-
1
-
-
58849097959
-
Making a commitment: Cell lineage allocation and axis patterning in the early mouse embryo
-
Arnold SJ, Robertson EJ. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol. 2009;10:91-103. doi: 10.1038/nrm2618.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 91-103
-
-
Arnold, S.J.1
Robertson, E.J.2
-
2
-
-
0035927727
-
Nodal signalling in the epiblast patterns the early mouse embryo
-
Brennan J, Lu CC, Norris DP, Rodriguez TA, Beddington RS, Robertson EJ. Nodal signalling in the epiblast patterns the early mouse embryo. Nature. 2001;411:965-969. doi: 10.1038/35082103.
-
(2001)
Nature
, vol.411
, pp. 965-969
-
-
Brennan, J.1
Lu, C.C.2
Norris, D.P.3
Rodriguez, T.A.4
Beddington, R.S.5
Robertson, E.J.6
-
3
-
-
0032549806
-
Smad2 signaling in extraembryonic tissues determines anterior-posterior polarity of the early mouse embryo
-
Waldrip WR, Bikoff EK, Hoodless PA, Wrana JL, Robertson EJ. Smad2 signaling in extraembryonic tissues determines anterior-posterior polarity of the early mouse embryo. Cell. 1998;92:797-808.
-
(1998)
Cell
, vol.92
, pp. 797-808
-
-
Waldrip, W.R.1
Bikoff, E.K.2
Hoodless, P.A.3
Wrana, J.L.4
Robertson, E.J.5
-
4
-
-
18744404768
-
Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks
-
Perea-Gomez A, Vella FD, Shawlot W, Oulad-Abdelghani M, Chazaud C, Meno C, Pfister V, Chen L, Robertson E, Hamada H, Behringer RR, Ang SL. Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev Cell. 2002;3:745-756.
-
(2002)
Dev Cell
, vol.3
, pp. 745-756
-
-
Perea-Gomez, A.1
Vella, F.D.2
Shawlot, W.3
Oulad-Abdelghani, M.4
Chazaud, C.5
Meno, C.6
Pfister, V.7
Chen, L.8
Robertson, E.9
Hamada, H.10
Behringer, R.R.11
Ang, S.L.12
-
5
-
-
0028180752
-
A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse
-
Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A, Herrmann B, Robertson EJ. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development. 1994;120:1919-1928.
-
(1994)
Development
, vol.120
, pp. 1919-1928
-
-
Conlon, F.L.1
Lyons, K.M.2
Takaesu, N.3
Barth, K.S.4
Kispert, A.5
Herrmann, B.6
Robertson, E.J.7
-
6
-
-
0035408007
-
FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak
-
Ciruna B, Rossant J. FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev Cell. 2001;1:37-49.
-
(2001)
Dev Cell
, vol.1
, pp. 37-49
-
-
Ciruna, B.1
Rossant, J.2
-
7
-
-
6244256053
-
Bmpr encodes a type i bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis
-
Mishina Y, Suzuki A, Ueno N, Behringer RR. Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev. 1995;9:3027-3037.
-
(1995)
Genes Dev
, vol.9
, pp. 3027-3037
-
-
Mishina, Y.1
Suzuki, A.2
Ueno, N.3
Behringer, R.R.4
-
8
-
-
0029149656
-
Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse
-
Winnier G, Blessing M, Labosky PA, Hogan BL. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 1995;9:2105-2116.
-
(1995)
Genes Dev
, vol.9
, pp. 2105-2116
-
-
Winnier, G.1
Blessing, M.2
Labosky, P.A.3
Hogan, B.L.4
-
9
-
-
33747842468
-
The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4
-
Ben-Haim N, Lu C, Guzman-Ayala M, Pescatore L, Mesnard D, Bischofberger M, Naef F, Robertson EJ, Constam DB. The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4. Dev Cell. 2006;11:313-323. doi: 10.1016/j.devcel.2006.07.005.
