-
1
-
-
84869222326
-
ATG8 family proteins act as scaffolds for assembly of the ULK complex: Sequence requirements for LC3-interacting region (LIR) motifs
-
Alemu, E.A., T. Lamark, K.M. Torgersen, A.B. Birgisdottir, K.B. Larsen, A. Jain, H. Olsvik, A. Øvervatn, V. Kirkin, and T. Johansen. 2012. ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs. J. Biol. Chem. 287:39275-39290. http://dx.doi.org/10.1074/jbc.M112.378109
-
(2012)
J. Biol. Chem
, vol.287
, pp. 39275-39290
-
-
Alemu, E.A.1
Lamark, T.2
Torgersen, K.M.3
Birgisdottir, A.B.4
Larsen, K.B.5
Jain, A.6
Olsvik, H.7
Øvervatn, A.8
Kirkin, V.9
Johansen, T.10
-
2
-
-
50249084987
-
Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
-
Axe, E.L., S.A. Walker, M. Manifava, P. Chandra, H.L. Roderick, A. Habermann, G. Griffiths, and N.T. Ktistakis. 2008. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182:685-701. http://dx.doi.org/10.1083/jcb.200803137
-
(2008)
J. Cell Biol
, vol.182
, pp. 685-701
-
-
Axe, E.L.1
Walker, S.A.2
Manifava, M.3
Chandra, P.4
Roderick, H.L.5
Habermann, A.6
Griffiths, G.7
Ktistakis, N.T.8
-
3
-
-
77954237882
-
Network organization of the human autophagy system
-
Behrends, C., M.E. Sowa, S.P. Gygi, and J.W. Harper. 2010. Network organization of the human autophagy system. Nature. 466:68-76. http://dx.doi.org/10.1038/nature09204
-
(2010)
Nature
, vol.466
, pp. 68-76
-
-
Behrends, C.1
Sowa, M.E.2
Gygi, S.P.3
Harper, J.W.4
-
4
-
-
84883414890
-
The LIR motif: Crucial for selective autophagy
-
Birgisdottir, A.B., T. Lamark, and T. Johansen. 2013. The LIR motif: crucial for selective autophagy. J. Cell Sci. 126:3237-3247. http://dx.doi.org/10.1242/jcs.126128
-
(2013)
J. Cell Sci
, vol.126
, pp. 3237-3247
-
-
Birgisdottir, A.B.1
Lamark, T.2
Johansen, T.3
-
5
-
-
84928550400
-
ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes
-
Diao, J., R. Liu, Y. Rong, M. Zhao, J. Zhang, Y. Lai, Q. Zhou, L.M. Wilz, J. Li, S. Vivona, et al. 2015. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature. 520:563-566. http: //dx.doi.org/10.1038/nature14147
-
(2015)
Nature
, vol.520
, pp. 563-566
-
-
Diao, J.1
Liu, R.2
Rong, Y.3
Zhao, M.4
Zhang, J.5
Lai, Y.6
Zhou, Q.7
Wilz, L.M.8
Li, J.9
Vivona, S.10
-
6
-
-
58149290220
-
An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure
-
Fujita, N., M. Hayashi-Nishino, H. Fukumoto, H. Omori, A. Yamamoto, T. Noda, and T. Yoshimori. 2008. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol. Biol. Cell. 19:4651-4659. http://dx.doi.org/10.1091/mbc.E08-03-0312
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 4651-4659
-
-
Fujita, N.1
Hayashi-Nishino, M.2
Fukumoto, H.3
Omori, H.4
Yamamoto, A.5
Noda, T.6
Yoshimori, T.7
-
7
-
-
10944253145
-
Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
-
Gutierrez, M.G., S.S. Master, S.B. Singh, G.A. Taylor, M.I. Colombo, and V. Deretic. 2004. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 119:753-766. http://dx.doi.org/10.1016/j.cell.2004.11.038
-
(2004)
Cell
, vol.119
, pp. 753-766
-
-
Gutierrez, M.G.1
Master, S.S.2
Singh, S.B.3
Taylor, G.A.4
Colombo, M.I.5
Deretic, V.6
-
8
-
-
84875365804
-
Autophagosomes form at ER-mitochondria contact sites
-
Hamasaki, M., N. Furuta, A. Matsuda, A. Nezu, A. Yamamoto, N. Fujita, H. Oomori, T. Noda, T. Haraguchi, Y. Hiraoka, et al. 2013. Autophagosomes form at ER-mitochondria contact sites. Nature. 495:389-393. http://dx.doi.org/10.1038/nature11910
-
(2013)
Nature
, vol.495
, pp. 389-393
-
-
Hamasaki, M.1
Furuta, N.2
