-
1
-
-
84868206007
-
Self-formation of layered neural structures in three-dimensional culture of ES cells
-
Self-formation of layered neural structures in three-dimensional culture of ES cells. Curr Opin Neurobiol. 2012; 22: 768-77. https://doi. org/10. 1016/j. conb. 2012. 02. 005 2 Sasai Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell. 2013; 12: 520-30. https://doi. org/10. 1016/j. stem. 2013. 04. 009
-
(2012)
Curr Opin Neurobiol
, vol.22
, pp. 768-777
-
-
Eiraku, M.1
Sasai, Y.2
-
2
-
-
84934954085
-
SnapShot: Growing organoids from stem cells
-
Sato T, Clevers H. SnapShot: growing organoids from stem cells. Cell. 2015; 161: 1700-1700. e1. https://doi. org/10. 1016/j. cell. 2015. 06. 028
-
(2015)
Cell.
, vol.161
, pp. 1700-1700e1
-
-
Sato, T.1
Clevers, H.2
-
3
-
-
84905725612
-
3D bioprinting of tissues and organs
-
Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014; 32: 773-85. https://doi. org/10. 1038/nbt. 2958
-
(2014)
Nat Biotechnol.
, vol.32
, pp. 773-785
-
-
Murphy, S.V.1
Atala, A.2
-
4
-
-
79961088512
-
Organ engineering based on decellularized matrix scaffolds
-
Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends Mol Med. 2011; 17: 424-32. https://doi. org/10. 1016/j. molmed. 2011. 03. 005
-
(2011)
Trends Mol Med.
, vol.17
, pp. 424-432
-
-
Song, J.J.1
Ott, H.C.2
-
5
-
-
84868611688
-
Perspectives on whole-organ assembly: Moving toward transplantation on demand
-
Soto-Gutierrez A, Wertheim JA, Ott HC, Gilbert TW. Perspectives on whole-organ assembly: moving toward transplantation on demand. J Clin Invest. 2012; 122: 3817-23. https://doi. org/10. 1172/Jci61974
-
(2012)
J Clin Invest.
, vol.122
, pp. 3817-3823
-
-
Soto-Gutierrez, A.1
Wertheim, J.A.2
Ott, H.C.3
Gilbert, T.W.4
-
6
-
-
79960351640
-
Whole-organ tissue engineering: Decellularization and recellularization of three-dimensional matrix scaffolds
-
Badylak SF, Taylor D, Uygun K. Whole-Organ Tissue Engineering: Decellularization and Recellularization of Three-Dimensional Matrix Scaffolds. Annu Rev Biomed Eng. 2011; 13: 27-53. https://doi. org/10. 1146/annurev-bioeng-071910-124743
-
(2011)
Annu Rev Biomed Eng.
, vol.13
, pp. 27-53
-
-
Badylak, S.F.1
Taylor, D.2
Uygun, K.3
-
7
-
-
84857233943
-
Clinical xenotransplantation: The next medical revolution?
-
Ekser B, Ezzelarab M, Hara H, van der Windt DJ, Wijkstrom M, Bottino R, et al. Clinical xenotransplantation: the next medical revolution? Lancet. 2012; 379: 672-83. https://doi. org/10. 1016/S0140-6736(11)61091-X
-
(2012)
Lancet
, vol.379
, pp. 672-683
-
-
Ekser, B.1
Ezzelarab, M.2
Hara, H.3
Van Der Windt, D.J.4
Wijkstrom, M.5
Bottino, R.6
-
8
-
-
77957282619
-
International human xenotransplantation inventory
-
Sgroi A, Buhler LH, Morel P, Sykes M, Noel L. International human xenotransplantation inventory. Transplantation. 2010; 90: 597-603. https://doi. org/10. 1097/TP. 0b013e3181eb2e8c
-
(2010)
Transplantation.
, vol.90
, pp. 597-603
-
-
Sgroi, A.1
Buhler, L.H.2
Morel, P.3
Sykes, M.4
Noel, L.5
-
9
-
-
84859832594
-
A brief history of cross-species organ transplantation
-
Cooper, D. K. A brief history of cross-species organ transplantation. Proc (Bayl Univ Med Cent). 2012; 25: 49-57.
-
(2012)
Proc (Bayl Univ Med Cent).
, vol.25
, pp. 49-57
-
-
Cooper, D.K.1
-
10
-
-
84908031939
-
Making designer mutants in model organisms
-
Peng Y, Clark KJ, Campbell JM, Panetta MR, Guo Y, Ekker SC. Making designer mutants in model organisms. Development. 2014; 141: 4042-54. https://doi. org/10. 1242/dev. 102186
-
(2014)
Development.
, vol.141
, pp. 4042-4054
-
-
Peng, Y.1
Clark, K.J.2
Campbell, J.M.3
Panetta, M.R.4
Guo, Y.5
Ekker, S.C.6
-
11
-
-
85017268987
-
Refining strategies to translate genome editing to the clinic
-
Cornu TI, Mussolino C, Cathomen T. Refining strategies to translate genome editing to the clinic. Nat Med. 2017; 23: 415-23. https://doi. org/10. 1038/nm. 4313
-
(2017)
Nat Med.
, vol.23
, pp. 415-423
-
-
Cornu, T.I.1
Mussolino, C.2
Cathomen, T.3
-
12
-
-
84912078930
-
Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology
-
Blasco RB, Karaca E, Ambrogio C, Cheong TC, Karayol E, Minero VG, et al. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Reports. 2014; 9: 1219-27. https://doi. org/10. 1016/j. celrep. 2014. 10. 051
-
(2014)
Cell Reports.
, vol.9
, pp. 1219-1227
-
-
Blasco, R.B.1
Karaca, E.2
Ambrogio, C.3
Cheong, T.C.4
Karayol, E.5
Minero, V.G.6
-
13
-
-
84937545421
-
A versatile reporter system for CRISPR-mediated chromosomal rearrangements
-
Li Y, Park AI, Mou H, Colpan C, Bizhanova A, Akama-Garren E, et al. A versatile reporter system for CRISPR-mediated chromosomal rearrangements. Genome Biol. 2015; 16: 111. https://doi. org/10. 1186/s13059-015-0680-7
-
(2015)
Genome Biol.
, vol.16
, pp. 111
-
-
Li, Y.1
Park, A.I.2
Mou, H.3
Colpan, C.4
Bizhanova, A.5
Akama-Garren, E.6
-
14
-
-
84959019046
-
Induction of site-specific chromosomal translocations in embryonic stem cells by CRISPR/Cas9
-
Jiang J, Zhang L, Zhou X, Chen X, Huang G, Li F, et al. Induction of site-specific chromosomal translocations in embryonic stem cells by CRISPR/Cas9. Sci Rep. 2016; 6: 21918. https://doi. org/10. 1038/srep21918
-
(2016)
Sci Rep.
, vol.6
, pp. 21918
-
-
Jiang, J.1
Zhang, L.2
Zhou, X.3
Chen, X.4
Huang, G.5
Li, F.6
-
15
-
-
84988569121
-
Editing DNA methylation in the mammalian genome
-
Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, et al. Editing DNA methylation in the mammalian genome. Cell. 2016; 167: 233-47. e217. https://doi. org/10. 1016/j. cell. 2016. 08. 056
-
(2016)
Cell.
, vol.167
, pp. 233-247e217
-
-
Liu, X.S.1
Wu, H.2
Ji, X.3
Stelzer, Y.4
Wu, X.5
Czauderna, S.6
-
16
-
-
85041065364
-
Epigenetics: CRISPR edits gene methylation
-
Epigenetics: CRISPR edits gene methylation. Nature 2016; 537: 588, https://doi. org/10. 1038/537588c.
-
(2016)
Nature
, vol.537
, pp. 588
-
-
-
17
-
-
84929135130
-
Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
-
Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 2015; 33: 510-7. https://doi. org/10. 1038/nbt. 3199
-
(2015)
Nat Biotechnol.
, vol.33
, pp. 510-517
-
-
Hilton, I.B.1
D'Ippolito, A.M.2
Vockley, C.M.3
Thakore, P.I.4
Crawford, G.E.5
Reddy, T.E.6
-
18
-
-
84961290066
-
Editing the epigenome: Technologies for programmable transcription and epigenetic modulation
-
Thakore PI, Black JB, Hilton IB, Gersbach CA. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods. 2016; 13: 127-37. https://doi. org/10. 1038/nmeth. 3733
-
(2016)
Nat Methods.
, vol.13
, pp. 127-137
-
-
Thakore, P.I.1
Black, J.B.2
Hilton, I.B.3
Gersbach, C.A.4
-
19
-
-
84894081804
-
Cas9-based tools for targeted genome editing and transcriptional control
-
Xu T, Li Y, Van Nostrand JD, He Z, Zhou J. Cas9-based tools for targeted genome editing and transcriptional control. Appl Environ Microbiol. 2014; 80: 1544-52. https://doi. org/10. 1128/AEM. 03786-13
-
(2014)
Appl Environ Microbiol.
, vol.80
, pp. 1544-1552
-
-
Xu, T.1
Li, Y.2
Van Nostrand, J.D.3
He, Z.4
Zhou, J.5
-
20
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337: 816-21. https://doi. org/10. 1126/science. 1225829
-
(2012)
Science.
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
21
-
-
84930613203
-
CRISPR, the disruptor
-
Ledford H. CRISPR, the disruptor. Nature. 2015; 522: 20-4. https://doi. org/10. 1038/522020a
-
(2015)
Nature.
, vol.522
, pp. 20-24
-
-
Ledford, H.1
-
22
-
-
84950308314
-
Making the cut
-
Travis J. Making the cut. Science. 2015; 350: 1456-7. https://doi. org/10. 1126/science. 350. 6267. 1456
-
(2015)
Science.
, vol.350
, pp. 1456-1457
-
-
Travis, J.1
-
23
-
-
0023600057
-
Nucleotide-sequence of the iap gene, responsible for alkalinephosphatase isozyme conversion in Escherichia coli, and identification of the gene-product
-
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide-sequence of the iap gene, responsible for alkalinephosphatase isozyme conversion in Escherichia coli, and identification of the gene-product. J Bacteriol. 1987; 169: 5429-33.
-
(1987)
J Bacteriol.
, vol.169
, pp. 5429-5433
-
-
Ishino, Y.1
Shinagawa, H.2
Makino, K.3
Amemura, M.4
Nakata, A.5
-
24
-
-
39149142575
-
CRISPR-a widespread system that provides acquired resistance against phages in bacteria and archaea
-
Sorek R, Kunin V, Hugenholtz P. CRISPR-a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol. 2008; 6: 181-6. https://doi. org/10. 1038/nrmicro1793
-
(2008)
Nat Rev Microbiol.
, vol.6
, pp. 181-186
-
-
Sorek, R.1
Kunin, V.2
Hugenholtz, P.3
-
25
-
-
78149261827
-
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
-
Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010; 468: 67-+. https://doi. org/10. 1038/nature09523
-
(2010)
Nature.
, vol.468
, pp. 67
-
-
Garneau, J.E.1
Dupuis, M.E.2
Villion, M.3
Romero, D.A.4
Barrangou, R.5
Boyaval, P.6
-
26
-
-
84900314611
-
CRISPR-Cas systems for editing, regulating and targeting genomes
-
Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014; 32: 347-55. https://doi. org/10. 1038/nbt. 2842
-
(2014)
Nat Biotechnol.
, vol.32
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
27
-
-
84913594397
-
Genome editing the new frontier of genome engineering with CRISPR-Cas9
-
Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014; 346: 1258096 https://doi. org/10. 1126/science. 1258096
-
(2014)
Science.
, vol.346
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
28
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013; 41: 4336-43. https://doi. org/10. 1093/nar/gkt135
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 4336-4343
-
-
DiCarlo, J.E.1
Norville, J.E.2
Mali, P.3
Rios, X.4
Aach, J.5
Church, G.M.6
-
29
-
-
84920262090
-
The CRISPR/Cas9 system for plant genome editing and beyond
-
Bortesi L, Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv. 2015; 33: 41-52. https://doi. org/10. 1016/j. biotechadv. 2014. 12. 006
-
(2015)
Biotechnol Adv.
, vol.33
, pp. 41-52
-
-
Bortesi, L.1
Fischer, R.2
-
30
-
-
84884904381
-
Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination
-
Dickinson DJ, Ward JD, Reiner DJ, Goldstein B. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods. 2013; 10: 1028-+. https://doi. org/10. 1038/Nmeth. 2641
-
(2013)
Nat Methods.