-
(2006)
Dev Cell
, vol.11
, pp. 313-323
-
-
Ben-Haim, N.1
Lu, C.2
Guzman-Ayala, M.3
Pescatore, L.4
Mesnard, D.5
Bischofberger, M.6
Naef, F.7
Robertson, E.J.8
Constam, D.B.9
-
10
-
-
0032776833
-
Requirement for Wnt3 in vertebrate axis formation
-
Liu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR, Bradley A. Requirement for Wnt3 in vertebrate axis formation. Nat Genet. 1999;22:361-365. doi: 10.1038/11932.
-
(1999)
Nat Genet
, vol.22
, pp. 361-365
-
-
Liu, P.1
Wakamiya, M.2
Shea, M.J.3
Albrecht, U.4
Behringer, R.R.5
Bradley, A.6
-
11
-
-
29044447949
-
Primitive streak formation in mice is preceded by localized activation of Brachyury and Wnt3
-
Rivera-Pérez JA, Magnuson T. Primitive streak formation in mice is preceded by localized activation of Brachyury and Wnt3. Dev Biol. 2005;288:363-371. doi: 10.1016/j.ydbio.2005.09.012.
-
(2005)
Dev Biol
, vol.288
, pp. 363-371
-
-
Rivera-Pérez, J.A.1
Magnuson, T.2
-
12
-
-
0033994197
-
Brachyury is a target gene of the Wnt/beta-catenin signaling pathway
-
Arnold SJ, Stappert J, Bauer A, Kispert A, Herrmann BG, Kemler R. Brachyury is a target gene of the Wnt/beta-catenin signaling pathway. Mech Dev. 2000;91:249-258.
-
(2000)
Mech Dev
, vol.91
, pp. 249-258
-
-
Arnold, S.J.1
Stappert, J.2
Bauer, A.3
Kispert, A.4
Herrmann, B.G.5
Kemler, R.6
-
13
-
-
84904461158
-
Dose-dependent Nodal/Smad signals pattern the early mouse embryo
-
Robertson EJ. Dose-dependent Nodal/Smad signals pattern the early mouse embryo. Semin Cell Dev Biol. 2014;32:73-79. doi: 10.1016/j.semcdb.2014.03.028.
-
(2014)
Semin Cell Dev Biol
, vol.32
, pp. 73-79
-
-
Robertson, E.J.1
-
14
-
-
80052511434
-
The T-box transcription factor Eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm during mouse gastrulation
-
Costello I, Pimeisl IM, Dräger S, Bikoff EK, Robertson EJ, Arnold SJ. The T-box transcription factor Eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm during mouse gastrulation. Nat Cell Biol. 2011;13:1084-1091. doi: 10.1038/ncb2304.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 1084-1091
-
-
Costello, I.1
Pimeisl, I.M.2
Dräger, S.3
Bikoff, E.K.4
Robertson, E.J.5
Arnold, S.J.6
-
15
-
-
48649087364
-
Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification
-
Bondue A, Lapouge G, Paulissen C, Semeraro C, Iacovino M, Kyba M, Blanpain C. Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell. 2008;3:69-84. doi: 10.1016/j.stem.2008.06.009.
-
(2008)
Cell Stem Cell
, vol.3
, pp. 69-84
-
-
Bondue, A.1
Lapouge, G.2
Paulissen, C.3
Semeraro, C.4
Iacovino, M.5
Kyba, M.6
Blanpain, C.7
-
16
-
-
84877258135
-
Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a contextdependent manner
-
Chan SS, Shi X, Toyama A, Arpke RW, Dandapat A, Iacovino M, Kang J, Le G, Hagen HR, Garry DJ, Kyba M. Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a contextdependent manner. Cell Stem Cell. 2013;12:587-601. doi: 10.1016/j.stem.2013.03.004.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 587-601
-
-
Chan, S.S.1
Shi, X.2
Toyama, A.3
Arpke, R.W.4
Dandapat, A.5
Iacovino, M.6
Kang, J.7
Le Hagen, G.H.R.8
Garry, D.J.9
Kyba, M.10
-
17
-
-
84906899911
-
Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development
-
Lescroart F, Chabab S, Lin X, Rulands S, Paulissen C, Rodolosse A, Auer H, Achouri Y, Dubois C, Bondue A, Simons BD, Blanpain C. Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat Cell Biol. 2014;16:829-840. doi: 10.1038/ncb3024.
