-
1
-
-
84903179483
-
The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy
-
Bingol, B., J.S. Tea, L. Phu, M. Reichelt, C.E. Bakalarski, Q. Song, O. Foreman, D.S. Kirkpatrick, and M. Sheng. 2014. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature. 510:370-375.
-
(2014)
Nature
, vol.510
, pp. 370-375
-
-
Bingol, B.1
Tea, J.S.2
Phu, L.3
Reichelt, M.4
Bakalarski, C.E.5
Song, Q.6
Foreman, O.7
Kirkpatrick, D.S.8
Sheng, M.9
-
2
-
-
79954520907
-
Broad activation of the ubiquitinproteasome system by Parkin is critical for mitophagy
-
Chan, N.C., A.M. Salazar, A.H. Pham, M.J. Sweredoski, N.J. Kolawa, R.L. Graham, S. Hess, and D.C. Chan. 2011. Broad activation of the ubiquitinproteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20:1726-1737. http://dx.doi.org/10.1093/hmg/ddr048
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 1726-1737
-
-
Chan, N.C.1
Salazar, A.M.2
Pham, A.H.3
Sweredoski, M.J.4
Kolawa, N.J.5
Graham, R.L.6
Hess, S.7
Chan, D.C.8
-
3
-
-
79960649509
-
Autoregulation of Parkin activity through its ubiquitin-like domain
-
Chaugule, V.K., L. Burchell, K.R. Barber, A. Sidhu, S.J. Leslie, G.S. Shaw, and H. Walden. 2011. Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J. 30:2853-2867. http://dx.doi.org/10.1038/emboj.2011.204
-
(2011)
EMBO J.
, vol.30
, pp. 2853-2867
-
-
Chaugule, V.K.1
Burchell, L.2
Barber, K.R.3
Sidhu, A.4
Leslie, S.J.5
Shaw, G.S.6
Walden, H.7
-
4
-
-
84876531457
-
PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
-
Chen, Y., and G.W. Dorn II. 2013. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science. 340:471-475. http://dx.doi.org/10.1126/science.1231031
-
(2013)
Science
, vol.340
, pp. 471-475
-
-
Chen, Y.1
Dorn, G.W.2
-
5
-
-
84883542252
-
Ubiquitination-induced fluorescence complementation (UiFC) for detection of K48 ubiquitin chains in vitro and in live cells
-
Chen, Z., Y. Zhong, Y. Wang, S. Xu, Z. Liu, I.V. Baskakov, M.J. Monteiro, M. Karbowski, Y. Shen, and S. Fang. 2013. Ubiquitination-induced fluorescence complementation (UiFC) for detection of K48 ubiquitin chains in vitro and in live cells. PLoS ONE. 8:e73482.
-
(2013)
PLoS ONE
, vol.8
-
-
Chen, Z.1
Zhong, Y.2
Wang, Y.3
Xu, S.4
Liu, Z.5
Baskakov, I.V.6
Monteiro, M.J.7
Karbowski, M.8
Shen, Y.9
Fang, S.10
-
6
-
-
79957517961
-
Parkin mediates apparent E2-independent monoubiquitination in vitro and contains an intrinsic activity that catalyzes polyubiquitination
-
Chew, K.C., N. Matsuda, K. Saisho, G.G. Lim, C. Chai, H.M. Tan, K. Tanaka, and K.L. Lim. 2011. Parkin mediates apparent E2-independent monoubiquitination in vitro and contains an intrinsic activity that catalyzes polyubiquitination. PLoS ONE. 6:e19720. http://dx.doi.org/10.1371/journal.pone.0019720
-
(2011)
PLoS ONE
, vol.6
-
-
Chew, K.C.1
Matsuda, N.2
Saisho, K.3
Lim, G.G.4
Chai, C.5
Tan, H.M.6
Tanaka, K.7
Lim, K.L.8
-
7
-
-
84866006042
-
Governance of endocytic trafficking and signaling by reversible ubiquitylation
-
Clague, M.J., H. Liu, and S. Urbé. 2012. Governance of endocytic trafficking and signaling by reversible ubiquitylation. Dev. Cell. 23:457-467. http://dx.doi.org/10.1016/j.devcel.2012.08.011
-
(2012)
Dev. Cell
, vol.23
, pp. 457-467
-
-
Clague, M.J.1
Liu, H.2
Urbé, S.3
-
8
-
-
33745589773
-
Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin
-
Clark, I.E., M.W. Dodson, C. Jiang, J.H. Cao, J.R. Huh, J.H. Seol, S.J. Yoo, B.A. Hay, and M. Guo. 2006. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature. 441:1162-1166. http://dx.doi.org/10.1038/nature04779
-
(2006)
Nature
, vol.441
, pp. 1162-1166
-
-
Clark, I.E.1
Dodson, M.W.2
Jiang, C.3
Cao, J.H.4
Huh, J.R.5
Seol, J.H.6
Yoo, S.J.7
Hay, B.A.8
Guo, M.9
-
9
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong, L., F.A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P.D. Hsu, X. Wu, W. Jiang, L.A. Marraffini, and F. Zhang. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science. 339:819-823. http://dx.doi.org/10.1126/science.1231143
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
Habib, N.6
Hsu, P.D.7
Wu, X.8
Jiang, W.9
Marraffini, L.A.10
Zhang, F.11
-
10
-
-
84906071009
-
A specific subset of E2 ubiquitin-conjugating enzymes regulate Parkin activation and mitophagy differently
-
Fiesel, F.C., E.L. Moussaud-Lamodière, M. Ando, and W. Springer. 2014. A specific subset of E2 ubiquitin-conjugating enzymes regulate Parkin activation and mitophagy differently. J. Cell Sci. 127:3488-3504. http://dx.doi.org/10.1242/jcs.147520
-
(2014)
