
-
149
-
-
84884313897
-
Tissue- and cell-type-specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model
-
Hamalainen, R.H., Manninen, T., Koivumaki, H., Kislin, M., Otonkoski, T., Suomalainen, A., Tissue- and cell-type-specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model. Proc. Natl. Acad. Sci. USA 110 (2013), E3622–E3630.
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. E3622-E3630
-
-
Hamalainen, R.H.1
Manninen, T.2
Koivumaki, H.3
Kislin, M.4
Otonkoski, T.5
Suomalainen, A.6
-
150
-
-
77955398958
-
Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells
-
Suen, D.F., Narendra, D.P., Tanaka, A., Manfredi, G., Youle, R.J., Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proc. Natl. Acad. Sci. USA 107 (2010), 11835–11840.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 11835-11840
-
-
Suen, D.F.1
Narendra, D.P.2
Tanaka, A.3
Manfredi, G.4
Youle, R.J.5
-
151
-
-
84878138385
-
Mitonuclear protein imbalance as a conserved longevity mechanism
-
Houtkooper, R.H., Mouchiroud, L., Ryu, D., Moullan, N., Katsyuba, E., Knott, G., Williams, R.W., Auwerx, J., Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497 (2013), 451–457.
-
(2013)
Nature
, vol.497
, pp. 451-457
-
-
Houtkooper, R.H.1
Mouchiroud, L.2
Ryu, D.3
Moullan, N.4
Katsyuba, E.5
Knott, G.6
Williams, R.W.7
Auwerx, J.8
-
152
-
-
84992437414
-
Homeostatic responses regulate selfish mitochondrial genome dynamics in C. elegans
-
Gitschlag, B.L., Kirby, C.S., Samuels, D.C., Gangula, R.D., Mallal, S.A., Patel, M.R., Homeostatic responses regulate selfish mitochondrial genome dynamics in C. elegans. Cell Metab. 24 (2016), 91–103.
-
(2016)
Cell Metab.
, vol.24
, pp. 91-103
-
-
Gitschlag, B.L.1
Kirby, C.S.2
Samuels, D.C.3
Gangula, R.D.4
Mallal, S.A.5
Patel, M.R.6
-
153
-
-
84970973729
-
Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response
-
Lin, Y.F., Schulz, A.M., Pellegrino, M.W., Lu, Y., Shaham, S., Haynes, C.M., Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response. Nature 533 (2016), 416–419.
-
(2016)
Nature
, vol.533
, pp. 416-419
-
-
Lin, Y.F.1
Schulz, A.M.2
Pellegrino, M.W.3
Lu, Y.4
Shaham, S.5
Haynes, C.M.6
-
154
-
-
84912048734
-
Parkin modulates heteroplasmy of truncated mtDNA in Caenorhabditis elegans
-
Valenci, I., Yonai, L., Bar-Yaacov, D., Mishmar, D., Ben-Zvi, A., Parkin modulates heteroplasmy of truncated mtDNA in Caenorhabditis elegans. Mitochondrion 20 (2015), 64–70.
-
(2015)
Mitochondrion
, vol.20
, pp. 64-70
-
-
Valenci, I.1
Yonai, L.2
Bar-Yaacov, D.3
Mishmar, D.4
Ben-Zvi, A.5
-
155
-
-
2642580016
-
Premature ageing in mice expressing defective mitochondrial DNA polymerase
-
Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J.N., Rovio, A.T., Bruder, C.E., Bohlooly, Y.M., Gidlof, S., Oldfors, A., Wibom, R., et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429 (2004), 417–423.
-
(2004)
Nature
, vol.429
, pp. 417-423
-
-
Trifunovic, A.1
Wredenberg, A.2
Falkenberg, M.3
Spelbrink, J.N.4
Rovio, A.T.5
Bruder, C.E.6
Bohlooly, Y.M.7
Gidlof, S.8
Oldfors, A.9
Wibom, R.10
-
156
-
-
84937438976
-
Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress
-
Pickrell, A.M., Huang, C.H., Kennedy, S.R., Ordureau, A., Sideris, D.P., Hoekstra, J.G., Harper, J.W., Youle, R.J., Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress. Neuron 87 (2015), 371–381.