, vol.10
, pp. 1028
-
-
Dickinson, D.J.1
Ward, J.D.2
Reiner, D.J.3
Goldstein, B.4
-
31
-
-
84892437994
-
Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system
-
Bassett AR, Tibbit C, Ponting CP, Liu JL. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 2013; 4: 220-8. https://doi. org/10. 1016/j. celrep. 2013. 06. 020
-
(2013)
Cell Rep.
, vol.4
, pp. 220-228
-
-
Bassett, A.R.1
Tibbit, C.2
Ponting, C.P.3
Liu, J.L.4
-
32
-
-
84946202614
-
Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets
-
Awata H, Watanabe T, Hamanaka Y, Mito T, Noji S, Mizunami M. Knockout crickets for the study of learning and memory: dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets. Sci Rep. 2015; 5: 15885. https://doi. org/10. 1038/srep15885
-
(2015)
Sci Rep.
, vol.5
, pp. 15885
-
-
Awata, H.1
Watanabe, T.2
Hamanaka, Y.3
Mito, T.4
Noji, S.5
Mizunami, M.6
-
33
-
-
84876409836
-
Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos
-
Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X, et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res. 2013; 23: 465-72. https://doi. org/10. 1038/cr. 2013. 45
-
(2013)
Cell Res.
, vol.23
, pp. 465-472
-
-
Chang, N.1
Sun, C.2
Gao, L.3
Zhu, D.4
Xu, X.5
Zhu, X.6
-
34
-
-
84892771868
-
Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis
-
Guo X, Zhang T, Hu Z, Zhang Y, Shi Z, Wang Q, et al. Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis. Development. 2014; 141: 707-14. https://doi. org/10. 1242/dev. 099853
-
(2014)
Development.
, vol.141
, pp. 707-714
-
-
Guo, X.1
Zhang, T.2
Hu, Z.3
Zhang, Y.4
Shi, Z.5
Wang, Q.6
-
35
-
-
84877707375
-
One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
-
Wang HY, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013; 153: 910-8. https://doi. org/10. 1016/j. cell. 2013. 04. 025
-
(2013)
Cell.
, vol.153
, pp. 910-918
-
-
Wang, H.Y.1
Yang, H.2
Shivalila, C.S.3
Dawlaty, M.M.4
Cheng, A.W.5
Zhang, F.6
-
36
-
-
84884289608
-
One-Step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering
-
Yang H, Wang HY, Shivalila CS, Cheng AW, Shi LY, Jaenisch R. One-Step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013; 154: 1370-9. https://doi. org/10. 1016/j. cell. 2013. 08. 022
-
(2013)
Cell.
, vol.154
, pp. 1370-1379
-
-
Yang, H.1
Wang, H.Y.2
Shivalila, C.S.3
Cheng, A.W.4
Shi, L.Y.5
Jaenisch, R.6
-
37
-
-
84905029498
-
Generating genetically modified mice using CRISPR/Cas-mediated genome engineering
-
Yang H, Wang HY, Jaenisch R. Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc. 2014; 9: 1956-68. https://doi. org/10. 1038/nprot. 2014. 134
-
(2014)
Nat Protoc.
, vol.9
, pp. 1956-1968
-
-
Yang, H.1
Wang, H.Y.2
Jaenisch, R.3
-
38
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013; 339: 819-23. https://doi. org/10. 1126/science. 1231143
-
(2013)
Science.
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.L.4
Barretto, R.5
Habib, N.6
-
39
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013; 339: 823-6. https://doi. org/10. 1126/science. 1232033
-
(2013)
Science.
, vol.339
, pp. 823-826
-
-
Mali, P.1
Yang, L.H.2
Esvelt, K.M.3
Aach, J.4
Guell, M.5
DiCarlo, J.E.6
-
40
-
-
77950486864
-
Regenerative medicine for retinal diseases: Activating endogenous repair mechanisms
-
Karl MO, Reh TA. Regenerative medicine for retinal diseases: activating endogenous repair mechanisms. Trends Mol Med. 2010; 16: 193-202. https://doi. org/10. 1016/j. molmed. 2010. 02. 003
-
(2010)
Trends Mol Med.
, vol.16
, pp. 193-202
-
-
Karl, M.O.1
Reh, T.A.2
-
41
-
-
84867097798
-
Insm1a-mediated gene repression is essential for the formation and differentiation of Müller glia-derived progenitors in the injured retina
-
Ramachandran R, Zhao XF, Goldman D. Insm1a-mediated gene repression is essential for the formation and differentiation of Müller glia-derived progenitors in the injured retina. Nat Cell Biol. 2012; 14: 1013-+. https://doi. org/10. 1038/ncb2586
-
(2012)
Nat Cell Biol.
, vol.14
, pp. 1013
-
-
Ramachandran, R.1
Zhao, X.F.2
Goldman, D.3
-
42
-
-
84857004538
-
HB-EGF is necessary and sufficient for Müller Glia dedifferentiation and retina regeneration
-
Wan J, Ramachandran R, Goldman D. HB-EGF is necessary and sufficient for Müller Glia dedifferentiation and retina regeneration. Dev Cell. 2012; 22: 334-47. https://doi. org/10. 1016/j. devcel. 2011. 11. 020
-
(2012)
Dev Cell.
, vol.22
, pp. 334-347
-
-
Wan, J.1
Ramachandran, R.2
Goldman, D.3
-
43
-
-
84887164189
-
A self-renewing division of zebrafish Müller glial cells generates neuronal progenitors that require N-cadherin to regenerate retinal neurons
-
Nagashima M, Barthel LK, Raymond PA. A self-renewing division of zebrafish Müller glial cells generates neuronal progenitors that require N-cadherin to regenerate retinal neurons. Development. 2013; 140: 4510-21. https://doi. org/10. 1242/dev. 090738
-
(2013)
Development.
, vol.140
, pp. 4510-4521
-
-
Nagashima, M.1
Barthel, L.K.2
Raymond, P.A.3
-
44
-
-
77950200829
-
Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation
-
Jopling C, Sleep E, Raya M, Marti M, Raya A, Belmonte JCI. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 2010; 464: 606-9. https://doi. org/10. 1038/nature08899
-
(2010)
Nature.
, vol.464
, pp. 606-609
-
-
Jopling, C.1
Sleep, E.2
Raya, M.3
Marti, M.4
Raya, A.5
Belmonte, J.C.I.6
-
45
-
-
84949781880
-
Dedifferentiation, transdifferentiation, and proliferation: Mechanisms underlying cardiac muscle regeneration in zebrafish
-
Kikuchi K. Dedifferentiation, transdifferentiation, and proliferation: mechanisms underlying cardiac muscle regeneration in zebrafish. Curr Pathobiol Rep. 2015; 3: 81-8. https://doi. org/10. 1007/s40139-015-0063-5
-
(2015)
Curr Pathobiol Rep.
, vol.3
, pp. 81-88
-
-
Kikuchi, K.1
-
46
-
-
84870202567
-
Cardiac regenerative capacity and mechanisms
-
Kikuchi K, Poss KD. Cardiac regenerative capacity and mechanisms. Annu Rev Cell Dev Biol. 2012; 28: 719-41. https://doi. org/10. 1146/annurev-cellbio-101011-155739
-
(2012)
Annu Rev Cell Dev Biol.
, vol.28
, pp. 719-741
-
-
Kikuchi, K.1
Poss, K.D.2
-
47
-
-
84886292766
-
The zebrafish as a model for complex tissue regeneration
-
Gemberling M, Bailey TJ, Hyde DR, Poss KD. The zebrafish as a model for complex tissue regeneration. Trends Genet. 2013; 29: 611-20. https://doi. org/10. 1016/j. Tig. 2013. 07. 003
-
(2013)
Trends Genet.
, vol.29
, pp. 611-620
-
-
Gemberling, M.1
Bailey, T.J.2
Hyde, D.R.3
Poss, K.D.4
-
48
-
-
33847194249
-
Liver development and regeneration: From laboratory study to clinical therapy
-
Hata S, Namae M, Nishina H. Liver development and regeneration: From laboratory study to clinical therapy. Dev Growth Differ. 2007; 49: 163-70. https://doi. org/10. 1111/j. 1440-169x. 2007. 00910. x
-
(2007)
Dev Growth Differ.
, vol.49
, pp. 163-170
-
-
Hata, S.1
Namae, M.2
Nishina, H.3
-
49
-
-
79952065525
-
Transient regenerative potential of the neonatal mouse heart
-
Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011; 331: 1078-80. https://doi. org/10. 1126/science. 1200708
-
(2011)
Science.
, vol.331
, pp. 1078-1080
-
-
Porrello, E.R.1
Mahmoud, A.I.2
Simpson, E.3
Hill, J.A.4
Richardson, J.A.5
Olson, E.N.6
-
51
-
-
84964354323
-
Modulation of tissue repair by regeneration enhancer elements
-
Kang J, Hu J, Karra R, Dickson AL, Tornini VA, Nachtrab G, et al. Modulation of tissue repair by regeneration enhancer elements. Nature. 2016; 532: 201-6. https://doi. org/10. 1038/na ture17644
-
(2016)
Nature.
, vol.532
, pp. 201-206
-
-
Kang, J.1
Hu, J.2
Karra, R.3
Dickson, A.L.4
Tornini, V.A.5
Nachtrab, G.6
-
52
-
-
85014647695
-
Genome editing in cardiovascular biology
-
Seeger T, Porteus M, Wu JC. Genome editing in cardiovascular biology. Circ Res. 2017; 120: 778-80. https://doi. org/10. 1161/CIRCRESAHA. 116. 310197
-
(2017)
Circ Res.
, vol.120
, pp. 778-780
-
-
Seeger, T.1
Porteus, M.2
Wu, J.C.3
-
53
-
-
85019022639
-
Retinal degeneration and regeneration-lessons from fishes and amphibians
-
Ail D, Perron M. Retinal degeneration and regeneration-lessons from fishes and amphibians. Curr Pathobiol Rep. 2017; 5: 67-78. https://doi. org/10. 1007/s40139-017-0127-9
-
(2017)
Curr Pathobiol Rep.
, vol.5
, pp. 67-78
-
-
Ail, D.1
Perron, M.2
-
54
-
-
66949137812
-
Stemness or not stemness? Current status and perspectives of adult retinal stem cells
-
Locker M, Borday C, Perron M. Stemness or not stemness? Current status and perspectives of adult retinal stem cells. Curr Stem Cell Res Ther. 2009; 4: 118-30.
-
(2009)
Curr Stem Cell Res Ther.
, vol.4
, pp. 118-130
-
-
Locker, M.1
Borday, C.2
Perron, M.3
-
55
-
-
44349138133
-
Neural regeneration and cell replacement: A view from the eye
-
Lamba D, Karl M, Reh T. Neural regeneration and cell replacement: a view from the eye. Cell Stem Cell. 2008; 2: 538-49. https://doi. org/10. 1016/j. stem. 2008. 05. 002
-
(2008)
Cell Stem Cell.
, vol.2
, pp. 538-549
-
-
Lamba, D.1
Karl, M.2
Reh, T.3
-
56
-
-
0000924215
-
Regeneration of neural retina and lens from retina pigment cell grafts in adult newts
-
Stone LS, Steinitz H. Regeneration of neural retina and lens from retina pigment cell grafts in adult newts. J Exp Zool. 1957; 135: 301-17.
-
(1957)
J Exp Zool.
, vol.135
, pp. 301-317
-
-
Stone, L.S.1
Steinitz, H.2
-
57
-
-
11044239127
-
Retinal stem cells and regeneration
-
Moshiri A, Close J, Reh TA. Retinal stem cells and regeneration. Int J Dev Biol. 2004; 48: 1003-14. https://doi. org/10. 1387/ijdb. 041870am
-
(2004)
Int J Dev Biol.
, vol.48
, pp. 1003-1014
-
-
Moshiri, A.1
Close, J.2
Reh, T.A.3
-
58
-
-
85035216174
-
Implications of a multi-step trigger of retinal regeneration in the adult Newt
-
Yasumuro H, Sakurai K, Toyama F, Maruo F, Chiba C. Implications of a multi-step trigger of retinal regeneration in the adult Newt. Biomedicines. 2017; 5. https://doi. org/10. 3390/biomedicines5020025.