J. Cell Sci.
, vol.127
, pp. 3488-3504
-
-
Fiesel, F.C.1
Moussaud-Lamodière, E.L.2
Ando, M.3
Springer, W.4
-
11
-
-
78649463381
-
Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkindependent manner upon induction of mitophagy
-
Gegg, M.E., J.M. Cooper, K.Y. Chau, M. Rojo, A.H. Schapira, and J.W. Taanman. 2010. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkindependent manner upon induction of mitophagy. Hum. Mol. Genet. 19:4861-4870. http://dx.doi.org/10.1093/hmg/ddq419
-
(2010)
Hum. Mol. Genet.
, vol.19
, pp. 4861-4870
-
-
Gegg, M.E.1
Cooper, J.M.2
Chau, K.Y.3
Rojo, M.4
Schapira, A.H.5
Taanman, J.W.6
-
12
-
-
75949130828
-
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
-
Geisler, S., K.M. Holmström, D. Skujat, F.C. Fiesel, O.C. Rothfuss, P.J. Kahle, and W. Springer. 2010. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12:119-131. http://dx.doi.org/10.1038/ncb2012
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 119-131
-
-
Geisler, S.1
Holmström, K.M.2
Skujat, D.3
Fiesel, F.C.4
Rothfuss, O.C.5
Kahle, P.J.6
Springer, W.7
-
13
-
-
84905482172
-
The ubiquitinconjugating enzymes UBE2N, UBE2L3 and UBE2D2/3 are essential for Parkin-dependent mitophagy
-
Geisler, S., S. Vollmer, S. Golombek, and P.J. Kahle. 2014. The ubiquitinconjugating enzymes UBE2N, UBE2L3 and UBE2D2/3 are essential for Parkin-dependent mitophagy. J. Cell Sci. 127:3280-3293. http://dx.doi.org/10.1242/jcs.146035
-
(2014)
J. Cell Sci.
, vol.127
, pp. 3280-3293
-
-
Geisler, S.1
Vollmer, S.2
Golombek, S.3
Kahle, P.J.4
-
14
-
-
84880807019
-
Mutations in the intellectual disability gene Ube2a cause neuronal dysfunction and impair parkin-dependent mitophagy
-
Haddad, D.M., S. Vilain, M. Vos, G. Esposito, S. Matta, V.M. Kalscheuer, K. Craessaerts, M. Leyssen, R.M. Nascimento, A.M. Vianna-Morgante, et al. 2013. Mutations in the intellectual disability gene Ube2a cause neuronal dysfunction and impair parkin-dependent mitophagy. Mol. Cell. 50:831-843. http://dx.doi.org/10.1016/j.molcel.2013.04.012
-
(2013)
Mol. Cell
, vol.50
, pp. 831-843
-
-
Haddad, D.M.1
Vilain, S.2
Vos, M.3
Esposito, G.4
Matta, S.5
Kalscheuer, V.M.6
Craessaerts, K.7
Leyssen, M.8
Nascimento, R.M.9
Vianna-Morgante, A.M.10
-
15
-
-
84890429468
-
High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy
-
Hasson, S.A., L.A. Kane, K. Yamano, C.H. Huang, D.A. Sliter, E. Buehler, C. Wang, S.M. Heman-Ackah, T. Hessa, R. Guha, et al. 2013. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature. 504:291-295. http://dx.doi.org/10.1038/nature12748
-
(2013)
Nature
, vol.504
, pp. 291-295
-
-
Hasson, S.A.1
Kane, L.A.2
Yamano, K.3
Huang, C.H.4
Sliter, D.A.5
Buehler, E.6
Wang, C.7
Heman-Ackah, S.M.8
Hessa, T.9
Guha, R.10
-
16
-
-
84881260124
-
Parkin-catalyzed ubiquitinester transfer is triggered by PINK1-dependent phosphorylation
-
Iguchi, M., Y. Kujuro, K. Okatsu, F. Koyano, H. Kosako, M. Kimura, N. Suzuki, S. Uchiyama, K. Tanaka, and N. Matsuda. 2013. Parkin-catalyzed ubiquitinester transfer is triggered by PINK1-dependent phosphorylation. J. Biol. Chem. 288:22019-22032. http://dx.doi.org/10.1074/jbc. M113.467530
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 22019-22032
-
-
Iguchi, M.1
Kujuro, Y.2
Okatsu, K.3
Koyano, F.4
Kosako, H.5
Kimura, M.6
Suzuki, N.7
Uchiyama, S.8
Tanaka, K.9
Matsuda, N.10
-
17
-
-
84857850213
-
Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy
-
Itakura, E., C. Kishi-Itakura, I. Koyama-Honda, and N. Mizushima. 2012. Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J. Cell Sci. 125:1488-1499. http://dx.doi.org/10.1242/jcs.094110
-
(2012)