-
(2015)
Neuron
, vol.87
, pp. 371-381
-
-
Pickrell, A.M.1
Huang, C.H.2
Kennedy, S.R.3
Ordureau, A.4
Sideris, D.P.5
Hoekstra, J.G.6
Harper, J.W.7
Youle, R.J.8
-
157
-
-
84901848955
-
Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3
-
Khan, N.A., Auranen, M., Paetau, I., Pirinen, E., Euro, L., Forsstrom, S., Pasila, L., Velagapudi, V., Carroll, C.J., Auwerx, J., et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol. Med. 6 (2014), 721–731.
-
(2014)
EMBO Mol. Med.
, vol.6
, pp. 721-731
-
-
Khan, N.A.1
Auranen, M.2
Paetau, I.3
Pirinen, E.4
Euro, L.5
Forsstrom, S.6
Pasila, L.7
Velagapudi, V.8
Carroll, C.J.9
Auwerx, J.10
-
158
-
-
85009106959
-
Parkin deficiency accelerates consequences of mitochondrial DNA deletions and Parkinsonism
-
Song, L., McMackin, M., Nguyen, A., Cortopassi, G., Parkin deficiency accelerates consequences of mitochondrial DNA deletions and Parkinsonism. Neurobiol. Dis. 100 (2017), 30–38.
-
(2017)
Neurobiol. Dis.
, vol.100
, pp. 30-38
-
-
Song, L.1
McMackin, M.2
Nguyen, A.3
Cortopassi, G.4
-
159
-
-
84921369563
-
The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease
-
Pickrell, A.M., Youle, R.J., The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85 (2015), 257–273.
-
(2015)
Neuron
, vol.85
, pp. 257-273
-
-
Pickrell, A.M.1
Youle, R.J.2
-
160
-
-
79952303794
-
PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease
-
Shin, J.H., Ko, H.S., Kang, H., Lee, Y., Lee, Y.I., Pletinkova, O., Troconso, J.C., Dawson, V.L., Dawson, T.M., PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease. Cell 144 (2011), 689–702.
-
(2011)
Cell
, vol.144
, pp. 689-702
-
-
Shin, J.H.1
Ko, H.S.2
Kang, H.3
Lee, Y.4
Lee, Y.I.5
Pletinkova, O.6
Troconso, J.C.7
Dawson, V.L.8
Dawson, T.M.9
-
161
-
-
84904747061
-
Phenotypic characterization of recessive gene knockout rat models of Parkinson's disease
-
Dave, K.D., De Silva, S., Sheth, N.P., Ramboz, S., Beck, M.J., Quang, C., Switzer, R.C. 3rd, Ahmad, S.O., Sunkin, S.M., Walker, D., et al. Phenotypic characterization of recessive gene knockout rat models of Parkinson's disease. Neurobiol. Dis. 70 (2014), 190–203.
-
(2014)
Neurobiol. Dis.
, vol.70
, pp. 190-203
-
-
Dave, K.D.1
De Silva, S.2
Sheth, N.P.3
Ramboz, S.4
Beck, M.J.5
Quang, C.6
Switzer, R.C.7
Ahmad, S.O.8
Sunkin, S.M.9
Walker, D.10
-
162
-
-
79961239061
-
Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo
-
Sterky, F.H., Lee, S., Wibom, R., Olson, L., Larsson, N.G., Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo. Proc. Natl. Acad. Sci. USA 108 (2011), 12937–12942.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 12937-12942
-
-
Sterky, F.H.1
Lee, S.2
Wibom, R.3
Olson, L.4
Larsson, N.G.5
-
163
-
-
33846636481
-
Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons
-
Ekstrand, M.I., Terzioglu, M., Galter, D., Zhu, S., Hofstetter, C., Lindqvist, E., Thams, S., Bergstrand, A., Hansson, F.S., Trifunovic, A., et al. Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc. Natl. Acad. Sci. USA 104 (2007), 1325–1330.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 1325-1330
-
-
Ekstrand, M.I.1
Terzioglu, M.2
Galter, D.3
Zhu, S.4
Hofstetter, C.5
Lindqvist, E.6
Thams, S.7
Bergstrand, A.8
Hansson, F.S.9
Trifunovic, A.10
-
164
-
-
84887464529
-
MitoTimer: a novel tool for monitoring mitochondrial turnover
-
Hernandez, G., Thornton, C., Stotland, A., Lui, D., Sin, J., Ramil, J., Magee, N., Andres, A., Quarato, G., Carreira, R.S., et al. MitoTimer: a novel tool for monitoring mitochondrial turnover. Autophagy 9 (2013), 1852–1861.