-
(2017)
Biomedicines.
, vol.5
-
-
Yasumuro, H.1
Sakurai, K.2
Toyama, F.3
Maruo, F.4
Chiba, C.5
-
59
-
-
84961233619
-
Adult cell plasticity in vivo: Dedifferentiation and transdifferentiation are back in style
-
Merrell AJ, Stanger BZ. Adult cell plasticity in vivo: dedifferentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol. 2016; 17: 413-25. https://doi. org/10. 1038/nrm. 2016. 24
-
(2016)
Nat Rev Mol Cell Biol.
, vol.17
, pp. 413-425
-
-
Merrell, A.J.1
Stanger, B.Z.2
-
60
-
-
84885067381
-
The ciliary marginal zone (CMZ) in development and regeneration of the vertebrate eye
-
Fischer AJ, Bosse JL, El-Hodiri HM. The ciliary marginal zone (CMZ) in development and regeneration of the vertebrate eye. Exp Eye Res. 2013; 116: 199-204. https://doi. org/10. 1016/j. exer. 2013. 08. 018
-
(2013)
Exp Eye Res.
, vol.116
, pp. 199-204
-
-
Fischer, A.J.1
Bosse, J.L.2
El-Hodiri, H.M.3
-
61
-
-
82755171268
-
Fate restriction and multipotency in retinal stem cells
-
Centanin L, Hoeckendorf B, Wittbrodt J. Fate restriction and multipotency in retinal stem cells. Cell Stem Cell. 2011; 9: 553-62. https://doi. org/10. 1016/j. stem. 2011. 11. 004
-
(2011)
Cell Stem Cell.
, vol.9
, pp. 553-562
-
-
Centanin, L.1
Hoeckendorf, B.2
Wittbrodt, J.3
-
62
-
-
0034677891
-
Retinal stem cells in the adult mammalian eye
-
Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, et al. Retinal stem cells in the adult mammalian eye. Science. 2000; 287: 2032-6.
-
(2000)
Science.
, vol.287
, pp. 2032-2036
-
-
Tropepe, V.1
Coles, B.L.2
Chiasson, B.J.3
Horsford, D.J.4
Elia, A.J.5
McInnes, R.R.6
-
63
-
-
8144224971
-
Facile isolation and the characterization of human retinal stem cells
-
Coles BL, Angenieux B, Inoue T, Del Rio-Tsonis K, Spence JR, McInnes RR, et al. Facile isolation and the characterization of human retinal stem cells. Proc Natl Acad Sci USA. 2004; 101: 15772-7. https://doi. org/10. 1073/pnas. 0401596101
-
(2004)
Proc Natl Acad Sci USA.
, vol.101
, pp. 15772-15777
-
-
Coles, B.L.1
Angenieux, B.2
Inoue, T.3
Del Rio-Tsonis, K.4
Spence, J.R.5
McInnes, R.R.6
-
64
-
-
84923365108
-
Generation of a ciliary margin-like stem cell niche from selforganizing human retinal tissue
-
Kuwahara A, Ozone C, Nakano T, Saito K, Eiraku M, Sasai Y. Generation of a ciliary margin-like stem cell niche from selforganizing human retinal tissue. Nat Commun. 2015; 6: 6286 https://doi. org/10. 1038/ncomms7286
-
(2015)
Nat Commun.
, vol.6
, pp. 6286
-
-
Kuwahara, A.1
Ozone, C.2
Nakano, T.3
Saito, K.4
Eiraku, M.5
Sasai, Y.6
-
65
-
-
0031442459
-
Retinal regeneration in amphibians
-
Mitashov VI. Retinal regeneration in amphibians. Int J Dev Biol. 1997; 41: 893-905.
-
(1997)
Int J Dev Biol.
, vol.41
, pp. 893-905
-
-
Mitashov, V.I.1
-
66
-
-
84903271705
-
Müller glial cell reprogramming and retina regeneration
-
Goldman D. Müller glial cell reprogramming and retina regeneration. Nat Rev Neurosci. 2014; 15: 431-42. https://doi. org/10. 1038/nrn3723
-
(2014)
Nat Rev Neurosci.
, vol.15
, pp. 431-442
-
-
Goldman, D.1
-
67
-
-
0021830601
-
Cell differentiation in the retina of the mouse
-
Young RW. Cell differentiation in the retina of the mouse. Anat Rec. 1985; 212: 199-205. https://doi. org/10. 1002/ar. 1092120215
-
(1985)
Anat Rec.
, vol.212
, pp. 199-205
-
-
Young, R.W.1
-
68
-
-
4544292252
-
Potential for neural regeneration after neurotoxic injury in the adult mammalian retina
-
Ooto S, Akagi T, Kageyama R, Akita J, Mandai M, Honda Y, et al. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci USA. 2004; 101: 13654-9. https://doi. org/10. 1073/pnas. 0402129101
-
(2004)
Proc Natl Acad Sci USA.
, vol.101
, pp. 13654-13659
-
-
Ooto, S.1
Akagi, T.2
Kageyama, R.3
Akita, J.4
Mandai, M.5
Honda, Y.6
-
69
-
-
84998865522
-
Müller stem cell dependent retinal regeneration
-
Chohan A, Singh U, Kumar A, Kaur J. Müller stem cell dependent retinal regeneration. Clin Chim Acta. 2017; 464: 160-4. https://doi. org/10. 1016/j. cca. 2016. 11. 030
-
(2017)
Clin Chim Acta.
, vol.464
, pp. 160-164
-
-
Chohan, A.1
Singh, U.2
Kumar, A.3
Kaur, J.4
-
70
-
-
34247140309
-
Wnt signaling promotes regeneration in the retina of adult mammals
-
Osakada F, Ooto S, Akagi T, Mandai M, Akaike A, Takahashi M. Wnt signaling promotes regeneration in the retina of adult mammals. J Neurosci. 2007; 27: 4210-9. https://doi. org/10. 1523/JNEUROSCI. 4193-06. 2007
-
(2007)
J Neurosci.
, vol.27
, pp. 4210-4219
-
-
Osakada, F.1
Ooto, S.2
Akagi, T.3
Mandai, M.4
Akaike, A.5
Takahashi, M.6
-
71
-
-
84899682101
-
Proliferation potential of Müller glia after retinal damage varies between mouse strains
-
Suga A, Sadamoto K, Fujii M, Mandai M, Takahashi M. Proliferation potential of Müller glia after retinal damage varies between mouse strains. PLoS ONE. 2014; 9: e94556. https://doi. org/10. 1371/journal. pone. 0094556
-
(2014)
PLoS ONE.
, vol.9
, pp. e94556
-
-
Suga, A.1
Sadamoto, K.2
Fujii, M.3
Mandai, M.4
Takahashi, M.5
-
72
-
-
84975126815
-
Müller glial celldependent regeneration of the neural retina: An overview across vertebrate model systems
-
Hamon A, Roger JE, Yang XJ, Perron M. Müller glial celldependent regeneration of the neural retina: an overview across vertebrate model systems. Dev Dyn. 2016; 245: 727-38. https://doi. org/10. 1002/dvdy. 24375
-
(2016)
Dev Dyn.
, vol.245
, pp. 727-738
-
-
Hamon, A.1
Roger, J.E.2
Yang, X.J.3
Perron, M.4
-
73
-
-
84973558763
-
De novo neurogenesis by targeted expression of atoh7 to Müller glia cells
-
Lust K, Sinn R, Perez Saturnino A, Centanin L, Wittbrodt J. De novo neurogenesis by targeted expression of atoh7 to Müller glia cells. Development. 2016; 143: 1874-83. https://doi. org/10. 1242/dev. 135905
-
(2016)
Development.
, vol.143
, pp. 1874-1883
-
-
Lust, K.1
Sinn, R.2
Perez Saturnino, A.3
Centanin, L.4
Wittbrodt, J.5
-
74
-
-
79961016842
-
Genome-wide analysis of Müller glial differentiation reveals a requirement for notch signaling in postmitotic cells to maintain the glial Fate
-
Nelson BR, Ueki Y, Reardon S, Karl MO, Georgi S, Hartman BH et al. Genome-wide analysis of Müller glial differentiation reveals a requirement for notch signaling in postmitotic cells to maintain the glial Fate. PLoS ONE. 2011; 6. https://doi. org/10. 1371/journa l. pone. 0022817
-
(2011)
PLoS ONE.
, vol.6
-
-
Nelson, B.R.1
Ueki, Y.2
Reardon, S.3
Karl, M.O.4
Georgi, S.5
Hartman, B.H.6
-
75
-
-
84973544964
-
MTor signaling is required for the formation of proliferating Müller glia-derived progenitor cells in the chick retina
-
Zelinka CP, Volkov L, Goodman ZA, Todd L, Palazzo I, Bishop WA, et al. mTor signaling is required for the formation of proliferating Müller glia-derived progenitor cells in the chick retina. Development. 2016; 143: 1859-73. https://doi. org/10. 1242/dev. 133215
-
(2016)
Development.
, vol.143
, pp. 1859-1873
-
-
Zelinka, C.P.1
Volkov, L.2
Goodman, Z.A.3
Todd, L.4
Palazzo, I.5
Bishop, W.A.6
-
76
-
-
84889687235
-
Analysis of DNA methylation reveals a partial reprogramming of the Müller glia genome during retina regeneration
-
Powell C, Grant AR, Cornblath E, Goldman D. Analysis of DNA methylation reveals a partial reprogramming of the Müller glia genome during retina regeneration. Proc Natl Acad Sci USA. 2013; 110: 19814-9. https://doi. org/10. 1073/pnas. 1312009110
-
(2013)
Proc Natl Acad Sci USA.
, vol.110
, pp. 19814-19819
-
-
Powell, C.1
Grant, A.R.2
Cornblath, E.3
Goldman, D.4
-
77
-
-
85026914572
-
Stimulation of functional neuronal regeneration from Müller glia in adult mice
-
Jorstad NL, Wilken MS, Grimes WN, Wohl SG, VandenBosch LS, Yoshimatsu T, et al. Stimulation of functional neuronal regeneration from Müller glia in adult mice. Nature. 2017; 548: 103-7. https://doi. org/10. 1038/nature23283
-
(2017)
Nature.
, vol.548
, pp. 103-107
-
-
Jorstad, N.L.1
Wilken, M.S.2
Grimes, W.N.3
Wohl, S.G.4
VandenBosch, L.S.5
Yoshimatsu, T.6
-
78
-
-
46949102316
-
The transcriptome of retinal Müller glial cells
-
Roesch K, Jadhav AP, Trimarchi JM, Stadler MB, Roska B, Sun BB, et al. The transcriptome of retinal Müller glial cells. J Comp Neurol. 2008; 509: 225-38. https://doi. org/10. 1002/cne. 21730
-
(2008)
J Comp Neurol.
, vol.509
, pp. 225-238
-
-
Roesch, K.1
Jadhav, A.P.2
Trimarchi, J.M.3
Stadler, M.B.4
Roska, B.5
Sun, B.B.6
-
79
-
-
85000819280
-
In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration
-
Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. 2016; 540: 144-9. https://doi. org/10. 1038/nature20565
-
(2016)
Nature.
, vol.540
, pp. 144-149
-
-
Suzuki, K.1
Tsunekawa, Y.2
Hernandez-Benitez, R.3
Wu, J.4
Zhu, J.5
Kim, E.J.6
-
80
-
-
51849171832
-
Plant cell and tissue cultures-role of Haberlandt
-
Krikorian AD, Berquam DL. Plant cell and tissue cultures-role of Haberlandt. Bot Rev. 1969; 35: 59-+. https://doi. org/10. 1007/Bf02859888
-
(1969)
Bot Rev.
, vol.35
, pp. 59
-
-
Krikorian, A.D.1
Berquam, D.L.2
-
81
-
-
36249015446
-
History of plant tissue culture
-
Thorpe TA. History of plant tissue culture. Mol Biotechnol. 2007; 37: 169-80.
-
(2007)
Mol Biotechnol.
, vol.37
, pp. 169-180
-
-
Thorpe, T.A.1
-
82
-
-
84939979498
-
Historical review of research on plant cell dedifferentiation
-
Sugiyama M. Historical review of research on plant cell dedifferentiation. J Plant Res. 2015; 128: 349-59. https://doi. org/10. 1007/s10265-015-0706-y
-
(2015)
J Plant Res.
