-
1
-
-
84888163960
-
Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy
-
Abeliovich, H., M. Zarei, K.T. Rigbolt, R.J. Youle, and J. Dengjel. 2013. Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy. Nat. Commun. 4:2789. http://dx.doi.org/10.1038/ncomms3789
-
(2013)
Nat. Commun
, vol.4
, pp. 2789
-
-
Abeliovich, H.1
Zarei, M.2
Rigbolt, K.T.3
Youle, R.J.4
Dengjel, J.5
-
2
-
-
84904280757
-
Tor and the Sin3-Rpd3 complex regulate expression of the mitophagy receptor protein Atg32 in yeast
-
Aihara, M., X. Jin, Y. Kurihara, Y. Yoshida, Y. Matsushima, M. Oku, Y. Hirota, T. Saigusa, Y. Aoki, T. Uchiumi, et al. 2014. Tor and the Sin3-Rpd3 complex regulate expression of the mitophagy receptor protein Atg32 in yeast. J. Cell Sci. 127:3184-3196. http://dx.doi.org/10.1242/jcs.153254
-
(2014)
J. Cell Sci
, vol.127
, pp. 3184-3196
-
-
Aihara, M.1
Jin, X.2
Kurihara, Y.3
Yoshida, Y.4
Matsushima, Y.5
Oku, M.6
Hirota, Y.7
Saigusa, T.8
Aoki, Y.9
Uchiumi, T.10
-
3
-
-
84889100159
-
Loss of iron triggers PINK1/Parkin-independent mitophagy
-
Allen, G.F., R. Toth, J. James, and I.G. Ganley. 2013. Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep. 14:1127-1135. http://dx.doi.org/10.1038/embor.2013.168
-
(2013)
EMBO Rep
, vol.14
, pp. 1127-1135
-
-
Allen, G.F.1
Toth, R.2
James, J.3
Ganley, I.G.4
-
4
-
-
84922891786
-
A role for the ancient SNARE syntaxin 17 in regulating mitochondrial division
-
Arasaki, K., H. Shimizu, H. Mogari, N. Nishida, N. Hirota, A. Furuno, Y. Kudo, M. Baba, N. Baba, J. Cheng, et al. 2015. A role for the ancient SNARE syntaxin 17 in regulating mitochondrial division. Dev. Cell. 32:304-317. http://dx.doi.org/10.1016/j.devcel.2014.12.011
-
(2015)
Dev. Cell
, vol.32
, pp. 304-317
-
-
Arasaki, K.1
Shimizu, H.2
Mogari, H.3
Nishida, N.4
Hirota, N.5
Furuno, A.6
Kudo, Y.7
Baba, M.8
Baba, N.9
Cheng, J.10
-
5
-
-
84940430015
-
Simultaneous impairment of mitochondrial fission and fusion reduces mitophagy and shortens replicative lifespan
-
Bernhardt, D., M. Müller, A.S. Reichert, and H.D. Osiewacz. 2015. Simultaneous impairment of mitochondrial fission and fusion reduces mitophagy and shortens replicative lifespan. Sci. Rep. 5:7885. http://dx.doi.org/10.1038/srep07885
-
(2015)
Sci. Rep
, vol.5
, pp. 7885
-
-
Bernhardt, D.1
Müller, M.2
Reichert, A.S.3
Osiewacz, H.D.4
-
6
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong, L., F.A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P.D. Hsu, X. Wu, W. Jiang, L.A. Marraffini, and F. Zhang. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science. 339:819-823. http://dx.doi.org/10.1126/science.1231143
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
Habib, N.6
Hsu, P.D.7
Wu, X.8
Jiang, W.9
Marraffini, L.A.10
Zhang, F.11
-
7
-
-
35448960851
-
Functions and dysfunctions of mitochondrial dynamics
-
Detmer, S.A., and D.C. Chan. 2007. Functions and dysfunctions of mitochondrial dynamics. Nat. Rev. Mol. Cell Biol. 8:870-879. http://dx.doi.org/10.1038/nrm2275
-
(2007)
Nat. Rev. Mol. Cell Biol
, vol.8
, pp. 870-879
-
-
Detmer, S.A.1
Chan, D.C.2
-
8
-
-
75949130828
-
