-
1
-
-
84896870884
-
RBR E3 ubiquitin ligases: new structures, new insights, new question
-
Spratt DE, Walden H, Shaw GS, (2014) RBR E3 ubiquitin ligases: new structures, new insights, new questions. Biochem J 458: 421–437.
-
(2014)
Biochem J
, vol.458
, pp. 421-437
-
-
Spratt, D.E.1
Walden, H.2
Shaw, G.S.3
-
2
-
-
67649383293
-
Identification of a novel Zn2+-binding domain in the autosomal recessive juvenile Parkinson-related E3 ligase parki
-
Hristova VA, Beasley SA, Rylett RJ, Shaw GS, (2009) Identification of a novel Zn2+-binding domain in the autosomal recessive juvenile Parkinson-related E3 ligase parkin. J Biol Chem 284: 14978–14986.
-
(2009)
J Biol Chem
, vol.284
, pp. 14978-14986
-
-
Hristova, V.A.1
Beasley, S.A.2
Rylett, R.J.3
Shaw, G.S.4
-
3
-
-
0032499264
-
Mutations in the parkin gene cause autosomal recessive juvenile parkinsonis
-
Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, et al. (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605–608.
-
(1998)
Nature
, vol.392
, pp. 605-608
-
-
Kitada, T.1
Asakawa, S.2
Hattori, N.3
Matsumine, H.4
Yamamura, Y.5
-
4
-
-
33745589773
-
Drosophila pink1 is required for mitochondrial function and interacts genetically with parki
-
Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, et al. (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441: 1162–1166.
-
(2006)
Nature
, vol.441
, pp. 1162-1166
-
-
Clark, I.E.1
Dodson, M.W.2
Jiang, C.3
Cao, J.H.4
Huh, J.R.5
-
5
-
-
33745602748
-
Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parki
-
Park J, Lee SB, Lee S, Kim Y, Song S, et al. (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441: 1157–1161.
-
(2006)
Nature
, vol.441
, pp. 1157-1161
-
-
Park, J.1
Lee, S.B.2
Lee, S.3
Kim, Y.4
Song, S.5
-
6
-
-
33746080412
-
Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parki
-
Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y, et al. (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A 103: 10793–10798.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 10793-10798
-
-
Yang, Y.1
Gehrke, S.2
Imai, Y.3
Huang, Z.4
Ouyang, Y.5
-
7
-
-
75949098487
-
PINK1-dependent recruitment of Parkin to mitochondria in mitophag
-
Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, et al. (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A 107: 378–383.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 378-383
-
-
Vives-Bauza, C.1
Zhou, C.2
Huang, Y.3
Cui, M.4
de Vries, R.L.5
-
8
-
-
75949130828
-
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM
-
Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, et al. (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12: 119–131.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 119-131
-
-
Geisler, S.1
Holmstrom, K.M.2
Skujat, D.3
Fiesel, F.C.4
Rothfuss, O.C.5
-
9
-
-
77951181836
-
PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophag
-
Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, et al. (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189: 211–221.
-
(2010)
J Cell Biol
, vol.189
, pp. 211-221
-
-
Matsuda, N.1
Sato, S.2
Shiba, K.3
Okatsu, K.4
Saisho, K.5
-
10
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parki
-
Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, et al. (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8: e1000298.
-
(2010)
PLoS Biol
, vol.8
, pp. 1000298
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
Suen, D.F.4
Gautier, C.A.5
-
11
-
-
77950371695
-
PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophag
-
Kawajiri S, Saiki S, Sato S, Sato F, Hatano T, et al. (2010) PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS Lett 584: 1073–1079.
-
(2010)
FEBS Lett
, vol.584
, pp. 1073-1079
-
-
Kawajiri, S.1
Saiki, S.2
Sato, S.3
Sato, F.4
Hatano, T.5
-
12
-
-
2442668926
-
Hereditary early-onset Parkinson's disease caused by mutations in PINK
-
Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, et al. (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304: 1158–1160.