J. Cell Sci.
, vol.125
, pp. 1488-1499
-
-
Itakura, E.1
Kishi-Itakura, C.2
Koyama-Honda, I.3
Mizushima, N.4
-
18
-
-
84899539731
-
PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
-
Kane, L.A., M. Lazarou, A.I. Fogel, Y. Li, K. Yamano, S.A. Sarraf, S. Banerjee, and R.J. Youle. 2014. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205:143-153. http://dx.doi.org/10.1083/jcb.201402104
-
(2014)
J. Cell Biol.
, vol.205
, pp. 143-153
-
-
Kane, L.A.1
Lazarou, M.2
Fogel, A.I.3
Li, Y.4
Yamano, K.5
Sarraf, S.A.6
Banerjee, S.7
Youle, R.J.8
-
19
-
-
84899421556
-
Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
-
Kazlauskaite, A., C. Kondapalli, R. Gourlay, D.G. Campbell, M.S. Ritorto, K. Hofmann, D.R. Alessi, A. Knebel, M. Trost, and M.M. Muqit. 2014. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 460:127-139. http://dx.doi.org/10.1042/BJ20140334
-
(2014)
Biochem. J.
, vol.460
, pp. 127-139
-
-
Kazlauskaite, A.1
Kondapalli, C.2
Gourlay, R.3
Campbell, D.G.4
Ritorto, M.S.5
Hofmann, K.6
Alessi, D.R.7
Knebel, A.8
Trost, M.9
Muqit, M.M.10
-
20
-
-
33645714857
-
Phosphate-binding tag, a new tool to visualize phosphorylated proteins
-
Kinoshita, E., E. Kinoshita-Kikuta, K. Takiyama, and T. Koike. 2006. Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol. Cell. Proteomics. 5:749-757. http://dx.doi.org/10.1074/mcp.T500024-MCP200
-
(2006)
Mol. Cell. Proteomics
, vol.5
, pp. 749-757
-
-
Kinoshita, E.1
Kinoshita-Kikuta, E.2
Takiyama, K.3
Koike, T.4
-
21
-
-
84855963980
-
Phos-tag SDS-PAGE systems for phosphorylation profiling of proteins with a wide range of molecular masses under neutral pH conditions
-
Kinoshita, E., E. Kinoshita-Kikuta, and T. Koike. 2012. Phos-tag SDS-PAGE systems for phosphorylation profiling of proteins with a wide range of molecular masses under neutral pH conditions. Proteomics. 12:192-202. http://dx.doi.org/10.1002/pmic.201100524
-
(2012)
Proteomics
, vol.12
, pp. 192-202
-
-
Kinoshita, E.1
Kinoshita-Kikuta, E.2
Koike, T.3
-
22
-
-
0032499264
-
Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
-
Kitada, T., S. Asakawa, N. Hattori, H. Matsumine, Y. Yamamura, S. Minoshima, M. Yokochi, Y. Mizuno, and N. Shimizu. 1998. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 392:605-608. http://dx.doi.org/10.1038/33416
-
(1998)
Nature
, vol.392
, pp. 605-608
-
-
Kitada, T.1
Asakawa, S.2
Hattori, N.3
Matsumine, H.4
Yamamura, Y.5
Minoshima, S.6
Yokochi, M.7
Mizuno, Y.8
Shimizu, N.9
-
23
-
-
67349231313
-
Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains
-
Komander, D., F. Reyes-Turcu, J.D. Licchesi, P. Odenwaelder, K.D. Wilkinson, and D. Barford. 2009. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep. 10:466-473. http://dx.doi.org/10.1038/embor.2009.55
-
(2009)
EMBO Rep.
, vol.10
, pp. 466-473
-
-
Komander, D.1
Reyes-Turcu, F.2
Licchesi, J.D.3
Odenwaelder, P.4
Wilkinson, K.D.5
Barford, D.6
-
24
-
-
84864267876
-
PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
-
Kondapalli, C., A. Kazlauskaite, N. Zhang, H.I. Woodroof, D.G. Campbell, R. Gourlay, L. Burchell, H. Walden, T.J. Macartney, M. Deak, et al. 2012. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2:120080. http://dx.doi.org/10.1098/rsob.120080
-
(2012)
Open Biol
, vol.2
-
-
Kondapalli, C.1
Kazlauskaite, A.2
Zhang, N.3
Woodroof, H.I.4
Campbell, D.G.5
Gourlay, R.6
Burchell, L.7
Walden, H.8
Macartney, T.J.9
Deak, M.10
-
25
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parkin
-
Koyano, F., K. Okatsu, H. Kosako, Y. Tamura, E. Go, M. Kimura, Y. Kimura, H. Tsuchiya, H. Yoshihara, T. Hirokawa, et al. 2014. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. 510:162-166.