Matsuda, A.3
Nezu, A.4
Yamamoto, A.5
Fujita, N.6
Oomori, H.7
Noda, T.8
Haraguchi, T.9
Hiraoka, Y.10
-
9
-
-
84951930787
-
The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy
-
Heo, J.M., A. Ordureau, J.A. Paulo, J. Rinehart, and J.W. Harper. 2015. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell. 60:7-20. http://dx.doi.org/10.1016/j.molcel.2015.08.016
-
(2015)
Mol. Cell
, vol.60
, pp. 7-20
-
-
Heo, J.M.1
Ordureau, A.2
Paulo, J.A.3
Rinehart, J.4
Harper, J.W.5
-
10
-
-
0034707036
-
A ubiquitin-like system mediates protein lipidation
-
Ichimura, Y., T. Kirisako, T. Takao, Y. Satomi, Y. Shimonishi, N. Ishihara, N. Mizushima, I. Tanida, E. Kominami, M. Ohsumi, et al. 2000. A ubiquitin-like system mediates protein lipidation. Nature. 408:488-492. http://dx.doi.org/10.1038/35044114
-
(2000)
Nature
, vol.408
, pp. 488-492
-
-
Ichimura, Y.1
Kirisako, T.2
Takao, T.3
Satomi, Y.4
Shimonishi, Y.5
Ishihara, N.6
Mizushima, N.7
Tanida, I.8
Kominami, E.9
Ohsumi, M.10
-
11
-
-
84857850213
-
Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy
-
Itakura, E., C. Kishi-Itakura, I. Koyama-Honda, and N. Mizushima. 2012a. Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J. Cell Sci. 125:1488-1499. http://dx.doi.org/10.1242/jcs.094110
-
(2012)
J. Cell Sci
, vol.125
, pp. 1488-1499
-
-
Itakura, E.1
Kishi-Itakura, C.2
Koyama-Honda, I.3
Mizushima, N.4
-
12
-
-
84870880174
-
The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
-
Itakura, E., C. Kishi-Itakura, and N. Mizushima. 2012b. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell. 151:1256-1269. http://dx.doi.org/10.1016/j.cell.2012.11.001
-
(2012)
Cell
, vol.151
, pp. 1256-1269
-
-
Itakura, E.1
Kishi-Itakura, C.2
Mizushima, N.3
-
13
-
-
84971524977
-
GABARAP activates ULK1 and traffics from the centrosome dependent on Golgi partners WAC and GOLGA2/ GM130
-
Joachim, J., and S.A. Tooze. 2016. GABARAP activates ULK1 and traffics from the centrosome dependent on Golgi partners WAC and GOLGA2/ GM130. Autophagy. 12:892-893. http://dx.doi.org/10.1080/15548627.2016.1159368
-
(2016)
Autophagy.
, vol.12
, pp. 892-893
-
-
Joachim, J.1
Tooze, S.A.2
-
14
-
-
84899539731
-
PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
-
Kane, L.A., M. Lazarou, A.I. Fogel, Y. Li, K. Yamano, S.A. Sarraf, S. Banerjee, and R.J. Youle. 2014. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205:143-153. http://dx.doi.org/10.1083/jcb.201402104
-
(2014)
J. Cell Biol
, vol.205
, pp. 143-153
-
-
Kane, L.A.1
Lazarou, M.2
Fogel, A.I.3
Li, Y.4
Yamano, K.5
Sarraf, S.A.6
Banerjee, S.7
Youle, R.J.8
-
15
-
-
80052145606
-
A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery
-
Katayama, H., T. Kogure, N. Mizushima, T. Yoshimori, and A. Miyawaki. 2011. A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem. Biol. 18:1042-1052. http://dx.doi.org/10.1016/j.chembiol.2011.05.013
-
(2011)
Chem. Biol
, vol.18
, pp. 1042-1052
-
-
Katayama, H.1
Kogure, T.2
Mizushima, N.3
Yoshimori, T.4
Miyawaki, A.5
-
16
-
-
84899421556
-
Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
-
Kazlauskaite, A., C. Kondapalli, R. Gourlay, D.G. Campbell, M.S. Ritorto, K. Hofmann, D.R. Alessi, A. Knebel, M. Trost, and M.M. Muqit. 2014. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 460:127-139. http://dx.doi.org/10.1042/BJ20140334
-
(2014)
Biochem. J
, vol.460
, pp. 127-139
-
-
Kazlauskaite, A.1
Kondapalli, C.2
Gourlay, R.3
Campbell, D.G.4
Ritorto, M.S.5
Hofmann, K.6
Alessi, D.R.7
Knebel, A.8
Trost, M.9