-
(2004)
Science
, vol.304
, pp. 1158-1160
-
-
Valente, E.M.1
Abou-Sleiman, P.M.2
Caputo, V.3
Muqit, M.M.4
Harvey, K.5
-
13
-
-
37549029702
-
Cytoplasmic localization and proteasomal degradation of N-terminally cleaved form of PINK
-
Takatori S, Ito G, Iwatsubo T, (2008) Cytoplasmic localization and proteasomal degradation of N-terminally cleaved form of PINK1. Neurosci Lett 430: 13–17.
-
(2008)
Neurosci Lett
, vol.430
, pp. 13-17
-
-
Takatori, S.1
Ito, G.2
Iwatsubo, T.3
-
14
-
-
84887453820
-
PINK1 is degraded through the N-end rule pathwa
-
Yamano K, Youle RJ, (2013) PINK1 is degraded through the N-end rule pathway. Autophagy 9: 1758–1769.
-
(2013)
Autophagy
, vol.9
, pp. 1758-1769
-
-
Yamano, K.1
Youle, R.J.2
-
15
-
-
84864267876
-
PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 6
-
Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, et al. (2012) PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2: 120080.
-
(2012)
Open Biol
, vol.2
, pp. 120080
-
-
Kondapalli, C.1
Kazlauskaite, A.2
Zhang, N.3
Woodroof, H.I.4
Campbell, D.G.5
-
16
-
-
84866072587
-
PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondri
-
Okatsu K, Oka T, Iguchi M, Imamura K, Kosako H, et al. (2012) PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat Commun 3: 1016.
-
(2012)
Nat Commun
, vol.3
, pp. 1016
-
-
Okatsu, K.1
Oka, T.2
Iguchi, M.3
Imamura, K.4
Kosako, H.5
-
17
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophag
-
Narendra D, Tanaka A, Suen DF, Youle RJ, (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183: 795–803.
-
(2008)
J Cell Biol
, vol.183
, pp. 795-803
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.F.3
Youle, R.J.4
-
18
-
-
78650729600
-
Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parki
-
Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, et al. (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191: 1367–1380.
-
(2010)
J Cell Biol
, vol.191
, pp. 1367-1380
-
-
Tanaka, A.1
Cleland, M.M.2
Xu, S.3
Narendra, D.P.4
Suen, D.F.5
-
19
-
-
77954695260
-
p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondri
-
Okatsu K, Saisho K, Shimanuki M, Nakada K, Shitara H, et al. (2010) p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells 15: 887–900.
-
(2010)
Genes Cells
, vol.15
, pp. 887-900
-
-
Okatsu, K.1
Saisho, K.2
Shimanuki, M.3
Nakada, K.4
Shitara, H.5
-
20
-
-
79954520907
-
Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophag
-
Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, et al. (2011) Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 20: 1726–1737.
-
(2011)
Hum Mol Genet
, vol.20
, pp. 1726-1737
-
-
Chan, N.C.1
Salazar, A.M.2
Pham, A.H.3
Sweredoski, M.J.4
Kolawa, N.J.5
-
21
-
-
79957949190
-
UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrid
-
Wenzel DM, Lissounov A, Brzovic PS, Klevit RE, (2011) UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 474: 105–108.
-
(2011)
Nature
, vol.474
, pp. 105-108
-
-
Wenzel, D.M.1
Lissounov, A.2
Brzovic, P.S.3
Klevit, R.E.4
-
22
-
-
84873045973
-
PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial bindin
-
Lazarou M, Narendra DP, Jin SM, Tekle E, Banerjee S, et al. (2013) PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J Cell Biol 200: 163–172.