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
-
Geisler, S., K.M. Holmström, D. Skujat, F.C. Fiesel, O.C. Rothfuss, P.J. Kahle, and W. Springer. 2010. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12:119-131. http://dx.doi.org/10.1038/ncb2012
-
(2010)
Nat. Cell Biol
, vol.12
, pp. 119-131
-
-
Geisler, S.1
Holmström, K.M.2
Skujat, D.3
Fiesel, F.C.4
Rothfuss, O.C.5
Kahle, P.J.6
Springer, W.7
-
9
-
-
0034997256
-
The many shapes of mitochondrial membranes
-
Griparic, L., and A.M. van der Bliek. 2001. The many shapes of mitochondrial membranes. Traffic. 2:235-244. http://dx.doi.org/10.1034/j.1600-0854.2001.1r008.x
-
(2001)
Traffic
, vol.2
, pp. 235-244
-
-
Griparic, L.1
van der Bliek, A.M.2
-
10
-
-
84875365804
-
Autophagosomes form at ER-mitochondria contact sites
-
Hamasaki, M., N. Furuta, A. Matsuda, A. Nezu, A. Yamamoto, N. Fujita, H. Oomori, T. Noda, T. Haraguchi, Y. Hiraoka, et al. 2013. Autophagosomes form at ER-mitochondria contact sites. Nature. 495:389-393. http://dx.doi.org/10.1038/nature11910
-
(2013)
Nature
, vol.495
, pp. 389-393
-
-
Hamasaki, M.1
Furuta, N.2
Matsuda, A.3
Nezu, A.4
Yamamoto, A.5
Fujita, N.6
Oomori, H.7
Noda, T.8
Haraguchi, T.9
Hiraoka, Y.10
-
11
-
-
84981723836
-
Autophagosome-lysosome fusion in neurons requires INPP5E, a protein associated with Joubert syndrome
-
Hasegawa, J., R. Iwamoto, T. Otomo, A. Nezu, M. Hamasaki, and T. Yoshimori. 2016. Autophagosome-lysosome fusion in neurons requires INPP5E, a protein associated with Joubert syndrome. EMBO J. 35:1853-1867. http://dx.doi.org/10.15252/embj.201593148
-
(2016)
EMBO J
, vol.35
, pp. 1853-1867
-
-
Hasegawa, J.1
Iwamoto, R.2
Otomo, T.3
Nezu, A.4
Hamasaki, M.5
Yoshimori, T.6
-
12
-
-
84940718214
-
Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways
-
Hirota, Y., S. Yamashita, Y. Kurihara, X. Jin, M. Aihara, T. Saigusa, D. Kang, and T. Kanki. 2015. Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways. Autophagy. 11:332-343. http://dx.doi.org/10.1080/15548627.2015.1023047
-
(2015)
Autophagy
, vol.11
, pp. 332-343
-
-
Hirota, Y.1
Yamashita, S.2
Kurihara, Y.3
Jin, X.4
Aihara, M.5
Saigusa, T.6
Kang, D.7
Kanki, T.8
-
13
-
-
84921985434
-
Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress
-
Ikeda, Y., A. Shirakabe, Y. Maejima, P. Zhai, S. Sciarretta, J. Toli, M. Nomura, K. Mihara, K. Egashira, M. Ohishi, et al. 2015. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ. Res. 116:264-278. http://dx.doi.org/10.1161/CIRCRESAHA.116.303356
-
(2015)
Circ. Res
, vol.116
, pp. 264-278
-
-
Ikeda, Y.1
Shirakabe, A.2
Maejima, Y.3
Zhai, P.4
Sciarretta, S.5
Toli, J.6
Nomura, M.7
Mihara, K.8
Egashira, K.9
Ohishi, M.10
-
14
-
-
68249087424
-
Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice
-
Ishihara, N., M. Nomura, A. Jofuku, H. Kato, S.O. Suzuki, K. Masuda, H. Otera, Y. Nakanishi, I. Nonaka, Y. Goto, et al. 2009. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat. Cell Biol. 11:958-966. http://dx.doi.org/10.1038/ncb1907
-
(2009)
Nat. Cell Biol
, vol.11
, pp. 958-966
-
-
Ishihara, N.1
Nomura, M.2
Jofuku, A.3
Kato, H.4