Muqit, M.M.10
-
17
-
-
0032701984
-
Formation process of autophagosome is traced with Apg8/Aut7p in yeast
-
Kirisako, T., M. Baba, N. Ishihara, K. Miyazawa, M. Ohsumi, T. Yoshimori, T. Noda, and Y. Ohsumi. 1999. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J. Cell Biol. 147:435-446. http://dx.doi.org/10.1083/jcb.147.2.435
-
(1999)
J. Cell Biol
, vol.147
, pp. 435-446
-
-
Kirisako, T.1
Baba, M.2
Ishihara, N.3
Miyazawa, K.4
Ohsumi, M.5
Yoshimori, T.6
Noda, T.7
Ohsumi, Y.8
-
18
-
-
60849099049
-
A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
-
Kirkin, V., T. Lamark, Y.S. Sou, G. Bjorkoy, J.L. Nunn, J.A. Bruun, E. Shvets, D.G. McEwan, T.H. Clausen, P. Wild, et al. 2009. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell. 33:505-516. http://dx.doi.org/10.1016/j.molcel.2009.01.020
-
(2009)
Mol. Cell
, vol.33
, pp. 505-516
-
-
Kirkin, V.1
Lamark, T.2
Sou, Y.S.3
Bjorkoy, G.4
Nunn, J.L.5
Bruun, J.A.6
Shvets, E.7
McEwan, D.G.8
Clausen, T.H.9
Wild, P.10
-
19
-
-
0032499264
-
Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
-
Kitada, T., S. Asakawa, N. Hattori, H. Matsumine, Y. Yamamura, S. Minoshima, M. Yokochi, Y. Mizuno, and N. Shimizu. 1998. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 392:605608. http://dx.doi.org/10.1038/33416
-
(1998)
Nature
, vol.392
, pp. 605608
-
-
Kitada, T.1
Asakawa, S.2
Hattori, N.3
Matsumine, H.4
Yamamura, Y.5
Minoshima, S.6
Yokochi, M.7
Mizuno, Y.8
Shimizu, N.9
-
20
-
-
85013763791
-
Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
-
Klionsky, D.J., K. Abdelmohsen, A. Abe, M.J. Abedin, H. Abeliovich, A. Acevedo Arozena, H. Adachi, C.M. Adams, P.D. Adams, K. Adeli, et al. 2016. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 12:1-222. http://dx.doi.org/10.1080/15548627.2015.1100356
-
(2016)
Autophagy
, vol.12
, pp. 1-222
-
-
Klionsky, D.J.1
Abdelmohsen, K.2
Abe, A.3
Abedin, M.J.4
Abeliovich, H.5
Acevedo Arozena, A.6
Adachi, H.7
Adams, C.M.8
Adams, P.D.9
Adeli, K.10
-
21
-
-
84964294603
-
Autophagosome closure requires membrane scission
-
Knorr, R.L., R. Lipowsky, and R. Dimova. 2015. Autophagosome closure requires membrane scission. Autophagy. 11:2134-2137. http://dx.doi.org/10.1080/15548627.2015.1091552
-
(2015)
Autophagy
, vol.11
, pp. 2134-2137
-
-
Knorr, R.L.1
Lipowsky, R.2
Dimova, R.3
-
22
-
-
21044455137
-
Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
-
Komatsu, M., S. Waguri, T. Ueno, J. Iwata, S. Murata, I. Tanida, J. Ezaki, N. Mizushima, Y. Ohsumi, Y. Uchiyama, et al. 2005. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169:425-434. http://dx.doi.org/10.1083/jcb.200412022
-
(2005)
J. Cell Biol
, vol.169
, pp. 425-434
-
-
Komatsu, M.1
Waguri, S.2
Ueno, T.3
Iwata, J.4
Murata, S.5
Tanida, I.6
Ezaki, J.7
Mizushima, N.8
Ohsumi, Y.9
Uchiyama, Y.10
-
23
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parkin
-
Koyano, F., K. Okatsu, H. Kosako, Y. Tamura, E. Go, M. Kimura, Y. Kimura, H. Tsuchiya, H. Yoshihara, T. Hirokawa, et al. 2014. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. 510:162-166. http://dx.doi.org/10.1038/nature13392
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, F.1
Okatsu, K.2
Kosako, H.3
Tamura, Y.4
Go, E.5
Kimura, M.6
Kimura, Y.7
Tsuchiya, H.8
Yoshihara, H.9
Hirokawa, T.10
-
24
-
-
84866426794
-
Binding of the Atg1/ ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy
-