-
(2013)
J Cell Biol
, vol.200
, pp. 163-172
-
-
Lazarou, M.1
Narendra, D.P.2
Jin, S.M.3
Tekle, E.4
Banerjee, S.5
-
23
-
-
79960649509
-
Autoregulation of Parkin activity through its ubiquitin-like domai
-
Chaugule VK, Burchell L, Barber KR, Sidhu A, Leslie SJ, et al. (2011) Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J 30: 2853–2867.
-
(2011)
EMBO J
, vol.30
, pp. 2853-2867
-
-
Chaugule, V.K.1
Burchell, L.2
Barber, K.R.3
Sidhu, A.4
Leslie, S.J.5
-
24
-
-
84871891737
-
PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophag
-
Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, et al. (2012) PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep 2: 1002.
-
(2012)
Sci Rep
, vol.2
, pp. 1002
-
-
Shiba-Fukushima, K.1
Imai, Y.2
Yoshida, S.3
Ishihama, Y.4
Kanao, T.5
-
25
-
-
84899421556
-
Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser6
-
Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, et al. (2014) Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J 460: 127–139.
-
(2014)
Biochem J
, vol.460
, pp. 127-139
-
-
Kazlauskaite, A.1
Kondapalli, C.2
Gourlay, R.3
Campbell, D.G.4
Ritorto, M.S.5
-
26
-
-
84899539731
-
PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activit
-
Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, et al. (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205: 143–153.
-
(2014)
J Cell Biol
, vol.205
, pp. 143-153
-
-
Kane, L.A.1
Lazarou, M.2
Fogel, A.I.3
Li, Y.4
Yamano, K.5
-
27
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parki
-
Koyano K, Okatsu K, Kosako H, Tamura Y, Go E, et al. (2014) Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510: 162–166.
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, K.1
Okatsu, K.2
Kosako, H.3
Tamura, Y.4
Go, E.5
-
28
-
-
34250007128
-
The mouse polyubiquitin gene UbC is essential for fetal liver development, cell-cycle progression and stress toleranc
-
Ryu KY, Maehr R, Gilchrist CA, Long MA, Bouley DM, et al. (2007) The mouse polyubiquitin gene UbC is essential for fetal liver development, cell-cycle progression and stress tolerance. EMBO J 26: 2693–2706.
-
(2007)
EMBO J
, vol.26
, pp. 2693-2706
-
-
Ryu, K.Y.1
Maehr, R.2
Gilchrist, C.A.3
Long, M.A.4
Bouley, D.M.5
-
29
-
-
84879885169
-
Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanis
-
Zheng X, Hunter T, (2013) Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism. Cell Res 23: 886–897.
-
(2013)
Cell Res
, vol.23
, pp. 886-897
-
-
Zheng, X.1
Hunter, T.2
-
30
-
-
84879251778
-
Structure of parkin reveals mechanisms for ubiquitin ligase activatio
-
Trempe JF, Sauve V, Grenier K, Seirafi M, Tang MY, et al. (2013) Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340: 1451–1455.
-
(2013)
Science
, vol.340
, pp. 1451-1455
-
-
Trempe, J.F.1
Sauve, V.2
Grenier, K.3
Seirafi, M.4
Tang, M.Y.5
-
31
-
-
84881477223
-
Structure of the human Parkin ligase domain in an autoinhibited stat
-
Wauer T, Komander D, (2013) Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J 32: 2099–2112.
-
(2013)
EMBO J
, vol.32
, pp. 2099-2112
-
-
Wauer, T.1
Komander, D.2
-
32
-
-
77950384477
-
Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusi
-
Ziviani E, Tao RN, Whitworth AJ, (2010) Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci U S A 107: 5018–5023.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 5018-5023
-
-
Ziviani, E.1
Tao, R.N.2
Whitworth, A.J.3
-
33
-
-
77955844260
-
The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathwa
-
Poole AC, Thomas RE, Yu S, Vincow ES, Pallanck L, (2010) The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS One 5: e10054.