Suzuki, S.O.5
Masuda, K.6
Otera, H.7
Nakanishi, Y.8
Nonaka, I.9
Goto, Y.10
-
15
-
-
84870880174
-
The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
-
Itakura, E., C. Kishi-Itakura, and N. Mizushima. 2012. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell. 151:1256-1269. http://dx.doi.org/10.1016/j.cell.2012.11.001
-
(2012)
Cell
, vol.151
, pp. 1256-1269
-
-
Itakura, E.1
Kishi-Itakura, C.2
Mizushima, N.3
-
16
-
-
84913565821
-
Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain
-
Kageyama, Y., M. Hoshijima, K. Seo, D. Bedja, P. Sysa-Shah, S.A. Andrabi, W. Chen, A. Höke, V.L. Dawson, T.M. Dawson, et al. 2014. Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. EMBO J. 33:2798-2813. http://dx.doi.org/10.15252/embj.201488658
-
(2014)
EMBO J
, vol.33
, pp. 2798-2813
-
-
Kageyama, Y.1
Hoshijima, M.2
Seo, K.3
Bedja, D.4
Sysa-Shah, P.5
Andrabi, S.A.6
Chen, W.7
Höke, A.8
Dawson, V.L.9
Dawson, T.M.10
-
17
-
-
57749121573
-
Mitophagy in yeast occurs through a selective mechanism
-
Kanki, T., and D.J. Klionsky. 2008. Mitophagy in yeast occurs through a selective mechanism. J. Biol. Chem. 283:32386-32393. http://dx.doi.org/10.1074/jbc.M802403200
-
(2008)
J. Biol. Chem
, vol.283
, pp. 32386-32393
-
-
Kanki, T.1
Klionsky, D.J.2
-
18
-
-
73449118235
-
Monitoring mitophagy in yeast: The Om45-GFP processing assay
-
Kanki, T., D. Kang, and D.J. Klionsky. 2009a. Monitoring mitophagy in yeast: the Om45-GFP processing assay. Autophagy. 5:1186-1189. http://dx.doi.org/10.4161/auto.5.8.9854
-
(2009)
Autophagy
, vol.5
, pp. 1186-1189
-
-
Kanki, T.1
Kang, D.2
Klionsky, D.J.3
-
19
-
-
73949122199
-
A genomic screen for yeast mutants defective in selective mitochondria autophagy
-
Kanki, T., K. Wang, M. Baba, C.R. Bartholomew, M.A. Lynch-Day, Z. Du, J. Geng, K. Mao, Z. Yang, W.L. Yen, and D.J. Klionsky. 2009b. A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol. Biol. Cell. 20:4730-4738. http://dx.doi.org/10.1091/mbc.E09-03-0225
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 4730-4738
-
-
Kanki, T.1
Wang, K.2
Baba, M.3
Bartholomew, C.R.4
Lynch-Day, M.A.5
Du, Z.6
Geng, J.7
Mao, K.8
Yang, Z.9
Yen, W.L.10
Klionsky, D.J.11
-
20
-
-
67650264633
-
Atg32 is a mitochondrial protein that confers selectivity during mitophagy
-
Kanki, T., K. Wang, Y. Cao, M. Baba, and D.J. Klionsky. 2009c. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell. 17:98-109. http://dx.doi.org/10.1016/j.devcel.2009.06.014
-
(2009)
Dev. Cell
, vol.17
, pp. 98-109
-
-
Kanki, T.1
Wang, K.2
Cao, Y.3
Baba, M.4
Klionsky, D.J.5
-
21
-
-
80052145606
-
A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery
-
Katayama, H., T. Kogure, N. Mizushima, T. Yoshimori, and A. Miyawaki. 2011. A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem. Biol. 18:1042-1052. http://dx.doi.org/10.1016/j.chembiol.2011.05.013
-
(2011)
Chem. Biol
, vol.18
, pp. 1042-1052
-
-
Katayama, H.1
Kogure, T.2
Mizushima, N.3
Yoshimori, T.4
Miyawaki, A.5
-
22
-
-
0032701984
-
Formation process of autophagosome is traced with Apg8/Aut7p in yeast
-
