-
2
-
-
80054787664
-
What genetics tells us about the causes and mechanisms of Parkinson's disease
-
Corti, O., Lesage, S. & Brice, A. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol. Rev. 91, 1161-1218 (2011).
-
(2011)
Physiol. Rev.
, vol.91
, pp. 1161-1218
-
-
Corti, O.1
Lesage, S.2
Brice, A.3
-
3
-
-
84872860661
-
Mitochondrial quality control turns out to be the principal suspect in parkin and PINK1-related autosomal recessive Parkinson's disease
-
Corti, O. & Brice, A. Mitochondrial quality control turns out to be the principal suspect in parkin and PINK1-related autosomal recessive Parkinson's disease. Curr. Opin. Neurobiol. 23, 100-108 (2013).
-
(2013)
Curr. Opin. Neurobiol.
, vol.23
, pp. 100-108
-
-
Corti, O.1
Brice, A.2
-
4
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parkin
-
Koyano, F. et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162-166 (2014).
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, F.1
-
5
-
-
84899539731
-
PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
-
Kane, L. A. et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205, 143-153 (2014).
-
(2014)
J. Cell Biol.
, vol.205
, pp. 143-153
-
-
Kane, L.A.1
-
6
-
-
84899421556
-
Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
-
Kazlauskaite, A. et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 460, 127-139 (2014).
-
(2014)
Biochem. J.
, vol.460
, pp. 127-139
-
-
Kazlauskaite, A.1
-
7
-
-
84922434418
-
Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis
-
Ordureau, A. et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56, 360-375 (2014).
-
(2014)
Mol. Cell
, vol.56
, pp. 360-375
-
-
Ordureau, A.1
-
8
-
-
84922235969
-
Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis
-
Wauer, T. et al. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J. 34, 307-325 (2015).
-
(2015)
EMBO J.
, vol.34
, pp. 307-325
-
-
Wauer, T.1
-
9
-
-
84864267876
-
PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating serine 65
-
Kondapalli, C. et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating serine 65. Open Biol. 2, 120080 (2012).
-
(2012)
Open Biol.
, vol.2
, pp. 120080
-
-
Kondapalli, C.1
-
10
-
-
84871891737
-
PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy
-
Shiba-Fukushima, K. et al. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci. Rep. 2, 1002 (2012).
-
(2012)
Sci. Rep.
, vol.2
, pp. 1002
-
-
Shiba-Fukushima, K.1
-
11
-
-
84919629959
-
Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering
-
Shiba-Fukushima, K. et al. Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering. PLoS Genet. 10, e1004861 (2014).
-
(2014)
PLoS Genet.
, vol.10
-
-
Shiba-Fukushima, K.1
-
12
-
-
84922794336
-
Phosphorylated ubiquitin chain is the genuine Parkin receptor
-
Okatsu, K. et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J. Cell Biol. 209, 111-128 (2015).
-
(2015)
J. Cell Biol.
, vol.209
, pp. 111-128
-
-
Okatsu, K.1
-
13
-
-
79960649509
-
Autoregulation of Parkin activity through its ubiquitin-like domain
-
Chaugule, V. K. et al. Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J. 30, 2853-2867 (2011).
-
(2011)
EMBO J.
, vol.30
, pp. 2853-2867
-
-
Chaugule, V.K.1
-
14
-
-
84881477223
-
Structure of the human Parkin ligase domain in an autoinhibited state
-
Wauer, T. & Komander, D. Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J. 32, 2099-2112 (2013).
-
(2013)
EMBO J.
, vol.32
, pp. 2099-2112
-
-
Wauer, T.1
Komander, D.2
-
15
-
-
84879674444
-
Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases
-
Riley, B. E. et al. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nature Commun. 4, 1982 (2013).
-
(2013)
Nature Commun.
, vol.4
, pp. 1982
-
-
Riley, B.E.1
-
16
-
-
84879251778
-
Structure of parkin reveals mechanisms for ubiquitin ligase activation
-
Trempe, J.-F. et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340, 1451-1455 (2013).
-
(2013)
Science
, vol.340
, pp. 1451-1455
-
-
Trempe, J.-F.1
-
17
-
-
84876296881
-
Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
-
Sarraf, S. A. et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496, 372-376 (2013).
-
(2013)
Nature
, vol.496
, pp. 372-376
-
-
Sarraf, S.A.1
-
18
-
-
0036775490
-
Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family
-
Borodovsky, A. et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol. 9, 1149-1159 (2002).
-
(2002)
Chem. Biol.
, vol.9
, pp. 1149-1159
-
-
Borodovsky, A.1
-
19
-
-
60149084572
-
Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1
-
Wang, T. et al. Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1. J. Mol. Biol. 386, 1011-1023 (2009).
-
(2009)
J. Mol. Biol.
, vol.386
, pp. 1011-1023
-
-
Wang, T.1
-
20
-
-
61649104022
-
Genotypic and phenotypic characteristics of Dutch patients with early onset Parkinson's disease
-
Macedo, M. G. et al. Genotypic and phenotypic characteristics of Dutch patients with early onset Parkinson's disease. Mov. Disord. 24, 196-203 (2009).
-
(2009)
Mov. Disord.
, vol.24
, pp. 196-203
-
-
Macedo, M.G.1
-
21
-
-
73349125417
-
Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies
-
Veeriah, S. et al. Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies. Nature Genet. 42, 77-82 (2010).
-
(2010)
Nature Genet.
, vol.42
, pp. 77-82
-
-
Veeriah, S.1
-
22
-
-
84879885169
-
Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism
-
Zheng, X. & Hunter, T. Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism. Cell Res. 23, 886-897 (2013).
-
(2013)
Cell Res.