-
(2010)
PLoS One
, vol.5
, pp. 10054
-
-
Poole, A.C.1
Thomas, R.E.2
Yu, S.3
Vincow, E.S.4
Pallanck, L.5
-
34
-
-
84876886863
-
The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEM
-
Muller-Rischart AK, Pilsl A, Beaudette P, Patra M, Hadian K, et al. (2013) The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. Mol Cell 49: 908–921.
-
(2013)
Mol Cell
, vol.49
, pp. 908-921
-
-
Muller-Rischart, A.K.1
Pilsl, A.2
Beaudette, P.3
Patra, M.4
Hadian, K.5
-
35
-
-
59649103156
-
Involvement of linear polyubiquitylation of NEMO in NF-kappaB activatio
-
Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, et al. (2009) Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 11: 123–132.
-
(2009)
Nat Cell Biol
, vol.11
, pp. 123-132
-
-
Tokunaga, F.1
Sakata, S.2
Saeki, Y.3
Satomi, Y.4
Kirisako, T.5
-
36
-
-
84878118233
-
Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespa
-
Rana A, Rera M, Walker DW, (2013) Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Natl Acad Sci U S A 110: 8638–8643.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 8638-8643
-
-
Rana, A.1
Rera, M.2
Walker, D.W.3
-
37
-
-
84922434418
-
-
Ordureau A, Sarraf SA, Duda DM, Heo JM, Jedrychowski MP, et al. (2014) Quantitative Proteomics Reveal a Feedforward Mechanism for Mitochondrial PARKIN Translocation and Ubiquitin Chain Synthesis. Mol Cell. in press
-
-
-
-
38
-
-
84912061592
-
-
Shiba-Fukushima K, Inoshita T, Hattori N, Imai Y (2014) Lysine 63-Linked Polyubiquitination Is Dispensable for Parkin-Mediated Mitophagy. J Biol Chem. in press
-
-
-
-
39
-
-
0034680913
-
Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activit
-
Imai Y, Soda M, Takahashi R, (2000) Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem 275: 35661–35664.
-
(2000)
J Biol Chem
, vol.275
, pp. 35661-35664
-
-
Imai, Y.1
Soda, M.2
Takahashi, R.3
-
40
-
-
67349239050
-
Parkin stabilizes PINK1 through direct interactio
-
Shiba K, Arai T, Sato S, Kubo S, Ohba Y, et al. (2009) Parkin stabilizes PINK1 through direct interaction. Biochem Biophys Res Commun 383: 331–335.
-
(2009)
Biochem Biophys Res Commun
, vol.383
, pp. 331-335
-
-
Shiba, K.1
Arai, T.2
Sato, S.3
Kubo, S.4
Ohba, Y.5
-
41
-
-
84903485895
-
PINK1-Mediated Phosphorylation of Parkin Boosts Parkin Activity in Drosophil
-
Shiba-Fukushima K, Inoshita T, Hattori N, Imai Y, (2014) PINK1-Mediated Phosphorylation of Parkin Boosts Parkin Activity in Drosophila. PLoS Genet 10: e1004391.
-
(2014)
PLoS Genet
, vol.10
, pp. 1004391
-
-
Shiba-Fukushima, K.1
Inoshita, T.2
Hattori, N.3
Imai, Y.4
-
42
-
-
84878931274
-
PINK1 rendered temperature sensitive by disease-associated and engineered mutation
-
Narendra DP, Wang C, Youle RJ, Walker JE, (2013) PINK1 rendered temperature sensitive by disease-associated and engineered mutations. Hum Mol Genet 22: 2572–2589.
-
(2013)
Hum Mol Genet
, vol.22
, pp. 2572-2589
-
-
Narendra, D.P.1
Wang, C.2
Youle, R.J.3
Walker, J.E.4
-
43
-
-
84893856499
-
Phosphoproteome analysis of formalin-fixed and paraffin-embedded tissue sections mounted on microscope slide
-
Wakabayashi M, Yoshihara H, Masuda T, Tsukahara M, Sugiyama N, et al. (2014) Phosphoproteome analysis of formalin-fixed and paraffin-embedded tissue sections mounted on microscope slides. J Proteome Res 13: 915–924.
