메뉴 건너뛰기




Volumn 29, Issue 11, 2013, Pages 611-620

The zebrafish as a model for complex tissue regeneration

Author keywords

Brain; Fin; Heart; Regeneration; Retina; Spinal cord; Stem cells; Zebrafish

Indexed keywords

BONE MORPHOGENETIC PROTEIN 2; BONE MORPHOGENETIC PROTEIN 4; CHEMOKINE RECEPTOR CXCR5; DICKKOPF 1 PROTEIN; FIBROBLAST GROWTH FACTOR RECEPTOR 1; LEUKOTRIENE C4; PLATELET DERIVED GROWTH FACTOR; RHODOPSIN; SOMATOMEDIN B; SONIC HEDGEHOG PROTEIN; TRANSCRIPTION FACTOR 3; TRANSCRIPTION FACTOR 7; TRANSCRIPTION FACTOR GATA 3; TRANSCRIPTION FACTOR PAX3; TRANSCRIPTION FACTOR PAX7; TRANSFORMING GROWTH FACTOR BETA; WNT PROTEIN;

EID: 84886292766     PISSN: 01689525     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tig.2013.07.003     Document Type: Review
Times cited : (418)

References (140)
  • 1
    • 0019452034 scopus 로고
    • Production of clones of homozygous diploid zebra fish (Brachydanio rerio)
    • Streisinger G., et al. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 1981, 291:293-296.
    • (1981) Nature , vol.291 , pp. 293-296
    • Streisinger, G.1
  • 2
    • 0022666826 scopus 로고
    • Segregation analyses and gene-centromere distances in zebrafish
    • Streisinger G., et al. Segregation analyses and gene-centromere distances in zebrafish. Genetics 1986, 112:311-319.
    • (1986) Genetics , vol.112 , pp. 311-319
    • Streisinger, G.1
  • 3
    • 28944448921 scopus 로고    scopus 로고
    • Molecular genetics of axis formation in zebrafish
    • Schier A.F., Talbot W.S. Molecular genetics of axis formation in zebrafish. Annu. Rev. Genet. 2005, 39:561-613.
    • (2005) Annu. Rev. Genet. , vol.39 , pp. 561-613
    • Schier, A.F.1    Talbot, W.S.2
  • 4
    • 84863388132 scopus 로고    scopus 로고
    • Zebrafish in the study of early cardiac development
    • Liu J., Stainier D.Y. Zebrafish in the study of early cardiac development. Circ. Res. 2012, 110:870-874.
    • (2012) Circ. Res. , vol.110 , pp. 870-874
    • Liu, J.1    Stainier, D.Y.2
  • 5
    • 84856963620 scopus 로고    scopus 로고
    • Behavioral genetics in larval zebrafish: learning from the young
    • Wolman M., Granato M. Behavioral genetics in larval zebrafish: learning from the young. Dev. Neurobiol. 2012, 72:366-372.
    • (2012) Dev. Neurobiol. , vol.72 , pp. 366-372
    • Wolman, M.1    Granato, M.2
  • 6
    • 84856977139 scopus 로고    scopus 로고
    • Fear, anxiety, and control in the zebrafish
    • Jesuthasan S. Fear, anxiety, and control in the zebrafish. Dev. Neurobiol. 2012, 72:395-403.
    • (2012) Dev. Neurobiol. , vol.72 , pp. 395-403
    • Jesuthasan, S.1
  • 7
    • 77955089579 scopus 로고    scopus 로고
    • In the swim of things: recent insights to neurogenetic disorders from zebrafish
    • Kabashi E., et al. In the swim of things: recent insights to neurogenetic disorders from zebrafish. Trends Genet. 2010, 26:373-381.
    • (2010) Trends Genet. , vol.26 , pp. 373-381
    • Kabashi, E.1
  • 8
    • 79751468871 scopus 로고    scopus 로고
    • Zebrafish models for cancer
    • Liu S., Leach S.D. Zebrafish models for cancer. Annu. Rev. Pathol. 2011, 6:71-93.
    • (2011) Annu. Rev. Pathol. , vol.6 , pp. 71-93
    • Liu, S.1    Leach, S.D.2
  • 9
    • 79959990108 scopus 로고    scopus 로고
    • Zebrafish as a model to study cardiac development and human cardiac disease
    • Bakkers J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc. Res. 2011, 91:279-288.
    • (2011) Cardiovasc. Res. , vol.91 , pp. 279-288
    • Bakkers, J.1
  • 10
    • 84866662862 scopus 로고    scopus 로고
    • Two origins of blastemal progenitors define blastemal regeneration of zebrafish lower jaw
    • Wang X., et al. Two origins of blastemal progenitors define blastemal regeneration of zebrafish lower jaw. PLoS ONE 2012, 7:e45380.
    • (2012) PLoS ONE , vol.7
    • Wang, X.1
  • 11
    • 84856951165 scopus 로고    scopus 로고
    • Building the posterior lateral line system in zebrafish
    • Chitnis A.B., et al. Building the posterior lateral line system in zebrafish. Dev. Neurobiol. 2012, 72:234-255.
    • (2012) Dev. Neurobiol. , vol.72 , pp. 234-255
    • Chitnis, A.B.1
  • 12
    • 67649525809 scopus 로고    scopus 로고
    • Feathers and fins: non-mammalian models for hair cell regeneration
    • Brignull H.R., et al. Feathers and fins: non-mammalian models for hair cell regeneration. Brain Res. 2009, 1277:12-23.
    • (2009) Brain Res. , vol.1277 , pp. 12-23
    • Brignull, H.R.1
  • 13
    • 33847194249 scopus 로고    scopus 로고
    • Liver development and regeneration: from laboratory study to clinical therapy
    • Hata S., et al. Liver development and regeneration: from laboratory study to clinical therapy. Dev. Growth Differ. 2007, 49:163-170.
    • (2007) Dev. Growth Differ. , vol.49 , pp. 163-170
    • Hata, S.1
  • 14
    • 84857788636 scopus 로고    scopus 로고
    • Intrinsic and extrinsic modifiers of the regulative capacity of the developing liver
    • Shin D., et al. Intrinsic and extrinsic modifiers of the regulative capacity of the developing liver. Mech. Dev. 2012, 128:525-535.
    • (2012) Mech. Dev. , vol.128 , pp. 525-535
    • Shin, D.1
  • 15
    • 84886283277 scopus 로고    scopus 로고
    • Regenerative medicine for the kidney: stem cell prospects & challenges
    • Li Y., Wingert R.A. Regenerative medicine for the kidney: stem cell prospects & challenges. Clin. Transl. Med. 2013, 2:11.
