메뉴 건너뛰기




Volumn 63, Issue 2, 2018, Pages 165-178

Stem cells and genome editing: Approaches to tissue regeneration and regenerative medicine review-article

Author keywords

[No Author keywords available]

Indexed keywords

ADULT STEM CELL; CELL FATE; CELL STRUCTURE; GENE EDITING; HUMAN; IN VITRO STUDY; IN VIVO STUDY; NONHUMAN; ORGAN; ORGAN GROWTH; ORGANOID; REGENERATIVE MEDICINE; REVIEW; STEM CELL; TISSUE REGENERATION; VASCULARIZATION; ANIMAL; PROCEDURES; REGENERATION;

EID: 85035813643     PISSN: 14345161     EISSN: 1435232X     Source Type: Journal    
DOI: 10.1038/s10038-017-0348-0     Document Type: Review
Times cited : (18)

References (209)
  • 1
    • 84868206007 scopus 로고    scopus 로고
    • Self-formation of layered neural structures in three-dimensional culture of ES cells
    • Self-formation of layered neural structures in three-dimensional culture of ES cells. Curr Opin Neurobiol. 2012; 22: 768-77. https://doi. org/10. 1016/j. conb. 2012. 02. 005 2 Sasai Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell. 2013; 12: 520-30. https://doi. org/10. 1016/j. stem. 2013. 04. 009
    • (2012) Curr Opin Neurobiol , vol.22 , pp. 768-777
    • Eiraku, M.1    Sasai, Y.2
  • 2
    • 84934954085 scopus 로고    scopus 로고
    • SnapShot: Growing organoids from stem cells
    • Sato T, Clevers H. SnapShot: growing organoids from stem cells. Cell. 2015; 161: 1700-1700. e1. https://doi. org/10. 1016/j. cell. 2015. 06. 028
    • (2015) Cell. , vol.161 , pp. 1700-1700e1
    • Sato, T.1    Clevers, H.2
  • 3
    • 84905725612 scopus 로고    scopus 로고
    • 3D bioprinting of tissues and organs
    • Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014; 32: 773-85. https://doi. org/10. 1038/nbt. 2958
    • (2014) Nat Biotechnol. , vol.32 , pp. 773-785
    • Murphy, S.V.1    Atala, A.2
  • 4
    • 79961088512 scopus 로고    scopus 로고
    • Organ engineering based on decellularized matrix scaffolds
    • Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends Mol Med. 2011; 17: 424-32. https://doi. org/10. 1016/j. molmed. 2011. 03. 005
    • (2011) Trends Mol Med. , vol.17 , pp. 424-432
    • Song, J.J.1    Ott, H.C.2
  • 5
    • 84868611688 scopus 로고    scopus 로고
    • Perspectives on whole-organ assembly: Moving toward transplantation on demand
    • Soto-Gutierrez A, Wertheim JA, Ott HC, Gilbert TW. Perspectives on whole-organ assembly: moving toward transplantation on demand. J Clin Invest. 2012; 122: 3817-23. https://doi. org/10. 1172/Jci61974
    • (2012) J Clin Invest. , vol.122 , pp. 3817-3823
    • Soto-Gutierrez, A.1    Wertheim, J.A.2    Ott, H.C.3    Gilbert, T.W.4
  • 6
    • 79960351640 scopus 로고    scopus 로고
    • Whole-organ tissue engineering: Decellularization and recellularization of three-dimensional matrix scaffolds
    • Badylak SF, Taylor D, Uygun K. Whole-Organ Tissue Engineering: Decellularization and Recellularization of Three-Dimensional Matrix Scaffolds. Annu Rev Biomed Eng. 2011; 13: 27-53. https://doi. org/10. 1146/annurev-bioeng-071910-124743
    • (2011) Annu Rev Biomed Eng. , vol.13 , pp. 27-53
    • Badylak, S.F.1    Taylor, D.2    Uygun, K.3
  • 7
    • 84857233943 scopus 로고    scopus 로고
    • Clinical xenotransplantation: The next medical revolution?
    • Ekser B, Ezzelarab M, Hara H, van der Windt DJ, Wijkstrom M, Bottino R, et al. Clinical xenotransplantation: the next medical revolution? Lancet. 2012; 379: 672-83. https://doi. org/10. 1016/S0140-6736(11)61091-X
    • (2012) Lancet , vol.379 , pp. 672-683
    • Ekser, B.1    Ezzelarab, M.2    Hara, H.3    Van Der Windt, D.J.4    Wijkstrom, M.5    Bottino, R.6
  • 8
    • 77957282619 scopus 로고    scopus 로고
    • International human xenotransplantation inventory
    • Sgroi A, Buhler LH, Morel P, Sykes M, Noel L. International human xenotransplantation inventory. Transplantation. 2010; 90: 597-603. https://doi. org/10. 1097/TP. 0b013e3181eb2e8c
    • (2010) Transplantation. , vol.90 , pp. 597-603
    • Sgroi, A.1    Buhler, L.H.2    Morel, P.3    Sykes, M.4    Noel, L.5
  • 9
    • 84859832594 scopus 로고    scopus 로고
    • A brief history of cross-species organ transplantation
    • Cooper, D. K. A brief history of cross-species organ transplantation. Proc (Bayl Univ Med Cent). 2012; 25: 49-57.
    • (2012) Proc (Bayl Univ Med Cent). , vol.25 , pp. 49-57
    • Cooper, D.K.1
  • 11
    • 85017268987 scopus 로고    scopus 로고
    • Refining strategies to translate genome editing to the clinic
    • Cornu TI, Mussolino C, Cathomen T. Refining strategies to translate genome editing to the clinic. Nat Med. 2017; 23: 415-23. https://doi. org/10. 1038/nm. 4313
    • (2017) Nat Med. , vol.23 , pp. 415-423
    • Cornu, T.I.1    Mussolino, C.2    Cathomen, T.3
  • 12
    • 84912078930 scopus 로고    scopus 로고
    • Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology
    • Blasco RB, Karaca E, Ambrogio C, Cheong TC, Karayol E, Minero VG, et al. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Reports. 2014; 9: 1219-27. https://doi. org/10. 1016/j. celrep. 2014. 10. 051
    • (2014) Cell Reports. , vol.9 , pp. 1219-1227
    • Blasco, R.B.1    Karaca, E.2    Ambrogio, C.3    Cheong, T.C.4    Karayol, E.5    Minero, V.G.6
  • 13
    • 84937545421 scopus 로고    scopus 로고
    • A versatile reporter system for CRISPR-mediated chromosomal rearrangements
    • Li Y, Park AI, Mou H, Colpan C, Bizhanova A, Akama-Garren E, et al. A versatile reporter system for CRISPR-mediated chromosomal rearrangements. Genome Biol. 2015; 16: 111. https://doi. org/10. 1186/s13059-015-0680-7
    • (2015) Genome Biol. , vol.16 , pp. 111
    • Li, Y.1    Park, A.I.2    Mou, H.3    Colpan, C.4    Bizhanova, A.5    Akama-Garren, E.6
  • 14
    • 84959019046 scopus 로고    scopus 로고
    • Induction of site-specific chromosomal translocations in embryonic stem cells by CRISPR/Cas9
    • Jiang J, Zhang L, Zhou X, Chen X, Huang G, Li F, et al. Induction of site-specific chromosomal translocations in embryonic stem cells by CRISPR/Cas9. Sci Rep. 2016; 6: 21918. https://doi. org/10. 1038/srep21918
    • (2016) Sci Rep. , vol.6 , pp. 21918
    • Jiang, J.1    Zhang, L.2    Zhou, X.3    Chen, X.4    Huang, G.5    Li, F.6
  • 15
    • 84988569121 scopus 로고    scopus 로고
    • Editing DNA methylation in the mammalian genome
    • Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, et al. Editing DNA methylation in the mammalian genome. Cell. 2016; 167: 233-47. e217. https://doi. org/10. 1016/j. cell. 2016. 08. 056
    • (2016) Cell. , vol.167 , pp. 233-247e217
    • Liu, X.S.1    Wu, H.2    Ji, X.3    Stelzer, Y.4    Wu, X.5    Czauderna, S.6
  • 16
    • 85041065364 scopus 로고    scopus 로고
    • Epigenetics: CRISPR edits gene methylation
    • Epigenetics: CRISPR edits gene methylation. Nature 2016; 537: 588, https://doi. org/10. 1038/537588c.
    • (2016) Nature , vol.537 , pp. 588
  • 17
    • 84929135130 scopus 로고    scopus 로고
    • Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
    • Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 2015; 33: 510-7. https://doi. org/10. 1038/nbt. 3199
    • (2015) Nat Biotechnol. , vol.33 , pp. 510-517
    • Hilton, I.B.1    D'Ippolito, A.M.2    Vockley, C.M.3    Thakore, P.I.4    Crawford, G.E.5    Reddy, T.E.6
  • 18
    • 84961290066 scopus 로고    scopus 로고
    • Editing the epigenome: Technologies for programmable transcription and epigenetic modulation
    • Thakore PI, Black JB, Hilton IB, Gersbach CA. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods. 2016; 13: 127-37. https://doi. org/10. 1038/nmeth. 3733
    • (2016) Nat Methods. , vol.13 , pp. 127-137
    • Thakore, P.I.1    Black, J.B.2    Hilton, I.B.3    Gersbach, C.A.4
  • 19
    • 84894081804 scopus 로고    scopus 로고
    • Cas9-based tools for targeted genome editing and transcriptional control
    • Xu T, Li Y, Van Nostrand JD, He Z, Zhou J. Cas9-based tools for targeted genome editing and transcriptional control. Appl Environ Microbiol. 2014; 80: 1544-52. https://doi. org/10. 1128/AEM. 03786-13
    • (2014) Appl Environ Microbiol. , vol.80 , pp. 1544-1552
    • Xu, T.1    Li, Y.2    Van Nostrand, J.D.3    He, Z.4    Zhou, J.5
  • 20
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337: 816-21. https://doi. org/10. 1126/science. 1225829
    • (2012) Science. , vol.337 , pp. 816-821
    • Jinek, M.1    Chylinski, K.2    Fonfara, I.3    Hauer, M.4    Doudna, J.A.5    Charpentier, E.6
  • 21
    • 84930613203 scopus 로고    scopus 로고
    • CRISPR, the disruptor
    • Ledford H. CRISPR, the disruptor. Nature. 2015; 522: 20-4. https://doi. org/10. 1038/522020a
    • (2015) Nature. , vol.522 , pp. 20-24
    • Ledford, H.1
  • 22
    • 84950308314 scopus 로고    scopus 로고
    • Making the cut
    • Travis J. Making the cut. Science. 2015; 350: 1456-7. https://doi. org/10. 1126/science. 350. 6267. 1456
    • (2015) Science. , vol.350 , pp. 1456-1457
    • Travis, J.1
  • 23
    • 0023600057 scopus 로고
    • Nucleotide-sequence of the iap gene, responsible for alkalinephosphatase isozyme conversion in Escherichia coli, and identification of the gene-product
    • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide-sequence of the iap gene, responsible for alkalinephosphatase isozyme conversion in Escherichia coli, and identification of the gene-product. J Bacteriol. 1987; 169: 5429-33.
