-
1
-
-
0019452034
-
Production of clones of homozygous diploid zebra fish (Brachydanio rerio)
-
Streisinger G., et al. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 1981, 291:293-296.
-
(1981)
Nature
, vol.291
, pp. 293-296
-
-
Streisinger, G.1
-
2
-
-
0022666826
-
Segregation analyses and gene-centromere distances in zebrafish
-
Streisinger G., et al. Segregation analyses and gene-centromere distances in zebrafish. Genetics 1986, 112:311-319.
-
(1986)
Genetics
, vol.112
, pp. 311-319
-
-
Streisinger, G.1
-
3
-
-
28944448921
-
Molecular genetics of axis formation in zebrafish
-
Schier A.F., Talbot W.S. Molecular genetics of axis formation in zebrafish. Annu. Rev. Genet. 2005, 39:561-613.
-
(2005)
Annu. Rev. Genet.
, vol.39
, pp. 561-613
-
-
Schier, A.F.1
Talbot, W.S.2
-
4
-
-
84863388132
-
Zebrafish in the study of early cardiac development
-
Liu J., Stainier D.Y. Zebrafish in the study of early cardiac development. Circ. Res. 2012, 110:870-874.
-
(2012)
Circ. Res.
, vol.110
, pp. 870-874
-
-
Liu, J.1
Stainier, D.Y.2
-
5
-
-
84856963620
-
Behavioral genetics in larval zebrafish: learning from the young
-
Wolman M., Granato M. Behavioral genetics in larval zebrafish: learning from the young. Dev. Neurobiol. 2012, 72:366-372.
-
(2012)
Dev. Neurobiol.
, vol.72
, pp. 366-372
-
-
Wolman, M.1
Granato, M.2
-
6
-
-
84856977139
-
Fear, anxiety, and control in the zebrafish
-
Jesuthasan S. Fear, anxiety, and control in the zebrafish. Dev. Neurobiol. 2012, 72:395-403.
-
(2012)
Dev. Neurobiol.
, vol.72
, pp. 395-403
-
-
Jesuthasan, S.1
-
7
-
-
77955089579
-
In the swim of things: recent insights to neurogenetic disorders from zebrafish
-
Kabashi E., et al. In the swim of things: recent insights to neurogenetic disorders from zebrafish. Trends Genet. 2010, 26:373-381.
-
(2010)
Trends Genet.
, vol.26
, pp. 373-381
-
-
Kabashi, E.1
-
9
-
-
79959990108
-
Zebrafish as a model to study cardiac development and human cardiac disease
-
Bakkers J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc. Res. 2011, 91:279-288.
-
(2011)
Cardiovasc. Res.
, vol.91
, pp. 279-288
-
-
Bakkers, J.1
-
10
-
-
84866662862
-
Two origins of blastemal progenitors define blastemal regeneration of zebrafish lower jaw
-
Wang X., et al. Two origins of blastemal progenitors define blastemal regeneration of zebrafish lower jaw. PLoS ONE 2012, 7:e45380.
-
(2012)
PLoS ONE
, vol.7
-
-
Wang, X.1
-
11
-
-
84856951165
-
Building the posterior lateral line system in zebrafish
-
Chitnis A.B., et al. Building the posterior lateral line system in zebrafish. Dev. Neurobiol. 2012, 72:234-255.
-
(2012)
Dev. Neurobiol.
, vol.72
, pp. 234-255
-
-
Chitnis, A.B.1
-
12
-
-
67649525809
-
Feathers and fins: non-mammalian models for hair cell regeneration
-
Brignull H.R., et al. Feathers and fins: non-mammalian models for hair cell regeneration. Brain Res. 2009, 1277:12-23.
-
(2009)
Brain Res.
, vol.1277
, pp. 12-23
-
-
Brignull, H.R.1
-
13
-
-
33847194249
-
Liver development and regeneration: from laboratory study to clinical therapy
-
Hata S., et al. Liver development and regeneration: from laboratory study to clinical therapy. Dev. Growth Differ. 2007, 49:163-170.
-
(2007)
Dev. Growth Differ.
, vol.49
, pp. 163-170
-
-
Hata, S.1
-
14
-
-
84857788636
-
Intrinsic and extrinsic modifiers of the regulative capacity of the developing liver
-
Shin D., et al. Intrinsic and extrinsic modifiers of the regulative capacity of the developing liver. Mech. Dev. 2012, 128:525-535.
-
(2012)
Mech. Dev.
, vol.128
, pp. 525-535
-
-
Shin, D.1
-
15
-
-
84886283277
-
Regenerative medicine for the kidney: stem cell prospects & challenges
-
Li Y., Wingert R.A. Regenerative medicine for the kidney: stem cell prospects & challenges. Clin. Transl. Med. 2013, 2:11.
-
(2013)
Clin. Transl. Med.
, vol.2
, pp. 11
-
-
Li, Y.1
Wingert, R.A.2
-
16
-
-
84862001481
-
Adenosine signaling promotes regeneration of pancreatic beta cells in vivo
-
Andersson O., et al. Adenosine signaling promotes regeneration of pancreatic beta cells in vivo. Cell Metab. 2012, 15:885-894.
-
(2012)
Cell Metab.
, vol.15
, pp. 885-894
-
-
Andersson, O.1
-
17
-
-
70249141961
-
Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration
-
Anderson R.M., et al. Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration. Dev. Biol. 2009, 334:213-223.
-
(2009)
Dev. Biol.
, vol.334
, pp. 213-223
-
-
Anderson, R.M.1
-
18
-
-
68049137912
-
Regeneration of the pancreas in adult zebrafish
-
Moss J.B., et al. Regeneration of the pancreas in adult zebrafish. Diabetes 2009, 58:1844-1851.
-
(2009)
Diabetes
, vol.58
, pp. 1844-1851
-
-
Moss, J.B.1
-
19
-
-
79551683930
-
Identification of adult nephron progenitors capable of kidney regeneration in zebrafish
-
Diep C.Q., et al. Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature 2011, 470:95-100.