    • (2013) Clin. Transl. Med. , vol.2 , pp. 11
    • Li, Y.1    Wingert, R.A.2
  • 16
    • 84862001481 scopus 로고    scopus 로고
    • Adenosine signaling promotes regeneration of pancreatic beta cells in vivo
    • Andersson O., et al. Adenosine signaling promotes regeneration of pancreatic beta cells in vivo. Cell Metab. 2012, 15:885-894.
    • (2012) Cell Metab. , vol.15 , pp. 885-894
    • Andersson, O.1
  • 17
    • 70249141961 scopus 로고    scopus 로고
    • Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration
    • Anderson R.M., et al. Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration. Dev. Biol. 2009, 334:213-223.
    • (2009) Dev. Biol. , vol.334 , pp. 213-223
    • Anderson, R.M.1
  • 18
    • 68049137912 scopus 로고    scopus 로고
    • Regeneration of the pancreas in adult zebrafish
    • Moss J.B., et al. Regeneration of the pancreas in adult zebrafish. Diabetes 2009, 58:1844-1851.
    • (2009) Diabetes , vol.58 , pp. 1844-1851
    • Moss, J.B.1
  • 19
    • 79551683930 scopus 로고    scopus 로고
    • Identification of adult nephron progenitors capable of kidney regeneration in zebrafish
    • Diep C.Q., et al. Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature 2011, 470:95-100.
    • (2011) Nature , vol.470 , pp. 95-100
    • Diep, C.Q.1
  • 20
    • 33847012504 scopus 로고    scopus 로고
    • Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase
    • Pisharath H., et al. Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech. Dev. 2007, 124:218-229.
    • (2007) Mech. Dev. , vol.124 , pp. 218-229
    • Pisharath, H.1
  • 21
    • 33846547305 scopus 로고
    • Observations sur la regeneration de quelques parties du corps des poissons
    • Broussonet M. Observations sur la regeneration de quelques parties du corps des poissons. Hist. d. l'Acad. R. des Sci. 1786.
    • (1786) Hist. d. l'Acad. R. des Sci.
    • Broussonet, M.1
  • 23
    • 0028807086 scopus 로고
    • Temperature-sensitive mutations that cause stage-specific defects in Zebrafish fin regeneration
    • Johnson S.L., Weston J.A. Temperature-sensitive mutations that cause stage-specific defects in Zebrafish fin regeneration. Genetics 1995, 141:1583-1595.
    • (1995) Genetics , vol.141 , pp. 1583-1595
    • Johnson, S.L.1    Weston, J.A.2
  • 24
    • 29344463583 scopus 로고    scopus 로고
    • Fgf20 is essential for initiating zebrafish fin regeneration
    • Whitehead G.G., et al. fgf20 is essential for initiating zebrafish fin regeneration. Science 2005, 310:1957-1960.
    • (2005) Science , vol.310 , pp. 1957-1960
    • Whitehead, G.G.1
  • 25
    • 0036861418 scopus 로고    scopus 로고
    • Mps1 defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration
    • Poss K.D., et al. Mps1 defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration. Development 2002, 129:5141-5149.
    • (2002) Development , vol.129 , pp. 5141-5149
    • Poss, K.D.1
  • 26
    • 26844474116 scopus 로고    scopus 로고
    • Heat-shock protein 60 is required for blastema formation and maintenance during regeneration
    • Makino S., et al. Heat-shock protein 60 is required for blastema formation and maintenance during regeneration. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:14599-14604.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 14599-14604
    • Makino, S.1
  • 27
    • 0037869261 scopus 로고    scopus 로고
    • Positional cloning of a temperature-sensitive mutant emmental reveals a role for sly1 during cell proliferation in zebrafish fin regeneration
    • Nechiporuk A., et al. Positional cloning of a temperature-sensitive mutant emmental reveals a role for sly1 during cell proliferation in zebrafish fin regeneration. Dev. Biol. 2003, 258:291-306.
    • (2003) Dev. Biol. , vol.258 , pp. 291-306
    • Nechiporuk, A.1
  • 28
    • 84859354783 scopus 로고    scopus 로고
    • Fast homozygosity mapping and identification of a zebrafish ENU-induced mutation by whole-genome sequencing
    • Voz M.L., et al. Fast homozygosity mapping and identification of a zebrafish ENU-induced mutation by whole-genome sequencing. PLoS ONE 2012, 7:e34671.
    • (2012) PLoS ONE , vol.7
    • Voz, M.L.1
  • 29
    • 84858200179 scopus 로고    scopus 로고
    • Efficient mapping and cloning of mutations in zebrafish by low-coverage whole-genome sequencing
    • Bowen M.E., et al. Efficient mapping and cloning of mutations in zebrafish by low-coverage whole-genome sequencing. Genetics 2012, 190:1017-1024.
    • (2012) Genetics , vol.190 , pp. 1017-1024
    • Bowen, M.E.1
  • 30
    • 84867868170 scopus 로고    scopus 로고
    • Rapid positional cloning of zebrafish mutations by linkage and homozygosity mapping using whole-genome sequencing
    • Obholzer N., et al. Rapid positional cloning of zebrafish mutations by linkage and homozygosity mapping using whole-genome sequencing. Development 2012, 139:4280-4290.
    • (2012) Development , vol.139 , pp. 4280-4290
    • Obholzer, N.1
  • 31
    • 84864581937 scopus 로고    scopus 로고
    • Mutation mapping and identification by whole-genome sequencing
    • Leshchiner I., et al. Mutation mapping and identification by whole-genome sequencing. Genome Res. 2012, 22:1541-1548.
    • (2012) Genome Res. , vol.22 , pp. 1541-1548
    • Leshchiner, I.1
  • 32
    • 84875990159 scopus 로고    scopus 로고
    • MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq
    • Hill J.T., et al. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res. 2013, 23:687-697.
    • (2013) Genome Res. , vol.23 , pp. 687-697
    • Hill, J.T.1
  • 33
    • 84875286904 scopus 로고    scopus 로고
    • RNA-seq-based mapping and candidate identification of mutations from forward genetic screens
    • Miller A.C., et al. RNA-seq-based mapping and candidate identification of mutations from forward genetic screens. Genome Res. 2013, 23:679-686.
    • (2013) Genome Res. , vol.23 , pp. 679-686
    • Miller, A.C.1
  • 34
    • 84859973068 scopus 로고    scopus 로고
    • Limited dedifferentiation provides replacement tissue during zebrafish fin regeneration
    • Stewart S., Stankunas K. Limited dedifferentiation provides replacement tissue during zebrafish fin regeneration. Dev. Biol. 2012, 365:339-349.