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, F.1
Okatsu, K.2
Kosako, H.3
Tamura, Y.4
Go, E.5
Kimura, M.6
Kimura, Y.7
Tsuchiya, H.8
Yoshihara, H.9
Hirokawa, T.10
-
26
-
-
84857032953
-
Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
-
Lazarou, M., S.M. Jin, L.A. Kane, and R.J. Youle. 2012. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell. 22:320-333. http://dx.doi.org/10.1016/j.devcel.2011.12.014
-
(2012)
Dev. Cell
, vol.22
, pp. 320-333
-
-
Lazarou, M.1
Jin, S.M.2
Kane, L.A.3
Youle, R.J.4
-
27
-
-
84873045973
-
PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding
-
Lazarou, M., D.P. Narendra, S.M. Jin, E. Tekle, S. Banerjee, and R.J. Youle. 2013. PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J. Cell Biol. 200:163-172. http://dx.doi.org/10.1083/jcb.201210111
-
(2013)
J. Cell Biol.
, vol.200
, pp. 163-172
-
-
Lazarou, M.1
Narendra, D.P.2
Jin, S.M.3
Tekle, E.4
Banerjee, S.5
Youle, R.J.6
-
28
-
-
84859237566
-
Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria
-
Liu, S., T. Sawada, S. Lee, W. Yu, G. Silverio, P. Alapatt, I. Millan, A. Shen, W. Saxton, T. Kanao, et al. 2012. Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet. 8:e1002537. http://dx.doi.org/10.1371/journal.pgen.1002537
-
(2012)
PLoS Genet.
, vol.8
-
-
Liu, S.1
Sawada, T.2
Lee, S.3
Yu, W.4
Silverio, G.5
Alapatt, P.6
Millan, I.7
Shen, A.8
Saxton, W.9
Kanao, T.10
-
29
-
-
84883291965
-
Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury
-
Maejima, I., A. Takahashi, H. Omori, T. Kimura, Y. Takabatake, T. Saitoh, A. Yamamoto, M. Hamasaki, T. Noda, Y. Isaka, and T. Yoshimori. 2013. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32:2336-2347. http://dx.doi.org/10.1038/emboj.2013.171
-
(2013)
EMBO J.
, vol.32
, pp. 2336-2347
-
-
Maejima, I.1
Takahashi, A.2
Omori, H.3
Kimura, T.4
Takabatake, Y.5
Saitoh, T.6
Yamamoto, A.7
Hamasaki, M.8
Noda, T.9
Isaka, Y.10
Yoshimori, T.11
-
30
-
-
77951181836
-
PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
-
Matsuda, N., S. Sato, K. Shiba, K. Okatsu, K. Saisho, C.A. Gautier, Y.S. Sou, S. Saiki, S. Kawajiri, F. Sato, et al. 2010. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189:211-221. http://dx.doi.org/10.1083/jcb.200910140
-
(2010)
J. Cell Biol.
, vol.189
, pp. 211-221
-
-
Matsuda, N.1
Sato, S.2
Shiba, K.3
Okatsu, K.4
Saisho, K.5
Gautier, C.A.6
Sou, Y.S.7
Saiki, S.8
Kawajiri, S.9
Sato, F.10
-
31
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra, D., A. Tanaka, D.F. Suen, and R.J. Youle. 2008. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183:795-803.
-
(2008)
J. Cell Biol.
, vol.183
, pp. 795-803
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.F.3
Youle, R.J.4
-
32
-
-
78649300971
-
p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
-
Narendra, D., L.A. Kane, D.N. Hauser, I.M. Fearnley, and R.J. Youle. 2010a. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy. 6:1090-1106. http://dx.doi.org/10.4161/auto.6.8.13426
-
(2010)
Autophagy
, vol.6
, pp. 1090-1106
-
-
Narendra, D.1
Kane, L.A.2
Hauser, D.N.3
Fearnley, I.M.4
Youle, R.J.5
-
33
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
Narendra, D.P., S.M. Jin, A. Tanaka, D.F. Suen, C.A. Gautier, J. Shen, M.R. Cookson, and R.J. Youle. 2010b. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8:e1000298. http://dx.doi.org/10.1371/journal.pbio.1000298
-
(2010)
PLoS Biol.
, vol.8
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
Suen, D.F.4
Gautier, C.A.5
Shen, J.6
Cookson, M.R.7
Youle, R.J.8
-
34
-
-
84868575932
-
Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism
-
Narendra, D., J.E. Walker, and R. Youle. 2012. Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb. Perspect. Biol. 4:a011338. http://dx.doi.org/10.1101/cshperspect.a011338
-
(2012)
Cold Spring Harb. Perspect. Biol.