, vol.128
, pp. 349-359
-
-
Sugiyama, M.1
-
83
-
-
37049238319
-
A new method by which sponges may be artificially reared
-
Wilson HV. A new method by which sponges may be artificially reared. Science. 1907; 25: 912-5. https://doi. org/10. 1126/science. 25. 649. 912
-
(1907)
Science.
, vol.25
, pp. 912-915
-
-
Wilson, H.V.1
-
84
-
-
0013633126
-
Reconstitution of complete organs from single-cell suspensions of chick embryos in advanced stages of differentiation
-
Weiss P, Taylor AC. Reconstitution of complete organs from single-cell suspensions of chick embryos in advanced stages of differentiation. Proc Natl Acad Sci USA. 1960; 46: 1177-85.
-
(1960)
Proc Natl Acad Sci USA.
, vol.46
, pp. 1177-1185
-
-
Weiss, P.1
Taylor, A.C.2
-
85
-
-
84965084971
-
Teratocarcinogenic and tissue-forming potentials of the cell types comprising neoplastic embryoid bodies
-
Pierce GB Jr, Dixon FJ Jr, Verney EL. Teratocarcinogenic and tissue-forming potentials of the cell types comprising neoplastic embryoid bodies. Lab Invest. 1960; 9: 583-602.
-
(1960)
Lab Invest.
, vol.9
, pp. 583-602
-
-
Pierce, G.B.1
Dixon, F.J.2
Verney, E.L.3
-
86
-
-
0016729431
-
Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells
-
Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975; 6: 331-43.
-
(1975)
Cell.
, vol.6
, pp. 331-343
-
-
Rheinwald, J.G.1
Green, H.2
-
87
-
-
0016728261
-
Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma
-
Rheinwald JG, Green H. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell. 1975; 6: 317-30.
-
(1975)
Cell.
, vol.6
, pp. 317-330
-
-
Rheinwald, J.G.1
Green, H.2
-
88
-
-
84904396621
-
Organogenesis in a dish: Modeling development and disease using organoid technologies
-
Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014; 345. https://doi. org/10. 1126/science. 1247125
-
(2014)
Science.
, vol.345
-
-
Lancaster, M.A.1
Knoblich, J.A.2
-
89
-
-
84975275212
-
Modeling development and disease with organoids
-
Clevers H. Modeling development and disease with organoids. Cell. 2016; 165: 1586-97. https://doi. org/10. 1016/j. cell. 2016. 05. 082
-
(2016)
Cell.
, vol.165
, pp. 1586-1597
-
-
Clevers, H.1
-
90
-
-
33747195353
-
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
-
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126: 663-76. https://doi. org/10. 1016/j. cell. 2006. 07. 024
-
(2006)
Cell.
, vol.126
, pp. 663-676
-
-
Takahashi, K.1
Yamanaka, S.2
-
91
-
-
85006285022
-
Induced pluripotent stem cell technology: A decade of progress
-
Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov. 2017; 16: 115-30. https://doi. org/10. 1038/nrd. 2016. 245
-
(2017)
Nat Rev Drug Discov.
, vol.16
, pp. 115-130
-
-
Shi, Y.1
Inoue, H.2
Wu, J.C.3
Yamanaka, S.4
-
92
-
-
36248966518
-
Induction of pluripotent stem cells from adult human fibroblasts by defined factors
-
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131: 861-72. https://doi. org/10. 1016/j. cell. 2007. 11. 019
-
(2007)
Cell.
, vol.131
, pp. 861-872
-
-
Takahashi, K.1
Tanabe, K.2
Ohnuki, M.3
Narita, M.4
Ichisaka, T.5
Tomoda, K.6
-
93
-
-
84940597364
-
Rapid and efficient generation of transgene-free iPSC from a small volume of cryopreserved blood
-
Zhou H, Martinez H, Sun B, Li A, Zimmer M, Katsanis N, et al. Rapid and efficient generation of transgene-free iPSC from a small volume of cryopreserved blood. Stem Cell Rev. 2015; 11: 652-65. https://doi. org/10. 1007/s12015-015-9586-8
-
(2015)
Stem Cell Rev.
, vol.11
, pp. 652-665
-
-
Zhou, H.1
Martinez, H.2
Sun, B.3
Li, A.4
Zimmer, M.5
Katsanis, N.6
-
94
-
-
85041088921
-
-
Agu CA, Soares FAC, Alderton A, Patel M, Ansari R, Patel S, et al. Successful generation of human induced pluripotent stem cell lines from blood samples held at room temperature for up to
-
Successful generation of human induced pluripotent stem cell lines from blood samples held at room temperature for up to
-
-
Agu, C.A.1
Soares, F.A.C.2
Alderton, A.3
Patel, M.4
Ansari, R.5
Patel, S.6
-
95
-
-
84944441860
-
-
hr. Stem Cell Rep. 2015; 5: 660-71. https://doi. org/10. 1016/j. stemcr. 2015. 08. 012
-
(2015)
Hr. Stem Cell Rep.
, vol.5
, pp. 660-671
-
-
-
96
-
-
78649874029
-
Memory in induced pluripotent stem cells: Reprogrammed human retinalpigmented epithelial cells show tendency for spontaneous redifferentiation
-
Hu Q, Friedrich AM, Johnson LV, Clegg DO. Memory in induced pluripotent stem cells: reprogrammed human retinalpigmented epithelial cells show tendency for spontaneous redifferentiation. Stem Cells. 2010; 28: 1981-91. https://doi. org/10. 1002/stem. 531
-
(2010)
Stem Cells.
, vol.28
, pp. 1981-1991
-
-
Hu, Q.1
Friedrich, A.M.2
Johnson, L.V.3
Clegg, D.O.4
-
97
-
-
84936989258
-
Quantification of Retinogenesis in 3D cultures reveals epigenetic memory and higher efficiency in iPSCs derived from rod photoreceptors
-
Hiler D, Chen X, Hazen J, Kupriyanov S, Carroll PA, Qu C, et al. Quantification of Retinogenesis in 3D cultures reveals epigenetic memory and higher efficiency in iPSCs derived from rod photoreceptors. Cell Stem Cell. 2015; 17: 101-15. https://doi. org/10. 1016/j. stem. 2015. 05. 015
-
(2015)
Cell Stem Cell.
, vol.17
, pp. 101-115
-
-
Hiler, D.1
Chen, X.2
Hazen, J.3
Kupriyanov, S.4
Carroll, P.A.5
Qu, C.6
-
98
-
-
84988583074
-
Reprogramming of mouse retinal neurons and standardized quantification of their differentiation in 3D retinal cultures
-
Hiler DJ, Barabas ME, Griffiths LM, Dyer MA. Reprogramming of mouse retinal neurons and standardized quantification of their differentiation in 3D retinal cultures. Nat Protoc. 2016; 11: 1955-76. https://doi. org/10. 1038/nprot. 2016. 109
-
(2016)
Nat Protoc.
, vol.11
, pp. 1955-1976
-
-
Hiler, D.J.1
Barabas, M.E.2
Griffiths, L.M.3
Dyer, M.A.4
-
99
-
-
63049090064
-
A fresh look at iPS cells
-
Yamanaka S. A fresh look at iPS cells. Cell. 2009; 137: 13-7. https://doi. org/10. 1016/j. cell. 2009. 03. 034
-
(2009)
Cell.
, vol.137
, pp. 13-17
-
-
Yamanaka, S.1
-
100
-
-
85009088513
-
IPSC-derived retina transplants improve vision in rd1 endstage retinal-degeneration mice (vol 8, pg 69, 2017)
-
Mandai M, Fujii M, Hashiguchi T, Sunagawa GA, Ito S, Sun JN, et al. iPSC-derived retina transplants improve vision in rd1 endstage retinal-degeneration mice (vol 8, pg 69, 2017). Stem Cell Rep. 2017; 8: 1112-3. https://doi. org/10. 1016/j. stemcr. 2017. 03.024
-
(2017)
Stem Cell Rep.
, vol.8
, pp. 1112-1113
-
-
Mandai, M.1
Fujii, M.2
Hashiguchi, T.3
Sunagawa, G.A.4
Ito, S.5
Sun, J.N.6
-
101
-
-
84923014395
-
Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: Follow-up of two open-label phase 1/2 studies
-
Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015; 385: 509-16. https://doi. org/10. 1016/S0140-6736(14)61376-3
-
(2015)
Lancet.
, vol.385
, pp. 509-516
-
-
Schwartz, S.D.1
Regillo, C.D.2
Lam, B.L.3
Eliott, D.4
Rosenfeld, P.J.5
Gregori, N.Z.6
-
102
-
-
84964453220
-
Subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium for the treatment of macular degeneration: An assessment at 4 years
-
Schwartz SD, Tan G, Hosseini H, Nagiel A. Subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years. Invest Ophth Vis Sci. 2016; 57. https://doi. org/10. 1167/iovs. 15-18681.
-
(2016)
Invest Ophth Vis Sci.
, vol.57
-
-
Schwartz, S.D.1
Tan, G.2
Hosseini, H.3
Nagiel, A.4
-
103
-
-
84901608240
-
The retinal pigment epithelium: An important player of retinal disorders and regeneration
-
Chiba C. The retinal pigment epithelium: an important player of retinal disorders and regeneration. Exp Eye Res. 2014; 123: 107-14. https://doi. org/10. 1016/j. exer. 2013. 07. 009
-
(2014)
Exp Eye Res.
, vol.123
, pp. 107-114
-
-
Chiba, C.1
-
104
-
-
85015803917
-
Autologous induced stem-cell-derived retinal cells for macular degeneration
-
Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017; 376: 1038-46. https://doi. org/10. 1056/NEJMoa1608368
-
(2017)
N Engl J Med.
, vol.376
, pp. 1038-1046
-
-
Mandai, M.1
Watanabe, A.2
Kurimoto, Y.3
Hirami, Y.4
Morinaga, C.5
Daimon, T.6
-
105
-
-
85015427749
-
Cardiac regeneration lessons from development
-
Galdos FX, Guo YX, Paige SL, VanDusen NJ, Wu SM, Pu WT. Cardiac regeneration lessons from development. Circ Res. 2017; 120: 941-59. https://doi. org/10. 1161/Circresaha. 116. 309040
-
(2017)
Circ Res.
, vol.120
, pp. 941-959
-
-
Galdos, F.X.1
Guo, Y.X.2
Paige, S.L.3
VanDusen, N.J.4
Wu, S.M.5
Pu, W.T.6
-
106
-
-
85013304710
-
Mammalian heart regeneration the race to the finish line
-
Doppler SA, Deutsch MA, Serpooshan V, Li G, Dzilic E, Lange R, et al. Mammalian heart regeneration the race to the finish line. Circ Res. 2017; 120: 630-2. https://doi. org/10. 1161/Circresaha. 116. 310051
-
(2017)
Circ Res.
, vol.120
, pp. 630-632
-
-
Doppler, S.A.1
Deutsch, M.A.2
Serpooshan, V.3
Li, G.4
Dzilic, E.5
Lange, R.6
-
107
-
-
84947801842
-
Efficient long-term survival of cell grafts after myocardial infarction with thick viable cardiac tissue entirely from pluripotent stem cells
-
Matsuo T, Masumoto H, Tajima S, Ikuno T, Katayama S, Minakata K, et al. Efficient long-term survival of cell grafts after myocardial infarction with thick viable cardiac tissue entirely from pluripotent stem cells. Sci Rep. 2015; 5: 16842. https://doi. org/10. 1038/srep16842
-
(2015)
Sci Rep.
, vol.5
, pp. 16842
-
-
Matsuo, T.1
Masumoto, H.2
Tajima, S.3
Ikuno, T.4
Katayama, S.5
Minakata, K.6
-
108
-
-
85016951942
-
Impact of cell composition and geometry on human induced pluripotent stem cells-derived engineered cardiac tissue
-
Nakane T, Masumoto H, Tinney JP, Yuan F, Kowalski WJ, Ye F, et al. Impact of cell composition and geometry on human induced pluripotent stem cells-derived engineered cardiac tissue. Sci Rep. 2017; 7: 45641. https://doi. org/10. 1038/srep45641
-
(2017)
Sci Rep.