-
(2011)
Nature
, vol.470
, pp. 95-100
-
-
Diep, C.Q.1
-
20
-
-
33847012504
-
Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase
-
Pisharath H., et al. Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech. Dev. 2007, 124:218-229.
-
(2007)
Mech. Dev.
, vol.124
, pp. 218-229
-
-
Pisharath, H.1
-
21
-
-
33846547305
-
Observations sur la regeneration de quelques parties du corps des poissons
-
Broussonet M. Observations sur la regeneration de quelques parties du corps des poissons. Hist. d. l'Acad. R. des Sci. 1786.
-
(1786)
Hist. d. l'Acad. R. des Sci.
-
-
Broussonet, M.1
-
23
-
-
0028807086
-
Temperature-sensitive mutations that cause stage-specific defects in Zebrafish fin regeneration
-
Johnson S.L., Weston J.A. Temperature-sensitive mutations that cause stage-specific defects in Zebrafish fin regeneration. Genetics 1995, 141:1583-1595.
-
(1995)
Genetics
, vol.141
, pp. 1583-1595
-
-
Johnson, S.L.1
Weston, J.A.2
-
24
-
-
29344463583
-
Fgf20 is essential for initiating zebrafish fin regeneration
-
Whitehead G.G., et al. fgf20 is essential for initiating zebrafish fin regeneration. Science 2005, 310:1957-1960.
-
(2005)
Science
, vol.310
, pp. 1957-1960
-
-
Whitehead, G.G.1
-
25
-
-
0036861418
-
Mps1 defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration
-
Poss K.D., et al. Mps1 defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration. Development 2002, 129:5141-5149.
-
(2002)
Development
, vol.129
, pp. 5141-5149
-
-
Poss, K.D.1
-
26
-
-
26844474116
-
Heat-shock protein 60 is required for blastema formation and maintenance during regeneration
-
Makino S., et al. Heat-shock protein 60 is required for blastema formation and maintenance during regeneration. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:14599-14604.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 14599-14604
-
-
Makino, S.1
-
27
-
-
0037869261
-
Positional cloning of a temperature-sensitive mutant emmental reveals a role for sly1 during cell proliferation in zebrafish fin regeneration
-
Nechiporuk A., et al. Positional cloning of a temperature-sensitive mutant emmental reveals a role for sly1 during cell proliferation in zebrafish fin regeneration. Dev. Biol. 2003, 258:291-306.
-
(2003)
Dev. Biol.
, vol.258
, pp. 291-306
-
-
Nechiporuk, A.1
-
28
-
-
84859354783
-
Fast homozygosity mapping and identification of a zebrafish ENU-induced mutation by whole-genome sequencing
-
Voz M.L., et al. Fast homozygosity mapping and identification of a zebrafish ENU-induced mutation by whole-genome sequencing. PLoS ONE 2012, 7:e34671.
-
(2012)
PLoS ONE
, vol.7
-
-
Voz, M.L.1
-
29
-
-
84858200179
-
Efficient mapping and cloning of mutations in zebrafish by low-coverage whole-genome sequencing
-
Bowen M.E., et al. Efficient mapping and cloning of mutations in zebrafish by low-coverage whole-genome sequencing. Genetics 2012, 190:1017-1024.
-
(2012)
Genetics
, vol.190
, pp. 1017-1024
-
-
Bowen, M.E.1
-
30
-
-
84867868170
-
Rapid positional cloning of zebrafish mutations by linkage and homozygosity mapping using whole-genome sequencing
-
Obholzer N., et al. Rapid positional cloning of zebrafish mutations by linkage and homozygosity mapping using whole-genome sequencing. Development 2012, 139:4280-4290.
-
(2012)
Development
, vol.139
, pp. 4280-4290
-
-
Obholzer, N.1
-
31
-
-
84864581937
-
Mutation mapping and identification by whole-genome sequencing
-
Leshchiner I., et al. Mutation mapping and identification by whole-genome sequencing. Genome Res. 2012, 22:1541-1548.
-
(2012)
Genome Res.
, vol.22
, pp. 1541-1548
-
-
Leshchiner, I.1
-
32
-
-
84875990159
-
MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq
-
Hill J.T., et al. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res. 2013, 23:687-697.
-
(2013)
Genome Res.
, vol.23
, pp. 687-697
-
-
Hill, J.T.1
-
33
-
-
84875286904
-
RNA-seq-based mapping and candidate identification of mutations from forward genetic screens
-
Miller A.C., et al. RNA-seq-based mapping and candidate identification of mutations from forward genetic screens. Genome Res. 2013, 23:679-686.
-
(2013)
Genome Res.
, vol.23
, pp. 679-686
-
-
Miller, A.C.1
-
34
-
-
84859973068
-
Limited dedifferentiation provides replacement tissue during zebrafish fin regeneration
-
Stewart S., Stankunas K. Limited dedifferentiation provides replacement tissue during zebrafish fin regeneration. Dev. Biol. 2012, 365:339-349.
-
(2012)
Dev. Biol.
, vol.365
, pp. 339-349
-
-
Stewart, S.1
Stankunas, K.2
-
35
-
-
84859845794
-
Regeneration of amputated zebrafish fin rays from de novo osteoblasts
-
Singh S.P., et al. Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev. Cell 2012, 22:879-886.
-
(2012)
Dev. Cell
, vol.22
, pp. 879-886
-
-
Singh, S.P.1
-
36
-
-
80051949501
-
Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration
-
Sousa S., et al. Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration. Development 2011, 138:3897-3905.
-
(2011)
Development
, vol.138
, pp. 3897-3905
-
-
Sousa, S.1
-
37
-
-
79955926225
-
Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin
-
Knopf F., et al. Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev. Cell 2011, 20:713-724.
-
(2011)
Dev. Cell
, vol.20
, pp. 713-724
-
-
Knopf, F.1
-
38
-
-
79955918159
-
Fate restriction in the growing and regenerating zebrafish fin
-
Tu S., Johnson S.L. Fate restriction in the growing and regenerating zebrafish fin. Dev. Cell 2011, 20:725-732.