Kraft, C., M. Kijanska, E. Kalie, E. Siergiejuk, S.S. Lee, G. Semplicio, I. Stoffel, A. Brezovich, M. Verma, I. Hansmann, et al. 2012. Binding of the Atg1/ ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO J. 31:3691-3703. http://dx.doi.org/10.1038/emboj.2012.225
-
(2012)
EMBO J
, vol.31
, pp. 3691-3703
-
-
Kraft, C.1
Kijanska, M.2
Kalie, E.3
Siergiejuk, E.4
Lee, S.S.5
Semplicio, G.6
Stoffel, I.7
Brezovich, A.8
Verma, M.9
Hansmann, I.10
-
25
-
-
84888380983
-
The autophagosome: Origins unknown, biogenesis complex
-
Lamb, C.A., T. Yoshimori, and S.A. Tooze. 2013. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14:759-774. http://dx.doi.org/10.1038/nrm3696
-
(2013)
Nat. Rev. Mol. Cell Biol
, vol.14
, pp. 759-774
-
-
Lamb, C.A.1
Yoshimori, T.2
Tooze, S.A.3
-
26
-
-
84955513784
-
Lipid geometry and bilayer curvature modulate LC3/GABARAP-mediated model autophagosomal elongation
-
Landajuela, A., J.H. Hervas, Z. Antón, L.R. Montes, D. Gil, M. Valle, J.F. Rodriguez, F.M. Goñi, and A. Alonso. 2016. Lipid geometry and bilayer curvature modulate LC3/GABARAP-mediated model autophagosomal elongation. Biophys. J. 110:411-422. http://dx.doi.org/10.1016/j.bpj.2015.11.3524
-
(2016)
Biophys. J
, vol.110
, pp. 411-422
-
-
Landajuela, A.1
Hervas, J.H.2
Antón, Z.3
Montes, L.R.4
Gil, D.5
Valle, M.6
Rodriguez, J.F.7
Goñi, F.M.8
Alonso, A.9
-
27
-
-
34250164233
-
Analysis of the assembly profiles for mitochondrial-and nuclear-DNA-encoded subunits into complex I
-
Lazarou, M., M. McKenzie, A. Ohtake, D.R. Thorburn, and M.T. Ryan. 2007. Analysis of the assembly profiles for mitochondrial-and nuclear-DNA-encoded subunits into complex I. Mol. Cell. Biol. 27:4228-4237. http://dx.doi.org/10.1128/MCB.00074-07
-
(2007)
Mol. Cell. Biol
, vol.27
, pp. 4228-4237
-
-
Lazarou, M.1
McKenzie, M.2
Ohtake, A.3
Thorburn, D.R.4
Ryan, M.T.5
-
28
-
-
84939804206
-
The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
-
Lazarou, M., D.A. Sliter, L.A. Kane, S.A. Sarraf, C. Wang, J.L. Burman, D.P. Sideris, A.I. Fogel, and R.J. Youle. 2015. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 524:309-314. http://dx.doi.org/10.1038/nature14893
-
(2015)
Nature
, vol.524
, pp. 309-314
-
-
Lazarou, M.1
Sliter, D.A.2
Kane, L.A.3
Sarraf, S.A.4
Wang, C.5
Burman, J.L.6
Sideris, D.P.7
Fogel, A.I.8
Youle, R.J.9
-
29
-
-
84892438559
-
The C. elegans LC3 acts downstream of GABARAP to degrade autophagosomes by interacting with the HOPS subunit VPS39
-
(published erratum appears in Dev. Cell2014. 30:110)
-
Manil-Ségalen, M., C. Lefebvre, C. Jenzer, M. Trichet, C. Boulogne, B. Satiat-Jeunemaitre, and R. Legouis. 2014. The C. elegans LC3 acts downstream of GABARAP to degrade autophagosomes by interacting with the HOPS subunit VPS39. Dev. Cell. 28:43-55. (published erratum appears in Dev. Cell2014. 30:110) http://dx.doi.org/10.1016/j.devcel.2013.11.022
-
(2014)
Dev. Cell
, vol.28
, pp. 43-55
-
-
Manil-Ségalen, M.1
Lefebvre, C.2
Jenzer, C.3
Trichet, M.4
Boulogne, C.5
Satiat-Jeunemaitre, B.6
Legouis, R.7
-
30
-
-
77951181836
-
PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
-
Matsuda, N., S. Sato, K. Shiba, K. Okatsu, K. Saisho, C.A. Gautier, Y.S. Sou, S. Saiki, S. Kawajiri, F. Sato, et al. 2010. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189:211-221. http://dx.doi.org/10.1083/jcb.200910140
-
(2010)
J. Cell Biol
, vol.189
, pp. 211-221
-
-
Matsuda, N.1
Sato, S.2
Shiba, K.3
Okatsu, K.4
Saisho, K.5
Gautier, C.A.6
Sou, Y.S.7
Saiki, S.8
Kawajiri, S.9
Sato, F.10
-
31
-
-
84920448565
-
PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins
-