-
(2014)
J Proteome Res
, vol.13
, pp. 915-924
-
-
Wakabayashi, M.1
Yoshihara, H.2
Masuda, T.3
Tsukahara, M.4
Sugiyama, N.5
-
44
-
-
84857059905
-
Human proteome analysis by using reversed phase monolithic silica capillary columns with enhanced sensitivit
-
Iwasaki M, Sugiyama N, Tanaka N, Ishihama Y, (2012) Human proteome analysis by using reversed phase monolithic silica capillary columns with enhanced sensitivity. J Chromatogr A 1228: 292–297.
-
(2012)
J Chromatogr A
, vol.1228
, pp. 292-297
-
-
Iwasaki, M.1
Sugiyama, N.2
Tanaka, N.3
Ishihama, Y.4
-
45
-
-
33749853607
-
A probability-based approach for high-throughput protein phosphorylation analysis and site localizatio
-
Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP, (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24: 1285–1292.
-
(2006)
Nat Biotechnol
, vol.24
, pp. 1285-1292
-
-
Beausoleil, S.A.1
Villen, J.2
Gerber, S.A.3
Rush, J.4
Gygi, S.P.5
-
46
-
-
84864197915
-
Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact of mutation
-
Woodroof HI, Pogson JH, Begley M, Cantley LC, Deak M, et al. (2011) Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact of mutations. Open Biol 1: 110012.
-
(2011)
Open Biol
, vol.1
, pp. 110012
-
-
Woodroof, H.I.1
Pogson, J.H.2
Begley, M.3
Cantley, L.C.4
Deak, M.5
-
47
-
-
0030763228
-
Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosi
-
Ellenberg J, Siggia ED, Moreira JE, Smith CL, Presley JF, et al. (1997) Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol 138: 1193–1206.
-
(1997)
J Cell Biol
, vol.138
, pp. 1193-1206
-
-
Ellenberg, J.1
Siggia, E.D.2
Moreira, J.E.3
Smith, C.L.4
Presley, J.F.5
-
48
-
-
2542560342
-
Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stres
-
Pesah Y, Pham T, Burgess H, Middlebrooks B, Verstreken P, et al. (2004) Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development 131: 2183–2194.
-
(2004)
Development
, vol.131
, pp. 2183-2194
-
-
Pesah, Y.1
Pham, T.2
Burgess, H.3
Middlebrooks, B.4
Verstreken, P.5
-
49
-
-
22544458436
-
Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophil
-
Cha GH, Kim S, Park J, Lee E, Kim M, et al. (2005) Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc Natl Acad Sci U S A 102: 10345–10350.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 10345-10350
-
-
Cha, G.H.1
Kim, S.2
Park, J.3
Lee, E.4
Kim, M.5
-
50
-
-
78650716707
-
The loss of PGAM5 suppresses the mitochondrial degeneration caused by inactivation of PINK1 in Drosophil
-
Imai Y, Kanao T, Sawada T, Kobayashi Y, Moriwaki Y, et al. (2010) The loss of PGAM5 suppresses the mitochondrial degeneration caused by inactivation of PINK1 in Drosophila. PLoS Genet 6: e1001229.
-
(2010)
PLoS Genet
, vol.6
, pp. 1001229
-
-
Imai, Y.1
Kanao, T.2
Sawada, T.3
Kobayashi, Y.4
Moriwaki, Y.5
-
51
-
-
51949090816
-
Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophil
-
Imai Y, Gehrke S, Wang HQ, Takahashi R, Hasegawa K, et al. (2008) Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J 27: 2432–2443.
-
(2008)
EMBO J
, vol.27
, pp. 2432-2443
-
-
Imai, Y.1
Gehrke, S.2
Wang, H.Q.3
Takahashi, R.4
Hasegawa, K.5
|