-
(2014)
Nat Cell Biol
, vol.16
, pp. 829-840
-
-
Lescroart, F.1
Chabab, S.2
Lin, X.3
Rulands, S.4
Paulissen, C.5
Rodolosse, A.6
Auer, H.7
Achouri, Y.8
Dubois, C.9
Bondue, A.10
Simons, B.D.11
Blanpain, C.12
-
18
-
-
42549118076
-
Wnt3a-mediated chemorepulsion controls movement patterns of cardiac progenitors and requires RhoA function
-
Yue Q, Wagstaff L, Yang X, Weijer C, Münsterberg A. Wnt3a-mediated chemorepulsion controls movement patterns of cardiac progenitors and requires RhoA function. Development. 2008;135:1029-1037. doi: 10.1242/dev.015321.
-
(2008)
Development
, vol.135
, pp. 1029-1037
-
-
Yue, Q.1
Wagstaff, L.2
Yang, X.3
Weijer, C.4
Münsterberg, A.5
-
20
-
-
84885042163
-
Embryonic heart progenitors and cardiogenesis
-
Brade T, Pane LS, Moretti A, Chien KR, Laugwitz KL. Embryonic heart progenitors and cardiogenesis. Cold Spring Harb Perspect Med. 2013;3:a013847. doi: 10.1101/cshperspect.a013847.
-
(2013)
Cold Spring Harb Perspect Med
, vol.3
, pp. a013847
-
-
Brade, T.1
Pane, L.S.2
Moretti, A.3
Chien, K.R.4
Laugwitz, K.L.5
-
21
-
-
0035252357
-
Inhibition of Wnt activity induces heart formation from posterior mesoderm
-
Marvin MJ, Di Rocco G, Gardiner A, Bush SM, Lassar AB. Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev. 2001;15:316-327. doi: 10.1101/gad.855501.
-
(2001)
Genes Dev
, vol.15
, pp. 316-327
-
-
Marvin, M.J.1
Di Rocco, G.2
Gardiner, A.3
Bush, S.M.4
Lassar, A.B.5
-
22
-
-
0035252543
-
Wnt antagonism initiates cardiogenesis in Xenopus laevis
-
Schneider VA, Mercola M. Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev. 2001;15:304-315. doi: 10.1101/gad.855601.
-
(2001)
Genes Dev
, vol.15
, pp. 304-315
-
-
Schneider, V.A.1
Mercola, M.2
-
23
-
-
34250802982
-
Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells
-
Ueno S, Weidinger G, Osugi T, Kohn AD, Golob JL, Pabon L, Reinecke H, Moon RT, Murry CE. Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci USA. 2007;104:9685-9690. doi: 10.1073/pnas.0702859104.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 9685-9690
-
-
Ueno, S.1
Weidinger, G.2
Osugi, T.3
Kohn, A.D.4
Golob, J.L.5
Pabon, L.6
Reinecke, H.7
Moon, R.T.8
Murry, C.E.9
-
24
-
-
77955290927
-
Endogenous Wnt/beta-catenin signaling is required for cardiac differentiation in human embryonic stem cells
-
Paige SL, Osugi T, Afanasiev OK, Pabon L, Reinecke H, Murry CE. Endogenous Wnt/beta-catenin signaling is required for cardiac differentiation in human embryonic stem cells. PLoS One. 2010;5:e11134. doi: 10.1371/journal.pone.0011134.
-
(2010)
PLoS One
, vol.5
, pp. e11134
-
-
Paige, S.L.1
Osugi, T.2
Afanasiev, O.K.3
Pabon, L.4
Reinecke, H.5
Murry, C.E.6
-
25
-
-
84905242471
-
Chemically defined generation of human cardiomyocytes
-
Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, Lan F, Diecke S, Huber B, Mordwinkin NM, Plews JR, Abilez OJ, Cui B, Gold JD, Wu JC. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11:855-860. doi: 10.1038/nmeth.2999.