    • (2012) Dev. Biol. , vol.365 , pp. 339-349
    • Stewart, S.1    Stankunas, K.2
  • 35
    • 84859845794 scopus 로고    scopus 로고
    • Regeneration of amputated zebrafish fin rays from de novo osteoblasts
    • Singh S.P., et al. Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev. Cell 2012, 22:879-886.
    • (2012) Dev. Cell , vol.22 , pp. 879-886
    • Singh, S.P.1
  • 36
    • 80051949501 scopus 로고    scopus 로고
    • Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration
    • Sousa S., et al. Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration. Development 2011, 138:3897-3905.
    • (2011) Development , vol.138 , pp. 3897-3905
    • Sousa, S.1
  • 37
    • 79955926225 scopus 로고    scopus 로고
    • Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin
    • Knopf F., et al. Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev. Cell 2011, 20:713-724.
    • (2011) Dev. Cell , vol.20 , pp. 713-724
    • Knopf, F.1
  • 38
    • 79955918159 scopus 로고    scopus 로고
    • Fate restriction in the growing and regenerating zebrafish fin
    • Tu S., Johnson S.L. Fate restriction in the growing and regenerating zebrafish fin. Dev. Cell 2011, 20:725-732.
    • (2011) Dev. Cell , vol.20 , pp. 725-732
    • Tu, S.1    Johnson, S.L.2
  • 39
    • 84855507663 scopus 로고    scopus 로고
    • Mouse digit tip regeneration is mediated by fate-restricted progenitor cells
    • Lehoczky J.A., et al. Mouse digit tip regeneration is mediated by fate-restricted progenitor cells. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:20609-20614.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 20609-20614
    • Lehoczky, J.A.1
  • 40
    • 67650073154 scopus 로고    scopus 로고
    • Cells keep a memory of their tissue origin during axolotl limb regeneration
    • Kragl M., et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 2009, 460:60-65.
    • (2009) Nature , vol.460 , pp. 60-65
    • Kragl, M.1
  • 41
    • 80052056733 scopus 로고    scopus 로고
    • Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip
    • Rinkevich Y., et al. Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature 2011, 476:409-413.
    • (2011) Nature , vol.476 , pp. 409-413
    • Rinkevich, Y.1
  • 42
    • 34547909927 scopus 로고    scopus 로고
    • Activin-betaA signaling is required for zebrafish fin regeneration
    • Jazwinska A., et al. Activin-betaA signaling is required for zebrafish fin regeneration. Curr. Biol. 2007, 17:1390-1395.
    • (2007) Curr. Biol. , vol.17 , pp. 1390-1395
    • Jazwinska, A.1
  • 43
    • 33847177201 scopus 로고    scopus 로고
    • Distinct Wnt signaling pathways have opposing roles in appendage regeneration
    • Stoick-Cooper C.L., et al. Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 2007, 134:479-489.
    • (2007) Development , vol.134 , pp. 479-489
    • Stoick-Cooper, C.L.1
  • 44
    • 77950365662 scopus 로고    scopus 로고
    • IGF signaling between blastema and wound epidermis is required for fin regeneration
    • Chablais F., Jazwinska A. IGF signaling between blastema and wound epidermis is required for fin regeneration. Development 2010, 137:871-879.
    • (2010) Development , vol.137 , pp. 871-879
    • Chablais, F.1    Jazwinska, A.2
  • 45
    • 82855181070 scopus 로고    scopus 로고
    • Retinoic acid signaling controls the formation, proliferation and survival of the blastema during adult zebrafish fin regeneration
    • Blum N., Begemann G. Retinoic acid signaling controls the formation, proliferation and survival of the blastema during adult zebrafish fin regeneration. Development 2012, 139:107-116.
    • (2012) Development , vol.139 , pp. 107-116
    • Blum, N.1    Begemann, G.2
  • 46
    • 67549089493 scopus 로고    scopus 로고
    • Maintenance of blastemal proliferation by functionally diverse epidermis in regenerating zebrafish fins
    • Lee Y., et al. Maintenance of blastemal proliferation by functionally diverse epidermis in regenerating zebrafish fins. Dev. Biol. 2009, 331:270-280.
    • (2009) Dev. Biol. , vol.331 , pp. 270-280
    • Lee, Y.1
  • 47
    • 29644445924 scopus 로고    scopus 로고
    • Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration
    • Lee Y., et al. Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration. Development 2005, 132:5173-5183.
    • (2005) Development , vol.132 , pp. 5173-5183
    • Lee, Y.1
  • 48
    • 84875058807 scopus 로고    scopus 로고
    • Notch signaling coordinates cellular proliferation with differentiation during zebrafish fin regeneration
    • Grotek B., et al. Notch signaling coordinates cellular proliferation with differentiation during zebrafish fin regeneration. Development 2013, 140:1412-1423.
    • (2013) Development , vol.140 , pp. 1412-1423
    • Grotek, B.1
  • 49
    • 84875066481 scopus 로고    scopus 로고
    • Notch regulates blastema proliferation and prevents differentiation during adult zebrafish fin regeneration
    • Munch J., et al. Notch regulates blastema proliferation and prevents differentiation during adult zebrafish fin regeneration. Development 2013, 140:1402-1411.
    • (2013) Development , vol.140 , pp. 1402-1411
    • Munch, J.1
  • 50
    • 33750984806 scopus 로고    scopus 로고
    • Inhibition of BMP signaling during zebrafish fin regeneration disrupts fin growth and scleroblasts differentiation and function
    • Smith A., et al. Inhibition of BMP signaling during zebrafish fin regeneration disrupts fin growth and scleroblasts differentiation and function. Dev. Biol. 2006, 299:438-454.
    • (2006) Dev. Biol. , vol.299 , pp. 438-454
    • Smith, A.1
  • 51
    • 0037173033 scopus 로고    scopus 로고
    • Bone patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic hedgehog and bmp2b or exposure to cyclopamine
    • Quint E., et al. Bone patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic hedgehog and bmp2b or exposure to cyclopamine. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:8713-8718.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 8713-8718
    • Quint, E.1
  • 52
    • 0037073890 scopus 로고    scopus 로고
    • Heart regeneration in zebrafish
    • Poss K.D., et al. Heart regeneration in zebrafish. Science 2002, 298:2188-2190.
    • (2002) Science , vol.298 , pp. 2188-2190
    • Poss, K.D.1
  • 53
    • 79955364546 scopus 로고    scopus 로고
    • Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish
    • Gonzalez-Rosa J.M., et al. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 2011, 138:1663-1674.