-
(2011)
Dev. Cell
, vol.20
, pp. 725-732
-
-
Tu, S.1
Johnson, S.L.2
-
39
-
-
84855507663
-
Mouse digit tip regeneration is mediated by fate-restricted progenitor cells
-
Lehoczky J.A., et al. Mouse digit tip regeneration is mediated by fate-restricted progenitor cells. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:20609-20614.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 20609-20614
-
-
Lehoczky, J.A.1
-
40
-
-
67650073154
-
Cells keep a memory of their tissue origin during axolotl limb regeneration
-
Kragl M., et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 2009, 460:60-65.
-
(2009)
Nature
, vol.460
, pp. 60-65
-
-
Kragl, M.1
-
41
-
-
80052056733
-
Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip
-
Rinkevich Y., et al. Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature 2011, 476:409-413.
-
(2011)
Nature
, vol.476
, pp. 409-413
-
-
Rinkevich, Y.1
-
42
-
-
34547909927
-
Activin-betaA signaling is required for zebrafish fin regeneration
-
Jazwinska A., et al. Activin-betaA signaling is required for zebrafish fin regeneration. Curr. Biol. 2007, 17:1390-1395.
-
(2007)
Curr. Biol.
, vol.17
, pp. 1390-1395
-
-
Jazwinska, A.1
-
43
-
-
33847177201
-
Distinct Wnt signaling pathways have opposing roles in appendage regeneration
-
Stoick-Cooper C.L., et al. Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 2007, 134:479-489.
-
(2007)
Development
, vol.134
, pp. 479-489
-
-
Stoick-Cooper, C.L.1
-
44
-
-
77950365662
-
IGF signaling between blastema and wound epidermis is required for fin regeneration
-
Chablais F., Jazwinska A. IGF signaling between blastema and wound epidermis is required for fin regeneration. Development 2010, 137:871-879.
-
(2010)
Development
, vol.137
, pp. 871-879
-
-
Chablais, F.1
Jazwinska, A.2
-
45
-
-
82855181070
-
Retinoic acid signaling controls the formation, proliferation and survival of the blastema during adult zebrafish fin regeneration
-
Blum N., Begemann G. Retinoic acid signaling controls the formation, proliferation and survival of the blastema during adult zebrafish fin regeneration. Development 2012, 139:107-116.
-
(2012)
Development
, vol.139
, pp. 107-116
-
-
Blum, N.1
Begemann, G.2
-
46
-
-
67549089493
-
Maintenance of blastemal proliferation by functionally diverse epidermis in regenerating zebrafish fins
-
Lee Y., et al. Maintenance of blastemal proliferation by functionally diverse epidermis in regenerating zebrafish fins. Dev. Biol. 2009, 331:270-280.
-
(2009)
Dev. Biol.
, vol.331
, pp. 270-280
-
-
Lee, Y.1
-
47
-
-
29644445924
-
Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration
-
Lee Y., et al. Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration. Development 2005, 132:5173-5183.
-
(2005)
Development
, vol.132
, pp. 5173-5183
-
-
Lee, Y.1
-
48
-
-
84875058807
-
Notch signaling coordinates cellular proliferation with differentiation during zebrafish fin regeneration
-
Grotek B., et al. Notch signaling coordinates cellular proliferation with differentiation during zebrafish fin regeneration. Development 2013, 140:1412-1423.
-
(2013)
Development
, vol.140
, pp. 1412-1423
-
-
Grotek, B.1
-
49
-
-
84875066481
-
Notch regulates blastema proliferation and prevents differentiation during adult zebrafish fin regeneration
-
Munch J., et al. Notch regulates blastema proliferation and prevents differentiation during adult zebrafish fin regeneration. Development 2013, 140:1402-1411.
-
(2013)
Development
, vol.140
, pp. 1402-1411
-
-
Munch, J.1
-
50
-
-
33750984806
-
Inhibition of BMP signaling during zebrafish fin regeneration disrupts fin growth and scleroblasts differentiation and function
-
Smith A., et al. Inhibition of BMP signaling during zebrafish fin regeneration disrupts fin growth and scleroblasts differentiation and function. Dev. Biol. 2006, 299:438-454.
-
(2006)
Dev. Biol.
, vol.299
, pp. 438-454
-
-
Smith, A.1
-
51
-
-
0037173033
-
Bone patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic hedgehog and bmp2b or exposure to cyclopamine
-
Quint E., et al. Bone patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic hedgehog and bmp2b or exposure to cyclopamine. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:8713-8718.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 8713-8718
-
-
Quint, E.1
-
52
-
-
0037073890
-
Heart regeneration in zebrafish
-
Poss K.D., et al. Heart regeneration in zebrafish. Science 2002, 298:2188-2190.
-
(2002)
Science
, vol.298
, pp. 2188-2190
-
-
Poss, K.D.1
-
53
-
-
79955364546
-
Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish
-
Gonzalez-Rosa J.M., et al. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 2011, 138:1663-1674.
-
(2011)
Development
, vol.138
, pp. 1663-1674
-
-
Gonzalez-Rosa, J.M.1
-
54
-
-
79953678403
-
The zebrafish heart regenerates after cryoinjury-induced myocardial infarction
-
Chablais F., et al. The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev. Biol. 2011, 11:21.
-
(2011)
BMC Dev. Biol.
, vol.11
, pp. 21
-
-
Chablais, F.1
-
55
-
-
79954522898
-
Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation
-
Schnabel K., et al. Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS ONE 2011, 6:e18503.
-
(2011)
PLoS ONE
, vol.6
-
-
Schnabel, K.1
-
56
-
-
79960778952
-
The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion
-
Wang J., et al. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 2011, 138:3421-3430.
-
(2011)
Development
, vol.138
, pp. 3421-3430
-
-
Wang, J.1
-
57
-
-
77950201708
-
Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes
-
Kikuchi K., et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 2010, 464:601-605.