, vol.23
, pp. 886-897
-
-
Zheng, X.1
Hunter, T.2
-
23
-
-
84878840303
-
Structure of HHARI, a RING-IBR-RING ubiquitin ligase: Autoinhibition of an ariadne-family E3 and insights into ligation mechanism
-
Duda, D. M. et al. Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an ariadne-family E3 and insights into ligation mechanism. Structure 21, 1030-1041 (2013).
-
(2013)
Structure
, vol.21
, pp. 1030-1041
-
-
Duda, D.M.1
-
24
-
-
84912127688
-
Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin
-
Caulfield, T. R. et al. Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin. PLOS Comput. Biol. 10, e1003935 (2014).
-
(2014)
PLOS Comput. Biol.
, vol.10
-
-
Caulfield, T.R.1
-
25
-
-
84929691103
-
Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy
-
Ordureau, A. et al. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc. Natl Acad. Sci. USA 112, 6637-6642 (2015).
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. 6637-6642
-
-
Ordureau, A.1
-
26
-
-
84925940926
-
PINK1 and Parkin - Mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson's disease
-
Kazlauskaite, A. & Muqit, M. M. K. PINK1 and Parkin - mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson's disease. FEBS J. 282, 215-223 (2015).
-
(2015)
FEBS J.
, vol.282
, pp. 215-223
-
-
Kazlauskaite, A.1
Muqit, M.M.K.2
-
27
-
-
84921369563
-
The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson's disease
-
Pickrell, A. M.& Youle, R. J. The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85, 257-273 (2015).
-
(2015)
Neuron
, vol.85
, pp. 257-273
-
-
Pickrell, A.M.1
Youle, R.J.2
-
28
-
-
84940723006
-
Molecular mechanisms underlying PINK1 and Parkin catalyzed ubiquitylation of substrates on damaged mitochondria
-
Koyano, F. & Matsuda, N. Molecular mechanisms underlying PINK1 and Parkin catalyzed ubiquitylation of substrates on damaged mitochondria. Biochim. Biophys. Acta. http://dx.doi.org/10.1016/j.bbamcr.2015.02.009 (2015).
-
(2015)
Biochim. Biophys. Acta. Http://dx.doi.org/
-
-
Koyano, F.1
Matsuda, N.2
-
29
-
-
34447508216
-
Phaser crystallographic software
-
McCoy, A. J. et al. Phaser crystallographic software. J.Appl. Crystallogr.40, 658-674 (2007).
-
(2007)
J.Appl. Crystallogr.
, vol.40
, pp. 658-674
-
-
McCoy, A.J.1
-
30
-
-
0023644679
-
Structure of ubiquitin refined at 1.8A° resolution
-
Vijay-Kumar, S., Bugg, C. E. & Cook, W. J. Structure of ubiquitin refined at 1.8A° resolution. J. Mol. Biol. 194, 531-544 (1987).
-
(1987)
J. Mol. Biol.
, vol.194
, pp. 531-544
-
-
Vijay-Kumar, S.1
Bugg, C.E.2
Cook, W.J.3
-
31
-
-
77949535720
-
Features and development of Coot
-
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486-501 (2010).
-
(2010)
Acta Crystallogr. D
, vol.66
, pp. 486-501
-
-
Emsley, P.1
Lohkamp, B.2
Scott, W.G.3
Cowtan, K.4
-
32
-
-
80053642374
-
The Phenix software for automated determination of macromolecular structures
-
Adams, P. D. et al. The Phenix software for automated determination of macromolecular structures. Methods 55, 94-106 (2011).
-
(2011)
Methods
, vol.55
, pp. 94-106
-
-
Adams, P.D.1
-
33
-
-
79951549811
-
Recovering lost magnetization: Polarization enhancement in biomolecular NMR
-
Favier, A. & Brutscher, B. Recovering lost magnetization: polarization enhancement in biomolecular NMR. J. Biomol. NMR 49, 9-15 (2011).
-
(2011)
J. Biomol. NMR
, vol.49
, pp. 9-15
-
-
Favier, A.1
Brutscher, B.2
-
34
-
-
79958040716
-
Accelerated NMR spectroscopy by using compressed sensing
-
Kazimierczuk, K. & Orekhov, V. Y. Accelerated NMR spectroscopy by using compressed sensing. Angew. Chem. Int. Edn Engl. 50, 5556-5559 (2011).
-
(2011)
Angew. Chem. Int. Edn Engl.
, vol.50
, pp. 5556-5559
-
-
Kazimierczuk, K.1
Orekhov, V.Y.2
-
35
-
-
84866124869
-
BIRC7-E2 ubiquitin conjugate structure reveals the mechanismof ubiquitin transfer by a RING dimer
-
Dou, H., Buetow, L., Sibbet, G. J., Cameron, K. & Huang, D. T. BIRC7-E2 ubiquitin conjugate structure reveals the mechanismof ubiquitin transfer by a RING dimer. Nature Struct. Mol. Biol. 19, 876-883 (2012).
-
(2012)
Nature Struct. Mol. Biol.
, vol.19
, pp. 876-883
-
-
Dou, H.1
Buetow, L.2
Sibbet, G.J.3
Cameron, K.4
Huang, D.T.5
-
36
-
-
0037368598
-
Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain
-
Sakata, E. et al. Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain. EMBO Rep. 4, 301-306 (2003).
-
(2003)
EMBO Rep.
, vol.4
, pp. 301-306
-
-
Sakata, E.1
-
37
-
-
84887044553
-
TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes
-
Kelsall, I. R. et al. TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes. EMBO J. 32, 2848-2860 (2013).
-
(2013)
EMBO J.
, vol.32
, pp. 2848-2860
-
-
Kelsall, I.R.1
|