, vol.7
, pp. 45641
-
-
Nakane, T.1
Masumoto, H.2
Tinney, J.P.3
Yuan, F.4
Kowalski, W.J.5
Ye, F.6
-
109
-
-
77955844034
-
ES and iPS cell research for cardiovascular regeneration
-
Yamashita JK. ES and iPS cell research for cardiovascular regeneration. Exp Cell Res. 2010; 316: 2555-9. https://doi. org/10. 1016/j. yexcr. 2010. 04. 004
-
(2010)
Exp Cell Res.
, vol.316
, pp. 2555-2559
-
-
Yamashita, J.K.1
-
110
-
-
84987858628
-
Human iPS cell-derived cardiac tissue sheets: A platform for cardiac regeneration
-
Masumoto H, Yamashita JK. Human iPS cell-derived cardiac tissue sheets: a platform for cardiac regeneration. Curr Treat Options Cardiovasc Med. 2016; 18: 65 https://doi. org/10. 1007/s11936-016-0489-z
-
(2016)
Curr Treat Options Cardiovasc Med.
, vol.18
, pp. 65
-
-
Masumoto, H.1
Yamashita, J.K.2
-
111
-
-
84899638519
-
Matrix rigidity-modulated cardiovascular organoid formation from embryoid bodies
-
Shkumatov A, Baek K, Kong H. Matrix rigidity-modulated cardiovascular organoid formation from embryoid bodies. PLoS ONE. 2014; 9: e94764. https://doi. org/10. 1371/journal. pone. 0094764
-
(2014)
PLoS ONE.
, vol.9
, pp. e94764
-
-
Shkumatov, A.1
Baek, K.2
Kong, H.3
-
112
-
-
84918561297
-
Modelling human development and disease in pluripotent stem-cell-derived gastric organoids
-
McCracken KW, Cata EM, Crawford CM, Sinagoga KL, Schumacher M, Rockich BE, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature. 2014; 516: 400-4. https://doi. org/10. 1038/nature13863
-
(2014)
Nature.
, vol.516
, pp. 400-404
-
-
McCracken, K.W.1
Cata, E.M.2
Crawford, C.M.3
Sinagoga, K.L.4
Schumacher, M.5
Rockich, B.E.6
-
113
-
-
84964619895
-
Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure
-
Qian XY, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell. 2016; 165: 1238-54. https://doi. org/10. 1016/j. cell. 2016. 04. 032
-
(2016)
Cell.
, vol.165
, pp. 1238-1254
-
-
Qian, X.Y.1
Nguyen, H.N.2
Song, M.M.3
Hadiono, C.4
Ogden, S.C.5
Hammack, C.6
-
114
-
-
84884414984
-
Cerebral organoids model human brain development and microcephaly
-
Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013; 501: 373-+. https://doi. org/10. 1038/nature12517
-
(2013)
Nature.
, vol.501
, pp. 373
-
-
Lancaster, M.A.1
Renner, M.2
Martin, C.A.3
Wenzel, D.4
Bicknell, L.S.5
Hurles, M.E.6
-
115
-
-
84929103936
-
Sequential cancer mutations in cultured human intestinal stem cells
-
Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature. 2015; 521: 43-7. https://doi. org/10. 1038/nature14415
-
(2015)
Nature.
, vol.521
, pp. 43-47
-
-
Drost, J.1
Van Jaarsveld, R.H.2
Ponsioen, B.3
Zimberlin, C.4
Van Boxtel, R.5
Buijs, A.6
-
117
-
-
84959421061
-
Concise review: Organoids are a powerful tool for the study of liver disease and personalized treatment design in humans and animals
-
Nantasanti S, de Bruin A, Rothuizen J, Penning LC, Schotanus BA. Concise review: organoids are a powerful tool for the study of liver disease and personalized treatment design in humans and animals. Stem Cells Transl Med. 2016; 5: 325-30. https://doi. org/10. 5966/sctm. 2015-0152
-
(2016)
Stem Cells Transl Med.
, vol.5
, pp. 325-330
-
-
Nantasanti, S.1
De Bruin, A.2
Rothuizen, J.3
Penning, L.C.4
Schotanus, B.A.5
-
118
-
-
84959536508
-
Pluripotent stem cells in disease modelling and drug discovery
-
Avior Y, Sagi I, Benvenisty N. Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol. 2016; 17: 170-82. https://doi. org/10. 1038/nrm. 2015. 27
-
(2016)
Nat Rev Mol Cell Biol.
, vol.17
, pp. 170-182
-
-
Avior, Y.1
Sagi, I.2
Benvenisty, N.3
-
119
-
-
84862526635
-
Self-formation of optic cups and storable stratified neural retina from human ESCs
-
Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012; 10: 771-85. https://doi. org/10. 1016/j. stem. 2012. 05. 009
-
(2012)
Cell Stem Cell.
, vol.10
, pp. 771-785
-
-
Nakano, T.1
Ando, S.2
Takata, N.3
Kawada, M.4
Muguruma, K.5
Sekiguchi, K.6
-
120
-
-
84945283561
-
Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis
-
Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015; 526: 564-8. https://doi. org/10. 1038/nature15695
-
(2015)
Nature.
, vol.526
, pp. 564-568
-
-
Takasato, M.1
Er, P.X.2
Chiu, H.S.3
Maier, B.4
Baillie, G.J.5
Ferguson, C.6
-
121
-
-
85015342082
-
Pluripotent stem cell-derived organoids: Using principles of developmental biology to grow human tissues in a dish
-
McCauley HA, Wells JM. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development. 2017; 144: 958-62. https://doi. org/10. 1242/dev. 140731
-
(2017)
Development.
, vol.144
, pp. 958-962
-
-
McCauley, H.A.1
Wells, J.M.2
-
122
-
-
77952867780
-
OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling
-
Fietz SA, Kelava I, Vogt J, Wilsch-Brauninger M, Stenzel D, Fish JL, et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci. 2010; 13: 690-9. https://doi. org/10. 1038/nn. 2553
-
(2010)
Nat Neurosci.
, vol.13
, pp. 690-699
-
-
Fietz, S.A.1
Kelava, I.2
Vogt, J.3
Wilsch-Brauninger, M.4
Stenzel, D.5
Fish, J.L.6
-
123
-
-
77950076985
-
Neurogenic radial glia in the outer subventricular zone of human neocortex
-
Hansen DV, Lui JH, Parker PR, Kriegstein AR. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature. 2010; 464: 554-61. https://doi. org/10. 1038/nature08845
-
(2010)
Nature.
, vol.464
, pp. 554-561
-
-
Hansen, D.V.1
Lui, J.H.2
Parker, P.R.3
Kriegstein, A.R.4
-
124
-
-
0036133288
-
Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey
-
Smart IH, Dehay C, Giroud P, Berland M, Kennedy H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex. 2002; 12: 37-53.
-
(2002)
Cereb Cortex.
, vol.12
, pp. 37-53
-
-
Smart, I.H.1
Dehay, C.2
Giroud, P.3
Berland, M.4
Kennedy, H.5
-
125
-
-
79952381377
-
Oblique radial glial divisions in the developing mouse neocortex induce selfrenewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors
-
Shitamukai A, Konno D, Matsuzaki F. Oblique radial glial divisions in the developing mouse neocortex induce selfrenewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J Neurosci. 2011; 31: 3683-95. https://doi. org/10. 1523/JNEUROSCI. 4773-10. 2011
-
(2011)
J Neurosci.
, vol.31
, pp. 3683-3695
-
-
Shitamukai, A.1
Konno, D.2
Matsuzaki, F.3
-
126
-
-
54949102049
-
Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals
-
Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell. 2008; 3: 519-32. https://doi. org/10. 1016/j. stem. 2008. 09. 002
-
(2008)
Cell Stem Cell.
, vol.3
, pp. 519-532
-
-
Eiraku, M.1
Watanabe, K.2
Matsuo-Takasaki, M.3
Kawada, M.4
Yonemura, S.5
Matsumura, M.6
-
127
-
-
84890282623
-
Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex
-
Kadoshima T, Sakaguchi H, Nakano T, Soen M, Ando S, Eiraku M, et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc Natl Acad Sci USA. 2013; 110: 20284-9. https://doi. org/10. 1073/pnas. 1315710110
-
(2013)
Proc Natl Acad Sci USA.
, vol.110
, pp. 20284-20289
-
-
Kadoshima, T.1
Sakaguchi, H.2
Nakano, T.3
Soen, M.4
Ando, S.5
Eiraku, M.6
-
128
-
-
84871777952
-
Robust formation and maintenance of continuous stratified cortical neuroepithelium by laminin-containing matrix in mouse ES cell culture
-
Nasu M, Takata N, Danjo T, Sakaguchi H, Kadoshima T, Futaki S, et al. Robust formation and maintenance of continuous stratified cortical neuroepithelium by laminin-containing matrix in mouse ES cell culture. PLoS ONE. 2012; 7: e53024. https://doi. org/10. 1371/journal. pone. 0053024
-
(2012)
PLoS ONE.
, vol.7
, pp. e53024
-
-
Nasu, M.1
Takata, N.2
Danjo, T.3
Sakaguchi, H.4
Kadoshima, T.5
Futaki, S.6
-
129
-
-
84996921196
-
Dishing out mini-brains: Current progress and future prospects in brain organoid research
-
Kelava I, Lancaster MA. Dishing out mini-brains: current progress and future prospects in brain organoid research. Dev Biol. 2016; 420: 199-209. https://doi. org/10. 1016/j. ydbio. 2016. 06. 037
-
(2016)
Dev Biol.
, vol.420
, pp. 199-209
-
-
Kelava, I.1
Lancaster, M.A.2
-
130
-
-
84973473524
-
Advances in therapeutic CRISPR/Cas9 genome editing
-
Savic N, Schwank G. Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res. 2016; 168: 15-21. https://doi. org/10. 1016/j. Trsl. 2015. 09. 008
-
(2016)
Transl Res.
, vol.168
, pp. 15-21
-
-
Savic, N.1
Schwank, G.2
-
131
-
-
84966930890
-
Induced pluripotent stem cells meet genome editing
-
Hockemeyer D, Jaenisch R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell. 2016; 18: 573-86. https://doi. org/10. 1016/j. stem. 2016. 04. 013
-
(2016)
Cell Stem Cell.
, vol.18
, pp. 573-586
-
-
Hockemeyer, D.1
Jaenisch, R.2
-
132
-
-
50149096140
-
Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation
-
Wataya T, Ando S, Muguruma K, Ikeda H, Watanabe K, Eiraku M, et al. Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation. Proc Natl Acad Sci USA. 2008; 105: 11796-801. https://doi. org/10. 1073/pnas. 0803078105
-
(2008)
Proc Natl Acad Sci USA.
, vol.105
, pp. 11796-11801
-
-
Wataya, T.1
Ando, S.2
Muguruma, K.3
Ikeda, H.4
Watanabe, K.5
Eiraku, M.6
-
133
-
-
79953749322
-
Self-organizing optic-cup morphogenesis in threedimensional culture
-
Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, et al. Self-organizing optic-cup morphogenesis in threedimensional culture. Nature. 2011; 472: 51-6. https://doi. org/10. 1038/nature09941
-
(2011)
Nature.
, vol.472
, pp. 51-56
-
-
Eiraku, M.1
Takata, N.2
Ishibashi, H.3
Kawada, M.4
Sakakura, E.5
Okuda, S.6
-
134
-
-
84867755657
-
Grow your own eye: Biologists have coaxed cells to form a retina, a step toward growing replacement organs outside the body
-
Sasai Y. Grow your own eye: biologists have coaxed cells to form a retina, a step toward growing replacement organs outside the body. Sci Am. 2012; 307: 44-9.
-
(2012)
Sci Am.
, vol.307
, pp. 44-49
-
-
Sasai, Y.1
-
135
-
-
82555187011
-
Self-formation of functional adenohypophysis in three-dimensional culture
-
Suga H, Kadoshima T, Minaguchi M, Ohgushi M, Soen M, Nakano T, et al. Self-formation of functional adenohypophysis in three-dimensional culture. Nature. 2011; 480: 57-62. https://doi. org/10. 1038/nature10637
-
(2011)
Nature.