, vol.4
-
-
Narendra, D.1
Walker, J.E.2
Youle, R.3
-
35
-
-
49549117842
-
Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies
-
Newton, K., M.L. Matsumoto, I.E. Wertz, D.S. Kirkpatrick, J.R. Lill, J. Tan, D. Dugger, N. Gordon, S.S. Sidhu, F.A. Fellouse, et al. 2008. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell. 134:668-678. http://dx.doi.org/10.1016/j.cell.2008.07.039
-
(2008)
Cell
, vol.134
, pp. 668-678
-
-
Newton, K.1
Matsumoto, M.L.2
Wertz, I.E.3
Kirkpatrick, D.S.4
Lill, J.R.5
Tan, J.6
Dugger, D.7
Gordon, N.8
Sidhu, S.S.9
Fellouse, F.A.10
-
36
-
-
77954695260
-
p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria
-
Okatsu, K., K. Saisho, M. Shimanuki, K. Nakada, H. Shitara, Y.S. Sou, M. Kimura, S. Sato, N. Hattori, M. Komatsu, et al. 2010. p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells. 15:887-900.
-
(2010)
Genes Cells
, vol.15
, pp. 887-900
-
-
Okatsu, K.1
Saisho, K.2
Shimanuki, M.3
Nakada, K.4
Shitara, H.5
Sou, Y.S.6
Kimura, M.7
Sato, S.8
Hattori, N.9
Komatsu, M.10
-
37
-
-
84868384387
-
Mitochondrial hexokinase HKI is a novel substrate of the Parkin ubiquitin ligase
-
Okatsu, K., S. Iemura, F. Koyano, E. Go, M. Kimura, T. Natsume, K. Tanaka, and N. Matsuda. 2012a. Mitochondrial hexokinase HKI is a novel substrate of the Parkin ubiquitin ligase. Biochem. Biophys. Res. Commun. 428:197-202. http://dx.doi.org/10.1016/j.bbrc.2012.10.041
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.428
, pp. 197-202
-
-
Okatsu, K.1
Iemura, S.2
Koyano, F.3
Go, E.4
Kimura, M.5
Natsume, T.6
Tanaka, K.7
Matsuda, N.8
-
38
-
-
84866072587
-
PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria
-
Okatsu, K., T. Oka, M. Iguchi, K. Imamura, H. Kosako, N. Tani, M. Kimura, E. Go, F. Koyano, M. Funayama, et al. 2012b. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat. Commun. 3:1016. http://dx.doi.org/10.1038/ncomms2016
-
(2012)
Nat. Commun.
, vol.3
, pp. 1016
-
-
Okatsu, K.1
Oka, T.2
Iguchi, M.3
Imamura, K.4
Kosako, H.5
Tani, N.6
Kimura, M.7
Go, E.8
Koyano, F.9
Funayama, M.10
-
39
-
-
84890957474
-
A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment
-
Okatsu, K., M. Uno, F. Koyano, E. Go, M. Kimura, T. Oka, K. Tanaka, and N. Matsuda. 2013. A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment. J. Biol. Chem. 288:36372-36384. http://dx.doi.org/10.1074/jbc. M113.509653
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 36372-36384
-
-
Okatsu, K.1
Uno, M.2
Koyano, F.3
Go, E.4
Kimura, M.5
Oka, T.6
Tanaka, K.7
Matsuda, N.8
-
40
-
-
84901044873
-
Distinct modes of ubiquitination of peroxisome-targeting signal type 1 (PTS1) receptor Pex5p regulate PTS1 protein import
-
Okumoto, K., H. Noda, and Y. Fujiki. 2014. Distinct modes of ubiquitination of peroxisome-targeting signal type 1 (PTS1) receptor Pex5p regulate PTS1 protein import. J. Biol. Chem. 289:14089-14108. http://dx.doi.org/10.1074/jbc. M113.527937
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 14089-14108
-
-
Okumoto, K.1
Noda, H.2
Fujiki, Y.3
-
41
-
-
84922434418
-
Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis
-
Ordureau, A., S.A. Sarraf, D.M. Duda, J.M. Heo, M.P. Jedrychowski, V.O. Sviderskiy, J.L. Olszewski, J.T. Koerber, T. Xie, S.A. Beausoleil, et al. 2014. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell. 56:360-375. http://dx.doi.org/10.1016/j.molcel.2014.09.007
-
(2014)
Mol. Cell
, vol.56
, pp. 360-375
-
-
Ordureau, A.1
Sarraf, S.A.2
Duda, D.M.3
Heo, J.M.4
Jedrychowski, M.P.5
Sviderskiy, V.O.6
Olszewski, J.L.7
Koerber, J.T.8
Xie, T.9
Beausoleil, S.A.10
-
42
-
-
33745602748
-
Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin
-
Park, J., S.B. Lee, S. Lee, Y. Kim, S. Song, S. Kim, E. Bae, J. Kim, M. Shong, J.M. Kim, and J. Chung. 2006. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 441:1157-1161. http://dx.doi.org/10.1038/nature04788