-
(2010)
Nature
, vol.464
, pp. 601-605
-
-
Kikuchi, K.1
-
58
-
-
77950200829
-
Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation
-
Jopling C., et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 2010, 464:606-609.
-
(2010)
Nature
, vol.464
, pp. 606-609
-
-
Jopling, C.1
-
59
-
-
79952527330
-
Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration
-
Kikuchi K., et al. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev. Cell 2011, 20:397-404.
-
(2011)
Dev. Cell
, vol.20
, pp. 397-404
-
-
Kikuchi, K.1
-
60
-
-
33750483609
-
A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration
-
Lepilina A., et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 2006, 127:607-619.
-
(2006)
Cell
, vol.127
, pp. 607-619
-
-
Lepilina, A.1
-
61
-
-
84860720014
-
The regenerative capacity of the zebrafish heart is dependent on TGFbeta signaling
-
Chablais F., Jazwinska A. The regenerative capacity of the zebrafish heart is dependent on TGFbeta signaling. Development 2012, 139:1921-1930.
-
(2012)
Development
, vol.139
, pp. 1921-1930
-
-
Chablais, F.1
Jazwinska, A.2
-
62
-
-
78049235110
-
PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts
-
Kim J., et al. PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:17206-17210.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 17206-17210
-
-
Kim, J.1
-
63
-
-
33747366304
-
Gene expression analysis of zebrafish heart regeneration
-
Lien C.L., et al. Gene expression analysis of zebrafish heart regeneration. PLoS Biol. 2006, 4:e260.
-
(2006)
PLoS Biol.
, vol.4
-
-
Lien, C.L.1
-
64
-
-
84872081347
-
In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration
-
Choi W.Y., et al. In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration. Development 2013, 140:660-666.
-
(2013)
Development
, vol.140
, pp. 660-666
-
-
Choi, W.Y.1
-
65
-
-
79959427955
-
Tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration
-
Kikuchi K., et al. tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 2011, 138:2895-2902.
-
(2011)
Development
, vol.138
, pp. 2895-2902
-
-
Kikuchi, K.1
-
66
-
-
84861724154
-
In vitro culture of epicardial cells from adult zebrafish heart on a fibrin matrix
-
Kim J., et al. In vitro culture of epicardial cells from adult zebrafish heart on a fibrin matrix. Nat. Protoc. 2012, 7:247-255.
-
(2012)
Nat. Protoc.
, vol.7
, pp. 247-255
-
-
Kim, J.1
-
67
-
-
84859989029
-
Regulation of zebrafish heart regeneration by miR-133
-
Yin V.P., et al. Regulation of zebrafish heart regeneration by miR-133. Dev. Biol. 2012, 365:319-327.
-
(2012)
Dev. Biol.
, vol.365
, pp. 319-327
-
-
Yin, V.P.1
-
68
-
-
84871315072
-
Hypoxia induces myocardial regeneration in zebrafish
-
Jopling C., et al. Hypoxia induces myocardial regeneration in zebrafish. Circulation 2012, 126:3017-3027.
-
(2012)
Circulation
, vol.126
, pp. 3017-3027
-
-
Jopling, C.1
-
69
-
-
84867879862
-
Migration of cardiomyocytes is essential for heart regeneration in zebrafish
-
Itou J., et al. Migration of cardiomyocytes is essential for heart regeneration in zebrafish. Development 2012, 139:4133-4142.
-
(2012)
Development
, vol.139
, pp. 4133-4142
-
-
Itou, J.1
-
70
-
-
79951693039
-
Cardiac muscle regeneration: lessons from development
-
Mercola M., et al. Cardiac muscle regeneration: lessons from development. Genes Dev. 2011, 25:299-309.
-
(2011)
Genes Dev.
, vol.25
, pp. 299-309
-
-
Mercola, M.1
-
71
-
-
84863626782
-
Heart repair by reprogramming non-myocytes with cardiac transcription factors
-
Song K., et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 2012, 485:599-604.
-
(2012)
Nature
, vol.485
, pp. 599-604
-
-
Song, K.1
-
72
-
-
84863629484
-
In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes
-
Qian L., et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 2012, 485:593-598.
-
(2012)
Nature
, vol.485
, pp. 593-598
-
-
Qian, L.1
-
73
-
-
84872611623
-
Mammalian heart renewal by pre-existing cardiomyocytes
-
Senyo S.E., et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 2013, 493:433-436.
-
(2013)
Nature
, vol.493
, pp. 433-436
-
-
Senyo, S.E.1
-
74
-
-
67650569135
-
Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury
-
Bersell K., et al. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 2009, 138:257-270.
-
(2009)
Cell
, vol.138
, pp. 257-270
-
-
Bersell, K.1
-
75
-
-
79952065525
-
Transient regenerative potential of the neonatal mouse heart
-
Porrello E.R., et al. Transient regenerative potential of the neonatal mouse heart. Science 2011, 331:1078-1080.
-
(2011)
Science
, vol.331
, pp. 1078-1080
-
-
Porrello, E.R.1
-
76
-
-
84871442001
-
Functional screening identifies miRNAs inducing cardiac regeneration
-
Eulalio A., et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 2012, 492:376-381.
-
(2012)
Nature
, vol.492
, pp. 376-381
-
-
Eulalio, A.1
-
77
-
-
84871439217
-
C/EBP transcription factors mediate epicardial activation during heart development and injury
-
Huang G.N., et al. C/EBP transcription factors mediate epicardial activation during heart development and injury. Science 2012, 338:1599-1603.
-
(2012)
Science
, vol.338
, pp. 1599-1603
-
-
Huang, G.N.1
-
78
-
-
79955498411
-
Adult mouse epicardium modulates myocardial injury by secreting paracrine factors
-
Zhou B., et al. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J. Clin. Invest. 2011, 121:1894-1904.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 1894-1904
-
-
Zhou, B.1
-
79
-
-
34347361689
-
Late-stage neuronal progenitors in the retina are radial Muller glia that function as retinal stem cells
-
Bernardos R.L., et al. Late-stage neuronal progenitors in the retina are radial Muller glia that function as retinal stem cells. J. Neurosci. 2007, 27:7028-7040.
