메뉴 건너뛰기




Volumn 524, Issue 7565, 2015, Pages 370-374

Mechanism of phospho-ubiquitin-induced PARKIN activation

Author keywords

[No Author keywords available]

Indexed keywords

PARKIN; UBIQUITIN; PHOSPHATE; PHOSPHOPROTEIN; PROTEIN BINDING; PROTEIN KINASE; PTEN-INDUCED PUTATIVE KINASE; UBIQUITIN PROTEIN LIGASE;

EID: 84939795423     PISSN: 00280836     EISSN: 14764687     Source Type: Journal    
DOI: 10.1038/nature14879     Document Type: Article
Times cited : (358)

References (37)
  • 2
    • 80054787664 scopus 로고    scopus 로고
    • What genetics tells us about the causes and mechanisms of Parkinson's disease
    • Corti, O., Lesage, S. & Brice, A. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol. Rev. 91, 1161-1218 (2011).
    • (2011) Physiol. Rev. , vol.91 , pp. 1161-1218
    • Corti, O.1    Lesage, S.2    Brice, A.3
  • 3
    • 84872860661 scopus 로고    scopus 로고
    • Mitochondrial quality control turns out to be the principal suspect in parkin and PINK1-related autosomal recessive Parkinson's disease
    • Corti, O. & Brice, A. Mitochondrial quality control turns out to be the principal suspect in parkin and PINK1-related autosomal recessive Parkinson's disease. Curr. Opin. Neurobiol. 23, 100-108 (2013).
    • (2013) Curr. Opin. Neurobiol. , vol.23 , pp. 100-108
    • Corti, O.1    Brice, A.2
  • 4
    • 84901751574 scopus 로고    scopus 로고
    • Ubiquitin is phosphorylated by PINK1 to activate parkin
    • Koyano, F. et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162-166 (2014).
    • (2014) Nature , vol.510 , pp. 162-166
    • Koyano, F.1
  • 5
    • 84899539731 scopus 로고    scopus 로고
    • PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
    • Kane, L. A. et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205, 143-153 (2014).
    • (2014) J. Cell Biol. , vol.205 , pp. 143-153
    • Kane, L.A.1
  • 6
    • 84899421556 scopus 로고    scopus 로고
    • Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
    • Kazlauskaite, A. et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 460, 127-139 (2014).
    • (2014) Biochem. J. , vol.460 , pp. 127-139
    • Kazlauskaite, A.1
  • 7
    • 84922434418 scopus 로고    scopus 로고
    • Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis
    • Ordureau, A. et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56, 360-375 (2014).
    • (2014) Mol. Cell , vol.56 , pp. 360-375
    • Ordureau, A.1
  • 8
    • 84922235969 scopus 로고    scopus 로고
    • Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis
    • Wauer, T. et al. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J. 34, 307-325 (2015).
    • (2015) EMBO J. , vol.34 , pp. 307-325
    • Wauer, T.1
  • 9
    • 84864267876 scopus 로고    scopus 로고
    • PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating serine 65
    • Kondapalli, C. et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating serine 65. Open Biol. 2, 120080 (2012).
    • (2012) Open Biol. , vol.2 , pp. 120080
    • Kondapalli, C.1
  • 10
    • 84871891737 scopus 로고    scopus 로고
    • PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy
    • Shiba-Fukushima, K. et al. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci. Rep. 2, 1002 (2012).
    • (2012) Sci. Rep. , vol.2 , pp. 1002
    • Shiba-Fukushima, K.1
  • 11
    • 84919629959 scopus 로고    scopus 로고
    • Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering
    • Shiba-Fukushima, K. et al. Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering. PLoS Genet. 10, e1004861 (2014).
    • (2014) PLoS Genet. , vol.10
    • Shiba-Fukushima, K.1
  • 12
    • 84922794336 scopus 로고    scopus 로고
    • Phosphorylated ubiquitin chain is the genuine Parkin receptor
    • Okatsu, K. et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J. Cell Biol. 209, 111-128 (2015).
    • (2015) J. Cell Biol. , vol.209 , pp. 111-128
    • Okatsu, K.1
  • 13
    • 79960649509 scopus 로고    scopus 로고