McEwan, D.G., D. Popovic, A. Gubas, S. Terawaki, H. Suzuki, D. Stadel, F.P. Coxon, D. Miranda de Stegmann, S. Bhogaraju, K. Maddi, et al. 2015a. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol. Cell. 57:39-54. http://dx.doi.org/10.1016/j.molcel.2014.11.006
-
(2015)
Mol. Cell
, vol.57
, pp. 39-54
-
-
McEwan, D.G.1
Popovic, D.2
Gubas, A.3
Terawaki, S.4
Suzuki, H.5
Stadel, D.6
Coxon, F.P.7
Miranda de Stegmann, D.8
Bhogaraju, S.9
Maddi, K.10
-
32
-
-
84920984853
-
PLEKHM1 regulates Salmonella-containing vacuole biogenesis and infection
-
McEwan, D.G., B. Richter, B. Claudi, C. Wigge, P. Wild, H. Farhan, K. McGourty, F.P. Coxon, M. Franz-Wachtel, B. Perdu, et al. 2015b. PLEKHM1 regulates Salmonella-containing vacuole biogenesis and infection. Cell Host Microbe. 17:58-71. http://dx.doi.org/10.1016/j.chom.2014.11.011
-
(2015)
Cell Host Microbe
, vol.17
, pp. 58-71
-
-
McEwan, D.G.1
Richter, B.2
Claudi, B.3
Wigge, C.4
Wild, P.5
Farhan, H.6
McGourty, K.7
Coxon, F.P.8
Franz-Wachtel, M.9
Perdu, B.10
-
33
-
-
84980027958
-
Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system
-
McLelland, G.L., S.A. Lee, H.M. McBride, and E.A. Fon. 2016. Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system. J. Cell Biol. 214:275-291. http://dx.doi.org/10.1083/jcb.201603105
-
(2016)
J. Cell Biol
, vol.214
, pp. 275-291
-
-
McLelland, G.L.1
Lee, S.A.2
McBride, H.M.3
Fon, E.A.4
-
34
-
-
0032563798
-
A protein conjugation system essential for autophagy
-
Mizushima, N., T. Noda, T. Yoshimori, Y. Tanaka, T. Ishii, M.D. George, D.J. Klionsky, M. Ohsumi, and Y. Ohsumi. 1998. A protein conjugation system essential for autophagy. Nature. 395:395-398. http://dx.doi.org/10.1038/26506
-
(1998)
Nature
, vol.395
, pp. 395-398
-
-
Mizushima, N.1
Noda, T.2
Yoshimori, T.3
Tanaka, Y.4
Ishii, T.5
George, M.D.6
Klionsky, D.J.7
Ohsumi, M.8
Ohsumi, Y.9
-
35
-
-
8344247016
-
Autophagy defends cells against invading group A Streptococcus
-
Nakagawa, I., A. Amano, N. Mizushima, A. Yamamoto, H. Yamaguchi, T. Kamimoto, A. Nara, J. Funao, M. Nakata, K. Tsuda, et al. 2004. Autophagy defends cells against invading group A Streptococcus. Science. 306:1037-1040. http://dx.doi.org/10.1126/science.1103966
-
(2004)
Science
, vol.306
, pp. 1037-1040
-
-
Nakagawa, I.1
Amano, A.2
Mizushima, N.3
Yamamoto, A.4
Yamaguchi, H.5
Kamimoto, T.6
Nara, A.7
Funao, J.8
Nakata, M.9
Tsuda, K.10
-
36
-
-
34447099450
-
Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion
-
Nakatogawa, H., Y. Ichimura, and Y. Ohsumi. 2007. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell. 130:165-178. http://dx.doi.org/10.1016/j.cell.2007.05.021
-
(2007)
Cell
, vol.130
, pp. 165-178
-
-
Nakatogawa, H.1
Ichimura, Y.2
Ohsumi, Y.3
-
37
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra, D., A. Tanaka, D.F. Suen, and R.J. Youle. 2008. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183:795-803. http://dx.doi.org/10.1083/jcb.200809125
-
(2008)
J. Cell Biol
, vol.183
, pp. 795-803
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.F.3
Youle, R.J.4
-
38
-
-
74049153002
-
Nix is a selective autophagy receptor for mitochondrial clearance
-
Novak, I., V. Kirkin, D.G. McEwan, J. Zhang, P. Wild, A. Rozenknop, V. Rogov, F. Löhr, D. Popovic, A. Occhipinti, et al. 2010. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11:45-51. http://dx.doi.org/10.1038/embor.2009.256
-
(2010)
EMBO Rep
, vol.11
, pp. 45-51
-
-
Novak, I.1
Kirkin, V.2
McEwan, D.G.3
Zhang, J.4
Wild, P.5
Rozenknop, A.6
Rogov, V.7
Löhr, F.8
Popovic, D.9