-
(2014)
Nat Methods
, vol.11
, pp. 855-860
-
-
Burridge, P.W.1
Matsa, E.2
Shukla, P.3
Lin, Z.C.4
Churko, J.M.5
Ebert, A.D.6
Lan, F.7
Diecke, S.8
Huber, B.9
Mordwinkin, N.M.10
Plews, J.R.11
Abilez, O.J.12
Cui, B.13
Gold, J.D.14
Wu, J.C.15
-
26
-
-
84934297099
-
Chemically defined, albumin-free human cardiomyocyte generation
-
Lian X, Bao X, Zilberter M, Westman M, Fisahn A, Hsiao C, Hazeltine LB, Dunn KK, Kamp TJ, Palecek SP. Chemically defined, albumin-free human cardiomyocyte generation. Nat Methods. 2015;12:595-596. doi: 10.1038/nmeth.3448.
-
(2015)
Nat Methods
, vol.12
, pp. 595-596
-
-
Lian, X.1
Bao, X.2
Zilberter, M.3
Westman, M.4
Fisahn, A.5
Hsiao, C.6
Hazeltine, L.B.7
Dunn, K.K.8
Kamp, T.J.9
Palecek, S.P.10
-
27
-
-
84867073340
-
Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage
-
Wamstad JA, Alexander JM, Truty RM, et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell. 2012;151:206-220. doi: 10.1016/j.cell.2012.07.035.
-
(2012)
Cell
, vol.151
, pp. 206-220
-
-
Wamstad, J.A.1
AlexanDer, J.M.2
Truty, R.M.3
-
28
-
-
84903196154
-
Human stem cells for modeling heart disease and for drug discovery
-
Matsa E, Burridge PW, Wu JC. Human stem cells for modeling heart disease and for drug discovery. Sci Transl Med. 2014;6:239ps6. doi: 10.1126/scitranslmed.3008921.
-
(2014)
Sci Transl Med
, vol.6
, pp. 239ps6
-
-
Matsa, E.1
Burridge, P.W.2
Wu, J.C.3
-
29
-
-
84902312015
-
Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts
-
Chong JJ, Yang X, Don CW, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510:273-277. doi: 10.1038/nature13233.
-
(2014)
Nature
, vol.510
, pp. 273-277
-
-
Chong, J.J.1
Yang, X.2
Don, C.W.3
-
30
-
-
77955334500
-
How to make a heart: The origin and regulation of cardiac progenitor cells
-
Vincent SD, Buckingham ME. How to make a heart: the origin and regulation of cardiac progenitor cells. Curr Top Dev Biol. 2010;90:1-41. doi: 10.1016/S0070-2153(10)90001-X.
-
(2010)
Curr Top Dev Biol
, vol.90
, pp. 1-41
-
-
Vincent, S.D.1
Buckingham, M.E.2
-
31
-
-
84941072102
-
Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells
-
Birket MJ, Ribeiro MC, Verkerk AO, Ward D, Leitoguinho AR, den Hartogh SC, Orlova VV, Devalla HD, Schwach V, Bellin M, Passier R, Mummery CL. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol. 2015;33:970-979. doi: 10.1038/nbt.3271.
-
(2015)
Nat Biotechnol.
, vol.33
, pp. 970-979
-
-
Birket, M.J.1
Ribeiro, M.C.2
Verkerk, A.O.3
Ward, D.4
Leitoguinho, A.R.5
Den Hartogh, S.C.6
Orlova, V.V.7
Devalla, H.D.8
Schwach, V.9
Bellin, M.10
Passier, R.11
Mummery, C.L.12
-
32
-
-
0031018002
-
A role for bone morphogenetic proteins in the induction of cardiac myogenesis
-
Schultheiss TM, Burch JB, Lassar AB. A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev. 1997;11:451-462.