    • (1987) J Bacteriol. , vol.169 , pp. 5429-5433
    • Ishino, Y.1    Shinagawa, H.2    Makino, K.3    Amemura, M.4    Nakata, A.5
  • 24
    • 39149142575 scopus 로고    scopus 로고
    • CRISPR-a widespread system that provides acquired resistance against phages in bacteria and archaea
    • Sorek R, Kunin V, Hugenholtz P. CRISPR-a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol. 2008; 6: 181-6. https://doi. org/10. 1038/nrmicro1793
    • (2008) Nat Rev Microbiol. , vol.6 , pp. 181-186
    • Sorek, R.1    Kunin, V.2    Hugenholtz, P.3
  • 25
    • 78149261827 scopus 로고    scopus 로고
    • The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
    • Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010; 468: 67-+. https://doi. org/10. 1038/nature09523
    • (2010) Nature. , vol.468 , pp. 67
    • Garneau, J.E.1    Dupuis, M.E.2    Villion, M.3    Romero, D.A.4    Barrangou, R.5    Boyaval, P.6
  • 26
    • 84900314611 scopus 로고    scopus 로고
    • CRISPR-Cas systems for editing, regulating and targeting genomes
    • Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014; 32: 347-55. https://doi. org/10. 1038/nbt. 2842
    • (2014) Nat Biotechnol. , vol.32 , pp. 347-355
    • Sander, J.D.1    Joung, J.K.2
  • 27
    • 84913594397 scopus 로고    scopus 로고
    • Genome editing the new frontier of genome engineering with CRISPR-Cas9
    • Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014; 346: 1258096 https://doi. org/10. 1126/science. 1258096
    • (2014) Science. , vol.346 , pp. 1258096
    • Doudna, J.A.1    Charpentier, E.2
  • 28
    • 84876575031 scopus 로고    scopus 로고
    • Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
    • DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013; 41: 4336-43. https://doi. org/10. 1093/nar/gkt135
    • (2013) Nucleic Acids Res. , vol.41 , pp. 4336-4343
    • DiCarlo, J.E.1    Norville, J.E.2    Mali, P.3    Rios, X.4    Aach, J.5    Church, G.M.6
  • 29
    • 84920262090 scopus 로고    scopus 로고
    • The CRISPR/Cas9 system for plant genome editing and beyond
    • Bortesi L, Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv. 2015; 33: 41-52. https://doi. org/10. 1016/j. biotechadv. 2014. 12. 006
    • (2015) Biotechnol Adv. , vol.33 , pp. 41-52
    • Bortesi, L.1    Fischer, R.2
  • 30
    • 84884904381 scopus 로고    scopus 로고
    • Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination
    • Dickinson DJ, Ward JD, Reiner DJ, Goldstein B. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods. 2013; 10: 1028-+. https://doi. org/10. 1038/Nmeth. 2641
    • (2013) Nat Methods. , vol.10 , pp. 1028
    • Dickinson, D.J.1    Ward, J.D.2    Reiner, D.J.3    Goldstein, B.4
  • 31
    • 84892437994 scopus 로고    scopus 로고
    • Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system
    • Bassett AR, Tibbit C, Ponting CP, Liu JL. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 2013; 4: 220-8. https://doi. org/10. 1016/j. celrep. 2013. 06. 020
    • (2013) Cell Rep. , vol.4 , pp. 220-228
    • Bassett, A.R.1    Tibbit, C.2    Ponting, C.P.3    Liu, J.L.4
  • 32
    • 84946202614 scopus 로고    scopus 로고
    • Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets
    • Awata H, Watanabe T, Hamanaka Y, Mito T, Noji S, Mizunami M. Knockout crickets for the study of learning and memory: dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets. Sci Rep. 2015; 5: 15885. https://doi. org/10. 1038/srep15885
    • (2015) Sci Rep. , vol.5 , pp. 15885
    • Awata, H.1    Watanabe, T.2    Hamanaka, Y.3    Mito, T.4    Noji, S.5    Mizunami, M.6
  • 33
    • 84876409836 scopus 로고    scopus 로고
    • Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos
    • Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X, et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res. 2013; 23: 465-72. https://doi. org/10. 1038/cr. 2013. 45
    • (2013) Cell Res. , vol.23 , pp. 465-472
    • Chang, N.1    Sun, C.2    Gao, L.3    Zhu, D.4    Xu, X.5    Zhu, X.6
  • 34
    • 84892771868 scopus 로고    scopus 로고
    • Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis
    • Guo X, Zhang T, Hu Z, Zhang Y, Shi Z, Wang Q, et al. Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis. Development. 2014; 141: 707-14. https://doi. org/10. 1242/dev. 099853
    • (2014) Development. , vol.141 , pp. 707-714
    • Guo, X.1    Zhang, T.2    Hu, Z.3    Zhang, Y.4    Shi, Z.5    Wang, Q.6
  • 35
    • 84877707375 scopus 로고    scopus 로고
    • One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
    • Wang HY, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013; 153: 910-8. https://doi. org/10. 1016/j. cell. 2013. 04. 025
    • (2013) Cell. , vol.153 , pp. 910-918
    • Wang, H.Y.1    Yang, H.2    Shivalila, C.S.3    Dawlaty, M.M.4    Cheng, A.W.5    Zhang, F.6
  • 36
    • 84884289608 scopus 로고    scopus 로고
    • One-Step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering
    • Yang H, Wang HY, Shivalila CS, Cheng AW, Shi LY, Jaenisch R. One-Step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013; 154: 1370-9. https://doi. org/10. 1016/j. cell. 2013. 08. 022
    • (2013) Cell. , vol.154 , pp. 1370-1379
    • Yang, H.1    Wang, H.Y.2    Shivalila, C.S.3    Cheng, A.W.4    Shi, L.Y.5    Jaenisch, R.6
  • 37
    • 84905029498 scopus 로고    scopus 로고
    • Generating genetically modified mice using CRISPR/Cas-mediated genome engineering
    • Yang H, Wang HY, Jaenisch R. Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc. 2014; 9: 1956-68. https://doi. org/10. 1038/nprot. 2014. 134
    • (2014) Nat Protoc. , vol.9 , pp. 1956-1968
    • Yang, H.1    Wang, H.Y.2    Jaenisch, R.3
  • 38
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013; 339: 819-23. https://doi. org/10. 1126/science. 1231143
    • (2013) Science. , vol.339 , pp. 819-823
    • Cong, L.1    Ran, F.A.2    Cox, D.3    Lin, S.L.4    Barretto, R.5    Habib, N.6
  • 39
    • 84873734105 scopus 로고    scopus 로고
    • RNA-guided human genome engineering via Cas9
    • Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013; 339: 823-6. https://doi. org/10. 1126/science. 1232033
    • (2013) Science. , vol.339 , pp. 823-826
    • Mali, P.1    Yang, L.H.2    Esvelt, K.M.3    Aach, J.4    Guell, M.5    DiCarlo, J.E.6
  • 40
    • 77950486864 scopus 로고    scopus 로고
    • Regenerative medicine for retinal diseases: Activating endogenous repair mechanisms
    • Karl MO, Reh TA. Regenerative medicine for retinal diseases: activating endogenous repair mechanisms. Trends Mol Med. 2010; 16: 193-202. https://doi. org/10. 1016/j. molmed. 2010. 02. 003
    • (2010) Trends Mol Med. , vol.16 , pp. 193-202
    • Karl, M.O.1    Reh, T.A.2
  • 41
    • 84867097798 scopus 로고    scopus 로고
    • Insm1a-mediated gene repression is essential for the formation and differentiation of Müller glia-derived progenitors in the injured retina
    • Ramachandran R, Zhao XF, Goldman D. Insm1a-mediated gene repression is essential for the formation and differentiation of Müller glia-derived progenitors in the injured retina. Nat Cell Biol. 2012; 14: 1013-+. https://doi. org/10. 1038/ncb2586
    • (2012) Nat Cell Biol. , vol.14 , pp. 1013
    • Ramachandran, R.1    Zhao, X.F.2    Goldman, D.3
  • 42
    • 84857004538 scopus 로고    scopus 로고
    • HB-EGF is necessary and sufficient for Müller Glia dedifferentiation and retina regeneration
    • Wan J, Ramachandran R, Goldman D. HB-EGF is necessary and sufficient for Müller Glia dedifferentiation and retina regeneration. Dev Cell. 2012; 22: 334-47. https://doi. org/10. 1016/j. devcel. 2011. 11. 020
    • (2012) Dev Cell. , vol.22 , pp. 334-347
    • Wan, J.1    Ramachandran, R.2    Goldman, D.3
  • 43
    • 84887164189 scopus 로고    scopus 로고
    • A self-renewing division of zebrafish Müller glial cells generates neuronal progenitors that require N-cadherin to regenerate retinal neurons
    • Nagashima M, Barthel LK, Raymond PA. A self-renewing division of zebrafish Müller glial cells generates neuronal progenitors that require N-cadherin to regenerate retinal neurons. Development. 2013; 140: 4510-21. https://doi. org/10. 1242/dev. 090738
    • (2013) Development. , vol.140 , pp. 4510-4521
    • Nagashima, M.1    Barthel, L.K.2    Raymond, P.A.3
  • 44
    • 77950200829 scopus 로고    scopus 로고
    • Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation
    • Jopling C, Sleep E, Raya M, Marti M, Raya A, Belmonte JCI. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 2010; 464: 606-9. https://doi. org/10. 1038/nature08899
    • (2010) Nature. , vol.464 , pp. 606-609
    • Jopling, C.1    Sleep, E.2    Raya, M.3    Marti, M.4    Raya, A.5    Belmonte, J.C.I.6
  • 45
    • 84949781880 scopus 로고    scopus 로고
    • Dedifferentiation, transdifferentiation, and proliferation: Mechanisms underlying cardiac muscle regeneration in zebrafish
    • Kikuchi K. Dedifferentiation, transdifferentiation, and proliferation: mechanisms underlying cardiac muscle regeneration in zebrafish. Curr Pathobiol Rep. 2015; 3: 81-8. https://doi. org/10. 1007/s40139-015-0063-5
    • (2015) Curr Pathobiol Rep. , vol.3 , pp. 81-88
    • Kikuchi, K.1
  • 46
    • 84870202567 scopus 로고    scopus 로고
    • Cardiac regenerative capacity and mechanisms
    • Kikuchi K, Poss KD. Cardiac regenerative capacity and mechanisms. Annu Rev Cell Dev Biol. 2012; 28: 719-41. https://doi. org/10. 1146/annurev-cellbio-101011-155739
    • (2012) Annu Rev Cell Dev Biol. , vol.28 , pp. 719-741
    • Kikuchi, K.1    Poss, K.D.2
  • 47
    • 84886292766 scopus 로고    scopus 로고
    • The zebrafish as a model for complex tissue regeneration
    • Gemberling M, Bailey TJ, Hyde DR, Poss KD. The zebrafish as a model for complex tissue regeneration. Trends Genet. 2013; 29: 611-20. https://doi. org/10. 1016/j. Tig. 2013. 07. 003
    • (2013) Trends Genet. , vol.29 , pp. 611-620
    • Gemberling, M.1    Bailey, T.J.2    Hyde, D.R.3    Poss, K.D.4
  • 48
    • 33847194249 scopus 로고    scopus 로고
    • Liver development and regeneration: From laboratory study to clinical therapy
    • Hata S, Namae M, Nishina H. Liver development and regeneration: From laboratory study to clinical therapy. Dev Growth Differ. 2007; 49: 163-70. https://doi. org/10. 1111/j. 1440-169x. 2007. 00910. x
    • (2007) Dev Growth Differ. , vol.49 , pp. 163-170
    • Hata, S.1    Namae, M.2    Nishina, H.3
  • 51
    • 84964354323 scopus 로고    scopus 로고
    • Modulation of tissue repair by regeneration enhancer elements
    • Kang J, Hu J, Karra R, Dickson AL, Tornini VA, Nachtrab G, et al. Modulation of tissue repair by regeneration enhancer elements. Nature. 2016; 532: 201-6. https://doi. org/10. 1038/na ture17644
    • (2016) Nature. , vol.532 , pp. 201-206
    • Kang, J.1    Hu, J.2    Karra, R.3    Dickson, A.L.4    Tornini, V.A.5    Nachtrab, G.6
  • 52
    • 85014647695 scopus 로고    scopus 로고
    • Genome editing in cardiovascular biology
    • Seeger T, Porteus M, Wu JC. Genome editing in cardiovascular biology. Circ Res. 2017; 120: 778-80. https://doi. org/10. 1161/CIRCRESAHA. 116. 310197
    • (2017) Circ Res. , vol.120 , pp. 778-780
    • Seeger, T.1    Porteus, M.2    Wu, J.C.3
  • 53
    • 85019022639 scopus 로고    scopus 로고
    • Retinal degeneration and regeneration-lessons from fishes and amphibians
    • Ail D, Perron M. Retinal degeneration and regeneration-lessons from fishes and amphibians. Curr Pathobiol Rep. 2017; 5: 67-78. https://doi. org/10. 1007/s40139-017-0127-9
    • (2017) Curr Pathobiol Rep. , vol.5 , pp. 67-78
    • Ail, D.1    Perron, M.2
  • 54
    • 66949137812 scopus 로고    scopus 로고
    • Stemness or not stemness? Current status and perspectives of adult retinal stem cells
    • Locker M, Borday C, Perron M. Stemness or not stemness? Current status and perspectives of adult retinal stem cells. Curr Stem Cell Res Ther. 2009; 4: 118-30.