Occhipinti, A.10
-
39
-
-
13244256806
-
Escape of intracellular Shigella from autophagy
-
Ogawa, M., T. Yoshimori, T. Suzuki, H. Sagara, N. Mizushima, and C. Sasakawa. 2005. Escape of intracellular Shigella from autophagy. Science. 307:727731. http://dx.doi.org/10.1126/science.1106036
-
(2005)
Science
, vol.307
, pp. 727731
-
-
Ogawa, M.1
Yoshimori, T.2
Suzuki, T.3
Sagara, H.4
Mizushima, N.5
Sasakawa, C.6
-
40
-
-
34548259958
-
p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
Pankiv, S., T.H. Clausen, T. Lamark, A. Brech, J.A. Bruun, H. Outzen, A. Øvervatn, G. Bjørkøy, and T. Johansen. 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282:24131-24145. http://dx.doi.org/10.1074/jbc.M702824200
-
(2007)
J. Biol. Chem
, vol.282
, pp. 24131-24145
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
Brech, A.4
Bruun, J.A.5
Outzen, H.6
Øvervatn, A.7
Bjørkøy, G.8
Johansen, T.9
-
41
-
-
84887010498
-
Genome engineering using the CRISPR-Cas9 system
-
Ran, F.A., P.D. Hsu, J. Wright, V. Agarwala, D.A. Scott, and F. Zhang. 2013. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8:2281-2308. http://dx.doi.org/10.1038/nprot.2013.143
-
(2013)
Nat. Protoc
, vol.8
, pp. 2281-2308
-
-
Ran, F.A.1
Hsu, P.D.2
Wright, J.3
Agarwala, V.4
Scott, D.A.5
Zhang, F.6
-
42
-
-
84963566230
-
Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria
-
Richter, B., D.A. Sliter, L. Herhaus, A. Stolz, C. Wang, P. Beli, G. Zaffagnini, P. Wild, S. Martens, S.A. Wagner, et al. 2016. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl. Acad. Sci. USA. 113:4039-4044. http://dx.doi.org/10.1073/pnas.1523926113
-
(2016)
Proc. Natl. Acad. Sci. USA
, vol.113
, pp. 4039-4044
-
-
Richter, B.1
Sliter, D.A.2
Herhaus, L.3
Stolz, A.4
Wang, C.5
Beli, P.6
Zaffagnini, G.7
Wild, P.8
Martens, S.9
Wagner, S.A.10
-
43
-
-
84892859905
-
Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy
-
Rogov, V., V. Dötsch, T. Johansen, and V. Kirkin. 2014. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell. 53:167-178. http://dx.doi.org/10.1016/j.molcel.2013.12.014
-
(2014)
Mol. Cell
, vol.53
, pp. 167-178
-
-
Rogov, V.1
Dötsch, V.2
Johansen, T.3
Kirkin, V.4
-
44
-
-
47049100413
-
Essential role for Nix in autophagic maturation of erythroid cells
-
Sandoval, H., P. Thiagarajan, S.K. Dasgupta, A. Schumacher, J.T. Prchal, M. Chen, and J. Wang. 2008. Essential role for Nix in autophagic maturation of erythroid cells. Nature. 454:232-235. http://dx.doi.org/10.1038/nature07006
-
(2008)
Nature
, vol.454
, pp. 232-235
-
-
Sandoval, H.1
Thiagarajan, P.2
Dasgupta, S.K.3
Schumacher, A.4
Prchal, J.T.5
Chen, M.6
Wang, J.7
-
45
-
-
84899848892
-
Cargo binding to Atg19 unmasks additional Atg8 binding sites to mediate membrane-cargo apposition during selective autophagy
-
Sawa-Makarska, J., C. Abert, J. Romanov, B. Zens, I. Ibiricu, and S. Martens. 2014. Cargo binding to Atg19 unmasks additional Atg8 binding sites to mediate membrane-cargo apposition during selective autophagy. Nat. Cell Biol. 16:425-433. http://dx.doi.org/10.1038/ncb2935
-
(2014)
Nat. Cell Biol
, vol.16
, pp. 425-433
-
-
Sawa-Makarska, J.1
Abert, C.2
Romanov, J.3
Zens, B.4
Ibiricu, I.5
Martens, S.6
-
46
-
-
57549094368
-
The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice
-
Sou, Y.S., S. Waguri, J. Iwata, T. Ueno, T. Fujimura, T. Hara, N. Sawada, A. Yamada, N. Mizushima, Y. Uchiyama, et al. 2008. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol. Biol. Cell. 19:4762-4775. http://dx.doi.org/10.1091/mbc.E08-03-0309