-
(1997)
Genes Dev
, vol.11
, pp. 451-462
-
-
Schultheiss, T.M.1
Burch, J.B.2
Lassar, A.B.3
-
33
-
-
0033951035
-
Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar)
-
Reifers F, Walsh EC, Léger S, Stainier DY, Brand M. Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar). Development. 2000;127:225-235.
-
(2000)
Development
, vol.127
, pp. 225-235
-
-
Reifers, F.1
Walsh, E.C.2
Léger, S.3
Stainier, D.Y.4
Brand, M.5
-
34
-
-
0037043688
-
Wnt-11 activation of a noncanonical Wnt signalling pathway is required for cardiogenesis
-
Pandur P, Läsche M, Eisenberg LM, Kühl M. Wnt-11 activation of a noncanonical Wnt signalling pathway is required for cardiogenesis. Nature. 2002;418:636-641. doi: 10.1038/nature00921.
-
(2002)
Nature
, vol.418
, pp. 636-641
-
-
Pandur, P.1
Läsche, M.2
Eisenberg, L.M.3
Kühl, M.4
-
35
-
-
33745367798
-
Fgf8 is required for anterior heart field development
-
Ilagan R, Abu-Issa R, Brown D, Yang YP, Jiao K, Schwartz RJ, Klingensmith J, Meyers EN. Fgf8 is required for anterior heart field development. Development. 2006;133:2435-2445. doi: 10.1242/dev.02408.
-
(2006)
Development
, vol.133
, pp. 2435-2445
-
-
Ilagan, R.1
Abu-Issa, R.2
Brown, D.3
Yang, Y.P.4
Jiao, K.5
Schwartz, R.J.6
Klingensmith, J.7
Meyers, E.N.8
-
36
-
-
67349089325
-
Sonic hedgehog maintains proliferation in secondary heart field progenitors and is required for normal arterial pole formation
-
Dyer LA, Kirby ML. Sonic hedgehog maintains proliferation in secondary heart field progenitors and is required for normal arterial pole formation. Dev Biol. 2009;330:305-317. doi: 10.1016/j.ydbio.2009.03.028.
-
(2009)
Dev Biol
, vol.330
, pp. 305-317
-
-
Dyer, L.A.1
Kirby, M.L.2
-
37
-
-
34447130140
-
Wnt/beta-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regulation of FGF signaling
-
Cohen ED, Wang Z, Lepore JJ, Lu MM, Taketo MM, Epstein DJ, Morrisey EE. Wnt/beta-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regulation of FGF signaling. J Clin Invest. 2007;117:1794-1804.
-
(2007)
J Clin Invest
, vol.117
, pp. 1794-1804
-
-
Cohen, E.D.1
Wang, Z.2
Lepore, J.J.3
Lu, M.M.4
Taketo, M.M.5
Epstein, D.J.6
Morrisey, E.E.7
-
38
-
-
84960076390
-
Lineage reprogramming of fibroblasts into proliferative induced cardiac progenitor cells by defined factors
-
Lalit PA, Salick MR, Nelson DO, et al. Lineage reprogramming of fibroblasts into proliferative induced cardiac progenitor cells by defined factors. Cell Stem Cell. 2016;18:354-367. doi: 10.1016/j.stem.2015.12.001.
-
(2016)
Cell Stem Cell
, vol.18
, pp. 354-367
-
-
Lalit, P.A.1
Salick, M.R.2
Nelson, D.O.3
-
39
-
-
84960077143
-
Expandable cardiovascular progenitor cells reprogrammed from fibroblasts
-
Zhang Y, Cao N, Huang Y, Spencer CI, Fu JD, Yu C, Liu K, Nie B, Xu T, Li K, Xu S, Bruneau BG, Srivastava D, Ding S. Expandable cardiovascular progenitor cells reprogrammed from fibroblasts. Cell Stem Cell. 2016;18:368-381. doi: 10.1016/j.stem.2016.02.001.