, vol.480
, pp. 57-62
-
-
Suga, H.1
Kadoshima, T.2
Minaguchi, M.3
Ohgushi, M.4
Soen, M.5
Nakano, T.6
-
136
-
-
84947292300
-
Generation of functional hippocampal neurons from selforganizing human embryonic stem cell-derived dorsomedial telencephalic tissue
-
Sakaguchi H, Kadoshima T, Soen M, Narii N, Ishida Y, Ohgushi M, et al. Generation of functional hippocampal neurons from selforganizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat Commun. 2015; 6: 8896 https://doi. org/10. 1038/ncomms9896
-
(2015)
Nat Commun.
, vol.6
, pp. 8896
-
-
Sakaguchi, H.1
Kadoshima, T.2
Soen, M.3
Narii, N.4
Ishida, Y.5
Ohgushi, M.6
-
137
-
-
84954138949
-
Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells
-
Ozone C, Suga H, Eiraku M, Kadoshima T, Yonemura S, Takata N, et al. Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells. Nat Commun. 2016; 7: 10351. https://doi. org/10. 1038/ncomms10351
-
(2016)
Nat Commun.
, vol.7
, pp. 10351
-
-
Ozone, C.1
Suga, H.2
Eiraku, M.3
Kadoshima, T.4
Yonemura, S.5
Takata, N.6
-
138
-
-
84975525711
-
Establishment of functional genomics pipeline in mouse epiblast-like tissue by combining transcriptomic analysis and gene knockdown/knockin/knockout, using RNA interference and CRISPR/Cas9
-
Takata N, Sakakura E, Kasukawa T, Sakuma T, Yamamoto T, Sasai Y. Establishment of functional genomics pipeline in mouse epiblast-like tissue by combining transcriptomic analysis and gene knockdown/knockin/knockout, using RNA interference and CRISPR/Cas9. Hum Gene Ther. 2016; 27: 436-50. https://doi. org/10. 1089/hum. 2015. 148
-
(2016)
Hum Gene Ther.
, vol.27
, pp. 436-450
-
-
Takata, N.1
Sakakura, E.2
Kasukawa, T.3
Sakuma, T.4
Yamamoto, T.5
Sasai, Y.6
-
139
-
-
84960102744
-
IGF-2/IGF-1R signaling has distinct effects on Sox1, Irx3, and Six3 expressions during ES cell derived-neuroectoderm development in vitro
-
Takata N, Sakakura E, Sasai Y. IGF-2/IGF-1R signaling has distinct effects on Sox1, Irx3, and Six3 expressions during ES cell derived-neuroectoderm development in vitro. In Vitro Cell Dev Biol Anim. 2016; 52: 607-15. https://doi. org/10. 1007/s11626-016-0012-6
-
(2016)
Vitro Cell Dev Biol Anim.
, vol.52
, pp. 607-615
-
-
Takata, N.1
Sakakura, E.2
Sasai, Y.3
-
140
-
-
85013270419
-
Organoid technologies meet genome engineering
-
Nie J, Hashino E. Organoid technologies meet genome engineering. EMBO Rep. 2017; 18: 367-76. https://doi. org/10. 15252/embr. 201643732
-
(2017)
EMBO Rep.
, vol.18
, pp. 367-376
-
-
Nie, J.1
Hashino, E.2
-
141
-
-
85056746775
-
May i cut in gene editing approaches in human induced pluripotent stem cells
-
Brookhouser N, Raman S, Potts C, Brafman DA. May I cut in gene editing approaches in human induced pluripotent stem cells. Cells. 2017; 6. https://doi. org/10. 3390/cells6010005.
-
(2017)
Cells.
, vol.6
-
-
Brookhouser, N.1
Raman, S.2
Potts, C.3
Brafman, D.A.4
-
142
-
-
84994311202
-
CRISPR/cas-mediated knockin in human pluripotent stem cells
-
Verma N, Zhu Z, Huangfu D. CRISPR/cas-mediated knockin in human pluripotent stem cells. Methods Mol Biol. 2017; 1513: 119-40. https://doi. org/10. 1007/978-1-4939-6539-7-9
-
(2017)
Methods Mol Biol.
, vol.1513
, pp. 119-140
-
-
Verma, N.1
Zhu, Z.2
Huangfu, D.3
-
143
-
-
84959421517
-
Establishment of genomeedited human pluripotent stem cell lines: From targeting to isolation
-
Blair JD, Bateup HS, Hockemeyer DF. Establishment of genomeedited human pluripotent stem cell lines: from targeting to isolation. J Vis Exp. 2016; e53583. https://doi. org/10. 3791/53583.
-
(2016)
J Vis Exp.
, pp. e53583
-
-
Blair, J.D.1
Bateup, H.S.2
Hockemeyer, D.F.3
-
144
-
-
84947447749
-
Differentiation of human ESCs to retinal ganglion cells using a CRISPR engineered reporter cell line
-
Sluch VM, Davis CHO, Ranganathan V, Kerr JM, Krick K, Martin R et al. Differentiation of human ESCs to retinal ganglion cells using a CRISPR engineered reporter cell line. Sci Rep. 2015; 5. https://doi. org/10. 1038/srep16595
-
(2015)
Sci Rep.
, vol.5
-
-
Sluch, V.M.1
Davis, C.H.O.2
Ranganathan, V.3
Kerr, J.M.4
Krick, K.5
Martin, R.6
-
145
-
-
85015336326
-
Knock-in strategy at 3'-end of Crx gene by CRISPR/Cas9 system shows the gene expression profiles during human photoreceptor differentiation
-
Homma K, Usui S, Kaneda M. Knock-in strategy at 3'-end of Crx gene by CRISPR/Cas9 system shows the gene expression profiles during human photoreceptor differentiation. Genes Cells. 2017; 22: 250-64. https://doi. org/10. 1111/gtc. 12472
-
(2017)
Genes Cells.
, vol.22
, pp. 250-264
-
-
Homma, K.1
Usui, S.2
Kaneda, M.3
-
146
-
-
84872534651
-
Cytosystems dynamics in self-organization of tissue architecture
-
Sasai Y. Cytosystems dynamics in self-organization of tissue architecture. Nature. 2013; 493: 318-26. https://doi. org/10. 1038/nature11859
-
(2013)
Nature.
, vol.493
, pp. 318-326
-
-
Sasai, Y.1
-
147
-
-
84867865709
-
In vitro organogenesis in three dimensions: Self-organising stem cells
-
Sasai Y, Eiraku M, Suga H. In vitro organogenesis in three dimensions: self-organising stem cells. Development. 2012; 139: 4111-21. https://doi. org/10. 1242/dev. 079590
-
(2012)
Development.
, vol.139
, pp. 4111-4121
-
-
Sasai, Y.1
Eiraku, M.2
Suga, H.3
-
148
-
-
84971667869
-
Specification of embryonic stem cell-derived tissues into eye fields by Wnt signaling using rostral diencephalic tissue-inducing culture
-
Sakakura E, Eiraku M, Takata N. Specification of embryonic stem cell-derived tissues into eye fields by Wnt signaling using rostral diencephalic tissue-inducing culture. Mech Develop. 2016; 141: 90-9. https://doi. org/10. 1016/j. mod. 2016. 05. 001
-
(2016)
Mech Develop.
, vol.141
, pp. 90-99
-
-
Sakakura, E.1
Eiraku, M.2
Takata, N.3
-
149
-
-
83455196056
-
Relaxation-expansion model for self-driven retinal morphogenesis: A hypothesis from the perspective of biosystems dynamics at the multi-cellular level
-
Eiraku M, Adachi T, Sasai Y. Relaxation-expansion model for self-driven retinal morphogenesis: a hypothesis from the perspective of biosystems dynamics at the multi-cellular level. Bioessays. 2012; 34: 17-25. https://doi. org/10. 1002/bies. 201100070
-
(2012)
Bioessays.
, vol.34
, pp. 17-25
-
-
Eiraku, M.1
Adachi, T.2
Sasai, Y.3
-
150
-
-
84994274946
-
Emergence of dorsal-ventral polarity in ESC-derived retinal tissue
-
Hasegawa Y, Takata N, Okuda S, Kawada M, Eiraku M, Sasai Y. Emergence of dorsal-ventral polarity in ESC-derived retinal tissue. Development. 2016; 143: 3895-906. https://doi. org/10. 1242/dev. 134601
-
(2016)
Development.
, vol.143
, pp. 3895-3906
-
-
Hasegawa, Y.1
Takata, N.2
Okuda, S.3
Kawada, M.4
Eiraku, M.5
Sasai, Y.6
-
151
-
-
84960955597
-
Comparative, transcriptome analysis of self-organizing optic tissues
-
Andrabi M, Kuraku S, Takata N, Sasai Y, Love NR. Comparative, transcriptome analysis of self-organizing optic tissues. Sci Data. 2015; 2. https://doi. org/10. 1038/sdata. 2015. 30.
-
(2015)
Sci Data.
, vol.2
-
-
Andrabi, M.1
Kuraku, S.2
Takata, N.3
Sasai, Y.4
Love, N.R.5
-
152
-
-
85015268570
-
Translational applications of adult stem cellderived organoids
-
Drost J, Clevers H. Translational applications of adult stem cellderived organoids. Development. 2017; 144: 968-75. https://doi. org/10. 1242/dev. 140566
-
(2017)
Development.
, vol.144
, pp. 968-975
-
-
Drost, J.1
Clevers, H.2
-
153
-
-
84880249396
-
Lgr5(+) liver stem cells, hepatic organoids and regenerative medicine
-
Huch M, Boj SF, Clevers H. Lgr5(+) liver stem cells, hepatic organoids and regenerative medicine. Regen Med. 2013; 8: 385-7. https://doi. org/10. 2217/rme. 13. 39
-
(2013)
Regen Med.
, vol.8
, pp. 385-387
-
-
Huch, M.1
Boj, S.F.2
Clevers, H.3
-
154
-
-
84942121762
-
Modeling mouse and human development using organoid cultures
-
Huch M, Koo BK. Modeling mouse and human development using organoid cultures. Development. 2015; 142: 3113-25. https://doi. org/10. 1242/dev. 118570
-
(2015)
Development.
, vol.142
, pp. 3113-3125
-
-
Huch, M.1
Koo, B.K.2
-
155
-
-
84920983131
-
Organoid models of human and mouse ductal pancreatic
-
Boj SF, Hwang CI, Baker LA, Chio IIC, Engle DD, Corbo V, et al. Organoid models of human and mouse ductal pancreatic. Cancer Cell. 2015; 160: 324-38. https://doi. org/10. 1016/j. cell. 2014. 12. 021
-
(2015)
Cancer Cell.
, vol.160
, pp. 324-338
-
-
Boj, S.F.1
Hwang, C.I.2
Baker, L.A.3
Chio, I.I.C.4
Engle, D.D.5
Corbo, V.6
-
156
-
-
84885846800
-
Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis
-
Huch M, Bonfanti P, Boj SF, Sato T, Loomans CJM, van de Wetering M, et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 2013; 32: 2708-21. https://doi. org/10. 1038/emboj. 2013. 204
-
(2013)
EMBO J.
, vol.32
, pp. 2708-2721
-
-
Huch, M.1
Bonfanti, P.2
Boj, S.F.3
Sato, T.4
Loomans, C.J.M.5
Van De Wetering, M.6
-
157
-
-
73049116186
-
Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro
-
Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010; 6: 25-36. https://doi. org/10. 1016/j. stem. 2009. 11. 013
-
(2010)
Cell Stem Cell.
, vol.6
, pp. 25-36
-
-
Barker, N.1
Huch, M.2
Kujala, P.3
Van De Wetering, M.4
Snippert, H.J.5
Van Es, J.H.6
-
158
-
-
84922875352
-
In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection
-
Bartfeld S, Bayram T, van de Wetering M, Huch M, Begthel H, Kujala P, et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology. 2015; 148: 126-136. e6. https://doi. org/10. 1053/j. gastro. 2014. 09. 042
-
(2015)
Gastroenterology.
, vol.148
, pp. 126-136e6
-
-
Bartfeld, S.1
Bayram, T.2
Van De Wetering, M.3
Huch, M.4
Begthel, H.5
Kujala, P.6
-
159
-
-
84949504069
-
The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids
-
Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun. 2015; 6. https://doi. org/10. 1038/ncomms9989
-
(2015)
Nat Commun.