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 4762-4775
-
-
Sou, Y.S.1
Waguri, S.2
Iwata, J.3
Ueno, T.4
Fujimura, T.5
Hara, T.6
Sawada, N.7
Yamada, A.8
Mizushima, N.9
Uchiyama, Y.10
-
47
-
-
84901815187
-
Cargo recognition and trafficking in selective autophagy
-
Stolz, A., A. Ernst, and I. Dikic. 2014. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16:495-501. http://dx.doi.org/10.1038/ncb2979
-
(2014)
Nat. Cell Biol
, vol.16
, pp. 495-501
-
-
Stolz, A.1
Ernst, A.2
Dikic, I.3
-
48
-
-
78650114245
-
Rubicon and PLEKHM1 negatively regulate the endocytic/ autophagic pathway via a novel Rab7-binding domain
-
Tabata, K., K. Matsunaga, A. Sakane, T. Sasaki, T. Noda, and T. Yoshimori. 2010. Rubicon and PLEKHM1 negatively regulate the endocytic/ autophagic pathway via a novel Rab7-binding domain. Mol. Biol. Cell.21:4162-4172. http://dx.doi.org/10.1091/mbc.E10-06-0495
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 4162-4172
-
-
Tabata, K.1
Matsunaga, K.2
Sakane, A.3
Sasaki, T.4
Noda, T.5
Yoshimori, T.6
-
49
-
-
84992154479
-
The ATG conjugation systems are important for degradation of the inner autophagosomal membrane
-
Tsuboyama, K., I. Koyama-Honda, Y. Sakamaki, M. Koike, H. Morishita, and N. Mizushima. 2016. The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science. http://dx.doi.org/10.1126/science.aaf6136
-
(2016)
Science
-
-
Tsuboyama, K.1
Koyama-Honda, I.2
Sakamaki, Y.3
Koike, M.4
Morishita, H.5
Mizushima, N.6
-
50
-
-
2442668926
-
Hereditary early-onset Parkinson's disease caused by mutations in PINK1
-
Valente, E.M., P.M. Abou-Sleiman, V. Caputo, M.M. Muqit, K. Harvey, S. Gispert, Z. Ali, D. Del Turco, A.R. Bentivoglio, D.G. Healy, et al. 2004. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science. 304:1158-1160. http://dx.doi.org/10.1126/science.1096284
-
(2004)
Science
, vol.304
, pp. 1158-1160
-
-
Valente, E.M.1
Abou-Sleiman, P.M.2
Caputo, V.3
Muqit, M.M.4
Harvey, K.5
Gispert, S.6
Ali, Z.7
Del Turco, D.8
Bentivoglio, A.R.9
Healy, D.G.10
-
51
-
-
77951637036
-
Imaging type-III secretion reveals dynamics and spatial segregation of Salmonella effectors
-
Van Engelenburg, S.B., and A.E. Palmer. 2010. Imaging type-III secretion reveals dynamics and spatial segregation of Salmonella effectors. Nat. Methods. 7:325-330. http://dx.doi.org/10.1038/nmeth.1437
-
(2010)
Nat. Methods
, vol.7
, pp. 325-330
-
-
Van Engelenburg, S.B.1
Palmer, A.E.2
-
52
-
-
84857844643
-
Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets
-
Velikkakath, A.K., T. Nishimura, E. Oita, N. Ishihara, and N. Mizushima. 2012. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol. Biol. Cell. 23:896-909. http://dx.doi.org/10.1091/mbc.E11-09-0785
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 896-909
-
-
Velikkakath, A.K.1
Nishimura, T.2
Oita, E.3
Ishihara, N.4
Mizushima, N.5
-
53
-
-
84869080400
-
LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy
-
von Muhlinen, N., M. Akutsu, B.J. Ravenhill, Á. Foeglein, S. Bloor, T.J. Rutherford, S.M. Freund, D. Komander, and F. Randow. 2012. LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy. Mol. Cell. 48:329-342. http://dx.doi.org/10.1016/j.molcel.2012.08.024
-
(2012)
Mol. Cell
, vol.48
, pp. 329-342
-
-
von Muhlinen, N.1
Akutsu, M.2
Ravenhill, B.J.3
Foeglein, Á.4
Bloor, S.5
Rutherford, T.J.6
Freund, S.M.7
Komander, D.8
Randow, F.9
-
54
-
-
84930643015
-
GABARAPs regulate PI4P-dependent autophagosome:Lysosome fusion
-