-
(2006)
Nature
, vol.441
, pp. 1157-1161
-
-
Park, J.1
Lee, S.B.2
Lee, S.3
Kim, Y.4
Song, S.5
Kim, S.6
Bae, E.7
Kim, J.8
Shong, M.9
Kim, J.M.10
Chung, J.11
-
43
-
-
70350447348
-
Pex2 and pex12 function as protein-ubiquitin ligases in peroxisomal protein import
-
Platta, H.W., F. El Magraoui, B.E. Bäumer, D. Schlee, W. Girzalsky, and R. Erdmann. 2009. Pex2 and pex12 function as protein-ubiquitin ligases in peroxisomal protein import. Mol. Cell. Biol. 29:5505-5516. http://dx.doi.org/10.1128/MCB.00388-09
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 5505-5516
-
-
Platta, H.W.1
El Magraoui, F.2
Bäumer, B.E.3
Schlee, D.4
Girzalsky, W.5
Erdmann, R.6
-
44
-
-
77955844260
-
The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway
-
Poole, A.C., R.E. Thomas, S. Yu, E.S. Vincow, and L. Pallanck. 2010. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS ONE. 5:e10054. http://dx.doi.org/10.1371/journal.pone.0010054
-
(2010)
PLoS ONE
, vol.5
-
-
Poole, A.C.1
Thomas, R.E.2
Yu, S.3
Vincow, E.S.4
Pallanck, L.5
-
45
-
-
79952369437
-
Mutations in PINK1 and Parkin impair ubiquitination of Mitofusins in human fibroblasts
-
Rakovic, A., A. Grünewald, J. Kottwitz, N. Brüggemann, P.P. Pramstaller, K. Lohmann, and C. Klein. 2011. Mutations in PINK1 and Parkin impair ubiquitination of Mitofusins in human fibroblasts. PLoS ONE. 6:e16746. http://dx.doi.org/10.1371/journal.pone.0016746
-
(2011)
PLoS ONE
, vol.6
-
-
Rakovic, A.1
Grünewald, A.2
Kottwitz, J.3
Brüggemann, N.4
Pramstaller, P.P.5
Lohmann, K.6
Klein, C.7
-
46
-
-
84879674444
-
Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases
-
Riley, B.E., J.C. Lougheed, K. Callaway, M. Velasquez, E. Brecht, L. Nguyen, T. Shaler, D. Walker, Y. Yang, K. Regnstrom, et al. 2013. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat. Commun. 4:1982. http://dx.doi.org/10.1038/ncomms2982
-
(2013)
Nat. Commun.
, vol.4
, pp. 1982
-
-
Riley, B.E.1
Lougheed, J.C.2
Callaway, K.3
Velasquez, M.4
Brecht, E.5
Nguyen, L.6
Shaler, T.7
Walker, D.8
Yang, Y.9
Regnstrom, K.10
-
47
-
-
60549107173
-
Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome
-
Saeki, Y., T. Kudo, T. Sone, Y. Kikuchi, H. Yokosawa, A. Toh-e, and K. Tanaka. 2009. Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J. 28:359-371. http://dx.doi.org/10.1038/emboj.2008.305
-
(2009)
EMBO J.
, vol.28
, pp. 359-371
-
-
Saeki, Y.1
Kudo, T.2
Sone, T.3
Kikuchi, Y.4
Yokosawa, H.5
Toh-e, A.6
Tanaka, K.7
-
48
-
-
84876296881
-
Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
-
Sarraf, S.A., M. Raman, V. Guarani-Pereira, M.E. Sowa, E.L. Huttlin, S.P. Gygi, and J.W. Harper. 2013. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature. 496:372-376. http://dx.doi.org/10.1038/nature12043
-
(2013)
Nature
, vol.496
, pp. 372-376
-
-
Sarraf, S.A.1
Raman, M.2
Guarani-Pereira, V.3
Sowa, M.E.4
Huttlin, E.L.5
Gygi, S.P.6
Harper, J.W.7
-
49
-
-
84871891737
-
PINK1-mediated phosphorylation of the Parkin ubiquitinlike domain primes mitochondrial translocation of Parkin and regulates mitophagy
-
Shiba-Fukushima, K., Y. Imai, S. Yoshida, Y. Ishihama, T. Kanao, S. Sato, and N. Hattori. 2012. PINK1-mediated phosphorylation of the Parkin ubiquitinlike domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep. 2:1002. http://dx.doi.org/10.1038/srep01002
-
(2012)
Sci Rep
, vol.2
, pp. 1002
-
-
Shiba-Fukushima, K.1
Imai, Y.2
Yoshida, S.3
Ishihama, Y.4
Kanao, T.5
Sato, S.6
Hattori, N.7
-
50
-
-
84919629959
-
Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering
-
Shiba-Fukushima, K., T. Arano, G. Matsumoto, T. Inoshita, S. Yoshida, Y. Ishihama, K.Y. Ryu, N. Nukina, N. Hattori, and Y. Imai. 2014. Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering. PLoS Genet. 10:e1004861. http://dx.doi.org/10.1371/journal.pgen.1004861
-
(2014)
PLoS Genet.