, vol.6
-
-
Kessler, M.1
Hoffmann, K.2
Brinkmann, V.3
Thieck, O.4
Jackisch, S.5
Toelle, B.6
-
160
-
-
84922067781
-
Single luminal epithelial progenitors can generate prostate organoids in culture
-
Chua CW, Shibata M, Lei M, Toivanen R, Barlow LJ, Bergren SK, et al. Single luminal epithelial progenitors can generate prostate organoids in culture. Nat Cell Biol. 2014; 16: 951-61. https://doi. org/10. 1038/ncb3047
-
(2014)
Nat Cell Biol.
, vol.16
, pp. 951-961
-
-
Chua, C.W.1
Shibata, M.2
Lei, M.3
Toivanen, R.4
Barlow, L.J.5
Bergren, S.K.6
-
161
-
-
84907552531
-
Identification of multipotent luminal progenitor cells in human prostate organoid cultures
-
Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell. 2014; 159: 163-75. https://doi. org/10. 1016/j. cell. 2014. 08. 017
-
(2014)
Cell.
, vol.159
, pp. 163-175
-
-
Karthaus, W.R.1
Iaquinta, P.J.2
Drost, J.3
Gracanin, A.4
Van Boxtel, R.5
Wongvipat, J.6
-
162
-
-
84917734391
-
Single Lgr5-or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo
-
Ren W, Lewandowski BC, Watson J, Aihara E, Iwatsuki K, Bachmanov AA, et al. Single Lgr5-or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo. Proc Natl Acad Sci USA. 2014; 111: 16401-6. https://doi. org/10. 1073/pnas. 1409064111
-
(2014)
Proc Natl Acad Sci USA.
, vol.111
, pp. 16401-16406
-
-
Ren, W.1
Lewandowski, B.C.2
Watson, J.3
Aihara, E.4
Iwatsuki, K.5
Bachmanov, A.A.6
-
163
-
-
84955415712
-
Long-term in vitro expansion of salivary gland stem cells driven by Wnt signals
-
Maimets M, Rocchi C, Bron R, Pringle S, Kuipers J, Giepmans BN, et al. Long-term in vitro expansion of salivary gland stem cells driven by Wnt signals. Stem Cell Rep. 2016; 6: 150-62. https://doi. org/10. 1016/j. stemcr. 2015. 11. 009
-
(2016)
Stem Cell Rep.
, vol.6
, pp. 150-162
-
-
Maimets, M.1
Rocchi, C.2
Bron, R.3
Pringle, S.4
Kuipers, J.5
Giepmans, B.N.6
-
164
-
-
84949656637
-
What is an adult stem cell?
-
Clevers H. What is an adult stem cell? Science. 2015; 350: 1319-20. https://doi. org/10. 1126/science. aad7016
-
(2015)
Science
, vol.350
, pp. 1319-1320
-
-
Clevers, H.1
-
165
-
-
85015718933
-
Disease modeling in stem cell-derived 3D organoid systems
-
Dutta D, Heo I, Clevers H. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med. 2017. https://doi. org/10. 1016/j. molmed. 2017. 02. 007.
-
(2017)
Trends Mol Med.
-
-
Dutta, D.1
Heo, I.2
Clevers, H.3
-
166
-
-
84890033064
-
Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients
-
Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013; 13: 653-8. https://doi. org/10. 1016/j. stem. 2013. 11. 002
-
(2013)
Cell Stem Cell.
, vol.13
, pp. 653-658
-
-
Schwank, G.1
Koo, B.K.2
Sasselli, V.3
Dekkers, J.F.4
Heo, I.5
Demircan, T.6
-
167
-
-
84862777784
-
Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell
-
Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat Med. 2012; 18: 618-23. https://doi. org/10. 1038/nm. 2695
-
(2012)
Nat Med.
, vol.18
, pp. 618-623
-
-
Yui, S.1
Nakamura, T.2
Sato, T.3
Nemoto, Y.4
Mizutani, T.5
Zheng, X.6
-
168
-
-
84890051386
-
Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury
-
Fordham RP, Yui S, Hannan NR, Soendergaard C, Madgwick A, Schweiger PJ, et al. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell. 2013; 13: 734-44. https://doi. org/10. 1016/j. stem. 2013. 09. 015
-
(2013)
Cell Stem Cell.
, vol.13
, pp. 734-744
-
-
Fordham, R.P.1
Yui, S.2
Hannan, N.R.3
Soendergaard, C.4
Madgwick, A.5
Schweiger, P.J.6
-
169
-
-
84906093308
-
Small intestinal stem cell identity is maintained with functional Paneth cells in heterotopically grafted epithelium onto the colon
-
Fukuda M, Mizutani T, Mochizuki W, Matsumoto T, Nozaki K, Sakamaki Y, et al. Small intestinal stem cell identity is maintained with functional Paneth cells in heterotopically grafted epithelium onto the colon. Gene Dev. 2014; 28: 1752-7. https://doi. org/10. 1101/gad. 245233. 114
-
(2014)
Gene Dev.
, vol.28
, pp. 1752-1757
-
-
Fukuda, M.1
Mizutani, T.2
Mochizuki, W.3
Matsumoto, T.4
Nozaki, K.5
Sakamaki, Y.6
-
170
-
-
84997235810
-
Intestinal stem cell transplantation
-
Nakamura T, Watanabe M. Intestinal stem cell transplantation. J Gastroenterol. 2017; 52: 151-7. https://doi. org/10. 1007/s00535-016-1288-8
-
(2017)
J Gastroenterol.
, vol.52
, pp. 151-157
-
-
Nakamura, T.1
Watanabe, M.2
-
171
-
-
84881184980
-
Vascularized and functional human liver from an iPSCderived organ bud transplant
-
Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, et al. Vascularized and functional human liver from an iPSCderived organ bud transplant. Nature. 2013; 499: 481-4. https://doi. org/10. 1038/nature12271
-
(2013)
Nature.
, vol.499
, pp. 481-484
-
-
Takebe, T.1
Sekine, K.2
Enomura, M.3
Koike, H.4
Kimura, M.5
Ogaeri, T.6
-
172
-
-
84893223076
-
Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant
-
Takebe T, Zhang RR, Koike H, Kimura M, Yoshizawa E, Enomura M, et al. Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat Protoc. 2014; 9: 396-409. https://doi. org/10. 1038/nprot. 2014. 020
-
(2014)
Nat Protoc.
, vol.9
, pp. 396-409
-
-
Takebe, T.1
Zhang, R.R.2
Koike, H.3
Kimura, M.4
Yoshizawa, E.5
Enomura, M.6
-
173
-
-
84929166388
-
Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation
-
Takebe T, Enomura M, Yoshizawa E, Kimura M, Koike H, Ueno Y, et al. Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation. Cell Stem Cell. 2015; 16: 556-65. https://doi. org/10. 1016/j. stem. 2015. 03. 004
-
(2015)
Cell Stem Cell.
, vol.16
, pp. 556-565
-
-
Takebe, T.1
Enomura, M.2
Yoshizawa, E.3
Kimura, M.4
Koike, H.5
Ueno, Y.6
-
174
-
-
84908508160
-
Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells
-
Ottone C, Krusche B, Whitby A, Clements M, Quadrato G, Pitulescu ME, et al. Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat Cell Biol. 2014; 16: 1045-+. https://doi. org/10. 1038/ncb3045
-
(2014)
Nat Cell Biol.
, vol.16
, pp. 1045
-
-
Ottone, C.1
Krusche, B.2
Whitby, A.3
Clements, M.4
Quadrato, G.5
Pitulescu, M.E.6
-
175
-
-
75649144081
-
Diverse roles of the vasculature within the neural stem cell niche
-
Goldberg JS, Hirschi KK. Diverse roles of the vasculature within the neural stem cell niche. Regen Med. 2009; 4: 879-97. https://doi. org/10. 2217/Rme. 09. 61
-
(2009)
Regen Med.
, vol.4
, pp. 879-897
-
-
Goldberg, J.S.1
Hirschi, K.K.2
-
176
-
-
50849102656
-
A specialized vascular niche for adult neural stem cells
-
Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell. 2008; 3: 279-88. https://doi. org/10. 1016/j. stem. 2008. 07. 025
-
(2008)
Cell Stem Cell.
, vol.3
, pp. 279-288
-
-
Tavazoie, M.1
Van Der Veken, L.2
Silva-Vargas, V.3
Louissaint, M.4
Colonna, L.5
Zaidi, B.6
-
177
-
-
84955286381
-
Angiocrine functions of organspecific endothelial cells
-
Rafii S, Butler JM, Ding BS. Angiocrine functions of organspecific endothelial cells. Nature. 2016; 529: 316-25. https://doi. org/10. 1038/nature17040
-
(2016)
Nature.
, vol.529
, pp. 316-325
-
-
Rafii, S.1
Butler, J.M.2
Ding, B.S.3
-
178
-
-
84951310011
-
Engineering large animal models of human disease
-
Whitelaw CB, Sheets TP, Lillico SG, Telugu BP. Engineering large animal models of human disease. J Pathol. 2016; 238: 247-56. https://doi. org/10. 1002/path. 4648
-
(2016)
J Pathol.
, vol.238
, pp. 247-256
-
-
Whitelaw, C.B.1
Sheets, T.P.2
Lillico, S.G.3
Telugu, B.P.4
-
179
-
-
0019141551
-
The ontogeny of the neural crest in avian embryo chimaeras
-
Le Douarin NM. The ontogeny of the neural crest in avian embryo chimaeras. Nature. 1980; 286: 663-9.
-
(1980)
Nature.
, vol.286
, pp. 663-669
-
-
Le Douarin, N.M.1
-
180
-
-
0015858545
-
Investigation of early mammalian development using interspecific chimaeras between rat and mouse
-
Gardner RL, Johnson MH. Investigation of early mammalian development using interspecific chimaeras between rat and mouse. Nat New Biol. 1973; 246: 86-9.
-
(1973)
Nat New Biol.
, vol.246
, pp. 86-89
-
-
Gardner, R.L.1
Johnson, M.H.2
-
181
-
-
0021190221
-
Interspecific chimaerism between sheep and goat
-
Fehilly CB, Willadsen SM, Tucker EM. Interspecific chimaerism between sheep and goat. Nature. 1984; 307: 634-6. https://doi. org/10. 1038/307634a0
-
(1984)
Nature.
, vol.307
, pp. 634-636
-
-
Fehilly, C.B.1
Willadsen, S.M.2
Tucker, E.M.3
-
182
-
-
0025087867
-
Production of interspecies chimeric calves by aggregation of Bos indicus and Bos taurus demi-embryos
-
Williams TJ, Munro RK, Shelton JN. Production of interspecies chimeric calves by aggregation of Bos indicus and Bos taurus demi-embryos. Reprod Fertil Dev. 1990; 2: 385-94.
-
(1990)
Reprod Fertil Dev.
, vol.2
, pp. 385-394
-
-
Williams, T.J.1
Munro, R.K.2
Shelton, J.N.3
-
183
-
-
0019151512
-
Interspecific chimeras in mammals-successful production of live chimeras between mus-musculus and mus-caroli
-
Rossant J, Frels WI. Interspecific chimeras in mammals-successful production of live chimeras between mus-musculus and mus-caroli. Science. 1980; 208: 419-21. https://doi. org/10. 1126/science. 7367871
-
(1980)
Science.
, vol.208
, pp. 419-421
-
-
Rossant, J.1
Frels, W.I.2
-
184
-
-
0020209562
-
Interspecific chimeras in mammals: A new experimental system
-
Rossant J, Croy BA, Chapman VM, Siracusa L, Clark DA. Interspecific chimeras in mammals: a new experimental system. J Anim Sci. 1982; 55: 1241-8.
-
(1982)
J Anim Sci.
, vol.55
, pp. 1241-1248
-
-
Rossant, J.1
Croy, B.A.2
Chapman, V.M.3
Siracusa, L.4
Clark, D.A.5
-
185
-
-
0020002197
-
Importance of trophoblast genotype for survival of interspecific murine chimaeras
-
Rossant J, Mauro VM, Croy BA. Importance of trophoblast genotype for survival of interspecific murine chimaeras. J Embryol Exp Morphol. 1982; 69: 141-9.
-
(1982)
J Embryol Exp Morphol.
, vol.69
, pp. 141-149
-
-
Rossant, J.1
Mauro, V.M.2
Croy, B.A.3
-
186
-
-
85031021510
-
Lessons from interspecies mammalian chimeras
-
Suchy F, Nakauchi H. Lessons from interspecies mammalian chimeras. Annu Rev Cell Dev Biol. 2017. https://doi. org/10. 1146/annurev-cellbio-100616-060654.