-
(2007)
J. Neurosci.
, vol.27
, pp. 7028-7040
-
-
Bernardos, R.L.1
-
80
-
-
33847141503
-
Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish
-
Fimbel S.M., et al. Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish. J. Neurosci. 2007, 27:1712-1724.
-
(2007)
J. Neurosci.
, vol.27
, pp. 1712-1724
-
-
Fimbel, S.M.1
-
81
-
-
38849096411
-
Ganglion cell regeneration following whole-retina destruction in zebrafish
-
Sherpa T., et al. Ganglion cell regeneration following whole-retina destruction in zebrafish. Dev. Neurobiol. 2008, 68:166-181.
-
(2008)
Dev. Neurobiol.
, vol.68
, pp. 166-181
-
-
Sherpa, T.1
-
82
-
-
0037381006
-
Stem cells in the teleost retina: persistent neurogenesis and injury-induced regeneration
-
Otteson D.C., Hitchcock P.F. Stem cells in the teleost retina: persistent neurogenesis and injury-induced regeneration. Vision Res. 2003, 43:927-936.
-
(2003)
Vision Res.
, vol.43
, pp. 927-936
-
-
Otteson, D.C.1
Hitchcock, P.F.2
-
83
-
-
0034502787
-
Cellular proliferation and neurogenesis in the injured retina of adult zebrafish
-
Cameron D.A. Cellular proliferation and neurogenesis in the injured retina of adult zebrafish. Vis. Neurosci. 2000, 17:789-797.
-
(2000)
Vis. Neurosci.
, vol.17
, pp. 789-797
-
-
Cameron, D.A.1
-
84
-
-
13444292969
-
Responses of Muller glia to retinal injury in adult zebrafish
-
Yurco P., Cameron D.A. Responses of Muller glia to retinal injury in adult zebrafish. Vision Res. 2005, 45:991-1002.
-
(2005)
Vision Res.
, vol.45
, pp. 991-1002
-
-
Yurco, P.1
Cameron, D.A.2
-
85
-
-
33745626845
-
A role for alpha1 tubulin-expressing Muller glia in regeneration of the injured zebrafish retina
-
Fausett B.V., Goldman D. A role for alpha1 tubulin-expressing Muller glia in regeneration of the injured zebrafish retina. J. Neurosci. 2006, 26:6303-6313.
-
(2006)
J. Neurosci.
, vol.26
, pp. 6303-6313
-
-
Fausett, B.V.1
Goldman, D.2
-
86
-
-
0033839682
-
Light-induced rod and cone cell death and regeneration in the adult albino zebrafish (Danio rerio) retina
-
Vihtelic T.S., Hyde D.R. Light-induced rod and cone cell death and regeneration in the adult albino zebrafish (Danio rerio) retina. J. Neurobiol. 2000, 44:289-307.
-
(2000)
J. Neurobiol.
, vol.44
, pp. 289-307
-
-
Vihtelic, T.S.1
Hyde, D.R.2
-
87
-
-
34548301654
-
Time course analysis of gene expression during light-induced photoreceptor cell death and regeneration in albino zebrafish
-
Kassen S.C., et al. Time course analysis of gene expression during light-induced photoreceptor cell death and regeneration in albino zebrafish. Dev. Neurobiol. 2007, 67:1009-1031.
-
(2007)
Dev. Neurobiol.
, vol.67
, pp. 1009-1031
-
-
Kassen, S.C.1
-
88
-
-
80355144055
-
Multicolor time-lapse imaging of transgenic zebrafish: visualizing retinal stem cells activated by targeted neuronal cell ablation
-
Ariga J., et al. Multicolor time-lapse imaging of transgenic zebrafish: visualizing retinal stem cells activated by targeted neuronal cell ablation. J. Vis. Exp. 2010, 10.3791/2093.
-
(2010)
J. Vis. Exp.
-
-
Ariga, J.1
-
89
-
-
77949400126
-
A novel model of retinal ablation demonstrates that the extent of rod cell death regulates the origin of the regenerated zebrafish rod photoreceptors
-
Montgomery J.E., et al. A novel model of retinal ablation demonstrates that the extent of rod cell death regulates the origin of the regenerated zebrafish rod photoreceptors. J. Comp. Neurol. 2010, 518:800-814.
-
(2010)
J. Comp. Neurol.
, vol.518
, pp. 800-814
-
-
Montgomery, J.E.1
-
90
-
-
84873813858
-
Regeneration of cone photoreceptors when cell ablation is primarily restricted to a particular cone subtype
-
Fraser B., et al. Regeneration of cone photoreceptors when cell ablation is primarily restricted to a particular cone subtype. PLoS ONE 2013, 8:e55410.
-
(2013)
PLoS ONE
, vol.8
-
-
Fraser, B.1
-
91
-
-
33748630498
-
Molecular characterization of retinal stem cells and their niches in adult zebrafish
-
Raymond P.A., et al. Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev. Biol. 2006, 6:36.
-
(2006)
BMC Dev. Biol.
, vol.6
, pp. 36
-
-
Raymond, P.A.1
-
92
-
-
31044431898
-
Retinal regional differences in photoreceptor cell death and regeneration in light-lesioned albino zebrafish
-
Vihtelic T.S., et al. Retinal regional differences in photoreceptor cell death and regeneration in light-lesioned albino zebrafish. Exp. Eye Res. 2006, 82:558-575.
-
(2006)
Exp. Eye Res.
, vol.82
, pp. 558-575
-
-
Vihtelic, T.S.1
-
93
-
-
39349115517
-
Inhibition of Muller glial cell division blocks regeneration of the light-damaged zebrafish retina
-
Thummel R., et al. Inhibition of Muller glial cell division blocks regeneration of the light-damaged zebrafish retina. Dev. Neurobiol. 2008, 68:392-408.
-
(2008)
Dev. Neurobiol.