, vol.10
-
-
Shiba-Fukushima, K.1
Arano, T.2
Matsumoto, G.3
Inoshita, T.4
Yoshida, S.5
Ishihama, Y.6
Ryu, K.Y.7
Nukina, N.8
Hattori, N.9
Imai, Y.10
-
51
-
-
78650729600
-
Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
-
Tanaka, A., M.M. Cleland, S. Xu, D.P. Narendra, D.F. Suen, M. Karbowski, and R.J. Youle. 2010. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191:1367-1380.
-
(2010)
J. Cell Biol.
, vol.191
, pp. 1367-1380
-
-
Tanaka, A.1
Cleland, M.M.2
Xu, S.3
Narendra, D.P.4
Suen, D.F.5
Karbowski, M.6
Youle, R.J.7
-
52
-
-
84879251778
-
Structure of parkin reveals mechanisms for ubiquitin ligase activation
-
Trempe, J.F., V. Sauvé, K. Grenier, M. Seirafi, M.Y. Tang, M. Ménade, S. Al-Abdul-Wahid, J. Krett, K. Wong, G. Kozlov, et al. 2013. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science. 340:1451-1455. http://dx.doi.org/10.1126/science.1237908
-
(2013)
Science
, vol.340
, pp. 1451-1455
-
-
Trempe, J.F.1
Sauvé, V.2
Grenier, K.3
Seirafi, M.4
Tang, M.Y.5
Ménade, M.6
Al-Abdul-Wahid, S.7
Krett, J.8
Wong, K.9
Kozlov, G.10
-
53
-
-
2442668926
-
Hereditary early-onset Parkinson's disease caused by mutations in PINK1
-
Valente, E.M., P.M. Abou-Sleiman, V. Caputo, M.M. Muqit, K. Harvey, S. Gispert, Z. Ali, D. Del Turco, A.R. Bentivoglio, D.G. Healy, et al. 2004. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science. 304:1158-1160. http://dx.doi.org/10.1126/science.1096284
-
(2004)
Science
, vol.304
, pp. 1158-1160
-
-
Valente, E.M.1
Abou-Sleiman, P.M.2
Caputo, V.3
Muqit, M.M.4
Harvey, K.5
Gispert, S.6
Ali, Z.7
Del Turco, D.8
Bentivoglio, A.R.9
Healy, D.G.10
-
54
-
-
84866300942
-
Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells
-
van Wijk, S.J., E. Fiskin, M. Putyrski, F. Pampaloni, J. Hou, P. Wild, T. Kensche, H.E. Grecco, P. Bastiaens, and I. Dikic. 2012. Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. Mol. Cell. 47:797-809. http://dx.doi.org/10.1016/j.molcel.2012.06.017
-
(2012)
Mol. Cell
, vol.47
, pp. 797-809
-
-
van Wijk, S.J.1
Fiskin, E.2
Putyrski, M.3
Pampaloni, F.4
Hou, J.5
Wild, P.6
Kensche, T.7
Grecco, H.E.8
Bastiaens, P.9
Dikic, I.10
-
55
-
-
75949098487
-
PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
-
Vives-Bauza, C., C. Zhou, Y. Huang, M. Cui, R.L. de Vries, J. Kim, J. May, M.A. Tocilescu, W. Liu, H.S. Ko, et al. 2010. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl. Acad. Sci. USA. 107:378-383. http://dx.doi.org/10.1073/pnas.0911187107
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 378-383
-
-
Vives-Bauza, C.1
Zhou, C.2
Huang, Y.3
Cui, M.4
de Vries, R.L.5
Kim, J.6
May, J.7
Tocilescu, M.A.8
Liu, W.9
Ko, H.S.10
-
56
-
-
81055140895
-
PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
-
Wang, X., D. Winter, G. Ashrafi, J. Schlehe, Y.L. Wong, D. Selkoe, S. Rice, J. Steen, M.J. LaVoie, and T.L. Schwarz. 2011. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell. 147:893-906. http://dx.doi.org/10.1016/j.cell.2011.10.018
-
(2011)
Cell
, vol.147
, pp. 893-906
-
-
Wang, X.1
Winter, D.2
Ashrafi, G.3
Schlehe, J.4
Wong, Y.L.5
Selkoe, D.6
Rice, S.7
Steen, J.8
LaVoie, M.J.9
Schwarz, T.L.10
-
57
-
-
84881477223
-
Structure of the human Parkin ligase domain in an autoinhibited state
-
Wauer, T., and D. Komander. 2013. Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J. 32:2099-2112. http://dx.doi.org/10.1038/emboj.2013.125
-
(2013)
EMBO J.