    • (2009) Curr Stem Cell Res Ther. , vol.4 , pp. 118-130
    • Locker, M.1    Borday, C.2    Perron, M.3
  • 55
    • 44349138133 scopus 로고    scopus 로고
    • Neural regeneration and cell replacement: A view from the eye
    • Lamba D, Karl M, Reh T. Neural regeneration and cell replacement: a view from the eye. Cell Stem Cell. 2008; 2: 538-49. https://doi. org/10. 1016/j. stem. 2008. 05. 002
    • (2008) Cell Stem Cell. , vol.2 , pp. 538-549
    • Lamba, D.1    Karl, M.2    Reh, T.3
  • 56
    • 0000924215 scopus 로고
    • Regeneration of neural retina and lens from retina pigment cell grafts in adult newts
    • Stone LS, Steinitz H. Regeneration of neural retina and lens from retina pigment cell grafts in adult newts. J Exp Zool. 1957; 135: 301-17.
    • (1957) J Exp Zool. , vol.135 , pp. 301-317
    • Stone, L.S.1    Steinitz, H.2
  • 57
    • 11044239127 scopus 로고    scopus 로고
    • Retinal stem cells and regeneration
    • Moshiri A, Close J, Reh TA. Retinal stem cells and regeneration. Int J Dev Biol. 2004; 48: 1003-14. https://doi. org/10. 1387/ijdb. 041870am
    • (2004) Int J Dev Biol. , vol.48 , pp. 1003-1014
    • Moshiri, A.1    Close, J.2    Reh, T.A.3
  • 58
    • 85035216174 scopus 로고    scopus 로고
    • Implications of a multi-step trigger of retinal regeneration in the adult Newt
    • Yasumuro H, Sakurai K, Toyama F, Maruo F, Chiba C. Implications of a multi-step trigger of retinal regeneration in the adult Newt. Biomedicines. 2017; 5. https://doi. org/10. 3390/biomedicines5020025.
    • (2017) Biomedicines. , vol.5
    • Yasumuro, H.1    Sakurai, K.2    Toyama, F.3    Maruo, F.4    Chiba, C.5
  • 59
    • 84961233619 scopus 로고    scopus 로고
    • Adult cell plasticity in vivo: Dedifferentiation and transdifferentiation are back in style
    • Merrell AJ, Stanger BZ. Adult cell plasticity in vivo: dedifferentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol. 2016; 17: 413-25. https://doi. org/10. 1038/nrm. 2016. 24
    • (2016) Nat Rev Mol Cell Biol. , vol.17 , pp. 413-425
    • Merrell, A.J.1    Stanger, B.Z.2
  • 60
    • 84885067381 scopus 로고    scopus 로고
    • The ciliary marginal zone (CMZ) in development and regeneration of the vertebrate eye
    • Fischer AJ, Bosse JL, El-Hodiri HM. The ciliary marginal zone (CMZ) in development and regeneration of the vertebrate eye. Exp Eye Res. 2013; 116: 199-204. https://doi. org/10. 1016/j. exer. 2013. 08. 018
    • (2013) Exp Eye Res. , vol.116 , pp. 199-204
    • Fischer, A.J.1    Bosse, J.L.2    El-Hodiri, H.M.3
  • 61
    • 82755171268 scopus 로고    scopus 로고
    • Fate restriction and multipotency in retinal stem cells
    • Centanin L, Hoeckendorf B, Wittbrodt J. Fate restriction and multipotency in retinal stem cells. Cell Stem Cell. 2011; 9: 553-62. https://doi. org/10. 1016/j. stem. 2011. 11. 004
    • (2011) Cell Stem Cell. , vol.9 , pp. 553-562
    • Centanin, L.1    Hoeckendorf, B.2    Wittbrodt, J.3
  • 64
    • 84923365108 scopus 로고    scopus 로고
    • Generation of a ciliary margin-like stem cell niche from selforganizing human retinal tissue
    • Kuwahara A, Ozone C, Nakano T, Saito K, Eiraku M, Sasai Y. Generation of a ciliary margin-like stem cell niche from selforganizing human retinal tissue. Nat Commun. 2015; 6: 6286 https://doi. org/10. 1038/ncomms7286
    • (2015) Nat Commun. , vol.6 , pp. 6286
    • Kuwahara, A.1    Ozone, C.2    Nakano, T.3    Saito, K.4    Eiraku, M.5    Sasai, Y.6
  • 65
    • 0031442459 scopus 로고    scopus 로고
    • Retinal regeneration in amphibians
    • Mitashov VI. Retinal regeneration in amphibians. Int J Dev Biol. 1997; 41: 893-905.
    • (1997) Int J Dev Biol. , vol.41 , pp. 893-905
    • Mitashov, V.I.1
  • 66
    • 84903271705 scopus 로고    scopus 로고
    • Müller glial cell reprogramming and retina regeneration
    • Goldman D. Müller glial cell reprogramming and retina regeneration. Nat Rev Neurosci. 2014; 15: 431-42. https://doi. org/10. 1038/nrn3723
    • (2014) Nat Rev Neurosci. , vol.15 , pp. 431-442
    • Goldman, D.1
  • 67
    • 0021830601 scopus 로고
    • Cell differentiation in the retina of the mouse
    • Young RW. Cell differentiation in the retina of the mouse. Anat Rec. 1985; 212: 199-205. https://doi. org/10. 1002/ar. 1092120215
    • (1985) Anat Rec. , vol.212 , pp. 199-205
    • Young, R.W.1
  • 68
    • 4544292252 scopus 로고    scopus 로고
    • Potential for neural regeneration after neurotoxic injury in the adult mammalian retina
    • Ooto S, Akagi T, Kageyama R, Akita J, Mandai M, Honda Y, et al. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci USA. 2004; 101: 13654-9. https://doi. org/10. 1073/pnas. 0402129101
    • (2004) Proc Natl Acad Sci USA. , vol.101 , pp. 13654-13659
    • Ooto, S.1    Akagi, T.2    Kageyama, R.3    Akita, J.4    Mandai, M.5    Honda, Y.6
  • 69
    • 84998865522 scopus 로고    scopus 로고
    • Müller stem cell dependent retinal regeneration
    • Chohan A, Singh U, Kumar A, Kaur J. Müller stem cell dependent retinal regeneration. Clin Chim Acta. 2017; 464: 160-4. https://doi. org/10. 1016/j. cca. 2016. 11. 030
    • (2017) Clin Chim Acta. , vol.464 , pp. 160-164
    • Chohan, A.1    Singh, U.2    Kumar, A.3    Kaur, J.4
  • 70
    • 34247140309 scopus 로고    scopus 로고
    • Wnt signaling promotes regeneration in the retina of adult mammals
    • Osakada F, Ooto S, Akagi T, Mandai M, Akaike A, Takahashi M. Wnt signaling promotes regeneration in the retina of adult mammals. J Neurosci. 2007; 27: 4210-9. https://doi. org/10. 1523/JNEUROSCI. 4193-06. 2007
    • (2007) J Neurosci. , vol.27 , pp. 4210-4219
    • Osakada, F.1    Ooto, S.2    Akagi, T.3    Mandai, M.4    Akaike, A.5    Takahashi, M.6
  • 71
    • 84899682101 scopus 로고    scopus 로고
    • Proliferation potential of Müller glia after retinal damage varies between mouse strains
    • Suga A, Sadamoto K, Fujii M, Mandai M, Takahashi M. Proliferation potential of Müller glia after retinal damage varies between mouse strains. PLoS ONE. 2014; 9: e94556. https://doi. org/10. 1371/journal. pone. 0094556
    • (2014) PLoS ONE. , vol.9 , pp. e94556
    • Suga, A.1    Sadamoto, K.2    Fujii, M.3    Mandai, M.4    Takahashi, M.5
  • 72
    • 84975126815 scopus 로고    scopus 로고
    • Müller glial celldependent regeneration of the neural retina: An overview across vertebrate model systems
    • Hamon A, Roger JE, Yang XJ, Perron M. Müller glial celldependent regeneration of the neural retina: an overview across vertebrate model systems. Dev Dyn. 2016; 245: 727-38. https://doi. org/10. 1002/dvdy. 24375
    • (2016) Dev Dyn. , vol.245 , pp. 727-738
    • Hamon, A.1    Roger, J.E.2    Yang, X.J.3    Perron, M.4
  • 73
    • 84973558763 scopus 로고    scopus 로고
    • De novo neurogenesis by targeted expression of atoh7 to Müller glia cells
    • Lust K, Sinn R, Perez Saturnino A, Centanin L, Wittbrodt J. De novo neurogenesis by targeted expression of atoh7 to Müller glia cells. Development. 2016; 143: 1874-83. https://doi. org/10. 1242/dev. 135905
    • (2016) Development. , vol.143 , pp. 1874-1883
    • Lust, K.1    Sinn, R.2    Perez Saturnino, A.3    Centanin, L.4    Wittbrodt, J.5
  • 74
    • 79961016842 scopus 로고    scopus 로고
    • Genome-wide analysis of Müller glial differentiation reveals a requirement for notch signaling in postmitotic cells to maintain the glial Fate
    • Nelson BR, Ueki Y, Reardon S, Karl MO, Georgi S, Hartman BH et al. Genome-wide analysis of Müller glial differentiation reveals a requirement for notch signaling in postmitotic cells to maintain the glial Fate. PLoS ONE. 2011; 6. https://doi. org/10. 1371/journa l. pone. 0022817
    • (2011) PLoS ONE. , vol.6
    • Nelson, B.R.1    Ueki, Y.2    Reardon, S.3    Karl, M.O.4    Georgi, S.5    Hartman, B.H.6
  • 75
    • 84973544964 scopus 로고    scopus 로고
    • MTor signaling is required for the formation of proliferating Müller glia-derived progenitor cells in the chick retina
    • Zelinka CP, Volkov L, Goodman ZA, Todd L, Palazzo I, Bishop WA, et al. mTor signaling is required for the formation of proliferating Müller glia-derived progenitor cells in the chick retina. Development. 2016; 143: 1859-73. https://doi. org/10. 1242/dev. 133215
    • (2016) Development. , vol.143 , pp. 1859-1873
    • Zelinka, C.P.1    Volkov, L.2    Goodman, Z.A.3    Todd, L.4    Palazzo, I.5    Bishop, W.A.6
  • 76
    • 84889687235 scopus 로고    scopus 로고
    • Analysis of DNA methylation reveals a partial reprogramming of the Müller glia genome during retina regeneration
    • Powell C, Grant AR, Cornblath E, Goldman D. Analysis of DNA methylation reveals a partial reprogramming of the Müller glia genome during retina regeneration. Proc Natl Acad Sci USA. 2013; 110: 19814-9. https://doi. org/10. 1073/pnas. 1312009110
    • (2013) Proc Natl Acad Sci USA. , vol.110 , pp. 19814-19819
    • Powell, C.1    Grant, A.R.2    Cornblath, E.3    Goldman, D.4
  • 77
    • 85026914572 scopus 로고    scopus 로고
    • Stimulation of functional neuronal regeneration from Müller glia in adult mice
    • Jorstad NL, Wilken MS, Grimes WN, Wohl SG, VandenBosch LS, Yoshimatsu T, et al. Stimulation of functional neuronal regeneration from Müller glia in adult mice. Nature. 2017; 548: 103-7. https://doi. org/10. 1038/nature23283
    • (2017) Nature. , vol.548 , pp. 103-107
    • Jorstad, N.L.1    Wilken, M.S.2    Grimes, W.N.3    Wohl, S.G.4    VandenBosch, L.S.5    Yoshimatsu, T.6
  • 79
    • 85000819280 scopus 로고    scopus 로고
    • In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration
    • Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. 2016; 540: 144-9. https://doi. org/10. 1038/nature20565
    • (2016) Nature. , vol.540 , pp. 144-149
    • Suzuki, K.1    Tsunekawa, Y.2    Hernandez-Benitez, R.3    Wu, J.4    Zhu, J.5    Kim, E.J.6
  • 80
    • 51849171832 scopus 로고
    • Plant cell and tissue cultures-role of Haberlandt
    • Krikorian AD, Berquam DL. Plant cell and tissue cultures-role of Haberlandt. Bot Rev. 1969; 35: 59-+. https://doi. org/10. 1007/Bf02859888
    • (1969) Bot Rev. , vol.35 , pp. 59
    • Krikorian, A.D.1    Berquam, D.L.2
  • 81
    • 36249015446 scopus 로고    scopus 로고
    • History of plant tissue culture
    • Thorpe TA. History of plant tissue culture. Mol Biotechnol. 2007; 37: 169-80.