    • (2011) Development , vol.138 , pp. 1663-1674
    • Gonzalez-Rosa, J.M.1
  • 54
    • 79953678403 scopus 로고    scopus 로고
    • The zebrafish heart regenerates after cryoinjury-induced myocardial infarction
    • Chablais F., et al. The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev. Biol. 2011, 11:21.
    • (2011) BMC Dev. Biol. , vol.11 , pp. 21
    • Chablais, F.1
  • 55
    • 79954522898 scopus 로고    scopus 로고
    • Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation
    • Schnabel K., et al. Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS ONE 2011, 6:e18503.
    • (2011) PLoS ONE , vol.6
    • Schnabel, K.1
  • 56
    • 79960778952 scopus 로고    scopus 로고
    • The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion
    • Wang J., et al. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 2011, 138:3421-3430.
    • (2011) Development , vol.138 , pp. 3421-3430
    • Wang, J.1
  • 57
    • 77950201708 scopus 로고    scopus 로고
    • Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes
    • Kikuchi K., et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 2010, 464:601-605.
    • (2010) Nature , vol.464 , pp. 601-605
    • Kikuchi, K.1
  • 58
    • 77950200829 scopus 로고    scopus 로고
    • Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation
    • Jopling C., et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 2010, 464:606-609.
    • (2010) Nature , vol.464 , pp. 606-609
    • Jopling, C.1
  • 59
    • 79952527330 scopus 로고    scopus 로고
    • Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration
    • Kikuchi K., et al. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev. Cell 2011, 20:397-404.
    • (2011) Dev. Cell , vol.20 , pp. 397-404
    • Kikuchi, K.1
  • 60
    • 33750483609 scopus 로고    scopus 로고
    • A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration
    • Lepilina A., et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 2006, 127:607-619.
    • (2006) Cell , vol.127 , pp. 607-619
    • Lepilina, A.1
  • 61
    • 84860720014 scopus 로고    scopus 로고
    • The regenerative capacity of the zebrafish heart is dependent on TGFbeta signaling
    • Chablais F., Jazwinska A. The regenerative capacity of the zebrafish heart is dependent on TGFbeta signaling. Development 2012, 139:1921-1930.
    • (2012) Development , vol.139 , pp. 1921-1930
    • Chablais, F.1    Jazwinska, A.2
  • 62
    • 78049235110 scopus 로고    scopus 로고
    • PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts
    • Kim J., et al. PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:17206-17210.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 17206-17210
    • Kim, J.1
  • 63
    • 33747366304 scopus 로고    scopus 로고
    • Gene expression analysis of zebrafish heart regeneration
    • Lien C.L., et al. Gene expression analysis of zebrafish heart regeneration. PLoS Biol. 2006, 4:e260.
    • (2006) PLoS Biol. , vol.4
    • Lien, C.L.1
  • 64
    • 84872081347 scopus 로고    scopus 로고
    • In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration
    • Choi W.Y., et al. In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration. Development 2013, 140:660-666.
    • (2013) Development , vol.140 , pp. 660-666
    • Choi, W.Y.1
  • 65
    • 79959427955 scopus 로고    scopus 로고
    • Tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration
    • Kikuchi K., et al. tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 2011, 138:2895-2902.
    • (2011) Development , vol.138 , pp. 2895-2902
    • Kikuchi, K.1
  • 66
    • 84861724154 scopus 로고    scopus 로고
    • In vitro culture of epicardial cells from adult zebrafish heart on a fibrin matrix
    • Kim J., et al. In vitro culture of epicardial cells from adult zebrafish heart on a fibrin matrix. Nat. Protoc. 2012, 7:247-255.
    • (2012) Nat. Protoc. , vol.7 , pp. 247-255
    • Kim, J.1
  • 67
    • 84859989029 scopus 로고    scopus 로고
    • Regulation of zebrafish heart regeneration by miR-133
    • Yin V.P., et al. Regulation of zebrafish heart regeneration by miR-133. Dev. Biol. 2012, 365:319-327.
    • (2012) Dev. Biol. , vol.365 , pp. 319-327
    • Yin, V.P.1
  • 68
    • 84871315072 scopus 로고    scopus 로고
    • Hypoxia induces myocardial regeneration in zebrafish
    • Jopling C., et al. Hypoxia induces myocardial regeneration in zebrafish. Circulation 2012, 126:3017-3027.
    • (2012) Circulation , vol.126 , pp. 3017-3027
    • Jopling, C.1
  • 69
    • 84867879862 scopus 로고    scopus 로고
    • Migration of cardiomyocytes is essential for heart regeneration in zebrafish
    • Itou J., et al. Migration of cardiomyocytes is essential for heart regeneration in zebrafish. Development 2012, 139:4133-4142.
    • (2012) Development , vol.139 , pp. 4133-4142
    • Itou, J.1
  • 70
    • 79951693039 scopus 로고    scopus 로고
    • Cardiac muscle regeneration: lessons from development
    • Mercola M., et al. Cardiac muscle regeneration: lessons from development. Genes Dev. 2011, 25:299-309.
    • (2011) Genes Dev. , vol.25 , pp. 299-309
    • Mercola, M.1
  • 71
    • 84863626782 scopus 로고    scopus 로고
    • Heart repair by reprogramming non-myocytes with cardiac transcription factors
    • Song K., et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 2012, 485:599-604.
    • (2012) Nature , vol.485 , pp. 599-604
    • Song, K.1
  • 72
    • 84863629484 scopus 로고    scopus 로고
    • In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes
    • Qian L., et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 2012, 485:593-598.
    • (2012) Nature , vol.485 , pp. 593-598
    • Qian, L.1
  • 73
    • 84872611623 scopus 로고    scopus 로고
    • Mammalian heart renewal by pre-existing cardiomyocytes
    • Senyo S.E., et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 2013, 493:433-436.
    • (2013) Nature , vol.493 , pp. 433-436
    • Senyo, S.E.1
  • 74
    • 67650569135 scopus 로고    scopus 로고
    • Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury
    • Bersell K., et al. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 2009, 138:257-270.
    • (2009) Cell , vol.138 , pp. 257-270
    • Bersell, K.1
  • 75
    • 79952065525 scopus 로고    scopus 로고
    • Transient regenerative potential of the neonatal mouse heart
    • Porrello E.R., et al. Transient regenerative potential of the neonatal mouse heart. Science 2011, 331:1078-1080.
    • (2011) Science , vol.331 , pp. 1078-1080
    • Porrello, E.R.1
  • 76
    • 84871442001 scopus 로고    scopus 로고
    • Functional screening identifies miRNAs inducing cardiac regeneration
    • Eulalio A., et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 2012, 492:376-381.