-
(2017)
Annu Rev Cell Dev Biol.
-
-
Suchy, F.1
Nakauchi, H.2
-
187
-
-
77954538843
-
Transgenic pigs as models for translational biomedical research
-
Aigner B, Renner S, Kessler B, Klymiuk N, Kurome M, Wunsch A, et al. Transgenic pigs as models for translational biomedical research. J Mol Med. 2010; 88: 653-64. https://doi. org/10. 1007/s00109-010-0610-9
-
(2010)
J Mol Med.
, vol.88
, pp. 653-664
-
-
Aigner, B.1
Renner, S.2
Kessler, B.3
Klymiuk, N.4
Kurome, M.5
Wunsch, A.6
-
188
-
-
84898838397
-
Genetically engineered pig models for human diseases
-
Prather RS, Lorson M, Ross JW, Whyte JJ, Walters E. Genetically engineered pig models for human diseases. Annu Rev Anim Biosci. 2013; 1: 203-19. https://doi. org/10. 1146/annurev-animal-031412-103715
-
(2013)
Annu Rev Anim Biosci.
, vol.1
, pp. 203-219
-
-
Prather, R.S.1
Lorson, M.2
Ross, J.W.3
Whyte, J.J.4
Walters, E.5
-
189
-
-
84893618608
-
Genetically modified pigs to model human diseases
-
Flisikowska T, Kind A, Schnieke A. Genetically modified pigs to model human diseases. J Appl Genet. 2014; 55: 53-64. https://doi. org/10. 1007/s13353-013-0182-9
-
(2014)
J Appl Genet.
, vol.55
, pp. 53-64
-
-
Flisikowska, T.1
Kind, A.2
Schnieke, A.3
-
190
-
-
84925862629
-
The potential of the combination of CRISPR/Cas9 and pluripotent stem cells to provide human organs from chimaeric pigs
-
Feng W, Dai Y, Mou L, Cooper DK, Shi D, Cai Z. The potential of the combination of CRISPR/Cas9 and pluripotent stem cells to provide human organs from chimaeric pigs. Int J Mol Sci. 2015; 16: 6545-56. https://doi. org/10. 3390/ijms16036545
-
(2015)
Int J Mol Sci.
, vol.16
, pp. 6545-6556
-
-
Feng, W.1
Dai, Y.2
Mou, L.3
Cooper, D.K.4
Shi, D.5
Cai, Z.6
-
191
-
-
77956163474
-
Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells
-
Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell. 2010; 142: 787-99. https://doi. org/10. 1016/j. cell. 2010. 07. 039
-
(2010)
Cell.
, vol.142
, pp. 787-799
-
-
Kobayashi, T.1
Yamaguchi, T.2
Hamanaka, S.3
Kato-Itoh, M.4
Yamazaki, Y.5
Ibata, M.6
-
192
-
-
84861650401
-
Generation of kidney from pluripotent stem cells via blastocyst complementation
-
Usui J, Kobayashi T, Yamaguchi T, Knisely AS, Nishinakamura R, Nakauchi H. Generation of kidney from pluripotent stem cells via blastocyst complementation. Am J Pathol. 2012; 180: 2417-26. https://doi. org/10. 1016/j. ajpath. 2012. 03. 007
-
(2012)
Am J Pathol.
, vol.180
, pp. 2417-2426
-
-
Usui, J.1
Kobayashi, T.2
Yamaguchi, T.3
Knisely, A.S.4
Nishinakamura, R.5
Nakauchi, H.6
-
193
-
-
85012112339
-
Interspecies organogenesis generates autologous functional islets
-
Yamaguchi T, Sato H, Kato-Itoh M, Goto T, Hara H, Sanbo M, et al. Interspecies organogenesis generates autologous functional islets. Nature. 2017; 542: 191-6. https://doi. org/10. 1038/na ture21070
-
(2017)
Nature.
, vol.542
, pp. 191-196
-
-
Yamaguchi, T.1
Sato, H.2
Kato-Itoh, M.3
Goto, T.4
Hara, H.5
Sanbo, M.6
-
194
-
-
84875252985
-
Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs
-
Matsunari H, Nagashima H, Watanabe M, Umeyama K, Nakano K, Nagaya M, et al. Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs. Proc Natl Acad Sci USA. 2013; 110: 4557-62. https://doi. org/10. 1073/pnas. 1222902110
-
(2013)
Proc Natl Acad Sci USA.
, vol.110
, pp. 4557-4562
-
-
Matsunari, H.1
Nagashima, H.2
Watanabe, M.3
Umeyama, K.4
Nakano, K.5
Nagaya, M.6
-
195
-
-
85010695864
-
Interspecies chimerism with mammalian pluripotent stem cells
-
Wu J, Platero-Luengo A, Sakurai M, Sugawara A, Gil MA, Yamauchi T, et al. Interspecies chimerism with mammalian pluripotent stem cells. Cell. 2017; 168: 473-486. e415. https://doi. org/10. 1016/j. cell. 2016. 12. 036
-
(2017)
Cell.
, vol.168
, pp. 473-486e415
-
-
Wu, J.1
Platero-Luengo, A.2
Sakurai, M.3
Sugawara, A.4
Gil, M.A.5
Yamauchi, T.6
-
196
-
-
84900993129
-
Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency
-
Lee K, Kwon DN, Ezashi T, Choi YJ, Park C, Ericsson AC, et al. Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency. Proc Natl Acad Sci USA. 2014; 111: 7260-5. https://doi. org/10. 1073/pnas. 1406376111
-
(2014)
Proc Natl Acad Sci USA.
, vol.111
, pp. 7260-7265
-
-
Lee, K.1
Kwon, D.N.2
Ezashi, T.3
Choi, Y.J.4
Park, C.5
Ericsson, A.C.6
-
197
-
-
84918536729
-
Revisiting the flight of Icarus: Making human organs from PSCs with large animal chimeras
-
Rashid T, Kobayashi T, Nakauchi H. Revisiting the flight of Icarus: making human organs from PSCs with large animal chimeras. Cell Stem Cell. 2014; 15: 406-9. https://doi. org/10. 1016/j. stem. 2014. 09. 013
-
(2014)
Cell Stem Cell.
, vol.15
, pp. 406-409
-
-
Rashid, T.1
Kobayashi, T.2
Nakauchi, H.3
-
198
-
-
85003875678
-
Somatic cell nuclear transfer followed by CRIPSR/Cas9 microinjection results in highly efficient genome editing in cloned pigs
-
Sheets TP, Park CH, Park KE, Powell A, Donovan DM, Telugu BP. Somatic cell nuclear transfer followed by CRIPSR/Cas9 microinjection results in highly efficient genome editing in cloned pigs. Int J Mol Sci. 2016; 17. https://doi. org/10. 3390/ijms17122031.
-
(2016)
Int J Mol Sci.
, vol.17
-
-
Sheets, T.P.1
Park, C.H.2
Park, K.E.3
Powell, A.4
Donovan, D.M.5
Telugu, B.P.6
-
199
-
-
84897594300
-
One-step generation of knockout pigs by zygote injection of CRISPR/Cas system
-
Hai T, Teng F, Guo R, Li W, Zhou Q. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res. 2014; 24: 372-5. https://doi. org/10. 1038/cr. 2014. 11
-
(2014)
Cell Res.
, vol.24
, pp. 372-375
-
-
Hai, T.1
Teng, F.2
Guo, R.3
Li, W.4
Zhou, Q.5
-
200
-
-
84921602939
-
Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos
-
Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL, et al. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod. 2014; 91. https://doi. org/10. 1095/biolreprod. 114. 121723 doi: ARTN 7810. 1095/biolreprod. 114. 121723.
-
(2014)
Biol Reprod.
, vol.91
-
-
Whitworth, K.M.1
Lee, K.2
Benne, J.A.3
Beaton, B.P.4
Spate, L.D.5
Murphy, S.L.6
-
201
-
-
33645145491
-
Large animal models and gene therapy
-
Casal M, Haskins M. Large animal models and gene therapy. Eur J Hum Genet. 2006; 14: 266-72. https://doi. org/10. 1038/sj. ejhg. 5201535
-
(2006)
Eur J Hum Genet.
, vol.14
, pp. 266-272
-
-
Casal, M.1
Haskins, M.2
-
202
-
-
84941259954
-
Why bother using nonhuman primate models of cognitive disorders in translational research?
-
Camus S, Ko WK, Pioli E, Bezard E. Why bother using nonhuman primate models of cognitive disorders in translational research? Neurobiol Learn Mem. 2015; 124: 123-9. https://doi. org/10. 1016/j. nlm. 2015. 06. 012
-
(2015)
Neurobiol Learn Mem
, vol.124
, pp. 123-129
-
-
Camus, S.1
Ko, W.K.2
Pioli, E.3
Bezard, E.4
-
203
-
-
84978712593
-
Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases
-
Yao J, Huang J, Zhao J. Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases. Hum Genet. 2016; 135: 1093-105. https://doi. org/10. 1007/s00439-016-1710-6
-
(2016)
Hum Genet.
, vol.135
, pp. 1093-1105
-
-
Yao, J.1
Huang, J.2
Zhao, J.3
-
204
-
-
84991383725
-
Transgenesis for pig models
-
Yum SY, Yoon KY, Lee CI, Lee BC, Jang G. Transgenesis for pig models. J Vet Sci. 2016; 17: 261-8. https://doi. org/10. 4142/jvs. 2016. 17. 3. 261
-
(2016)
J Vet Sci.
, vol.17
, pp. 261-268
-
-
Yum, S.Y.1
Yoon, K.Y.2
Lee, C.I.3
Lee, B.C.4
Jang, G.5
-
205
-
-
84951573938
-
Recent advances in genome editing and creation of genetically modified pigs
-
Butler JR, Ladowski JM, Martens GR, Tector M, Tector AJ. Recent advances in genome editing and creation of genetically modified pigs. Int J Surg. 2015; 23: 217-22. https://doi. org/10. 1016/j. ijsu. 2015. 07. 684
-
(2015)
Int J Surg.
, vol.23
, pp. 217-222
-
-
Butler, J.R.1
Ladowski, J.M.2
Martens, G.R.3
Tector, M.4
Tector, A.J.5
-
206
-
-
84925519674
-
Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer
-
Zhou X, Xin J, Fan N, Zou Q, Huang J, Ouyang Z, et al. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci. 2015; 72: 1175-84. https://doi. org/10. 1007/s00018-014-1744-7
-
(2015)
Cell Mol Life Sci.
, vol.72
, pp. 1175-1184
-
-
Zhou, X.1
Xin, J.2
Fan, N.3
Zou, Q.4
Huang, J.5
Ouyang, Z.6
-
207
-
-
84867688971
-
Precision editing of large animal genomes
-
Tan WS, Carlson DF, Walton MW, Fahrenkrug SC, Hackett PB. Precision editing of large animal genomes. Adv Genet. 2012; 80: 37-97. https://doi. org/10. 1016/B978-0-12-404742-6. 00002-8
-
(2012)
Adv Genet.
, vol.80
, pp. 37-97
-
-
Tan, W.S.1
Carlson, D.F.2
Walton, M.W.3
Fahrenkrug, S.C.4
Hackett, P.B.5
-
208
-
-
85022131482
-
Somatic cell reprogramming-free generation of genetically modified pigs
-
Tanihara F, Takemoto T, Kitagawa E, Rao S, Do LT, Onishi A, et al. Somatic cell reprogramming-free generation of genetically modified pigs. Sci Adv. 2016; 2: e1600803. https://doi. org/10. 1126/sciadv. 1600803
-
(2016)
Sci Adv.
, vol.2
, pp. e1600803
-
-
Tanihara, F.1
Takemoto, T.2
Kitagawa, E.3
Rao, S.4
Do, L.T.5
Onishi, A.6
-
209
-
-
84949996967
-
Creating human organs in chimaera pigs: An ethical source of immunocompatible organs?
-
Shaw D, Dondorp W, Geijsen N, de Wert G. Creating human organs in chimaera pigs: an ethical source of immunocompatible organs? J Med Ethics. 2015; 41: 970-4. https://doi. org/10. 1136/medethics-2014-102224
-
(2015)
J Med Ethics
, vol.41
, pp. 970-974
-
-
Shaw, D.1
Dondorp, W.2
Geijsen, N.3
De Wert, G.4
|