-
(2013)
Autophagy
, vol.9
, pp. 1852-1861
-
-
Hernandez, G.1
Thornton, C.2
Stotland, A.3
Lui, D.4
Sin, J.5
Ramil, J.6
Magee, N.7
Andres, A.8
Quarato, G.9
Carreira, R.S.10
-
165
-
-
84949663455
-
alpha-MHC MitoTimer mouse: In vivo mitochondrial turnover model reveals remarkable mitochondrial heterogeneity in the heart
-
Stotland, A., Gottlieb, R.A., alpha-MHC MitoTimer mouse: In vivo mitochondrial turnover model reveals remarkable mitochondrial heterogeneity in the heart. J. Mol. Cell. Cardiol. 90 (2016), 53–58.
-
(2016)
J. Mol. Cell. Cardiol.
, vol.90
, pp. 53-58
-
-
Stotland, A.1
Gottlieb, R.A.2
-
166
-
-
80052145606
-
A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery
-
Katayama, H., Kogure, T., Mizushima, N., Yoshimori, T., Miyawaki, A., A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem. Biol. 18 (2011), 1042–1052.
-
(2011)
Chem. Biol.
, vol.18
, pp. 1042-1052
-
-
Katayama, H.1
Kogure, T.2
Mizushima, N.3
Yoshimori, T.4
Miyawaki, A.5
-
167
-
-
84979966353
-
mito-QC illuminates mitophagy and mitochondrial architecture in vivo
-
McWilliams, T.G., Prescott, A.R., Allen, G.F., Tamjar, J., Munson, M.J., Thomson, C., Muqit, M.M., Ganley, I.G., mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J. Cell Biol. 214 (2016), 333–345.
-
(2016)
J. Cell Biol.
, vol.214
, pp. 333-345
-
-
McWilliams, T.G.1
Prescott, A.R.2
Allen, G.F.3
Tamjar, J.4
Munson, M.J.5
Thomson, C.6
Muqit, M.M.7
Ganley, I.G.8
-
168
-
-
84947802088
-
Measuring in vivo mitophagy
-
Sun, N., Yun, J., Liu, J., Malide, D., Liu, C., Rovira II, Holmstrom, K.M., Fergusson, M.M., Yoo, Y.H., Combs, C.A., et al. Measuring in vivo mitophagy. Mol. Cell 60 (2015), 685–696.
-
(2015)
Mol. Cell
, vol.60
, pp. 685-696
-
-
Sun, N.1
Yun, J.2
Liu, J.3
Malide, D.4
Liu, C.5
Rovira6
Holmstrom, K.M.7
Fergusson, M.M.8
Yoo, Y.H.9
Combs, C.A.10
-
169
-
-
84991108288
-
Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance
-
Ito, K., Turcotte, R., Cui, J., Zimmerman, S.E., Pinho, S., Mizoguchi, T., Arai, F., Runnels, J.M., Alt, C., Teruya-Feldstein, J., et al. Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance. Science 354 (2016), 1156–1160.
-
(2016)
Science
, vol.354
, pp. 1156-1160
-
-
Ito, K.1
Turcotte, R.2
Cui, J.3
Zimmerman, S.E.4
Pinho, S.5
Mizoguchi, T.6
Arai, F.7
Runnels, J.M.8
Alt, C.9
Teruya-Feldstein, J.10
-
170
-
-
84927732079
-
Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness
-
Katajisto, P., Dohla, J., Chaffer, C.L., Pentinmikko, N., Marjanovic, N., Iqbal, S., Zoncu, R., Chen, W., Weinberg, R.A., Sabatini, D.M., Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348 (2015), 340–343.
-
(2015)
Science
, vol.348
, pp. 340-343
-
-
Katajisto, P.1
Dohla, J.2
Chaffer, C.L.3
Pentinmikko, N.4
Marjanovic, N.5
Iqbal, S.6
Zoncu, R.7
Chen, W.8
Weinberg, R.A.9
Sabatini, D.M.10
|