    • (2012) Nature , vol.492 , pp. 376-381
    • Eulalio, A.1
  • 77
    • 84871439217 scopus 로고    scopus 로고
    • C/EBP transcription factors mediate epicardial activation during heart development and injury
    • Huang G.N., et al. C/EBP transcription factors mediate epicardial activation during heart development and injury. Science 2012, 338:1599-1603.
    • (2012) Science , vol.338 , pp. 1599-1603
    • Huang, G.N.1
  • 78
    • 79955498411 scopus 로고    scopus 로고
    • Adult mouse epicardium modulates myocardial injury by secreting paracrine factors
    • Zhou B., et al. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J. Clin. Invest. 2011, 121:1894-1904.
    • (2011) J. Clin. Invest. , vol.121 , pp. 1894-1904
    • Zhou, B.1
  • 79
    • 34347361689 scopus 로고    scopus 로고
    • Late-stage neuronal progenitors in the retina are radial Muller glia that function as retinal stem cells
    • Bernardos R.L., et al. Late-stage neuronal progenitors in the retina are radial Muller glia that function as retinal stem cells. J. Neurosci. 2007, 27:7028-7040.
    • (2007) J. Neurosci. , vol.27 , pp. 7028-7040
    • Bernardos, R.L.1
  • 80
    • 33847141503 scopus 로고    scopus 로고
    • Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish
    • Fimbel S.M., et al. Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish. J. Neurosci. 2007, 27:1712-1724.
    • (2007) J. Neurosci. , vol.27 , pp. 1712-1724
    • Fimbel, S.M.1
  • 81
    • 38849096411 scopus 로고    scopus 로고
    • Ganglion cell regeneration following whole-retina destruction in zebrafish
    • Sherpa T., et al. Ganglion cell regeneration following whole-retina destruction in zebrafish. Dev. Neurobiol. 2008, 68:166-181.
    • (2008) Dev. Neurobiol. , vol.68 , pp. 166-181
    • Sherpa, T.1
  • 82
    • 0037381006 scopus 로고    scopus 로고
    • Stem cells in the teleost retina: persistent neurogenesis and injury-induced regeneration
    • Otteson D.C., Hitchcock P.F. Stem cells in the teleost retina: persistent neurogenesis and injury-induced regeneration. Vision Res. 2003, 43:927-936.
    • (2003) Vision Res. , vol.43 , pp. 927-936
    • Otteson, D.C.1    Hitchcock, P.F.2
  • 83
    • 0034502787 scopus 로고    scopus 로고
    • Cellular proliferation and neurogenesis in the injured retina of adult zebrafish
    • Cameron D.A. Cellular proliferation and neurogenesis in the injured retina of adult zebrafish. Vis. Neurosci. 2000, 17:789-797.
    • (2000) Vis. Neurosci. , vol.17 , pp. 789-797
    • Cameron, D.A.1
  • 84
    • 13444292969 scopus 로고    scopus 로고
    • Responses of Muller glia to retinal injury in adult zebrafish
    • Yurco P., Cameron D.A. Responses of Muller glia to retinal injury in adult zebrafish. Vision Res. 2005, 45:991-1002.
    • (2005) Vision Res. , vol.45 , pp. 991-1002
    • Yurco, P.1    Cameron, D.A.2
  • 85
    • 33745626845 scopus 로고    scopus 로고
    • A role for alpha1 tubulin-expressing Muller glia in regeneration of the injured zebrafish retina
    • Fausett B.V., Goldman D. A role for alpha1 tubulin-expressing Muller glia in regeneration of the injured zebrafish retina. J. Neurosci. 2006, 26:6303-6313.
    • (2006) J. Neurosci. , vol.26 , pp. 6303-6313
    • Fausett, B.V.1    Goldman, D.2
  • 86
    • 0033839682 scopus 로고    scopus 로고
    • Light-induced rod and cone cell death and regeneration in the adult albino zebrafish (Danio rerio) retina
    • Vihtelic T.S., Hyde D.R. Light-induced rod and cone cell death and regeneration in the adult albino zebrafish (Danio rerio) retina. J. Neurobiol. 2000, 44:289-307.
    • (2000) J. Neurobiol. , vol.44 , pp. 289-307
    • Vihtelic, T.S.1    Hyde, D.R.2
  • 87
    • 34548301654 scopus 로고    scopus 로고
    • Time course analysis of gene expression during light-induced photoreceptor cell death and regeneration in albino zebrafish
    • Kassen S.C., et al. Time course analysis of gene expression during light-induced photoreceptor cell death and regeneration in albino zebrafish. Dev. Neurobiol. 2007, 67:1009-1031.
    • (2007) Dev. Neurobiol. , vol.67 , pp. 1009-1031
    • Kassen, S.C.1
  • 88
    • 80355144055 scopus 로고    scopus 로고
    • Multicolor time-lapse imaging of transgenic zebrafish: visualizing retinal stem cells activated by targeted neuronal cell ablation
    • Ariga J., et al. Multicolor time-lapse imaging of transgenic zebrafish: visualizing retinal stem cells activated by targeted neuronal cell ablation. J. Vis. Exp. 2010, 10.3791/2093.
    • (2010) J. Vis. Exp.
    • Ariga, J.1
  • 89
    • 77949400126 scopus 로고    scopus 로고
    • A novel model of retinal ablation demonstrates that the extent of rod cell death regulates the origin of the regenerated zebrafish rod photoreceptors
    • Montgomery J.E., et al. A novel model of retinal ablation demonstrates that the extent of rod cell death regulates the origin of the regenerated zebrafish rod photoreceptors. J. Comp. Neurol. 2010, 518:800-814.
    • (2010) J. Comp. Neurol. , vol.518 , pp. 800-814
    • Montgomery, J.E.1
  • 90
    • 84873813858 scopus 로고    scopus 로고
    • Regeneration of cone photoreceptors when cell ablation is primarily restricted to a particular cone subtype
    • Fraser B., et al. Regeneration of cone photoreceptors when cell ablation is primarily restricted to a particular cone subtype. PLoS ONE 2013, 8:e55410.
    • (2013) PLoS ONE , vol.8
    • Fraser, B.1
  • 91
    • 33748630498 scopus 로고    scopus 로고
    • Molecular characterization of retinal stem cells and their niches in adult zebrafish
    • Raymond P.A., et al. Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev. Biol. 2006, 6:36.
    • (2006) BMC Dev. Biol. , vol.6 , pp. 36
    • Raymond, P.A.1
  • 92
    • 31044431898 scopus 로고    scopus 로고
    • Retinal regional differences in photoreceptor cell death and regeneration in light-lesioned albino zebrafish
    • Vihtelic T.S., et al. Retinal regional differences in photoreceptor cell death and regeneration in light-lesioned albino zebrafish. Exp. Eye Res. 2006, 82:558-575.