    • Autoregulation of Parkin activity through its ubiquitin-like domain
    • Chaugule, V. K. et al. Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J. 30, 2853-2867 (2011).
    • (2011) EMBO J. , vol.30 , pp. 2853-2867
    • Chaugule, V.K.1
  • 14
    • 84881477223 scopus 로고    scopus 로고
    • Structure of the human Parkin ligase domain in an autoinhibited state
    • Wauer, T. & Komander, D. Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J. 32, 2099-2112 (2013).
    • (2013) EMBO J. , vol.32 , pp. 2099-2112
    • Wauer, T.1    Komander, D.2
  • 15
    • 84879674444 scopus 로고    scopus 로고
    • Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases
    • Riley, B. E. et al. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nature Commun. 4, 1982 (2013).
    • (2013) Nature Commun. , vol.4 , pp. 1982
    • Riley, B.E.1
  • 16
    • 84879251778 scopus 로고    scopus 로고
    • Structure of parkin reveals mechanisms for ubiquitin ligase activation
    • Trempe, J.-F. et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340, 1451-1455 (2013).
    • (2013) Science , vol.340 , pp. 1451-1455
    • Trempe, J.-F.1
  • 17
    • 84876296881 scopus 로고    scopus 로고
    • Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
    • Sarraf, S. A. et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496, 372-376 (2013).
    • (2013) Nature , vol.496 , pp. 372-376
    • Sarraf, S.A.1
  • 18
    • 0036775490 scopus 로고    scopus 로고
    • Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family
    • Borodovsky, A. et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol. 9, 1149-1159 (2002).
    • (2002) Chem. Biol. , vol.9 , pp. 1149-1159
    • Borodovsky, A.1
  • 19
    • 60149084572 scopus 로고    scopus 로고
    • Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1
    • Wang, T. et al. Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1. J. Mol. Biol. 386, 1011-1023 (2009).
    • (2009) J. Mol. Biol. , vol.386 , pp. 1011-1023
    • Wang, T.1
  • 20
    • 61649104022 scopus 로고    scopus 로고
    • Genotypic and phenotypic characteristics of Dutch patients with early onset Parkinson's disease
    • Macedo, M. G. et al. Genotypic and phenotypic characteristics of Dutch patients with early onset Parkinson's disease. Mov. Disord. 24, 196-203 (2009).
    • (2009) Mov. Disord. , vol.24 , pp. 196-203
    • Macedo, M.G.1
  • 21
    • 73349125417 scopus 로고    scopus 로고
    • Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies
    • Veeriah, S. et al. Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies. Nature Genet. 42, 77-82 (2010).
    • (2010) Nature Genet. , vol.42 , pp. 77-82
    • Veeriah, S.1
  • 22
    • 84879885169 scopus 로고    scopus 로고
    • Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism
    • Zheng, X. & Hunter, T. Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism. Cell Res. 23, 886-897 (2013).
    • (2013) Cell Res. , vol.23 , pp. 886-897
    • Zheng, X.1    Hunter, T.2
  • 23
    • 84878840303 scopus 로고    scopus 로고
    • Structure of HHARI, a RING-IBR-RING ubiquitin ligase: Autoinhibition of an ariadne-family E3 and insights into ligation mechanism
    • Duda, D. M. et al. Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an ariadne-family E3 and insights into ligation mechanism. Structure 21, 1030-1041 (2013).
    • (2013) Structure , vol.21 , pp. 1030-1041
    • Duda, D.M.1
  • 24
    • 84912127688 scopus 로고    scopus 로고
    • Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin
    • Caulfield, T. R. et al. Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin. PLOS Comput. Biol. 10, e1003935 (2014).
    • (2014) PLOS Comput. Biol. , vol.10
    • Caulfield, T.R.1
  • 25
    • 84929691103 scopus 로고    scopus 로고
    • Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy
    • Ordureau, A. et al. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc. Natl Acad. Sci. USA 112, 6637-6642 (2015).
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 6637-6642
    • Ordureau, A.1
  • 26