Kirisako, T., M. Baba, N. Ishihara, K. Miyazawa, M. Ohsumi, T. Yoshimori, T. Noda, and Y. Ohsumi. 1999. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J. Cell Biol. 147:435-446. http://dx.doi.org/10.1083/jcb.147.2.435
-
(1999)
J. Cell Biol
, vol.147
, pp. 435-446
-
-
Kirisako, T.1
Baba, M.2
Ishihara, N.3
Miyazawa, K.4
Ohsumi, M.5
Yoshimori, T.6
Noda, T.7
Ohsumi, Y.8
-
23
-
-
84907042842
-
Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells
-
Kishi-Itakura, C., I. Koyama-Honda, E. Itakura, and N. Mizushima. 2014. Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells. J. Cell Sci. 127:4089-4102. http://dx.doi.org/10.1242/jcs.156034
-
(2014)
J. Cell Sci
, vol.127
, pp. 4089-4102
-
-
Kishi-Itakura, C.1
Koyama-Honda, I.2
Itakura, E.3
Mizushima, N.4
-
25
-
-
84858021955
-
Curvature of double-membrane organelles generated by changes in membrane size and composition
-
Knorr, R.L., R. Dimova, and R. Lipowsky. 2012. Curvature of double-membrane organelles generated by changes in membrane size and composition. PLoS One. 7:e32753. http://dx.doi.org/10.1371/journal.pone.0032753
-
(2012)
PLoS One
, vol.7
-
-
Knorr, R.L.1
Dimova, R.2
Lipowsky, R.3
-
26
-
-
84939804206
-
The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
-
Lazarou, M., D.A. Sliter, L.A. Kane, S.A. Sarraf, C. Wang, J.L. Burman, D.P. Sideris, A.I. Fogel, and R.J. Youle. 2015. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 524:309-314. http://dx.doi.org/10.1038/nature14893
-
(2015)
Nature
, vol.524
, pp. 309-314
-
-
Lazarou, M.1
Sliter, D.A.2
Kane, L.A.3
Sarraf, S.A.4
Wang, C.5
Burman, J.L.6
Sideris, D.P.7
Fogel, A.I.8
Youle, R.J.9
-
27
-
-
34548082024
-
A cycling protein complex required for selective autophagy
-
Legakis, J.E., W.L. Yen, and D.J. Klionsky. 2007. A cycling protein complex required for selective autophagy. Autophagy. 3:422-432. http://dx.doi.org/10.4161/auto.4129
-
(2007)
Autophagy
, vol.3
, pp. 422-432
-
-
Legakis, J.E.1
Yen, W.L.2
Klionsky, D.J.3
-
28
-
-
16844366524
-
Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging
-
Lemasters, J.J. 2005. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 8:3-5. http://dx.doi.org/10.1089/rej.2005.8.3
-
(2005)
Rejuvenation Res
, vol.8
, pp. 3-5
-
-
Lemasters, J.J.1
-
29
-
-
78751672975
-
Autophagy in immunity and inflammation
-
Levine, B., N. Mizushima, and H.W. Virgin. 2011. Autophagy in immunity and inflammation. Nature. 469:323-335. http://dx.doi.org/10.1038/nature09782
-
(2011)
Nature
, vol.469
, pp. 323-335
-
-
Levine, B.1
Mizushima, N.2
Virgin, H.W.3
-
30
-
-
84862789618
-
Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
-
Liu, L., D. Feng, G. Chen, M. Chen, Q. Zheng, P. Song, Q. Ma, C. Zhu, R. Wang, W. Qi, et al. 2012. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14:177-185. http://dx.doi.org/10.1038/ncb2422
-
(2012)
Nat. Cell Biol
, vol.14
, pp. 177-185
-
-
Liu, L.1
Feng, D.2
Chen, G.3
Chen, M.4
Zheng, Q.5
Song, P.6
Ma, Q.7
Zhu, C.8
Wang, R.9
Qi, W.10
-
31
-
-
84946478936
-
Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming
-