    • (2007) Mol Biotechnol. , vol.37 , pp. 169-180
    • Thorpe, T.A.1
  • 82
    • 84939979498 scopus 로고    scopus 로고
    • Historical review of research on plant cell dedifferentiation
    • Sugiyama M. Historical review of research on plant cell dedifferentiation. J Plant Res. 2015; 128: 349-59. https://doi. org/10. 1007/s10265-015-0706-y
    • (2015) J Plant Res. , vol.128 , pp. 349-359
    • Sugiyama, M.1
  • 83
    • 37049238319 scopus 로고
    • A new method by which sponges may be artificially reared
    • Wilson HV. A new method by which sponges may be artificially reared. Science. 1907; 25: 912-5. https://doi. org/10. 1126/science. 25. 649. 912
    • (1907) Science. , vol.25 , pp. 912-915
    • Wilson, H.V.1
  • 84
    • 0013633126 scopus 로고
    • Reconstitution of complete organs from single-cell suspensions of chick embryos in advanced stages of differentiation
    • Weiss P, Taylor AC. Reconstitution of complete organs from single-cell suspensions of chick embryos in advanced stages of differentiation. Proc Natl Acad Sci USA. 1960; 46: 1177-85.
    • (1960) Proc Natl Acad Sci USA. , vol.46 , pp. 1177-1185
    • Weiss, P.1    Taylor, A.C.2
  • 85
    • 84965084971 scopus 로고
    • Teratocarcinogenic and tissue-forming potentials of the cell types comprising neoplastic embryoid bodies
    • Pierce GB Jr, Dixon FJ Jr, Verney EL. Teratocarcinogenic and tissue-forming potentials of the cell types comprising neoplastic embryoid bodies. Lab Invest. 1960; 9: 583-602.
    • (1960) Lab Invest. , vol.9 , pp. 583-602
    • Pierce, G.B.1    Dixon, F.J.2    Verney, E.L.3
  • 86
    • 0016729431 scopus 로고
    • Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells
    • Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975; 6: 331-43.
    • (1975) Cell. , vol.6 , pp. 331-343
    • Rheinwald, J.G.1    Green, H.2
  • 87
    • 0016728261 scopus 로고
    • Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma
    • Rheinwald JG, Green H. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell. 1975; 6: 317-30.
    • (1975) Cell. , vol.6 , pp. 317-330
    • Rheinwald, J.G.1    Green, H.2
  • 88
    • 84904396621 scopus 로고    scopus 로고
    • Organogenesis in a dish: Modeling development and disease using organoid technologies
    • Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014; 345. https://doi. org/10. 1126/science. 1247125
    • (2014) Science. , vol.345
    • Lancaster, M.A.1    Knoblich, J.A.2
  • 89
    • 84975275212 scopus 로고    scopus 로고
    • Modeling development and disease with organoids
    • Clevers H. Modeling development and disease with organoids. Cell. 2016; 165: 1586-97. https://doi. org/10. 1016/j. cell. 2016. 05. 082
    • (2016) Cell. , vol.165 , pp. 1586-1597
    • Clevers, H.1
  • 90
    • 33747195353 scopus 로고    scopus 로고
    • Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
    • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126: 663-76. https://doi. org/10. 1016/j. cell. 2006. 07. 024
    • (2006) Cell. , vol.126 , pp. 663-676
    • Takahashi, K.1    Yamanaka, S.2
  • 91
    • 85006285022 scopus 로고    scopus 로고
    • Induced pluripotent stem cell technology: A decade of progress
    • Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov. 2017; 16: 115-30. https://doi. org/10. 1038/nrd. 2016. 245
    • (2017) Nat Rev Drug Discov. , vol.16 , pp. 115-130
    • Shi, Y.1    Inoue, H.2    Wu, J.C.3    Yamanaka, S.4
  • 92
    • 36248966518 scopus 로고    scopus 로고
    • Induction of pluripotent stem cells from adult human fibroblasts by defined factors
    • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131: 861-72. https://doi. org/10. 1016/j. cell. 2007. 11. 019
    • (2007) Cell. , vol.131 , pp. 861-872
    • Takahashi, K.1    Tanabe, K.2    Ohnuki, M.3    Narita, M.4    Ichisaka, T.5    Tomoda, K.6
  • 93
    • 84940597364 scopus 로고    scopus 로고
    • Rapid and efficient generation of transgene-free iPSC from a small volume of cryopreserved blood
    • Zhou H, Martinez H, Sun B, Li A, Zimmer M, Katsanis N, et al. Rapid and efficient generation of transgene-free iPSC from a small volume of cryopreserved blood. Stem Cell Rev. 2015; 11: 652-65. https://doi. org/10. 1007/s12015-015-9586-8
    • (2015) Stem Cell Rev. , vol.11 , pp. 652-665
    • Zhou, H.1    Martinez, H.2    Sun, B.3    Li, A.4    Zimmer, M.5    Katsanis, N.6
  • 95
    • 84944441860 scopus 로고    scopus 로고
    • hr. Stem Cell Rep. 2015; 5: 660-71. https://doi. org/10. 1016/j. stemcr. 2015. 08. 012
    • (2015) Hr. Stem Cell Rep. , vol.5 , pp. 660-671
  • 96
    • 78649874029 scopus 로고    scopus 로고
    • Memory in induced pluripotent stem cells: Reprogrammed human retinalpigmented epithelial cells show tendency for spontaneous redifferentiation
    • Hu Q, Friedrich AM, Johnson LV, Clegg DO. Memory in induced pluripotent stem cells: reprogrammed human retinalpigmented epithelial cells show tendency for spontaneous redifferentiation. Stem Cells. 2010; 28: 1981-91. https://doi. org/10. 1002/stem. 531
    • (2010) Stem Cells. , vol.28 , pp. 1981-1991
    • Hu, Q.1    Friedrich, A.M.2    Johnson, L.V.3    Clegg, D.O.4
  • 97
    • 84936989258 scopus 로고    scopus 로고
    • Quantification of Retinogenesis in 3D cultures reveals epigenetic memory and higher efficiency in iPSCs derived from rod photoreceptors
    • Hiler D, Chen X, Hazen J, Kupriyanov S, Carroll PA, Qu C, et al. Quantification of Retinogenesis in 3D cultures reveals epigenetic memory and higher efficiency in iPSCs derived from rod photoreceptors. Cell Stem Cell. 2015; 17: 101-15. https://doi. org/10. 1016/j. stem. 2015. 05. 015
    • (2015) Cell Stem Cell. , vol.17 , pp. 101-115
    • Hiler, D.1    Chen, X.2    Hazen, J.3    Kupriyanov, S.4    Carroll, P.A.5    Qu, C.6
  • 98
    • 84988583074 scopus 로고    scopus 로고
    • Reprogramming of mouse retinal neurons and standardized quantification of their differentiation in 3D retinal cultures
    • Hiler DJ, Barabas ME, Griffiths LM, Dyer MA. Reprogramming of mouse retinal neurons and standardized quantification of their differentiation in 3D retinal cultures. Nat Protoc. 2016; 11: 1955-76. https://doi. org/10. 1038/nprot. 2016. 109
    • (2016) Nat Protoc. , vol.11 , pp. 1955-1976
    • Hiler, D.J.1    Barabas, M.E.2    Griffiths, L.M.3    Dyer, M.A.4
  • 99
    • 63049090064 scopus 로고    scopus 로고
    • A fresh look at iPS cells
    • Yamanaka S. A fresh look at iPS cells. Cell. 2009; 137: 13-7. https://doi. org/10. 1016/j. cell. 2009. 03. 034
    • (2009) Cell. , vol.137 , pp. 13-17
    • Yamanaka, S.1
  • 100
    • 85009088513 scopus 로고    scopus 로고
    • IPSC-derived retina transplants improve vision in rd1 endstage retinal-degeneration mice (vol 8, pg 69, 2017)
    • Mandai M, Fujii M, Hashiguchi T, Sunagawa GA, Ito S, Sun JN, et al. iPSC-derived retina transplants improve vision in rd1 endstage retinal-degeneration mice (vol 8, pg 69, 2017). Stem Cell Rep. 2017; 8: 1112-3. https://doi. org/10. 1016/j. stemcr. 2017. 03.024
    • (2017) Stem Cell Rep. , vol.8 , pp. 1112-1113
    • Mandai, M.1    Fujii, M.2    Hashiguchi, T.3    Sunagawa, G.A.4    Ito, S.5    Sun, J.N.6
  • 101
    • 84923014395 scopus 로고    scopus 로고
    • Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: Follow-up of two open-label phase 1/2 studies
    • Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015; 385: 509-16. https://doi. org/10. 1016/S0140-6736(14)61376-3
    • (2015) Lancet. , vol.385 , pp. 509-516
    • Schwartz, S.D.1    Regillo, C.D.2    Lam, B.L.3    Eliott, D.4    Rosenfeld, P.J.5    Gregori, N.Z.6
  • 102
    • 84964453220 scopus 로고    scopus 로고
    • Subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium for the treatment of macular degeneration: An assessment at 4 years
    • Schwartz SD, Tan G, Hosseini H, Nagiel A. Subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years. Invest Ophth Vis Sci. 2016; 57. https://doi. org/10. 1167/iovs. 15-18681.