-
(2016)
Cell Stem Cell
, vol.18
, pp. 368-381
-
-
Zhang, Y.1
Cao, N.2
Huang, Y.3
Spencer, C.I.4
Fu, J.D.5
Yu, C.6
Liu, K.7
Nie, B.8
Xu, T.9
Li, K.10
Xu, S.11
Bruneau, B.G.12
Srivastava, D.13
Ding, S.14
-
40
-
-
77956584418
-
Arterial pole progenitors interpret opposing FGF/BMP signals to proliferate or differentiate
-
Hutson MR, Zeng XL, Kim AJ, Antoon E, Harward S, Kirby ML. Arterial pole progenitors interpret opposing FGF/BMP signals to proliferate or differentiate. Development. 2010;137:3001-3011. doi: 10.1242/dev.051565.
-
(2010)
Development
, vol.137
, pp. 3001-3011
-
-
Hutson, M.R.1
Zeng, X.L.2
Kim, A.J.3
Antoon, E.4
Harward, S.5
Kirby, M.L.6
-
41
-
-
84933564630
-
Integration of Bmp and Wnt signaling by Hopx specifies commitment of cardiomyoblasts
-
HEART DEVELOPMENT
-
Jain R, Li D, Gupta M, et al. HEART DEVELOPMENT. Integration of Bmp and Wnt signaling by Hopx specifies commitment of cardiomyoblasts. Science. 2015;348:aaa6071. doi: 10.1126/science.aaa6071.
-
(2015)
Science
, vol.348
, pp. aaa6071
-
-
Jain, R.1
Li, D.2
Gupta, M.3
-
42
-
-
84863596507
-
Wnt/-catenin and Bmp signals control distinct sets of transcription factors in cardiac progenitor cells
-
Klaus A, Müller M, Schulz H, Saga Y, Martin JF, Birchmeier W. Wnt/-catenin and Bmp signals control distinct sets of transcription factors in cardiac progenitor cells. Proc Natl Acad Sci USA. 2012;109:10921-10926. doi: 10.1073/pnas.1121236109.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 10921-10926
-
-
Klaus, A.1
Müller, M.2
Schulz, H.3
Saga, Y.4
Martin, J.F.5
Birchmeier, W.6
-
43
-
-
0037090906
-
Cardiac-specific activity of an Nkx2-5 enhancer requires an evolutionarily conserved Smad binding site
-
Lien CL, McAnally J, Richardson JA, Olson EN. Cardiac-specific activity of an Nkx2-5 enhancer requires an evolutionarily conserved Smad binding site. Dev Biol. 2002;244:257-266. doi: 10.1006/dbio.2002.0603.
-
(2002)
Dev Biol
, vol.244
, pp. 257-266
-
-
Lien, C.L.1
McAnally, J.2
Richardson, J.A.3
Olson, E.N.4
-
44
-
-
84921954526
-
Molecular regulation of cardiomyocyte differentiation
-
Paige SL, Plonowska K, Xu A, Wu SM. Molecular regulation of cardiomyocyte differentiation. Circ Res. 2015;116:341-353. doi: 10.1161/CIRCRESAHA.116.302752.
-
(2015)
Circ Res
, vol.116
, pp. 341-353
-
-
Paige, S.L.1
Plonowska, K.2
Xu, A.3
Wu, S.M.4
-
45
-
-
33646680831
-
Isl1Cre reveals a common Bmp pathway in heart and limb development
-
Yang L, Cai CL, Lin L, Qyang Y, Chung C, Monteiro RM, Mummery CL, Fishman GI, Cogen A, Evans S. Isl1Cre reveals a common Bmp pathway in heart and limb development. Development. 2006;133:1575-1585. doi: 10.1242/dev.02322.