Ma, T., J. Li, Y. Xu, C. Yu, T. Xu, H. Wang, K. Liu, N. Cao, B.M. Nie, S.Y. Zhu, et al. 2015. Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming. Nat. Cell Biol. 17:1379-1387. http://dx.doi.org/10.1038/ncb3256
-
(2015)
Nat. Cell Biol
, vol.17
, pp. 1379-1387
-
-
Ma, T.1
Li, J.2
Xu, Y.3
Yu, C.4
Xu, T.5
Wang, H.6
Liu, K.7
Cao, N.8
Nie, B.M.9
Zhu, S.Y.10
-
32
-
-
84880506979
-
The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy
-
Mao, K., K. Wang, X. Liu, and D.J. Klionsky. 2013. The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. Dev. Cell. 26:9-18. http://dx.doi.org/10.1016/j.devcel.2013.05.024
-
(2013)
Dev. Cell
, vol.26
, pp. 9-18
-
-
Mao, K.1
Wang, K.2
Liu, X.3
Klionsky, D.J.4
-
33
-
-
79953158981
-
Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene WHI2
-
Mendl, N., A. Occhipinti, M. Müller, P. Wild, I. Dikic, and A.S. Reichert. 2011. Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene WHI2. J. Cell Sci. 124:1339-1350. http://dx.doi.org/10.1242/jcs.076406
-
(2011)
J. Cell Sci
, vol.124
, pp. 1339-1350
-
-
Mendl, N.1
Occhipinti, A.2
Müller, M.3
Wild, P.4
Dikic, I.5
Reichert, A.S.6
-
34
-
-
0037005262
-
Autophagosome formation in mammalian cells
-
Mizushima, N., Y. Ohsumi, and T. Yoshimori. 2002. Autophagosome formation in mammalian cells. Cell Struct. Funct. 27:421-429. http://dx.doi.org/10.1247/csf.27.421
-
(2002)
Cell Struct. Funct
, vol.27
, pp. 421-429
-
-
Mizushima, N.1
Ohsumi, Y.2
Yoshimori, T.3
-
35
-
-
67649467294
-
Dynamics and diversity in autophagy mechanisms: Lessons from yeast
-
Nakatogawa, H., K. Suzuki, Y. Kamada, and Y. Ohsumi. 2009. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10:458-467. http://dx.doi.org/10.1038/nrm2708
-
(2009)
Nat. Rev. Mol. Cell Biol
, vol.10
, pp. 458-467
-
-
Nakatogawa, H.1
Suzuki, K.2
Kamada, Y.3
Ohsumi, Y.4
-
36
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra, D., A. Tanaka, D.F. Suen, and R.J. Youle. 2008. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183:795-803. http://dx.doi.org/10.1083/jcb.200809125
-
(2008)
J. Cell Biol
, vol.183
, pp. 795-803
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.F.3
Youle, R.J.4
-
37
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
Narendra, D.P., S.M. Jin, A. Tanaka, D.F. Suen, C.A. Gautier, J. Shen, M.R. Cookson, and R.J. Youle. 2010. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8:e1000298. http://dx.doi.org/10.1371/journal.pbio.1000298
-
(2010)
PLoS Biol
, vol.8
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
Suen, D.F.4
Gautier, C.A.5
Shen, J.6
Cookson, M.R.7
Youle, R.J.8
-
38
-
-
84882254367
-
The role of autophagy in neurodegenerative disease
-
Nixon, R.A. 2013. The role of autophagy in neurodegenerative disease. Nat. Med. 19:983-997. http://dx.doi.org/10.1038/nm.3232
-
(2013)
Nat. Med
, vol.19
, pp. 983-997
-
-
Nixon, R.A.1
-
39
-
-
67650246357
-
Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy
-
Okamoto, K., N. Kondo-Okamoto, and Y. Ohsumi. 2009. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell. 17:87-97. http://dx.doi.org/10.1016/j.devcel.20091.06.013
-
(2009)
Dev. Cell
, vol.17
, pp. 87-97
-
-
Okamoto, K.1
Kondo-Okamoto, N.2