    • (2016) Invest Ophth Vis Sci. , vol.57
    • Schwartz, S.D.1    Tan, G.2    Hosseini, H.3    Nagiel, A.4
  • 103
    • 84901608240 scopus 로고    scopus 로고
    • The retinal pigment epithelium: An important player of retinal disorders and regeneration
    • Chiba C. The retinal pigment epithelium: an important player of retinal disorders and regeneration. Exp Eye Res. 2014; 123: 107-14. https://doi. org/10. 1016/j. exer. 2013. 07. 009
    • (2014) Exp Eye Res. , vol.123 , pp. 107-114
    • Chiba, C.1
  • 104
    • 85015803917 scopus 로고    scopus 로고
    • Autologous induced stem-cell-derived retinal cells for macular degeneration
    • Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017; 376: 1038-46. https://doi. org/10. 1056/NEJMoa1608368
    • (2017) N Engl J Med. , vol.376 , pp. 1038-1046
    • Mandai, M.1    Watanabe, A.2    Kurimoto, Y.3    Hirami, Y.4    Morinaga, C.5    Daimon, T.6
  • 106
    • 85013304710 scopus 로고    scopus 로고
    • Mammalian heart regeneration the race to the finish line
    • Doppler SA, Deutsch MA, Serpooshan V, Li G, Dzilic E, Lange R, et al. Mammalian heart regeneration the race to the finish line. Circ Res. 2017; 120: 630-2. https://doi. org/10. 1161/Circresaha. 116. 310051
    • (2017) Circ Res. , vol.120 , pp. 630-632
    • Doppler, S.A.1    Deutsch, M.A.2    Serpooshan, V.3    Li, G.4    Dzilic, E.5    Lange, R.6
  • 107
    • 84947801842 scopus 로고    scopus 로고
    • Efficient long-term survival of cell grafts after myocardial infarction with thick viable cardiac tissue entirely from pluripotent stem cells
    • Matsuo T, Masumoto H, Tajima S, Ikuno T, Katayama S, Minakata K, et al. Efficient long-term survival of cell grafts after myocardial infarction with thick viable cardiac tissue entirely from pluripotent stem cells. Sci Rep. 2015; 5: 16842. https://doi. org/10. 1038/srep16842
    • (2015) Sci Rep. , vol.5 , pp. 16842
    • Matsuo, T.1    Masumoto, H.2    Tajima, S.3    Ikuno, T.4    Katayama, S.5    Minakata, K.6
  • 108
    • 85016951942 scopus 로고    scopus 로고
    • Impact of cell composition and geometry on human induced pluripotent stem cells-derived engineered cardiac tissue
    • Nakane T, Masumoto H, Tinney JP, Yuan F, Kowalski WJ, Ye F, et al. Impact of cell composition and geometry on human induced pluripotent stem cells-derived engineered cardiac tissue. Sci Rep. 2017; 7: 45641. https://doi. org/10. 1038/srep45641
    • (2017) Sci Rep. , vol.7 , pp. 45641
    • Nakane, T.1    Masumoto, H.2    Tinney, J.P.3    Yuan, F.4    Kowalski, W.J.5    Ye, F.6
  • 109
    • 77955844034 scopus 로고    scopus 로고
    • ES and iPS cell research for cardiovascular regeneration
    • Yamashita JK. ES and iPS cell research for cardiovascular regeneration. Exp Cell Res. 2010; 316: 2555-9. https://doi. org/10. 1016/j. yexcr. 2010. 04. 004
    • (2010) Exp Cell Res. , vol.316 , pp. 2555-2559
    • Yamashita, J.K.1
  • 110
    • 84987858628 scopus 로고    scopus 로고
    • Human iPS cell-derived cardiac tissue sheets: A platform for cardiac regeneration
    • Masumoto H, Yamashita JK. Human iPS cell-derived cardiac tissue sheets: a platform for cardiac regeneration. Curr Treat Options Cardiovasc Med. 2016; 18: 65 https://doi. org/10. 1007/s11936-016-0489-z
    • (2016) Curr Treat Options Cardiovasc Med. , vol.18 , pp. 65
    • Masumoto, H.1    Yamashita, J.K.2
  • 111
    • 84899638519 scopus 로고    scopus 로고
    • Matrix rigidity-modulated cardiovascular organoid formation from embryoid bodies
    • Shkumatov A, Baek K, Kong H. Matrix rigidity-modulated cardiovascular organoid formation from embryoid bodies. PLoS ONE. 2014; 9: e94764. https://doi. org/10. 1371/journal. pone. 0094764
    • (2014) PLoS ONE. , vol.9 , pp. e94764
    • Shkumatov, A.1    Baek, K.2    Kong, H.3
  • 112
    • 84918561297 scopus 로고    scopus 로고
    • Modelling human development and disease in pluripotent stem-cell-derived gastric organoids
    • McCracken KW, Cata EM, Crawford CM, Sinagoga KL, Schumacher M, Rockich BE, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature. 2014; 516: 400-4. https://doi. org/10. 1038/nature13863
    • (2014) Nature. , vol.516 , pp. 400-404
    • McCracken, K.W.1    Cata, E.M.2    Crawford, C.M.3    Sinagoga, K.L.4    Schumacher, M.5    Rockich, B.E.6
  • 113
    • 84964619895 scopus 로고    scopus 로고
    • Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure
    • Qian XY, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell. 2016; 165: 1238-54. https://doi. org/10. 1016/j. cell. 2016. 04. 032
    • (2016) Cell. , vol.165 , pp. 1238-1254
    • Qian, X.Y.1    Nguyen, H.N.2    Song, M.M.3    Hadiono, C.4    Ogden, S.C.5    Hammack, C.6
  • 114
  • 115
  • 117
    • 84959421061 scopus 로고    scopus 로고
    • Concise review: Organoids are a powerful tool for the study of liver disease and personalized treatment design in humans and animals
    • Nantasanti S, de Bruin A, Rothuizen J, Penning LC, Schotanus BA. Concise review: organoids are a powerful tool for the study of liver disease and personalized treatment design in humans and animals. Stem Cells Transl Med. 2016; 5: 325-30. https://doi. org/10. 5966/sctm. 2015-0152
    • (2016) Stem Cells Transl Med. , vol.5 , pp. 325-330
    • Nantasanti, S.1    De Bruin, A.2    Rothuizen, J.3    Penning, L.C.4    Schotanus, B.A.5
  • 118
    • 84959536508 scopus 로고    scopus 로고
    • Pluripotent stem cells in disease modelling and drug discovery
    • Avior Y, Sagi I, Benvenisty N. Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol. 2016; 17: 170-82. https://doi. org/10. 1038/nrm. 2015. 27
    • (2016) Nat Rev Mol Cell Biol. , vol.17 , pp. 170-182
    • Avior, Y.1    Sagi, I.2    Benvenisty, N.3
  • 119
    • 84862526635 scopus 로고    scopus 로고
    • Self-formation of optic cups and storable stratified neural retina from human ESCs
    • Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012; 10: 771-85. https://doi. org/10. 1016/j. stem. 2012. 05. 009
    • (2012) Cell Stem Cell. , vol.10 , pp. 771-785
    • Nakano, T.1    Ando, S.2    Takata, N.3    Kawada, M.4    Muguruma, K.5    Sekiguchi, K.6
  • 120
    • 84945283561 scopus 로고    scopus 로고
    • Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis
    • Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015; 526: 564-8. https://doi. org/10. 1038/nature15695
    • (2015) Nature. , vol.526 , pp. 564-568
    • Takasato, M.1    Er, P.X.2    Chiu, H.S.3    Maier, B.4    Baillie, G.J.5    Ferguson, C.6
  • 121
    • 85015342082 scopus 로고    scopus 로고
    • Pluripotent stem cell-derived organoids: Using principles of developmental biology to grow human tissues in a dish
    • McCauley HA, Wells JM. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development. 2017; 144: 958-62. https://doi. org/10. 1242/dev. 140731
    • (2017) Development. , vol.144 , pp. 958-962
    • McCauley, H.A.1    Wells, J.M.2
  • 122
    • 77952867780 scopus 로고    scopus 로고
    • OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling
    • Fietz SA, Kelava I, Vogt J, Wilsch-Brauninger M, Stenzel D, Fish JL, et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci. 2010; 13: 690-9. https://doi. org/10. 1038/nn. 2553
    • (2010) Nat Neurosci. , vol.13 , pp. 690-699
    • Fietz, S.A.1    Kelava, I.2    Vogt, J.3    Wilsch-Brauninger, M.4    Stenzel, D.5    Fish, J.L.6
  • 123
    • 77950076985 scopus 로고    scopus 로고
    • Neurogenic radial glia in the outer subventricular zone of human neocortex
    • Hansen DV, Lui JH, Parker PR, Kriegstein AR. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature. 2010; 464: 554-61. https://doi. org/10. 1038/nature08845
    • (2010) Nature. , vol.464 , pp. 554-561
    • Hansen, D.V.1    Lui, J.H.2    Parker, P.R.3    Kriegstein, A.R.4
  • 124
    • 0036133288 scopus 로고    scopus 로고
    • Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey
    • Smart IH, Dehay C, Giroud P, Berland M, Kennedy H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex. 2002; 12: 37-53.
    • (2002) Cereb Cortex. , vol.12 , pp. 37-53
    • Smart, I.H.1    Dehay, C.2    Giroud, P.3    Berland, M.4    Kennedy, H.5
  • 125
    • 79952381377 scopus 로고    scopus 로고
    • Oblique radial glial divisions in the developing mouse neocortex induce selfrenewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors
    • Shitamukai A, Konno D, Matsuzaki F. Oblique radial glial divisions in the developing mouse neocortex induce selfrenewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J Neurosci. 2011; 31: 3683-95. https://doi. org/10. 1523/JNEUROSCI. 4773-10. 2011
    • (2011) J Neurosci. , vol.31 , pp. 3683-3695
    • Shitamukai, A.1    Konno, D.2    Matsuzaki, F.3
  • 126
    • 54949102049 scopus 로고    scopus 로고
    • Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals
    • Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell. 2008; 3: 519-32. https://doi. org/10. 1016/j. stem. 2008. 09. 002
    • (2008) Cell Stem Cell. , vol.3 , pp. 519-532
    • Eiraku, M.1    Watanabe, K.2    Matsuo-Takasaki, M.3    Kawada, M.4    Yonemura, S.5    Matsumura, M.6
  • 127
    • 84890282623 scopus 로고    scopus 로고
    • Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex
    • Kadoshima T, Sakaguchi H, Nakano T, Soen M, Ando S, Eiraku M, et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc Natl Acad Sci USA. 2013; 110: 20284-9. https://doi. org/10. 1073/pnas. 1315710110
    • (2013) Proc Natl Acad Sci USA. , vol.110 , pp. 20284-20289
    • Kadoshima, T.1    Sakaguchi, H.2    Nakano, T.3    Soen, M.4    Ando, S.5    Eiraku, M.6
  • 128
    • 84871777952 scopus 로고    scopus 로고
    • Robust formation and maintenance of continuous stratified cortical neuroepithelium by laminin-containing matrix in mouse ES cell culture
    • Nasu M, Takata N, Danjo T, Sakaguchi H, Kadoshima T, Futaki S, et al. Robust formation and maintenance of continuous stratified cortical neuroepithelium by laminin-containing matrix in mouse ES cell culture. PLoS ONE. 2012; 7: e53024. https://doi. org/10. 1371/journal. pone. 0053024
    • (2012) PLoS ONE. , vol.7 , pp. e53024
    • Nasu, M.1    Takata, N.2    Danjo, T.3    Sakaguchi, H.4    Kadoshima, T.5    Futaki, S.6
  • 129
    • 84996921196 scopus 로고    scopus 로고
    • Dishing out mini-brains: Current progress and future prospects in brain organoid research
    • Kelava I, Lancaster MA. Dishing out mini-brains: current progress and future prospects in brain organoid research. Dev Biol. 2016; 420: 199-209. https://doi. org/10. 1016/j. ydbio. 2016. 06. 037
    • (2016) Dev Biol. , vol.420 , pp. 199-209
    • Kelava, I.1    Lancaster, M.A.2
  • 130
    • 84973473524 scopus 로고    scopus 로고
    • Advances in therapeutic CRISPR/Cas9 genome editing
    • Savic N, Schwank G. Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res. 2016; 168: 15-21. https://doi. org/10. 1016/j. Trsl. 2015. 09. 008
    • (2016) Transl Res. , vol.168 , pp. 15-21
    • Savic, N.1    Schwank, G.2
  • 131
    • 84966930890 scopus 로고    scopus 로고
    • Induced pluripotent stem cells meet genome editing
    • Hockemeyer D, Jaenisch R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell. 2016; 18: 573-86. https://doi. org/10. 1016/j. stem. 2016. 04. 013
    • (2016) Cell Stem Cell. , vol.18 , pp. 573-586
    • Hockemeyer, D.1    Jaenisch, R.2
  • 132
    • 50149096140 scopus 로고    scopus 로고
    • Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation
    • Wataya T, Ando S, Muguruma K, Ikeda H, Watanabe K, Eiraku M, et al. Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation. Proc Natl Acad Sci USA. 2008; 105: 11796-801. https://doi. org/10. 1073/pnas. 0803078105
    • (2008) Proc Natl Acad Sci USA. , vol.105 , pp. 11796-11801
    • Wataya, T.1    Ando, S.2    Muguruma, K.3    Ikeda, H.4    Watanabe, K.5    Eiraku, M.6
  • 133
    • 79953749322 scopus 로고    scopus 로고
    • Self-organizing optic-cup morphogenesis in threedimensional culture
    • Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, et al. Self-organizing optic-cup morphogenesis in threedimensional culture. Nature. 2011; 472: 51-6. https://doi. org/10. 1038/nature09941
    • (2011) Nature. , vol.472 , pp. 51-56
    • Eiraku, M.1    Takata, N.2    Ishibashi, H.3    Kawada, M.4    Sakakura, E.5    Okuda, S.6
  • 134
    • 84867755657 scopus 로고    scopus 로고
    • Grow your own eye: Biologists have coaxed cells to form a retina, a step toward growing replacement organs outside the body
    • Sasai Y. Grow your own eye: biologists have coaxed cells to form a retina, a step toward growing replacement organs outside the body. Sci Am. 2012; 307: 44-9.