    • 84925940926 scopus 로고    scopus 로고
    • PINK1 and Parkin - Mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson's disease
    • Kazlauskaite, A. & Muqit, M. M. K. PINK1 and Parkin - mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson's disease. FEBS J. 282, 215-223 (2015).
    • (2015) FEBS J. , vol.282 , pp. 215-223
    • Kazlauskaite, A.1    Muqit, M.M.K.2
  • 27
    • 84921369563 scopus 로고    scopus 로고
    • The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson's disease
    • Pickrell, A. M.& Youle, R. J. The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85, 257-273 (2015).
    • (2015) Neuron , vol.85 , pp. 257-273
    • Pickrell, A.M.1    Youle, R.J.2
  • 28
    • 84940723006 scopus 로고    scopus 로고
    • Molecular mechanisms underlying PINK1 and Parkin catalyzed ubiquitylation of substrates on damaged mitochondria
    • Koyano, F. & Matsuda, N. Molecular mechanisms underlying PINK1 and Parkin catalyzed ubiquitylation of substrates on damaged mitochondria. Biochim. Biophys. Acta. http://dx.doi.org/10.1016/j.bbamcr.2015.02.009 (2015).
    • (2015) Biochim. Biophys. Acta. Http://dx.doi.org/
    • Koyano, F.1    Matsuda, N.2
  • 29
    • 34447508216 scopus 로고    scopus 로고
    • Phaser crystallographic software
    • McCoy, A. J. et al. Phaser crystallographic software. J.Appl. Crystallogr.40, 658-674 (2007).
    • (2007) J.Appl. Crystallogr. , vol.40 , pp. 658-674
    • McCoy, A.J.1
  • 30
    • 0023644679 scopus 로고
    • Structure of ubiquitin refined at 1.8A° resolution
    • Vijay-Kumar, S., Bugg, C. E. & Cook, W. J. Structure of ubiquitin refined at 1.8A° resolution. J. Mol. Biol. 194, 531-544 (1987).
    • (1987) J. Mol. Biol. , vol.194 , pp. 531-544
    • Vijay-Kumar, S.1    Bugg, C.E.2    Cook, W.J.3
  • 32
    • 80053642374 scopus 로고    scopus 로고
    • The Phenix software for automated determination of macromolecular structures
    • Adams, P. D. et al. The Phenix software for automated determination of macromolecular structures. Methods 55, 94-106 (2011).
    • (2011) Methods , vol.55 , pp. 94-106
    • Adams, P.D.1
  • 33
    • 79951549811 scopus 로고    scopus 로고
    • Recovering lost magnetization: Polarization enhancement in biomolecular NMR
    • Favier, A. & Brutscher, B. Recovering lost magnetization: polarization enhancement in biomolecular NMR. J. Biomol. NMR 49, 9-15 (2011).
    • (2011) J. Biomol. NMR , vol.49 , pp. 9-15
    • Favier, A.1    Brutscher, B.2
  • 34
    • 79958040716 scopus 로고    scopus 로고
    • Accelerated NMR spectroscopy by using compressed sensing
    • Kazimierczuk, K. & Orekhov, V. Y. Accelerated NMR spectroscopy by using compressed sensing. Angew. Chem. Int. Edn Engl. 50, 5556-5559 (2011).
    • (2011) Angew. Chem. Int. Edn Engl. , vol.50 , pp. 5556-5559
    • Kazimierczuk, K.1    Orekhov, V.Y.2
  • 35
    • 84866124869 scopus 로고    scopus 로고
    • BIRC7-E2 ubiquitin conjugate structure reveals the mechanismof ubiquitin transfer by a RING dimer
    • Dou, H., Buetow, L., Sibbet, G. J., Cameron, K. & Huang, D. T. BIRC7-E2 ubiquitin conjugate structure reveals the mechanismof ubiquitin transfer by a RING dimer. Nature Struct. Mol. Biol. 19, 876-883 (2012).
    • (2012) Nature Struct. Mol. Biol. , vol.19 , pp. 876-883
    • Dou, H.1    Buetow, L.2    Sibbet, G.J.3    Cameron, K.4    Huang, D.T.5
  • 36
    • 0037368598 scopus 로고    scopus 로고
    • Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain
    • Sakata, E. et al. Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain. EMBO Rep. 4, 301-306 (2003).
    • (2003) EMBO Rep. , vol.4 , pp. 301-306
    • Sakata, E.1
  • 37
    • 84887044553 scopus 로고    scopus 로고
    • TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes
    • Kelsall, I. R. et al. TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes. EMBO J. 32, 2848-2860 (2013).
    • (2013) EMBO J. , vol.32 , pp. 2848-2860
    • Kelsall, I.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.