-
(2006)
Development
, vol.133
, pp. 1575-1585
-
-
Yang, L.1
Cai, C.L.2
Lin, L.3
Qyang, Y.4
Chung, C.5
Monteiro, R.M.6
Mummery, C.L.7
Fishman, G.I.8
Cogen, A.9
Evans, S.10
-
46
-
-
34250800027
-
Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors
-
Kwon C, Arnold J, Hsiao EC, Taketo MM, Conklin BR, Srivastava D. Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proc Natl Acad Sci USA. 2007;104:10894-10899. doi: 10.1073/pnas.0704044104.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 10894-10899
-
-
Kwon, C.1
Arnold, J.2
Hsiao, E.C.3
Taketo, M.M.4
Conklin, B.R.5
Srivastava, D.6
-
47
-
-
68249120547
-
A regulatory pathway involving Notch1/beta-catenin/Isl1 determines cardiac progenitor cell fate
-
Kwon C, Qian L, Cheng P, Nigam V, Arnold J, Srivastava D. A regulatory pathway involving Notch1/beta-catenin/Isl1 determines cardiac progenitor cell fate. Nat Cell Biol. 2009;11:951-957. doi: 10.1038/ncb1906.
-
(2009)
Nat Cell Biol
, vol.11
, pp. 951-957
-
-
Kwon, C.1
Qian, L.2
Cheng, P.3
Nigam, V.4
Arnold, J.5
Srivastava, D.6
-
48
-
-
36749013666
-
Distinct roles of Wnt/beta-catenin and Bmp signaling during early cardiogenesis
-
Klaus A, Saga Y, Taketo MM, Tzahor E, Birchmeier W. Distinct roles of Wnt/beta-catenin and Bmp signaling during early cardiogenesis. Proc Natl Acad Sci USA. 2007;104:18531-18536. doi: 10.1073/pnas.0703113104.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 18531-18536
-
-
Klaus, A.1
Saga, Y.2
Taketo, M.M.3
Tzahor, E.4
Birchmeier, W.5
-
49
-
-
59849120408
-
A caudal proliferating growth center contributes to both poles of the forming heart tube
-
van den Berg G, Abu-Issa R, de Boer BA, Hutson MR, de Boer PA, Soufan AT, Ruijter JM, Kirby ML, van den Hoff MJ, Moorman AF. A caudal proliferating growth center contributes to both poles of the forming heart tube. Circ Res. 2009;104:179-188. doi: 10.1161/CIRCRESAHA. 108.185843.
-
(2009)
Circ Res
, vol.104
, pp. 179-188
-
-
Van Den Berg, G.1
Abu-Issa, R.2
De Boer, B.A.3
Hutson, M.R.4
De Boer, P.A.5
Soufan, A.T.6
Ruijter, J.M.7
Kirby, M.L.8
Van Den Hoff, M.J.9
Moorman, A.F.10
-
50
-
-
84957969419
-
Wnt signaling in the heart fields: Variations on a common theme
-
Ruiz-Villalba A, Hoppler S, van den Hoff MJ. Wnt signaling in the heart fields: variations on a common theme. Dev Dyn. 2016;245:294-306. doi: 10.1002/dvdy.24372.
-
(2016)
Dev Dyn
, vol.245
, pp. 294-306
-
-
Ruiz-Villalba, A.1
Hoppler, S.2
Van Den Hoff, M.J.3
-
51
-
-
0032860232
-
WNT11 promotes cardiac tissue formation of early mesoderm
-
Eisenberg CA, Eisenberg LM. WNT11 promotes cardiac tissue formation of early mesoderm. Dev Dyn. 1999;216:45-58. doi: 10.1002/(SICI)1097-0177(199909)216:13.0.CO;2-L.
-
(1999)
Dev Dyn
, vol.216
, pp. 45-58
-
-
Eisenberg, C.A.1
Eisenberg, L.M.2
-
52
-
-
84860703695
-
Wnt5a and Wnt11 are essential for second heart field progenitor development
-
Cohen ED, Miller MF, Wang Z, Moon RT, Morrisey EE. Wnt5a and Wnt11 are essential for second heart field progenitor development. Development. 2012;139:1931-1940.