Wang, H., H.Q. Sun, X. Zhu, L. Zhang, J. Albanesi, B. Levine, and H. Yin. 2015. GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion. Proc. Natl. Acad. Sci. USA. 112:7015-7020. http://dx.doi.org/10.1073/pnas.1507263112
-
(2015)
Proc. Natl. Acad. Sci. USA
, vol.112
, pp. 7015-7020
-
-
Wang, H.1
Sun, H.Q.2
Zhu, X.3
Zhang, L.4
Albanesi, J.5
Levine, B.6
Yin, H.7
-
55
-
-
77953122645
-
LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
-
Weidberg, H., E. Shvets, T. Shpilka, F. Shimron, V. Shinder, and Z. Elazar. 2010. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 29:1792-1802. http://dx.doi.org/10.1038/emboj.2010.74
-
(2010)
EMBO J
, vol.29
, pp. 1792-1802
-
-
Weidberg, H.1
Shvets, E.2
Shpilka, T.3
Shimron, F.4
Shinder, V.5
Elazar, Z.6
-
56
-
-
79954544250
-
LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis
-
Weidberg, H., T. Shpilka, E. Shvets, A. Abada, F. Shimron, and Z. Elazar. 2011. LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev. Cell. 20:444-454. http://dx.doi.org/10.1016/j.devcel.2011.02.006
-
(2011)
Dev. Cell
, vol.20
, pp. 444-454
-
-
Weidberg, H.1
Shpilka, T.2
Shvets, E.3
Abada, A.4
Shimron, F.5
Elazar, Z.6
-
57
-
-
84908065760
-
Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation
-
Wong, Y.C., and E.L. Holzbaur. 2014. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc. Natl. Acad. Sci. USA. 111:E4439-E4448. http://dx.doi.org/10.1073/pnas.1405752111
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. E4439-E4448
-
-
Wong, Y.C.1
Holzbaur, E.L.2
-
58
-
-
84953383938
-
Structural basis of the differential function of the two C. elegans Atg8 homologs, LGG-1 and LGG-2, in autophagy
-
Wu, F., Y. Watanabe, X.Y. Guo, X. Qi, P. Wang, H.Y. Zhao, Z. Wang, Y. Fujioka, H. Zhang, J.Q. Ren, et al. 2015. Structural basis of the differential function of the two C. elegans Atg8 homologs, LGG-1 and LGG-2, in autophagy. Mol. Cell. 60:914-929. http://dx.doi.org/10.1016/j.molcel.2015.11.019
-
(2015)
Mol. Cell
, vol.60
, pp. 914-929
-
-
Wu, F.1
Watanabe, Y.2
Guo, X.Y.3
Qi, X.4
Wang, P.5
Zhao, H.Y.6
Wang, Z.7
Fujioka, Y.8
Zhang, H.9
Ren, J.Q.10
-
59
-
-
0035874881
-
Cloning, expression patterns, and chromosome localization of three human and two mouse homologues of GABA(A) receptor-associated protein
-
Xin, Y., L. Yu, Z. Chen, L. Zheng, Q. Fu, J. Jiang, P. Zhang, R. Gong, and S. Zhao. 2001. Cloning, expression patterns, and chromosome localization of three human and two mouse homologues of GABA(A) receptor-associated protein. Genomics. 74:408-413. http://dx.doi.org/10.1006/geno.2001.6555
-
(2001)
Genomics
, vol.74
, pp. 408-413
-
-
Xin, Y.1
Yu, L.2
Chen, Z.3
Zheng, L.4
Fu, Q.5
Jiang, J.6
Zhang, P.7
Gong, R.8
Zhao, S.9
-
60
-
-
84898652320
-
Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy
-
Yamano, K., A.I. Fogel, C. Wang, A.M. van der Bliek, and R.J. Youle. 2014. Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. eLife. 3:e01612. http://dx.doi.org/10.7554/eLife.01612
-
(2014)
eLife
, vol.3
, pp. e01612
-
-
Yamano, K.1
Fogel, A.I.2
Wang, C.3
van der Bliek, A.M.4
Youle, R.J.5
-
61
-
-
84902440389
-
A PCR based protocol for detecting indel mutations induced by TALENs and CRISPR/Cas9 in zebrafish
-
Yu, C., Y. Zhang, S. Yao, and Y. Wei. 2014. A PCR based protocol for detecting indel mutations induced by TALENs and CRISPR/Cas9 in zebrafish. PLoS One. 9:e98282. http://dx.doi.org/10.1371/journal.pone.0098282
-
(2014)
PLoS One
, vol.9
, pp. e98282
-
-
Yu, C.1
Zhang, Y.2
Yao, S.3
Wei, Y.4
|