    • (2012) Sci Am. , vol.307 , pp. 44-49
    • Sasai, Y.1
  • 135
    • 82555187011 scopus 로고    scopus 로고
    • Self-formation of functional adenohypophysis in three-dimensional culture
    • Suga H, Kadoshima T, Minaguchi M, Ohgushi M, Soen M, Nakano T, et al. Self-formation of functional adenohypophysis in three-dimensional culture. Nature. 2011; 480: 57-62. https://doi. org/10. 1038/nature10637
    • (2011) Nature. , vol.480 , pp. 57-62
    • Suga, H.1    Kadoshima, T.2    Minaguchi, M.3    Ohgushi, M.4    Soen, M.5    Nakano, T.6
  • 136
    • 84947292300 scopus 로고    scopus 로고
    • Generation of functional hippocampal neurons from selforganizing human embryonic stem cell-derived dorsomedial telencephalic tissue
    • Sakaguchi H, Kadoshima T, Soen M, Narii N, Ishida Y, Ohgushi M, et al. Generation of functional hippocampal neurons from selforganizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat Commun. 2015; 6: 8896 https://doi. org/10. 1038/ncomms9896
    • (2015) Nat Commun. , vol.6 , pp. 8896
    • Sakaguchi, H.1    Kadoshima, T.2    Soen, M.3    Narii, N.4    Ishida, Y.5    Ohgushi, M.6
  • 137
    • 84954138949 scopus 로고    scopus 로고
    • Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells
    • Ozone C, Suga H, Eiraku M, Kadoshima T, Yonemura S, Takata N, et al. Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells. Nat Commun. 2016; 7: 10351. https://doi. org/10. 1038/ncomms10351
    • (2016) Nat Commun. , vol.7 , pp. 10351
    • Ozone, C.1    Suga, H.2    Eiraku, M.3    Kadoshima, T.4    Yonemura, S.5    Takata, N.6
  • 138
    • 84975525711 scopus 로고    scopus 로고
    • Establishment of functional genomics pipeline in mouse epiblast-like tissue by combining transcriptomic analysis and gene knockdown/knockin/knockout, using RNA interference and CRISPR/Cas9
    • Takata N, Sakakura E, Kasukawa T, Sakuma T, Yamamoto T, Sasai Y. Establishment of functional genomics pipeline in mouse epiblast-like tissue by combining transcriptomic analysis and gene knockdown/knockin/knockout, using RNA interference and CRISPR/Cas9. Hum Gene Ther. 2016; 27: 436-50. https://doi. org/10. 1089/hum. 2015. 148
    • (2016) Hum Gene Ther. , vol.27 , pp. 436-450
    • Takata, N.1    Sakakura, E.2    Kasukawa, T.3    Sakuma, T.4    Yamamoto, T.5    Sasai, Y.6
  • 139
    • 84960102744 scopus 로고    scopus 로고
    • IGF-2/IGF-1R signaling has distinct effects on Sox1, Irx3, and Six3 expressions during ES cell derived-neuroectoderm development in vitro
    • Takata N, Sakakura E, Sasai Y. IGF-2/IGF-1R signaling has distinct effects on Sox1, Irx3, and Six3 expressions during ES cell derived-neuroectoderm development in vitro. In Vitro Cell Dev Biol Anim. 2016; 52: 607-15. https://doi. org/10. 1007/s11626-016-0012-6
    • (2016) Vitro Cell Dev Biol Anim. , vol.52 , pp. 607-615
    • Takata, N.1    Sakakura, E.2    Sasai, Y.3
  • 140
    • 85013270419 scopus 로고    scopus 로고
    • Organoid technologies meet genome engineering
    • Nie J, Hashino E. Organoid technologies meet genome engineering. EMBO Rep. 2017; 18: 367-76. https://doi. org/10. 15252/embr. 201643732
    • (2017) EMBO Rep. , vol.18 , pp. 367-376
    • Nie, J.1    Hashino, E.2
  • 141
    • 85056746775 scopus 로고    scopus 로고
    • May i cut in gene editing approaches in human induced pluripotent stem cells
    • Brookhouser N, Raman S, Potts C, Brafman DA. May I cut in gene editing approaches in human induced pluripotent stem cells. Cells. 2017; 6. https://doi. org/10. 3390/cells6010005.
    • (2017) Cells. , vol.6
    • Brookhouser, N.1    Raman, S.2    Potts, C.3    Brafman, D.A.4
  • 142
    • 84994311202 scopus 로고    scopus 로고
    • CRISPR/cas-mediated knockin in human pluripotent stem cells
    • Verma N, Zhu Z, Huangfu D. CRISPR/cas-mediated knockin in human pluripotent stem cells. Methods Mol Biol. 2017; 1513: 119-40. https://doi. org/10. 1007/978-1-4939-6539-7-9
    • (2017) Methods Mol Biol. , vol.1513 , pp. 119-140
    • Verma, N.1    Zhu, Z.2    Huangfu, D.3
  • 143
    • 84959421517 scopus 로고    scopus 로고
    • Establishment of genomeedited human pluripotent stem cell lines: From targeting to isolation
    • Blair JD, Bateup HS, Hockemeyer DF. Establishment of genomeedited human pluripotent stem cell lines: from targeting to isolation. J Vis Exp. 2016; e53583. https://doi. org/10. 3791/53583.
    • (2016) J Vis Exp. , pp. e53583
    • Blair, J.D.1    Bateup, H.S.2    Hockemeyer, D.F.3
  • 144
    • 84947447749 scopus 로고    scopus 로고
    • Differentiation of human ESCs to retinal ganglion cells using a CRISPR engineered reporter cell line
    • Sluch VM, Davis CHO, Ranganathan V, Kerr JM, Krick K, Martin R et al. Differentiation of human ESCs to retinal ganglion cells using a CRISPR engineered reporter cell line. Sci Rep. 2015; 5. https://doi. org/10. 1038/srep16595
    • (2015) Sci Rep. , vol.5
    • Sluch, V.M.1    Davis, C.H.O.2    Ranganathan, V.3    Kerr, J.M.4    Krick, K.5    Martin, R.6
  • 145
    • 85015336326 scopus 로고    scopus 로고
    • Knock-in strategy at 3'-end of Crx gene by CRISPR/Cas9 system shows the gene expression profiles during human photoreceptor differentiation
    • Homma K, Usui S, Kaneda M. Knock-in strategy at 3'-end of Crx gene by CRISPR/Cas9 system shows the gene expression profiles during human photoreceptor differentiation. Genes Cells. 2017; 22: 250-64. https://doi. org/10. 1111/gtc. 12472
    • (2017) Genes Cells. , vol.22 , pp. 250-264
    • Homma, K.1    Usui, S.2    Kaneda, M.3
  • 146
    • 84872534651 scopus 로고    scopus 로고
    • Cytosystems dynamics in self-organization of tissue architecture
    • Sasai Y. Cytosystems dynamics in self-organization of tissue architecture. Nature. 2013; 493: 318-26. https://doi. org/10. 1038/nature11859
    • (2013) Nature. , vol.493 , pp. 318-326
    • Sasai, Y.1
  • 147
    • 84867865709 scopus 로고    scopus 로고
    • In vitro organogenesis in three dimensions: Self-organising stem cells
    • Sasai Y, Eiraku M, Suga H. In vitro organogenesis in three dimensions: self-organising stem cells. Development. 2012; 139: 4111-21. https://doi. org/10. 1242/dev. 079590
    • (2012) Development. , vol.139 , pp. 4111-4121
    • Sasai, Y.1    Eiraku, M.2    Suga, H.3
  • 148
    • 84971667869 scopus 로고    scopus 로고
    • Specification of embryonic stem cell-derived tissues into eye fields by Wnt signaling using rostral diencephalic tissue-inducing culture
    • Sakakura E, Eiraku M, Takata N. Specification of embryonic stem cell-derived tissues into eye fields by Wnt signaling using rostral diencephalic tissue-inducing culture. Mech Develop. 2016; 141: 90-9. https://doi. org/10. 1016/j. mod. 2016. 05. 001
    • (2016) Mech Develop. , vol.141 , pp. 90-99
    • Sakakura, E.1    Eiraku, M.2    Takata, N.3
  • 149
    • 83455196056 scopus 로고    scopus 로고
    • Relaxation-expansion model for self-driven retinal morphogenesis: A hypothesis from the perspective of biosystems dynamics at the multi-cellular level
    • Eiraku M, Adachi T, Sasai Y. Relaxation-expansion model for self-driven retinal morphogenesis: a hypothesis from the perspective of biosystems dynamics at the multi-cellular level. Bioessays. 2012; 34: 17-25. https://doi. org/10. 1002/bies. 201100070
    • (2012) Bioessays. , vol.34 , pp. 17-25
    • Eiraku, M.1    Adachi, T.2    Sasai, Y.3
  • 150
    • 84994274946 scopus 로고    scopus 로고
    • Emergence of dorsal-ventral polarity in ESC-derived retinal tissue
    • Hasegawa Y, Takata N, Okuda S, Kawada M, Eiraku M, Sasai Y. Emergence of dorsal-ventral polarity in ESC-derived retinal tissue. Development. 2016; 143: 3895-906. https://doi. org/10. 1242/dev. 134601
    • (2016) Development. , vol.143 , pp. 3895-3906
    • Hasegawa, Y.1    Takata, N.2    Okuda, S.3    Kawada, M.4    Eiraku, M.5    Sasai, Y.6
  • 151
    • 84960955597 scopus 로고    scopus 로고
    • Comparative, transcriptome analysis of self-organizing optic tissues
    • Andrabi M, Kuraku S, Takata N, Sasai Y, Love NR. Comparative, transcriptome analysis of self-organizing optic tissues. Sci Data. 2015; 2. https://doi. org/10. 1038/sdata. 2015. 30.