, vol.68
, pp. 392-408
-
-
Thummel, R.1
-
94
-
-
77957898434
-
Conditional gene expression and lineage tracing of tuba1a expressing cells during zebrafish development and retina regeneration
-
Ramachandran R., et al. Conditional gene expression and lineage tracing of tuba1a expressing cells during zebrafish development and retina regeneration. J. Comp. Neurol. 2010, 518:4196-4212.
-
(2010)
J. Comp. Neurol.
, vol.518
, pp. 4196-4212
-
-
Ramachandran, R.1
-
95
-
-
84859482783
-
Characterization of multiple light damage paradigms reveals regional differences in photoreceptor loss
-
Thomas J.L., et al. Characterization of multiple light damage paradigms reveals regional differences in photoreceptor loss. Exp. Eye Res. 2012, 97:105-116.
-
(2012)
Exp. Eye Res.
, vol.97
, pp. 105-116
-
-
Thomas, J.L.1
-
96
-
-
84867834568
-
Stat3 defines three populations of Muller glia and is required for initiating maximal muller glia proliferation in the regenerating zebrafish retina
-
Nelson C.M., et al. Stat3 defines three populations of Muller glia and is required for initiating maximal muller glia proliferation in the regenerating zebrafish retina. J. Comp. Neurol. 2012, 520:4294-4311.
-
(2012)
J. Comp. Neurol.
, vol.520
, pp. 4294-4311
-
-
Nelson, C.M.1
-
97
-
-
38749090553
-
The proneural basic helix-loop-helix gene ascl1a is required for retina regeneration
-
Fausett B.V., et al. The proneural basic helix-loop-helix gene ascl1a is required for retina regeneration. J. Neurosci. 2008, 28:1109-1117.
-
(2008)
J. Neurosci.
, vol.28
, pp. 1109-1117
-
-
Fausett, B.V.1
-
98
-
-
80053161635
-
Ascl1a/Dkk/beta-catenin signaling pathway is necessary and glycogen synthase kinase-3beta inhibition is sufficient for zebrafish retina regeneration
-
Ramachandran R., et al. Ascl1a/Dkk/beta-catenin signaling pathway is necessary and glycogen synthase kinase-3beta inhibition is sufficient for zebrafish retina regeneration. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:15858-15863.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 15858-15863
-
-
Ramachandran, R.1
-
99
-
-
84875969209
-
Tumor necrosis factor-alpha is produced by dying retinal neurons and is required for Muller glia proliferation during zebrafish retinal regeneration
-
Nelson C.M., et al. Tumor necrosis factor-alpha is produced by dying retinal neurons and is required for Muller glia proliferation during zebrafish retinal regeneration. J. Neurosci. 2013, 33:6524-6539.
-
(2013)
J. Neurosci.
, vol.33
, pp. 6524-6539
-
-
Nelson, C.M.1
-
100
-
-
26244454983
-
Gene expression profiles of intact and regenerating zebrafish retina
-
Cameron D.A., et al. Gene expression profiles of intact and regenerating zebrafish retina. Mol. Vis. 2005, 11:775-791.
-
(2005)
Mol. Vis.
, vol.11
, pp. 775-791
-
-
Cameron, D.A.1
-
101
-
-
67249149665
-
Identification of the molecular signatures integral to regenerating photoreceptors in the retina of the zebra fish
-
Craig S.E., et al. Identification of the molecular signatures integral to regenerating photoreceptors in the retina of the zebra fish. J. Ocul. Biol. Dis. Infor. 2008, 1:73-84.
-
(2008)
J. Ocul. Biol. Dis. Infor.
, vol.1
, pp. 73-84
-
-
Craig, S.E.1
-
102
-
-
63449103528
-
Cellular expression of midkine-a and midkine-b during retinal development and photoreceptor regeneration in zebrafish
-
Calinescu A.A., et al. Cellular expression of midkine-a and midkine-b during retinal development and photoreceptor regeneration in zebrafish. J. Comp. Neurol. 2009, 514:1-10.
-
(2009)
J. Comp. Neurol.
, vol.514
, pp. 1-10
-
-
Calinescu, A.A.1
-
103
-
-
67249088610
-
Genetic evidence for shared mechanisms of epimorphic regeneration in zebrafish
-
Qin Z., et al. Genetic evidence for shared mechanisms of epimorphic regeneration in zebrafish. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:9310-9315.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 9310-9315
-
-
Qin, Z.1
-
104
-
-
84867097798
-
Insm1a-mediated gene repression is essential for the formation and differentiation of Muller glia-derived progenitors in the injured retina
-
Ramachandran R., et al. Insm1a-mediated gene repression is essential for the formation and differentiation of Muller glia-derived progenitors in the injured retina. Nat. Cell Biol. 2012, 14:1013-1023.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 1013-1023
-
-
Ramachandran, R.1
-
105
-
-
84857126449
-
In vivo electroporation of morpholinos into the adult zebrafish retina
-
Thummel R., et al. In vivo electroporation of morpholinos into the adult zebrafish retina. J. Vis. Exp. 2011, 58:e3603.
-
(2011)
J. Vis. Exp.
, vol.58
-
-
Thummel, R.1
-
106
-
-
81355160505
-
FGF signaling regulates rod photoreceptor cell maintenance and regeneration in zebrafish
-
Qin Z., et al. FGF signaling regulates rod photoreceptor cell maintenance and regeneration in zebrafish. Exp. Eye Res. 2011, 93:726-734.
-
(2011)
Exp. Eye Res.
, vol.93
, pp. 726-734
-
-
Qin, Z.1
-
107
-
-
84865299701
-
Beta-catenin/Wnt signaling controls progenitor fate in the developing and regenerating zebrafish retina
-
Meyers J.R., et al. beta-catenin/Wnt signaling controls progenitor fate in the developing and regenerating zebrafish retina. Neural Dev. 2012, 7:30.
-
(2012)
Neural Dev.
, vol.7
, pp. 30
-
-
Meyers, J.R.1
-
108
-
-
34247140309
-
Wnt signaling promotes regeneration in the retina of adult mammals
-
Osakada F., et al. Wnt signaling promotes regeneration in the retina of adult mammals. J. Neurosci. 2007, 27:4210-4219.