Ohsumi, Y.3
-
40
-
-
78650167618
-
Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells
-
Otera, H., C. Wang, M.M. Cleland, K. Setoguchi, S. Yokota, R.J. Youle, and K. Mihara. 2010. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol. 191:1141-1158. http://dx.doi.org/10.1083/jcb.201007152
-
(2010)
J. Cell Biol
, vol.191
, pp. 1141-1158
-
-
Otera, H.1
Wang, C.2
Cleland, M.M.3
Setoguchi, K.4
Yokota, S.5
Youle, R.J.6
Mihara, K.7
-
41
-
-
84875273810
-
New insights into the function and regulation of mitochondrial fission
-
Otera, H., N. Ishihara, and K. Mihara. 2013. New insights into the function and regulation of mitochondrial fission. Biochim. Biophys. Acta. 1833:1256-1268. http://dx.doi.org/10.1016/j.bbamcr.2013.02.002
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 1256-1268
-
-
Otera, H.1
Ishihara, N.2
Mihara, K.3
-
42
-
-
84960428273
-
Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling
-
Otera, H., N. Miyata, O. Kuge, and K. Mihara. 2016. Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling. J. Cell Biol. 212:531-544. http://dx.doi.org/10.1083/jcb.201508099
-
(2016)
J. Cell Biol
, vol.212
, pp. 531-544
-
-
Otera, H.1
Miyata, N.2
Kuge, O.3
Mihara, K.4
-
43
-
-
34447276502
-
Human WIPI-1 puncta-formation: A novel assay to assess mammalian autophagy
-
Proikas-Cezanne, T., S. Ruckerbauer, Y.D. Stierhof, C. Berg, and A. Nordheim. 2007. Human WIPI-1 puncta-formation: a novel assay to assess mammalian autophagy. FEBS Lett. 581:3396-3404. http://dx.doi.org/10.1016/j.febslet.2007.06.040
-
(2007)
FEBS Lett
, vol.581
, pp. 3396-3404
-
-
Proikas-Cezanne, T.1
Ruckerbauer, S.2
Stierhof, Y.D.3
Berg, C.4
Nordheim, A.5
-
44
-
-
79959987510
-
Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
-
Rambold, A.S., B. Kostelecky, N. Elia, and J. Lippincott-Schwartz. 2011. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. USA. 108:10190-10195. http://dx.doi.org/10.1073/pnas.1107402108
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 10190-10195
-
-
Rambold, A.S.1
Kostelecky, B.2
Elia, N.3
Lippincott-Schwartz, J.4
-
45
-
-
18744400102
-
Lymphotoxin-β receptor mediates NEMO-independent NF-kappaB activation
-
Saitoh, T., H. Nakano, N. Yamamoto, and S. Yamaoka. 2002. Lymphotoxin-β receptor mediates NEMO-independent NF-kappaB activation. FEBS Lett. 532:45-51. http://dx.doi.org/10.1016/S0014-5793(02)03622-0
-
(2002)
FEBS Lett
, vol.532
, pp. 45-51
-
-
Saitoh, T.1
Nakano, H.2
Yamamoto, N.3
Yamaoka, S.4
-
46
-
-
0032482219
-
Peroxisome degradation by microautophagy in Pichia pastoris: Identification of specific steps and morphological intermediates
-
Sakai, Y., A. Koller, L.K. Rangell, G.A. Keller, and S. Subramani. 1998. Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates. J. Cell Biol. 141:625-636. http://dx.doi.org/10.1083/jcb.141.3.625
-
(1998)
J. Cell Biol
, vol.141
, pp. 625-636
-
-
Sakai, Y.1
Koller, A.2
Rangell, L.K.3
Keller, G.A.4
Subramani, S.5
-
47
-
-
0024669291
-
A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
-
Sikorski, R.S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 122:19-27.