    • (2015) Sci Data. , vol.2
    • Andrabi, M.1    Kuraku, S.2    Takata, N.3    Sasai, Y.4    Love, N.R.5
  • 152
    • 85015268570 scopus 로고    scopus 로고
    • Translational applications of adult stem cellderived organoids
    • Drost J, Clevers H. Translational applications of adult stem cellderived organoids. Development. 2017; 144: 968-75. https://doi. org/10. 1242/dev. 140566
    • (2017) Development. , vol.144 , pp. 968-975
    • Drost, J.1    Clevers, H.2
  • 153
    • 84880249396 scopus 로고    scopus 로고
    • Lgr5(+) liver stem cells, hepatic organoids and regenerative medicine
    • Huch M, Boj SF, Clevers H. Lgr5(+) liver stem cells, hepatic organoids and regenerative medicine. Regen Med. 2013; 8: 385-7. https://doi. org/10. 2217/rme. 13. 39
    • (2013) Regen Med. , vol.8 , pp. 385-387
    • Huch, M.1    Boj, S.F.2    Clevers, H.3
  • 154
    • 84942121762 scopus 로고    scopus 로고
    • Modeling mouse and human development using organoid cultures
    • Huch M, Koo BK. Modeling mouse and human development using organoid cultures. Development. 2015; 142: 3113-25. https://doi. org/10. 1242/dev. 118570
    • (2015) Development. , vol.142 , pp. 3113-3125
    • Huch, M.1    Koo, B.K.2
  • 155
    • 84920983131 scopus 로고    scopus 로고
    • Organoid models of human and mouse ductal pancreatic
    • Boj SF, Hwang CI, Baker LA, Chio IIC, Engle DD, Corbo V, et al. Organoid models of human and mouse ductal pancreatic. Cancer Cell. 2015; 160: 324-38. https://doi. org/10. 1016/j. cell. 2014. 12. 021
    • (2015) Cancer Cell. , vol.160 , pp. 324-338
    • Boj, S.F.1    Hwang, C.I.2    Baker, L.A.3    Chio, I.I.C.4    Engle, D.D.5    Corbo, V.6
  • 156
    • 84885846800 scopus 로고    scopus 로고
    • Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis
    • Huch M, Bonfanti P, Boj SF, Sato T, Loomans CJM, van de Wetering M, et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 2013; 32: 2708-21. https://doi. org/10. 1038/emboj. 2013. 204
    • (2013) EMBO J. , vol.32 , pp. 2708-2721
    • Huch, M.1    Bonfanti, P.2    Boj, S.F.3    Sato, T.4    Loomans, C.J.M.5    Van De Wetering, M.6
  • 157
    • 73049116186 scopus 로고    scopus 로고
    • Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro
    • Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010; 6: 25-36. https://doi. org/10. 1016/j. stem. 2009. 11. 013
    • (2010) Cell Stem Cell. , vol.6 , pp. 25-36
    • Barker, N.1    Huch, M.2    Kujala, P.3    Van De Wetering, M.4    Snippert, H.J.5    Van Es, J.H.6
  • 158
    • 84922875352 scopus 로고    scopus 로고
    • In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection
    • Bartfeld S, Bayram T, van de Wetering M, Huch M, Begthel H, Kujala P, et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology. 2015; 148: 126-136. e6. https://doi. org/10. 1053/j. gastro. 2014. 09. 042
    • (2015) Gastroenterology. , vol.148 , pp. 126-136e6
    • Bartfeld, S.1    Bayram, T.2    Van De Wetering, M.3    Huch, M.4    Begthel, H.5    Kujala, P.6
  • 159
    • 84949504069 scopus 로고    scopus 로고
    • The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids
    • Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun. 2015; 6. https://doi. org/10. 1038/ncomms9989
    • (2015) Nat Commun. , vol.6
    • Kessler, M.1    Hoffmann, K.2    Brinkmann, V.3    Thieck, O.4    Jackisch, S.5    Toelle, B.6
  • 160
    • 84922067781 scopus 로고    scopus 로고
    • Single luminal epithelial progenitors can generate prostate organoids in culture
    • Chua CW, Shibata M, Lei M, Toivanen R, Barlow LJ, Bergren SK, et al. Single luminal epithelial progenitors can generate prostate organoids in culture. Nat Cell Biol. 2014; 16: 951-61. https://doi. org/10. 1038/ncb3047
    • (2014) Nat Cell Biol. , vol.16 , pp. 951-961
    • Chua, C.W.1    Shibata, M.2    Lei, M.3    Toivanen, R.4    Barlow, L.J.5    Bergren, S.K.6
  • 161
    • 84907552531 scopus 로고    scopus 로고
    • Identification of multipotent luminal progenitor cells in human prostate organoid cultures
    • Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell. 2014; 159: 163-75. https://doi. org/10. 1016/j. cell. 2014. 08. 017
    • (2014) Cell. , vol.159 , pp. 163-175
    • Karthaus, W.R.1    Iaquinta, P.J.2    Drost, J.3    Gracanin, A.4    Van Boxtel, R.5    Wongvipat, J.6
  • 162
    • 84917734391 scopus 로고    scopus 로고
    • Single Lgr5-or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo
    • Ren W, Lewandowski BC, Watson J, Aihara E, Iwatsuki K, Bachmanov AA, et al. Single Lgr5-or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo. Proc Natl Acad Sci USA. 2014; 111: 16401-6. https://doi. org/10. 1073/pnas. 1409064111
    • (2014) Proc Natl Acad Sci USA. , vol.111 , pp. 16401-16406
    • Ren, W.1    Lewandowski, B.C.2    Watson, J.3    Aihara, E.4    Iwatsuki, K.5    Bachmanov, A.A.6
  • 163
    • 84955415712 scopus 로고    scopus 로고
    • Long-term in vitro expansion of salivary gland stem cells driven by Wnt signals
    • Maimets M, Rocchi C, Bron R, Pringle S, Kuipers J, Giepmans BN, et al. Long-term in vitro expansion of salivary gland stem cells driven by Wnt signals. Stem Cell Rep. 2016; 6: 150-62. https://doi. org/10. 1016/j. stemcr. 2015. 11. 009
    • (2016) Stem Cell Rep. , vol.6 , pp. 150-162
    • Maimets, M.1    Rocchi, C.2    Bron, R.3    Pringle, S.4    Kuipers, J.5    Giepmans, B.N.6
  • 164
    • 84949656637 scopus 로고    scopus 로고
    • What is an adult stem cell?
    • Clevers H. What is an adult stem cell? Science. 2015; 350: 1319-20. https://doi. org/10. 1126/science. aad7016
    • (2015) Science , vol.350 , pp. 1319-1320
    • Clevers, H.1
  • 165
    • 85015718933 scopus 로고    scopus 로고
    • Disease modeling in stem cell-derived 3D organoid systems
    • Dutta D, Heo I, Clevers H. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med. 2017. https://doi. org/10. 1016/j. molmed. 2017. 02. 007.
    • (2017) Trends Mol Med.
    • Dutta, D.1    Heo, I.2    Clevers, H.3
  • 166
    • 84890033064 scopus 로고    scopus 로고
    • Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients
    • Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013; 13: 653-8. https://doi. org/10. 1016/j. stem. 2013. 11. 002
    • (2013) Cell Stem Cell. , vol.13 , pp. 653-658
    • Schwank, G.1    Koo, B.K.2    Sasselli, V.3    Dekkers, J.F.4    Heo, I.5    Demircan, T.6
  • 167
    • 84862777784 scopus 로고    scopus 로고
    • Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell
    • Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat Med. 2012; 18: 618-23. https://doi. org/10. 1038/nm. 2695
    • (2012) Nat Med. , vol.18 , pp. 618-623
    • Yui, S.1    Nakamura, T.2    Sato, T.3    Nemoto, Y.4    Mizutani, T.5    Zheng, X.6
  • 168
    • 84890051386 scopus 로고    scopus 로고
    • Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury
    • Fordham RP, Yui S, Hannan NR, Soendergaard C, Madgwick A, Schweiger PJ, et al. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell. 2013; 13: 734-44. https://doi. org/10. 1016/j. stem. 2013. 09. 015
    • (2013) Cell Stem Cell. , vol.13 , pp. 734-744
    • Fordham, R.P.1    Yui, S.2    Hannan, N.R.3    Soendergaard, C.4    Madgwick, A.5    Schweiger, P.J.6
  • 169
    • 84906093308 scopus 로고    scopus 로고
    • Small intestinal stem cell identity is maintained with functional Paneth cells in heterotopically grafted epithelium onto the colon
    • Fukuda M, Mizutani T, Mochizuki W, Matsumoto T, Nozaki K, Sakamaki Y, et al. Small intestinal stem cell identity is maintained with functional Paneth cells in heterotopically grafted epithelium onto the colon. Gene Dev. 2014; 28: 1752-7. https://doi. org/10. 1101/gad. 245233. 114
    • (2014) Gene Dev. , vol.28 , pp. 1752-1757
    • Fukuda, M.1    Mizutani, T.2    Mochizuki, W.3    Matsumoto, T.4    Nozaki, K.5    Sakamaki, Y.6
  • 170
    • 84997235810 scopus 로고    scopus 로고
    • Intestinal stem cell transplantation
    • Nakamura T, Watanabe M. Intestinal stem cell transplantation. J Gastroenterol. 2017; 52: 151-7. https://doi. org/10. 1007/s00535-016-1288-8
    • (2017) J Gastroenterol. , vol.52 , pp. 151-157
    • Nakamura, T.1    Watanabe, M.2
  • 171
    • 84881184980 scopus 로고    scopus 로고
    • Vascularized and functional human liver from an iPSCderived organ bud transplant
    • Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, et al. Vascularized and functional human liver from an iPSCderived organ bud transplant. Nature. 2013; 499: 481-4. https://doi. org/10. 1038/nature12271
    • (2013) Nature. , vol.499 , pp. 481-484
    • Takebe, T.1    Sekine, K.2    Enomura, M.3    Koike, H.4    Kimura, M.5    Ogaeri, T.6
  • 172
    • 84893223076 scopus 로고    scopus 로고
    • Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant
    • Takebe T, Zhang RR, Koike H, Kimura M, Yoshizawa E, Enomura M, et al. Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat Protoc. 2014; 9: 396-409. https://doi. org/10. 1038/nprot. 2014. 020
    • (2014) Nat Protoc. , vol.9 , pp. 396-409
    • Takebe, T.1    Zhang, R.R.2    Koike, H.3    Kimura, M.4    Yoshizawa, E.5    Enomura, M.6
  • 173
    • 84929166388 scopus 로고    scopus 로고
    • Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation
    • Takebe T, Enomura M, Yoshizawa E, Kimura M, Koike H, Ueno Y, et al. Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation. Cell Stem Cell. 2015; 16: 556-65. https://doi. org/10. 1016/j. stem. 2015. 03. 004
    • (2015) Cell Stem Cell. , vol.16 , pp. 556-565
    • Takebe, T.1    Enomura, M.2    Yoshizawa, E.3    Kimura, M.4    Koike, H.5    Ueno, Y.6
  • 174
    • 84908508160 scopus 로고    scopus 로고
    • Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells
    • Ottone C, Krusche B, Whitby A, Clements M, Quadrato G, Pitulescu ME, et al. Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat Cell Biol. 2014; 16: 1045-+. https://doi. org/10. 1038/ncb3045
    • (2014) Nat Cell Biol. , vol.16 , pp. 1045
    • Ottone, C.1    Krusche, B.2    Whitby, A.3    Clements, M.4    Quadrato, G.5    Pitulescu, M.E.6
  • 175
    • 75649144081 scopus 로고    scopus 로고
    • Diverse roles of the vasculature within the neural stem cell niche
    • Goldberg JS, Hirschi KK. Diverse roles of the vasculature within the neural stem cell niche. Regen Med. 2009; 4: 879-97. https://doi. org/10. 2217/Rme. 09. 61
    • (2009) Regen Med. , vol.4 , pp. 879-897
    • Goldberg, J.S.1    Hirschi, K.K.2
  • 177
    • 84955286381 scopus 로고    scopus 로고
    • Angiocrine functions of organspecific endothelial cells
    • Rafii S, Butler JM, Ding BS. Angiocrine functions of organspecific endothelial cells. Nature. 2016; 529: 316-25. https://doi. org/10. 1038/nature17040
    • (2016) Nature. , vol.529 , pp. 316-325
    • Rafii, S.1    Butler, J.M.2    Ding, B.S.3
  • 178
    • 84951310011 scopus 로고    scopus 로고
    • Engineering large animal models of human disease
    • Whitelaw CB, Sheets TP, Lillico SG, Telugu BP. Engineering large animal models of human disease. J Pathol. 2016; 238: 247-56. https://doi. org/10. 1002/path. 4648
    • (2016) J Pathol. , vol.238 , pp. 247-256
    • Whitelaw, C.B.1    Sheets, T.P.2    Lillico, S.G.3    Telugu, B.P.4
  • 179
    • 0019141551 scopus 로고
    • The ontogeny of the neural crest in avian embryo chimaeras
    • Le Douarin NM. The ontogeny of the neural crest in avian embryo chimaeras. Nature. 1980; 286: 663-9.
    • (1980) Nature. , vol.286 , pp. 663-669
    • Le Douarin, N.M.1
  • 180
    • 0015858545 scopus 로고
    • Investigation of early mammalian development using interspecific chimaeras between rat and mouse
    • Gardner RL, Johnson MH. Investigation of early mammalian development using interspecific chimaeras between rat and mouse. Nat New Biol. 1973; 246: 86-9.
    • (1973) Nat New Biol. , vol.246 , pp. 86-89
    • Gardner, R.L.1    Johnson, M.H.2
  • 181
    • 0021190221 scopus 로고
    • Interspecific chimaerism between sheep and goat
    • Fehilly CB, Willadsen SM, Tucker EM. Interspecific chimaerism between sheep and goat. Nature. 1984; 307: 634-6. https://doi. org/10. 1038/307634a0
    • (1984) Nature. , vol.307 , pp. 634-636
    • Fehilly, C.B.1    Willadsen, S.M.2    Tucker, E.M.3
  • 182
    • 0025087867 scopus 로고
    • Production of interspecies chimeric calves by aggregation of Bos indicus and Bos taurus demi-embryos
    • Williams TJ, Munro RK, Shelton JN. Production of interspecies chimeric calves by aggregation of Bos indicus and Bos taurus demi-embryos. Reprod Fertil Dev. 1990; 2: 385-94.