-
(2007)
J. Neurosci.
, vol.27
, pp. 4210-4219
-
-
Osakada, F.1
-
109
-
-
33749655904
-
Neural stem cell properties of Muller glia in the mammalian retina: regulation by Notch and Wnt signaling
-
Das A.V., et al. Neural stem cell properties of Muller glia in the mammalian retina: regulation by Notch and Wnt signaling. Dev. Biol. 2006, 299:283-302.
-
(2006)
Dev. Biol.
, vol.299
, pp. 283-302
-
-
Das, A.V.1
-
110
-
-
38549117781
-
Preferential regeneration of photoreceptor from Muller glia after retinal degeneration in adult rat
-
Wan J., et al. Preferential regeneration of photoreceptor from Muller glia after retinal degeneration in adult rat. Vision Res. 2008, 48:223-234.
-
(2008)
Vision Res.
, vol.48
, pp. 223-234
-
-
Wan, J.1
-
111
-
-
33746053240
-
Epidermal growth factor receptor expression regulates proliferation in the postnatal rat retina
-
Close J.L., et al. Epidermal growth factor receptor expression regulates proliferation in the postnatal rat retina. Glia 2006, 54:94-104.
-
(2006)
Glia
, vol.54
, pp. 94-104
-
-
Close, J.L.1
-
112
-
-
77957883767
-
Notch and Wnt signaling mediated rod photoreceptor regeneration by Muller cells in adult mammalian retina
-
Del Debbio C.B., et al. Notch and Wnt signaling mediated rod photoreceptor regeneration by Muller cells in adult mammalian retina. PLoS ONE 2010, 5:e12425.
-
(2010)
PLoS ONE
, vol.5
-
-
Del Debbio, C.B.1
-
113
-
-
84857004538
-
HB-EGF is necessary and sufficient for Muller glia dedifferentiation and retina regeneration
-
Wan J., et al. HB-EGF is necessary and sufficient for Muller glia dedifferentiation and retina regeneration. Dev. Cell 2012, 22:334-347.
-
(2012)
Dev. Cell
, vol.22
, pp. 334-347
-
-
Wan, J.1
-
114
-
-
70349330853
-
Extracellular ADP regulates lesion-induced in vivo cell proliferation and death in the zebrafish retina
-
Battista A.G., et al. Extracellular ADP regulates lesion-induced in vivo cell proliferation and death in the zebrafish retina. J. Neurochem. 2009, 111:600-613.
-
(2009)
J. Neurochem.
, vol.111
, pp. 600-613
-
-
Battista, A.G.1
-
115
-
-
77953282863
-
The zebrafish galectin Drgal1-l2 is expressed by proliferating Muller glia and photoreceptor progenitors and regulates the regeneration of rod photoreceptors
-
Craig S.E., et al. The zebrafish galectin Drgal1-l2 is expressed by proliferating Muller glia and photoreceptor progenitors and regulates the regeneration of rod photoreceptors. Invest. Ophthalmol. Vis. Sci. 2010, 51:3244-3252.
-
(2010)
Invest. Ophthalmol. Vis. Sci.
, vol.51
, pp. 3244-3252
-
-
Craig, S.E.1
-
116
-
-
77951248237
-
Pax6a and Pax6b are required at different points in neuronal progenitor cell proliferation during zebrafish photoreceptor regeneration
-
Thummel R., et al. Pax6a and Pax6b are required at different points in neuronal progenitor cell proliferation during zebrafish photoreceptor regeneration. Exp. Eye Res. 2010, 90:572-582.
-
(2010)
Exp. Eye Res.
, vol.90
, pp. 572-582
-
-
Thummel, R.1
-
117
-
-
0031025042
-
Axonal regrowth after spinal cord transection in adult zebrafish
-
Becker T., et al. Axonal regrowth after spinal cord transection in adult zebrafish. J. Comp. Neurol. 1997, 377:577-595.
-
(1997)
J. Comp. Neurol.
, vol.377
, pp. 577-595
-
-
Becker, T.1
-
118
-
-
51649087205
-
Motor neuron regeneration in adult zebrafish
-
Reimer M.M., et al. Motor neuron regeneration in adult zebrafish. J. Neurosci. 2008, 28:8510-8516.
-
(2008)
J. Neurosci.
, vol.28
, pp. 8510-8516
-
-
Reimer, M.M.1
-
119
-
-
84865839043
-
Lesion-induced generation of interneuron cell types in specific dorsoventral domains in the spinal cord of adult zebrafish
-
Kuscha V., et al. Lesion-induced generation of interneuron cell types in specific dorsoventral domains in the spinal cord of adult zebrafish. J. Comp. Neurol. 2012, 520:3604-3616.
-
(2012)
J. Comp. Neurol.
, vol.520
, pp. 3604-3616
-
-
Kuscha, V.1
-
120
-
-
72849151554
-
Sonic hedgehog is a polarized signal for motor neuron regeneration in adult zebrafish
-
Reimer M.M., et al. Sonic hedgehog is a polarized signal for motor neuron regeneration in adult zebrafish. J. Neurosci. 2009, 29:15073-15082.
-
(2009)
J. Neurosci.
, vol.29
, pp. 15073-15082
-
-
Reimer, M.M.1
-
121
-
-
84863287615
-
Notch signaling controls generation of motor neurons in the lesioned spinal cord of adult zebrafish
-
Dias T.B., et al. Notch signaling controls generation of motor neurons in the lesioned spinal cord of adult zebrafish. J. Neurosci. 2012, 32:3245-3252.
-
(2012)
J. Neurosci.
, vol.32
, pp. 3245-3252
-
-
Dias, T.B.1
-
122
-
-
84861587180
-
Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish
-
Goldshmit Y., et al. Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish. J. Neurosci. 2012, 32:7477-7492.