    • (2006) Exp. Eye Res. , vol.82 , pp. 558-575
    • Vihtelic, T.S.1
  • 93
    • 39349115517 scopus 로고    scopus 로고
    • Inhibition of Muller glial cell division blocks regeneration of the light-damaged zebrafish retina
    • Thummel R., et al. Inhibition of Muller glial cell division blocks regeneration of the light-damaged zebrafish retina. Dev. Neurobiol. 2008, 68:392-408.
    • (2008) Dev. Neurobiol. , vol.68 , pp. 392-408
    • Thummel, R.1
  • 94
    • 77957898434 scopus 로고    scopus 로고
    • Conditional gene expression and lineage tracing of tuba1a expressing cells during zebrafish development and retina regeneration
    • Ramachandran R., et al. Conditional gene expression and lineage tracing of tuba1a expressing cells during zebrafish development and retina regeneration. J. Comp. Neurol. 2010, 518:4196-4212.
    • (2010) J. Comp. Neurol. , vol.518 , pp. 4196-4212
    • Ramachandran, R.1
  • 95
    • 84859482783 scopus 로고    scopus 로고
    • Characterization of multiple light damage paradigms reveals regional differences in photoreceptor loss
    • Thomas J.L., et al. Characterization of multiple light damage paradigms reveals regional differences in photoreceptor loss. Exp. Eye Res. 2012, 97:105-116.
    • (2012) Exp. Eye Res. , vol.97 , pp. 105-116
    • Thomas, J.L.1
  • 96
    • 84867834568 scopus 로고    scopus 로고
    • Stat3 defines three populations of Muller glia and is required for initiating maximal muller glia proliferation in the regenerating zebrafish retina
    • Nelson C.M., et al. Stat3 defines three populations of Muller glia and is required for initiating maximal muller glia proliferation in the regenerating zebrafish retina. J. Comp. Neurol. 2012, 520:4294-4311.
    • (2012) J. Comp. Neurol. , vol.520 , pp. 4294-4311
    • Nelson, C.M.1
  • 97
    • 38749090553 scopus 로고    scopus 로고
    • The proneural basic helix-loop-helix gene ascl1a is required for retina regeneration
    • Fausett B.V., et al. The proneural basic helix-loop-helix gene ascl1a is required for retina regeneration. J. Neurosci. 2008, 28:1109-1117.
    • (2008) J. Neurosci. , vol.28 , pp. 1109-1117
    • Fausett, B.V.1
  • 98
    • 80053161635 scopus 로고    scopus 로고
    • Ascl1a/Dkk/beta-catenin signaling pathway is necessary and glycogen synthase kinase-3beta inhibition is sufficient for zebrafish retina regeneration
    • Ramachandran R., et al. Ascl1a/Dkk/beta-catenin signaling pathway is necessary and glycogen synthase kinase-3beta inhibition is sufficient for zebrafish retina regeneration. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:15858-15863.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 15858-15863
    • Ramachandran, R.1
  • 99
    • 84875969209 scopus 로고    scopus 로고
    • Tumor necrosis factor-alpha is produced by dying retinal neurons and is required for Muller glia proliferation during zebrafish retinal regeneration
    • Nelson C.M., et al. Tumor necrosis factor-alpha is produced by dying retinal neurons and is required for Muller glia proliferation during zebrafish retinal regeneration. J. Neurosci. 2013, 33:6524-6539.
    • (2013) J. Neurosci. , vol.33 , pp. 6524-6539
    • Nelson, C.M.1
  • 100
    • 26244454983 scopus 로고    scopus 로고
    • Gene expression profiles of intact and regenerating zebrafish retina
    • Cameron D.A., et al. Gene expression profiles of intact and regenerating zebrafish retina. Mol. Vis. 2005, 11:775-791.
    • (2005) Mol. Vis. , vol.11 , pp. 775-791
    • Cameron, D.A.1
  • 101
    • 67249149665 scopus 로고    scopus 로고
    • Identification of the molecular signatures integral to regenerating photoreceptors in the retina of the zebra fish
    • Craig S.E., et al. Identification of the molecular signatures integral to regenerating photoreceptors in the retina of the zebra fish. J. Ocul. Biol. Dis. Infor. 2008, 1:73-84.
    • (2008) J. Ocul. Biol. Dis. Infor. , vol.1 , pp. 73-84
    • Craig, S.E.1
  • 102
    • 63449103528 scopus 로고    scopus 로고
    • Cellular expression of midkine-a and midkine-b during retinal development and photoreceptor regeneration in zebrafish
    • Calinescu A.A., et al. Cellular expression of midkine-a and midkine-b during retinal development and photoreceptor regeneration in zebrafish. J. Comp. Neurol. 2009, 514:1-10.
    • (2009) J. Comp. Neurol. , vol.514 , pp. 1-10
    • Calinescu, A.A.1
  • 103
    • 67249088610 scopus 로고    scopus 로고
    • Genetic evidence for shared mechanisms of epimorphic regeneration in zebrafish
    • Qin Z., et al. Genetic evidence for shared mechanisms of epimorphic regeneration in zebrafish. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:9310-9315.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 9310-9315
    • Qin, Z.1
  • 104
    • 84867097798 scopus 로고    scopus 로고
    • Insm1a-mediated gene repression is essential for the formation and differentiation of Muller glia-derived progenitors in the injured retina
    • Ramachandran R., et al. Insm1a-mediated gene repression is essential for the formation and differentiation of Muller glia-derived progenitors in the injured retina. Nat. Cell Biol. 2012, 14:1013-1023.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 1013-1023
    • Ramachandran, R.1
  • 105
    • 84857126449 scopus 로고    scopus 로고
    • In vivo electroporation of morpholinos into the adult zebrafish retina
    • Thummel R., et al. In vivo electroporation of morpholinos into the adult zebrafish retina. J. Vis. Exp. 2011, 58:e3603.
    • (2011) J. Vis. Exp. , vol.58
    • Thummel, R.1
  • 106
    • 81355160505 scopus 로고    scopus 로고
    • FGF signaling regulates rod photoreceptor cell maintenance and regeneration in zebrafish
    • Qin Z., et al. FGF signaling regulates rod photoreceptor cell maintenance and regeneration in zebrafish. Exp. Eye Res. 2011, 93:726-734.