    • (1990) Reprod Fertil Dev. , vol.2 , pp. 385-394
    • Williams, T.J.1    Munro, R.K.2    Shelton, J.N.3
  • 183
    • 0019151512 scopus 로고
    • Interspecific chimeras in mammals-successful production of live chimeras between mus-musculus and mus-caroli
    • Rossant J, Frels WI. Interspecific chimeras in mammals-successful production of live chimeras between mus-musculus and mus-caroli. Science. 1980; 208: 419-21. https://doi. org/10. 1126/science. 7367871
    • (1980) Science. , vol.208 , pp. 419-421
    • Rossant, J.1    Frels, W.I.2
  • 185
    • 0020002197 scopus 로고
    • Importance of trophoblast genotype for survival of interspecific murine chimaeras
    • Rossant J, Mauro VM, Croy BA. Importance of trophoblast genotype for survival of interspecific murine chimaeras. J Embryol Exp Morphol. 1982; 69: 141-9.
    • (1982) J Embryol Exp Morphol. , vol.69 , pp. 141-149
    • Rossant, J.1    Mauro, V.M.2    Croy, B.A.3
  • 186
    • 85031021510 scopus 로고    scopus 로고
    • Lessons from interspecies mammalian chimeras
    • Suchy F, Nakauchi H. Lessons from interspecies mammalian chimeras. Annu Rev Cell Dev Biol. 2017. https://doi. org/10. 1146/annurev-cellbio-100616-060654.
    • (2017) Annu Rev Cell Dev Biol.
    • Suchy, F.1    Nakauchi, H.2
  • 187
    • 77954538843 scopus 로고    scopus 로고
    • Transgenic pigs as models for translational biomedical research
    • Aigner B, Renner S, Kessler B, Klymiuk N, Kurome M, Wunsch A, et al. Transgenic pigs as models for translational biomedical research. J Mol Med. 2010; 88: 653-64. https://doi. org/10. 1007/s00109-010-0610-9
    • (2010) J Mol Med. , vol.88 , pp. 653-664
    • Aigner, B.1    Renner, S.2    Kessler, B.3    Klymiuk, N.4    Kurome, M.5    Wunsch, A.6
  • 189
    • 84893618608 scopus 로고    scopus 로고
    • Genetically modified pigs to model human diseases
    • Flisikowska T, Kind A, Schnieke A. Genetically modified pigs to model human diseases. J Appl Genet. 2014; 55: 53-64. https://doi. org/10. 1007/s13353-013-0182-9
    • (2014) J Appl Genet. , vol.55 , pp. 53-64
    • Flisikowska, T.1    Kind, A.2    Schnieke, A.3
  • 190
    • 84925862629 scopus 로고    scopus 로고
    • The potential of the combination of CRISPR/Cas9 and pluripotent stem cells to provide human organs from chimaeric pigs
    • Feng W, Dai Y, Mou L, Cooper DK, Shi D, Cai Z. The potential of the combination of CRISPR/Cas9 and pluripotent stem cells to provide human organs from chimaeric pigs. Int J Mol Sci. 2015; 16: 6545-56. https://doi. org/10. 3390/ijms16036545
    • (2015) Int J Mol Sci. , vol.16 , pp. 6545-6556
    • Feng, W.1    Dai, Y.2    Mou, L.3    Cooper, D.K.4    Shi, D.5    Cai, Z.6
  • 191
    • 77956163474 scopus 로고    scopus 로고
    • Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells
    • Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell. 2010; 142: 787-99. https://doi. org/10. 1016/j. cell. 2010. 07. 039
    • (2010) Cell. , vol.142 , pp. 787-799
    • Kobayashi, T.1    Yamaguchi, T.2    Hamanaka, S.3    Kato-Itoh, M.4    Yamazaki, Y.5    Ibata, M.6
  • 192
    • 84861650401 scopus 로고    scopus 로고
    • Generation of kidney from pluripotent stem cells via blastocyst complementation
    • Usui J, Kobayashi T, Yamaguchi T, Knisely AS, Nishinakamura R, Nakauchi H. Generation of kidney from pluripotent stem cells via blastocyst complementation. Am J Pathol. 2012; 180: 2417-26. https://doi. org/10. 1016/j. ajpath. 2012. 03. 007
    • (2012) Am J Pathol. , vol.180 , pp. 2417-2426
    • Usui, J.1    Kobayashi, T.2    Yamaguchi, T.3    Knisely, A.S.4    Nishinakamura, R.5    Nakauchi, H.6
  • 193
    • 85012112339 scopus 로고    scopus 로고
    • Interspecies organogenesis generates autologous functional islets
    • Yamaguchi T, Sato H, Kato-Itoh M, Goto T, Hara H, Sanbo M, et al. Interspecies organogenesis generates autologous functional islets. Nature. 2017; 542: 191-6. https://doi. org/10. 1038/na ture21070
    • (2017) Nature. , vol.542 , pp. 191-196
    • Yamaguchi, T.1    Sato, H.2    Kato-Itoh, M.3    Goto, T.4    Hara, H.5    Sanbo, M.6
  • 194
    • 84875252985 scopus 로고    scopus 로고
    • Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs
    • Matsunari H, Nagashima H, Watanabe M, Umeyama K, Nakano K, Nagaya M, et al. Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs. Proc Natl Acad Sci USA. 2013; 110: 4557-62. https://doi. org/10. 1073/pnas. 1222902110
    • (2013) Proc Natl Acad Sci USA. , vol.110 , pp. 4557-4562
    • Matsunari, H.1    Nagashima, H.2    Watanabe, M.3    Umeyama, K.4    Nakano, K.5    Nagaya, M.6
  • 195
    • 85010695864 scopus 로고    scopus 로고
    • Interspecies chimerism with mammalian pluripotent stem cells
    • Wu J, Platero-Luengo A, Sakurai M, Sugawara A, Gil MA, Yamauchi T, et al. Interspecies chimerism with mammalian pluripotent stem cells. Cell. 2017; 168: 473-486. e415. https://doi. org/10. 1016/j. cell. 2016. 12. 036
    • (2017) Cell. , vol.168 , pp. 473-486e415
    • Wu, J.1    Platero-Luengo, A.2    Sakurai, M.3    Sugawara, A.4    Gil, M.A.5    Yamauchi, T.6
  • 196
    • 84900993129 scopus 로고    scopus 로고
    • Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency
    • Lee K, Kwon DN, Ezashi T, Choi YJ, Park C, Ericsson AC, et al. Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency. Proc Natl Acad Sci USA. 2014; 111: 7260-5. https://doi. org/10. 1073/pnas. 1406376111
    • (2014) Proc Natl Acad Sci USA. , vol.111 , pp. 7260-7265
    • Lee, K.1    Kwon, D.N.2    Ezashi, T.3    Choi, Y.J.4    Park, C.5    Ericsson, A.C.6
  • 197
    • 84918536729 scopus 로고    scopus 로고
    • Revisiting the flight of Icarus: Making human organs from PSCs with large animal chimeras
    • Rashid T, Kobayashi T, Nakauchi H. Revisiting the flight of Icarus: making human organs from PSCs with large animal chimeras. Cell Stem Cell. 2014; 15: 406-9. https://doi. org/10. 1016/j. stem. 2014. 09. 013
    • (2014) Cell Stem Cell. , vol.15 , pp. 406-409
    • Rashid, T.1    Kobayashi, T.2    Nakauchi, H.3
  • 198
    • 85003875678 scopus 로고    scopus 로고
    • Somatic cell nuclear transfer followed by CRIPSR/Cas9 microinjection results in highly efficient genome editing in cloned pigs
    • Sheets TP, Park CH, Park KE, Powell A, Donovan DM, Telugu BP. Somatic cell nuclear transfer followed by CRIPSR/Cas9 microinjection results in highly efficient genome editing in cloned pigs. Int J Mol Sci. 2016; 17. https://doi. org/10. 3390/ijms17122031.
    • (2016) Int J Mol Sci. , vol.17
    • Sheets, T.P.1    Park, C.H.2    Park, K.E.3    Powell, A.4    Donovan, D.M.5    Telugu, B.P.6
  • 199
    • 84897594300 scopus 로고    scopus 로고
    • One-step generation of knockout pigs by zygote injection of CRISPR/Cas system
    • Hai T, Teng F, Guo R, Li W, Zhou Q. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res. 2014; 24: 372-5. https://doi. org/10. 1038/cr. 2014. 11
    • (2014) Cell Res. , vol.24 , pp. 372-375
    • Hai, T.1    Teng, F.2    Guo, R.3    Li, W.4    Zhou, Q.5
  • 200
    • 84921602939 scopus 로고    scopus 로고
    • Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos
    • Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL, et al. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod. 2014; 91. https://doi. org/10. 1095/biolreprod. 114. 121723 doi: ARTN 7810. 1095/biolreprod. 114. 121723.
    • (2014) Biol Reprod. , vol.91
    • Whitworth, K.M.1    Lee, K.2    Benne, J.A.3    Beaton, B.P.4    Spate, L.D.5    Murphy, S.L.6
  • 201
    • 33645145491 scopus 로고    scopus 로고
    • Large animal models and gene therapy
    • Casal M, Haskins M. Large animal models and gene therapy. Eur J Hum Genet. 2006; 14: 266-72. https://doi. org/10. 1038/sj. ejhg. 5201535
    • (2006) Eur J Hum Genet. , vol.14 , pp. 266-272
    • Casal, M.1    Haskins, M.2
  • 202
    • 84941259954 scopus 로고    scopus 로고
    • Why bother using nonhuman primate models of cognitive disorders in translational research?
    • Camus S, Ko WK, Pioli E, Bezard E. Why bother using nonhuman primate models of cognitive disorders in translational research? Neurobiol Learn Mem. 2015; 124: 123-9. https://doi. org/10. 1016/j. nlm. 2015. 06. 012
    • (2015) Neurobiol Learn Mem , vol.124 , pp. 123-129
    • Camus, S.1    Ko, W.K.2    Pioli, E.3    Bezard, E.4
  • 203
    • 84978712593 scopus 로고    scopus 로고
    • Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases
    • Yao J, Huang J, Zhao J. Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases. Hum Genet. 2016; 135: 1093-105. https://doi. org/10. 1007/s00439-016-1710-6
    • (2016) Hum Genet. , vol.135 , pp. 1093-1105
    • Yao, J.1    Huang, J.2    Zhao, J.3
  • 204
  • 205
    • 84951573938 scopus 로고    scopus 로고
    • Recent advances in genome editing and creation of genetically modified pigs
    • Butler JR, Ladowski JM, Martens GR, Tector M, Tector AJ. Recent advances in genome editing and creation of genetically modified pigs. Int J Surg. 2015; 23: 217-22. https://doi. org/10. 1016/j. ijsu. 2015. 07. 684
    • (2015) Int J Surg. , vol.23 , pp. 217-222
    • Butler, J.R.1    Ladowski, J.M.2    Martens, G.R.3    Tector, M.4    Tector, A.J.5
  • 206
    • 84925519674 scopus 로고    scopus 로고
    • Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer
    • Zhou X, Xin J, Fan N, Zou Q, Huang J, Ouyang Z, et al. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci. 2015; 72: 1175-84. https://doi. org/10. 1007/s00018-014-1744-7
    • (2015) Cell Mol Life Sci. , vol.72 , pp. 1175-1184
    • Zhou, X.1    Xin, J.2    Fan, N.3    Zou, Q.4    Huang, J.5    Ouyang, Z.6
  • 208
    • 85022131482 scopus 로고    scopus 로고
    • Somatic cell reprogramming-free generation of genetically modified pigs
    • Tanihara F, Takemoto T, Kitagawa E, Rao S, Do LT, Onishi A, et al. Somatic cell reprogramming-free generation of genetically modified pigs. Sci Adv. 2016; 2: e1600803. https://doi. org/10. 1126/sciadv. 1600803
    • (2016) Sci Adv. , vol.2 , pp. e1600803
    • Tanihara, F.1    Takemoto, T.2    Kitagawa, E.3    Rao, S.4    Do, L.T.5    Onishi, A.6
  • 209
    • 84949996967 scopus 로고    scopus 로고
    • Creating human organs in chimaera pigs: An ethical source of immunocompatible organs?
    • Shaw D, Dondorp W, Geijsen N, de Wert G. Creating human organs in chimaera pigs: an ethical source of immunocompatible organs? J Med Ethics. 2015; 41: 970-4. https://doi. org/10. 1136/medethics-2014-102224
    • (2015) J Med Ethics , vol.41 , pp. 970-974
    • Shaw, D.1    Dondorp, W.2    Geijsen, N.3    De Wert, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.