-
(2012)
J. Neurosci.
, vol.32
, pp. 7477-7492
-
-
Goldshmit, Y.1
-
123
-
-
84856968896
-
Adult neurogenesis and brain regeneration in zebrafish
-
Kizil C., et al. Adult neurogenesis and brain regeneration in zebrafish. Dev. Neurobiol. 2012, 72:429-461.
-
(2012)
Dev. Neurobiol.
, vol.72
, pp. 429-461
-
-
Kizil, C.1
-
124
-
-
80051685830
-
Regenerative response following stab injury in the adult zebrafish telencephalon
-
Marz M., et al. Regenerative response following stab injury in the adult zebrafish telencephalon. Dev. Dyn. 2011, 240:2221-2231.
-
(2011)
Dev. Dyn.
, vol.240
, pp. 2221-2231
-
-
Marz, M.1
-
125
-
-
58149339903
-
Vivo-Morpholinos: a non-peptide transporter delivers Morpholinos into a wide array of mouse tissues
-
616, 618
-
Morcos P.A., et al. Vivo-Morpholinos: a non-peptide transporter delivers Morpholinos into a wide array of mouse tissues. Biotechniques 2008, 45:613-614. 616, 618.
-
(2008)
Biotechniques
, vol.45
, pp. 613-614
-
-
Morcos, P.A.1
-
126
-
-
80455156263
-
Cerebroventricular microinjection (CVMI) into adult zebrafish brain is an efficient misexpression method for forebrain ventricular cells
-
Kizil C., Brand M. Cerebroventricular microinjection (CVMI) into adult zebrafish brain is an efficient misexpression method for forebrain ventricular cells. PLoS ONE 2011, 6:e27395.
-
(2011)
PLoS ONE
, vol.6
-
-
Kizil, C.1
Brand, M.2
-
127
-
-
84866175884
-
The chemokine receptor cxcr5 regulates the regenerative neurogenesis response in the adult zebrafish brain
-
Kizil C., et al. The chemokine receptor cxcr5 regulates the regenerative neurogenesis response in the adult zebrafish brain. Neural Dev. 2012, 7:27.
-
(2012)
Neural Dev.
, vol.7
, pp. 27
-
-
Kizil, C.1
-
128
-
-
84870786415
-
Regenerative neurogenesis from neural progenitor cells requires injury-induced expression of Gata3
-
Kizil C., et al. Regenerative neurogenesis from neural progenitor cells requires injury-induced expression of Gata3. Dev. Cell 2012, 23:1230-1237.
-
(2012)
Dev. Cell
, vol.23
, pp. 1230-1237
-
-
Kizil, C.1
-
129
-
-
80054890342
-
Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors
-
Kroehne V., et al. Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development 2011, 138:4831-4841.
-
(2011)
Development
, vol.138
, pp. 4831-4841
-
-
Kroehne, V.1
-
130
-
-
84858029208
-
Neuronal regeneration in a zebrafish model of adult brain injury
-
Kishimoto N., et al. Neuronal regeneration in a zebrafish model of adult brain injury. Dis. Model Mech. 2012, 5:200-209.
-
(2012)
Dis. Model Mech.
, vol.5
, pp. 200-209
-
-
Kishimoto, N.1
-
131
-
-
84870677586
-
Acute inflammation initiates the regenerative response in the adult zebrafish brain
-
Kyritsis N., et al. Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science 2012, 338:1353-1356.
-
(2012)
Science
, vol.338
, pp. 1353-1356
-
-
Kyritsis, N.1
-
132
-
-
44949155482
-
Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases
-
Doyon Y., et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat. Biotechnol. 2008, 26:702-708.
-
(2008)
Nat. Biotechnol.
, vol.26
, pp. 702-708
-
-
Doyon, Y.1
-
133
-
-
44949162060
-
Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases
-
Meng X., et al. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat. Biotechnol. 2008, 26:695-701.
-
(2008)
Nat. Biotechnol.
, vol.26
, pp. 695-701
-
-
Meng, X.1
-
134
-
-
79961192836
-
Targeted gene disruption in somatic zebrafish cells using engineered TALENs
-
Sander J.D., et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat. Biotechnol. 2011, 29:697-698.
-
(2011)
Nat. Biotechnol.
, vol.29
, pp. 697-698
-
-
Sander, J.D.1
-
135
-
-
79961185942
-
Heritable gene targeting in zebrafish using customized TALENs
-
Huang P., et al. Heritable gene targeting in zebrafish using customized TALENs. Nat. Biotechnol. 2011, 29:699-700.
-
(2011)
Nat. Biotechnol.
, vol.29
, pp. 699-700
-
-
Huang, P.1
-
136
-
-
84874617789
-
Efficient genome editing in zebrafish using a CRISPR-Cas system
-
Hwang W.Y., et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 2013, 31:227-229.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 227-229
-
-
Hwang, W.Y.1
-
137
-
-
84868342049
-
In vivo genome editing using a high-efficiency TALEN system
-
Bedell V.M., et al. In vivo genome editing using a high-efficiency TALEN system. Nature 2012, 491:114-118.
-
(2012)
Nature
, vol.491
, pp. 114-118
-
-
Bedell, V.M.1
-
138
-
-
33846489616
-
Two different transgenes to study gene silencing and re-expression during zebrafish caudal fin and retinal regeneration
-
Thummel R., et al. Two different transgenes to study gene silencing and re-expression during zebrafish caudal fin and retinal regeneration. Sci. World J. 2006, 6(Suppl. 1):65-81.
-
(2006)
Sci. World J.
, vol.6
, Issue.SUPPL. 1
, pp. 65-81
-
-
Thummel, R.1
-
139
-
-
79551685675
-
A TALE nuclease architecture for efficient genome editing
-
Miller J.C., et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 2011, 29:143-148.
-
(2011)
Nat. Biotechnol.
, vol.29
, pp. 143-148
-
-
Miller, J.C.1
-
140
-
-
34250883337
-
Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis
-
North T.E., et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 2007, 447:1007-1011.
-
(2007)
Nature
, vol.447
, pp. 1007-1011
-
-
North, T.E.1
|