-
(1989)
Genetics
, vol.122
, pp. 19-27
-
-
Sikorski, R.S.1
Hieter, P.2
-
48
-
-
0035166814
-
Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells
-
Smirnova, E., L. Griparic, D.L. Shurland, and A.M. van der Bliek. 2001. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell. 12:2245-2256. http://dx.doi.org/10.1091/mbc.12.8.2245
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 2245-2256
-
-
Smirnova, E.1
Griparic, L.2
Shurland, D.L.3
van der Bliek, A.M.4
-
49
-
-
84922926666
-
Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts
-
Song, M., K. Mihara, Y. Chen, L. Scorrano, and G.W. Dorn II. 2015. Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab. 21:273-285. http://dx.doi.org/10.1016/j.cmet.2014.12.011
-
(2015)
Cell Metab
, vol.21
, pp. 273-285
-
-
Song, M.1
Mihara, K.2
Chen, Y.3
Scorrano, L.4
Dorn, G.W.5
-
50
-
-
57549094368
-
The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice
-
Sou, Y.S., S. Waguri, J. Iwata, T. Ueno, T. Fujimura, T. Hara, N. Sawada, A. Yamada, N. Mizushima, Y. Uchiyama, et al. 2008. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol. Biol. Cell. 19:4762-4775. http://dx.doi.org/10.1091/mbc.E08-03-0309
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 4762-4775
-
-
Sou, Y.S.1
Waguri, S.2
Iwata, J.3
Ueno, T.4
Fujimura, T.5
Hara, T.6
Sawada, N.7
Yamada, A.8
Mizushima, N.9
Uchiyama, Y.10
-
51
-
-
0026668042
-
Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction
-
Takeshige, K., M. Baba, S. Tsuboi, T. Noda, and Y. Ohsumi. 1992. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol. 119:301-311. http://dx.doi.org/10.1083/jcb.119.2.301
-
(1992)
J. Cell Biol
, vol.119
, pp. 301-311
-
-
Takeshige, K.1
Baba, M.2
Tsuboi, S.3
Noda, T.4
Ohsumi, Y.5
-
52
-
-
78650729600
-
Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
-
Tanaka, A., M.M. Cleland, S. Xu, D.P. Narendra, D.F. Suen, M. Karbowski, and R.J. Youle. 2010. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191:1367-1380. http://dx.doi.org/10.1083/jcb.201007013
-
(2010)
J. Cell Biol
, vol.191
, pp. 1367-1380
-
-
Tanaka, A.1
Cleland, M.M.2
Xu, S.3
Narendra, D.P.4
Suen, D.F.5
Karbowski, M.6
Youle, R.J.7
-
53
-
-
79954571354
-
The interplay between mitochondrial dynamics and mitophagy
-
Twig, G., and O.S. Shirihai. 2011. The interplay between mitochondrial dynamics and mitophagy. Antioxid. Redox Signal. 14:1939-1951. http://dx.doi.org/10.1089/ars.2010.3779
-
(2011)
Antioxid. Redox Signal
, vol.14
, pp. 1939-1951
-
-
Twig, G.1
Shirihai, O.S.2
-
54
-
-
38549110110
-
Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
-
Twig, G., A. Elorza, A.J. Molina, H. Mohamed, J.D. Wikstrom, G. Walzer, L. Stiles, S.E. Haigh, S. Katz, G. Las, et al. 2008. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27:433-446. http://dx.doi.org/10.1038/sj.emboj.7601963
-
(2008)
EMBO J
, vol.27
, pp. 433-446
-
-
Twig, G.1
Elorza, A.2
Molina, A.J.3
Mohamed, H.4
Wikstrom, J.D.5
Walzer, G.6
Stiles, L.7
Haigh, S.E.8
Katz, S.9
Las, G.10
-
55
-
-
0034671421
-
Transmission electron microscopy of yeast
-
Wright, R. 2000. Transmission electron microscopy of yeast. Microsc. Res. Tech. 51:496-510. http://dx.doi.org/10.1002/1097-0029(20001215)51:6<496::AID-JEMT2>3.0.CO;2-9
-
(2000)
Microsc. Res. Tech
, vol.51
, pp. 496-510
-
-
Wright, R.1
|