    • (2011) Exp. Eye Res. , vol.93 , pp. 726-734
    • Qin, Z.1
  • 107
    • 84865299701 scopus 로고    scopus 로고
    • Beta-catenin/Wnt signaling controls progenitor fate in the developing and regenerating zebrafish retina
    • Meyers J.R., et al. beta-catenin/Wnt signaling controls progenitor fate in the developing and regenerating zebrafish retina. Neural Dev. 2012, 7:30.
    • (2012) Neural Dev. , vol.7 , pp. 30
    • Meyers, J.R.1
  • 108
    • 34247140309 scopus 로고    scopus 로고
    • Wnt signaling promotes regeneration in the retina of adult mammals
    • Osakada F., et al. Wnt signaling promotes regeneration in the retina of adult mammals. J. Neurosci. 2007, 27:4210-4219.
    • (2007) J. Neurosci. , vol.27 , pp. 4210-4219
    • Osakada, F.1
  • 109
    • 33749655904 scopus 로고    scopus 로고
    • Neural stem cell properties of Muller glia in the mammalian retina: regulation by Notch and Wnt signaling
    • Das A.V., et al. Neural stem cell properties of Muller glia in the mammalian retina: regulation by Notch and Wnt signaling. Dev. Biol. 2006, 299:283-302.
    • (2006) Dev. Biol. , vol.299 , pp. 283-302
    • Das, A.V.1
  • 110
    • 38549117781 scopus 로고    scopus 로고
    • Preferential regeneration of photoreceptor from Muller glia after retinal degeneration in adult rat
    • Wan J., et al. Preferential regeneration of photoreceptor from Muller glia after retinal degeneration in adult rat. Vision Res. 2008, 48:223-234.
    • (2008) Vision Res. , vol.48 , pp. 223-234
    • Wan, J.1
  • 111
    • 33746053240 scopus 로고    scopus 로고
    • Epidermal growth factor receptor expression regulates proliferation in the postnatal rat retina
    • Close J.L., et al. Epidermal growth factor receptor expression regulates proliferation in the postnatal rat retina. Glia 2006, 54:94-104.
    • (2006) Glia , vol.54 , pp. 94-104
    • Close, J.L.1
  • 112
    • 77957883767 scopus 로고    scopus 로고
    • Notch and Wnt signaling mediated rod photoreceptor regeneration by Muller cells in adult mammalian retina
    • Del Debbio C.B., et al. Notch and Wnt signaling mediated rod photoreceptor regeneration by Muller cells in adult mammalian retina. PLoS ONE 2010, 5:e12425.
    • (2010) PLoS ONE , vol.5
    • Del Debbio, C.B.1
  • 113
    • 84857004538 scopus 로고    scopus 로고
    • HB-EGF is necessary and sufficient for Muller glia dedifferentiation and retina regeneration
    • Wan J., et al. HB-EGF is necessary and sufficient for Muller glia dedifferentiation and retina regeneration. Dev. Cell 2012, 22:334-347.
    • (2012) Dev. Cell , vol.22 , pp. 334-347
    • Wan, J.1
  • 114
    • 70349330853 scopus 로고    scopus 로고
    • Extracellular ADP regulates lesion-induced in vivo cell proliferation and death in the zebrafish retina
    • Battista A.G., et al. Extracellular ADP regulates lesion-induced in vivo cell proliferation and death in the zebrafish retina. J. Neurochem. 2009, 111:600-613.
    • (2009) J. Neurochem. , vol.111 , pp. 600-613
    • Battista, A.G.1
  • 115
    • 77953282863 scopus 로고    scopus 로고
    • The zebrafish galectin Drgal1-l2 is expressed by proliferating Muller glia and photoreceptor progenitors and regulates the regeneration of rod photoreceptors
    • Craig S.E., et al. The zebrafish galectin Drgal1-l2 is expressed by proliferating Muller glia and photoreceptor progenitors and regulates the regeneration of rod photoreceptors. Invest. Ophthalmol. Vis. Sci. 2010, 51:3244-3252.
    • (2010) Invest. Ophthalmol. Vis. Sci. , vol.51 , pp. 3244-3252
    • Craig, S.E.1
  • 116
    • 77951248237 scopus 로고    scopus 로고
    • Pax6a and Pax6b are required at different points in neuronal progenitor cell proliferation during zebrafish photoreceptor regeneration
    • Thummel R., et al. Pax6a and Pax6b are required at different points in neuronal progenitor cell proliferation during zebrafish photoreceptor regeneration. Exp. Eye Res. 2010, 90:572-582.
    • (2010) Exp. Eye Res. , vol.90 , pp. 572-582
    • Thummel, R.1
  • 117
    • 0031025042 scopus 로고    scopus 로고
    • Axonal regrowth after spinal cord transection in adult zebrafish
    • Becker T., et al. Axonal regrowth after spinal cord transection in adult zebrafish. J. Comp. Neurol. 1997, 377:577-595.
    • (1997) J. Comp. Neurol. , vol.377 , pp. 577-595
    • Becker, T.1
  • 118
    • 51649087205 scopus 로고    scopus 로고
    • Motor neuron regeneration in adult zebrafish
    • Reimer M.M., et al. Motor neuron regeneration in adult zebrafish. J. Neurosci. 2008, 28:8510-8516.
    • (2008) J. Neurosci. , vol.28 , pp. 8510-8516
    • Reimer, M.M.1
  • 119
    • 84865839043 scopus 로고    scopus 로고
    • Lesion-induced generation of interneuron cell types in specific dorsoventral domains in the spinal cord of adult zebrafish
    • Kuscha V., et al. Lesion-induced generation of interneuron cell types in specific dorsoventral domains in the spinal cord of adult zebrafish. J. Comp. Neurol. 2012, 520:3604-3616.
    • (2012) J. Comp. Neurol. , vol.520 , pp. 3604-3616
    • Kuscha, V.1
  • 120
    • 72849151554 scopus 로고    scopus 로고
    • Sonic hedgehog is a polarized signal for motor neuron regeneration in adult zebrafish
    • Reimer M.M., et al. Sonic hedgehog is a polarized signal for motor neuron regeneration in adult zebrafish. J. Neurosci. 2009, 29:15073-15082.
    • (2009) J. Neurosci. , vol.29 , pp. 15073-15082
    • Reimer, M.M.1
  • 121
    • 84863287615 scopus 로고    scopus 로고
    • Notch signaling controls generation of motor neurons in the lesioned spinal cord of adult zebrafish
    • Dias T.B., et al. Notch signaling controls generation of motor neurons in the lesioned spinal cord of adult zebrafish. J. Neurosci. 2012, 32:3245-3252.
    • (2012) J. Neurosci. , vol.32 , pp. 3245-3252
    • Dias, T.B.1
  • 122
    • 84861587180 scopus 로고    scopus 로고
    • Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish
    • Goldshmit Y., et al. Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish. J. Neurosci. 2012, 32:7477-7492.