, vol.32
, pp. 2099-2112
-
-
Wauer, T.1
Komander, D.2
-
58
-
-
79957949190
-
UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids
-
Wenzel, D.M., A. Lissounov, P.S. Brzovic, and R.E. Klevit. 2011. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature. 474:105-108. http://dx.doi.org/10.1038/nature09966
-
(2011)
Nature
, vol.474
, pp. 105-108
-
-
Wenzel, D.M.1
Lissounov, A.2
Brzovic, P.S.3
Klevit, R.E.4
-
59
-
-
34248359155
-
MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity
-
Wiley, S.E., A.N. Murphy, S.A. Ross, P. van der Geer, and J.E. Dixon. 2007. MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity. Proc. Natl. Acad. Sci. USA. 104:5318-5323. http://dx.doi.org/10.1073/pnas.0701078104
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 5318-5323
-
-
Wiley, S.E.1
Murphy, A.N.2
Ross, S.A.3
van der Geer, P.4
Dixon, J.E.5
-
60
-
-
84864197915
-
Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact of mutations
-
Woodroof, H.I., J.H. Pogson, M. Begley, L.C. Cantley, M. Deak, D.G. Campbell, D.M. van Aalten, A.J. Whitworth, D.R. Alessi, and M.M. Muqit. 2011. Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact of mutations. Open Biol. 1:110012. http://dx.doi.org/10.1098/rsob.110012
-
(2011)
Open Biol
, vol.1
-
-
Woodroof, H.I.1
Pogson, J.H.2
Begley, M.3
Cantley, L.C.4
Deak, M.5
Campbell, D.G.6
van Aalten, D.M.7
Whitworth, A.J.8
Alessi, D.R.9
Muqit, M.M.10
-
61
-
-
70350015537
-
A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNF? and IL-1?
-
Xu, M., B. Skaug, W. Zeng, and Z.J. Chen. 2009. A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNF? and IL-1?. Mol. Cell. 36:302-314. http://dx.doi.org/10.1016/j.molcel.2009.10.002
-
(2009)
Mol. Cell
, vol.36
, pp. 302-314
-
-
Xu, M.1
Skaug, B.2
Zeng, W.3
Chen, Z.J.4
-
62
-
-
84887453820
-
PINK1 is degraded through the N-end rule pathway
-
Yamano, K., and R.J. Youle. 2013. PINK1 is degraded through the N-end rule pathway. Autophagy. 9:1758-1769. http://dx.doi.org/10.4161/auto.24633
-
(2013)
Autophagy
, vol.9
, pp. 1758-1769
-
-
Yamano, K.1
Youle, R.J.2
-
63
-
-
80053430054
-
Spatiotemporally controlled initiation of Parkin-mediated mitophagy within single cells
-
Yang, J.Y., and W.Y. Yang. 2011. Spatiotemporally controlled initiation of Parkin-mediated mitophagy within single cells. Autophagy. 7:1230-1238. http://dx.doi.org/10.4161/auto.7.10.16626
-
(2011)
Autophagy
, vol.7
, pp. 1230-1238
-
-
Yang, J.Y.1
Yang, W.Y.2
-
64
-
-
33746080412
-
Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin
-
Yang, Y., S. Gehrke, Y. Imai, Z. Huang, Y. Ouyang, J.W. Wang, L. Yang, M.F. Beal, H. Vogel, and B. Lu. 2006. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl. Acad. Sci. USA. 103:10793-10798. http://dx.doi.org/10.1073/pnas.0602493103
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 10793-10798
-
-
Yang, Y.1
Gehrke, S.2
Imai, Y.3
Huang, Z.4
Ouyang, Y.5
Wang, J.W.6
Yang, L.7
Beal, M.F.8
Vogel, H.9
Lu, B.10
-
65
-
-
79957472437
-
Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
-
Yoshii, S.R., C. Kishi, N. Ishihara, and N. Mizushima. 2011. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J. Biol. Chem. 286:19630-19640. http://dx.doi.org/10.1074/jbc. M110.209338
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 19630-19640
-
-
Yoshii, S.R.1
Kishi, C.2
Ishihara, N.3
Mizushima, N.4
-
66
-
-
84906315018
-
PINK1 triggers autocatalytic activation of Parkin to specify cell fate decisions
-
Zhang, C., S. Lee, Y. Peng, E. Bunker, E. Giaime, J. Shen, Z. Zhou, and X. Liu. 2014. PINK1 triggers autocatalytic activation of Parkin to specify cell fate decisions. Curr. Biol. 24:1854-1865. http://dx.doi.org/10.1016/j.cub.2014.07.014
-
(2014)
Curr. Biol.
, vol.24
, pp. 1854-1865
-
-
Zhang, C.1
Lee, S.2
Peng, Y.3
Bunker, E.4
Giaime, E.5
Shen, J.6
Zhou, Z.7
Liu, X.8
-
67
-
-
84879885169
-
Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism
-
Zheng, X., and T. Hunter. 2013. Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism. Cell Res. 23:886-897. http://dx.doi.org/10.1038/cr.2013.66
-
(2013)
Cell Res.
, vol.23
, pp. 886-897
-
-
Zheng, X.1
Hunter, T.2
-
68
-
-
77950384477
-
Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin
-
Ziviani, E., R.N. Tao, and A.J. Whitworth. 2010. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl. Acad. Sci. USA. 107:5018-5023. http://dx.doi.org/10.1073/pnas.0913485107
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 5018-5023
-
-
Ziviani, E.1
Tao, R.N.2
Whitworth, A.J.3
|