    • (2012) J. Neurosci. , vol.32 , pp. 7477-7492
    • Goldshmit, Y.1
  • 123
    • 84856968896 scopus 로고    scopus 로고
    • Adult neurogenesis and brain regeneration in zebrafish
    • Kizil C., et al. Adult neurogenesis and brain regeneration in zebrafish. Dev. Neurobiol. 2012, 72:429-461.
    • (2012) Dev. Neurobiol. , vol.72 , pp. 429-461
    • Kizil, C.1
  • 124
    • 80051685830 scopus 로고    scopus 로고
    • Regenerative response following stab injury in the adult zebrafish telencephalon
    • Marz M., et al. Regenerative response following stab injury in the adult zebrafish telencephalon. Dev. Dyn. 2011, 240:2221-2231.
    • (2011) Dev. Dyn. , vol.240 , pp. 2221-2231
    • Marz, M.1
  • 125
    • 58149339903 scopus 로고    scopus 로고
    • Vivo-Morpholinos: a non-peptide transporter delivers Morpholinos into a wide array of mouse tissues
    • 616, 618
    • Morcos P.A., et al. Vivo-Morpholinos: a non-peptide transporter delivers Morpholinos into a wide array of mouse tissues. Biotechniques 2008, 45:613-614. 616, 618.
    • (2008) Biotechniques , vol.45 , pp. 613-614
    • Morcos, P.A.1
  • 126
    • 80455156263 scopus 로고    scopus 로고
    • Cerebroventricular microinjection (CVMI) into adult zebrafish brain is an efficient misexpression method for forebrain ventricular cells
    • Kizil C., Brand M. Cerebroventricular microinjection (CVMI) into adult zebrafish brain is an efficient misexpression method for forebrain ventricular cells. PLoS ONE 2011, 6:e27395.
    • (2011) PLoS ONE , vol.6
    • Kizil, C.1    Brand, M.2
  • 127
    • 84866175884 scopus 로고    scopus 로고
    • The chemokine receptor cxcr5 regulates the regenerative neurogenesis response in the adult zebrafish brain
    • Kizil C., et al. The chemokine receptor cxcr5 regulates the regenerative neurogenesis response in the adult zebrafish brain. Neural Dev. 2012, 7:27.
    • (2012) Neural Dev. , vol.7 , pp. 27
    • Kizil, C.1
  • 128
    • 84870786415 scopus 로고    scopus 로고
    • Regenerative neurogenesis from neural progenitor cells requires injury-induced expression of Gata3
    • Kizil C., et al. Regenerative neurogenesis from neural progenitor cells requires injury-induced expression of Gata3. Dev. Cell 2012, 23:1230-1237.
    • (2012) Dev. Cell , vol.23 , pp. 1230-1237
    • Kizil, C.1
  • 129
    • 80054890342 scopus 로고    scopus 로고
    • Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors
    • Kroehne V., et al. Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development 2011, 138:4831-4841.
    • (2011) Development , vol.138 , pp. 4831-4841
    • Kroehne, V.1
  • 130
    • 84858029208 scopus 로고    scopus 로고
    • Neuronal regeneration in a zebrafish model of adult brain injury
    • Kishimoto N., et al. Neuronal regeneration in a zebrafish model of adult brain injury. Dis. Model Mech. 2012, 5:200-209.
    • (2012) Dis. Model Mech. , vol.5 , pp. 200-209
    • Kishimoto, N.1
  • 131
    • 84870677586 scopus 로고    scopus 로고
    • Acute inflammation initiates the regenerative response in the adult zebrafish brain
    • Kyritsis N., et al. Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science 2012, 338:1353-1356.
    • (2012) Science , vol.338 , pp. 1353-1356
    • Kyritsis, N.1
  • 132
    • 44949155482 scopus 로고    scopus 로고
    • Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases
    • Doyon Y., et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat. Biotechnol. 2008, 26:702-708.
    • (2008) Nat. Biotechnol. , vol.26 , pp. 702-708
    • Doyon, Y.1
  • 133
    • 44949162060 scopus 로고    scopus 로고
    • Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases
    • Meng X., et al. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat. Biotechnol. 2008, 26:695-701.
    • (2008) Nat. Biotechnol. , vol.26 , pp. 695-701
    • Meng, X.1
  • 134
    • 79961192836 scopus 로고    scopus 로고
    • Targeted gene disruption in somatic zebrafish cells using engineered TALENs
    • Sander J.D., et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat. Biotechnol. 2011, 29:697-698.
    • (2011) Nat. Biotechnol. , vol.29 , pp. 697-698
    • Sander, J.D.1
  • 135
    • 79961185942 scopus 로고    scopus 로고
    • Heritable gene targeting in zebrafish using customized TALENs
    • Huang P., et al. Heritable gene targeting in zebrafish using customized TALENs. Nat. Biotechnol. 2011, 29:699-700.
    • (2011) Nat. Biotechnol. , vol.29 , pp. 699-700
    • Huang, P.1
  • 136
    • 84874617789 scopus 로고    scopus 로고
    • Efficient genome editing in zebrafish using a CRISPR-Cas system
    • Hwang W.Y., et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 2013, 31:227-229.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 227-229
    • Hwang, W.Y.1
  • 137
    • 84868342049 scopus 로고    scopus 로고
    • In vivo genome editing using a high-efficiency TALEN system
    • Bedell V.M., et al. In vivo genome editing using a high-efficiency TALEN system. Nature 2012, 491:114-118.
    • (2012) Nature , vol.491 , pp. 114-118
    • Bedell, V.M.1
  • 138
    • 33846489616 scopus 로고    scopus 로고
    • Two different transgenes to study gene silencing and re-expression during zebrafish caudal fin and retinal regeneration
    • Thummel R., et al. Two different transgenes to study gene silencing and re-expression during zebrafish caudal fin and retinal regeneration. Sci. World J. 2006, 6(Suppl. 1):65-81.
    • (2006) Sci. World J. , vol.6 , Issue.SUPPL. 1 , pp. 65-81
    • Thummel, R.1
  • 139
    • 79551685675 scopus 로고    scopus 로고
    • A TALE nuclease architecture for efficient genome editing
    • Miller J.C., et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 2011, 29:143-148.
    • (2011) Nat. Biotechnol. , vol.29 , pp. 143-148
    • Miller, J.C.1
  • 140
    • 34250883337 scopus 로고    scopus 로고
    • Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis
    • North T.E., et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 2007, 447:1007-1011.
    • (2007) Nature , vol.447 , pp. 1007-1011
    • North, T.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.