-
(2012)
Development
, vol.139
, pp. 1931-1940
-
-
Cohen, E.D.1
Miller, M.F.2
Wang, Z.3
Moon, R.T.4
Morrisey, E.E.5
-
53
-
-
85016369664
-
Early patterning and specification of cardiac progenitors in gastrulating mesoderm
-
Devine PW, Wythe JD, George M, Koshiba-Takeuchi K, Bruneau BG. Early patterning and specification of cardiac progenitors in gastrulating mesoderm. eLife. 2014;3.
-
(2014)
ELife
, pp. 3
-
-
Devine, P.W.1
Wythe, J.D.2
George, M.3
Koshiba-Takeuchi, K.4
Bruneau, B.G.5
-
54
-
-
66649127942
-
Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors
-
Takeuchi JK, Bruneau BG. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature. 2009;459:708-711. doi: 10.1038/nature08039.
-
(2009)
Nature
, vol.459
, pp. 708-711
-
-
Takeuchi, J.K.1
Bruneau, B.G.2
-
55
-
-
84869485293
-
Early cardiac development: A view from stem cells to embryos
-
Van Vliet P, Wu SM, Zaffran S, Puceát M. Early cardiac development: a view from stem cells to embryos. Cardiovasc Res. 2012;96:352-362. doi: 10.1093/cvr/cvs270.
-
(2012)
Cardiovasc Res
, vol.96
, pp. 352-362
-
-
Van Vliet, P.1
Wu, S.M.2
Zaffran, S.3
Puceát, M.4
-
56
-
-
84875212339
-
Essential and unexpected role of Yin Yang 1 to promote mesodermal cardiac differentiation
-
Gregoire S, Karra R, Passer D, Deutsch MA, Krane M, Feistritzer R, Sturzu A, Domian I, Saga Y, Wu SM. Essential and unexpected role of Yin Yang 1 to promote mesodermal cardiac differentiation. Circ Res. 2013;112:900-910. doi: 10.1161/CIRCRESAHA.113.259259.
-
(2013)
Circ Res
, vol.112
, pp. 900-910
-
-
Gregoire, S.1
Karra, R.2
Passer, D.3
Deutsch, M.A.4
Krane, M.5
Feistritzer, R.6
Sturzu, A.7
Domian, I.8
Saga, Y.9
Wu, S.M.10
-
57
-
-
43049103483
-
Loss of both GATA4 and GATA6 blocks cardiac myocyte differentiation and results in acardia in mice
-
Zhao R, Watt AJ, Battle MA, Li J, Bondow BJ, Duncan SA. Loss of both GATA4 and GATA6 blocks cardiac myocyte differentiation and results in acardia in mice. Dev Biol. 2008;317:614-619. doi: 10.1016/j.ydbio.2008.03.013.
-
(2008)
Dev Biol
, vol.317
, pp. 614-619
-
-
Zhao, R.1
Watt, A.J.2
Battle, M.A.3
Li, J.4
Bondow, B.J.5
Duncan, S.A.6
-
58
-
-
0242636701
-
NKX2.5 mutations in patients with congenital heart disease
-
McElhinney DB, Geiger E, Blinder J, Benson DW, Goldmuntz E. NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol. 2003;42:1650-1655.
-
(2003)
J Am Coll Cardiol
, vol.42
, pp. 1650-1655
-
-
McElhinney, D.B.1
Geiger, E.2
Blinder, J.3
Benson, D.W.4
Goldmuntz, E.5
-
59
-
-
17944378083
-
A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease
-
Bruneau BG, Nemer G, Schmitt JP, Charron F, Robitaille L, Caron S, Conner DA, Gessler M, Nemer M, Seidman CE, Seidman JG. A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell. 2001;106:709-721.
-
(2001)
Cell
, vol.106
, pp. 709-721
-
-
Bruneau, B.G.1
Nemer, G.2
Schmitt, J.P.3
Charron, F.4
Robitaille, L.5
Caron, S.6
Conner, D.A.7
Gessler, M.8
Nemer, M.9
Seidman, C.E.10
Seidman, J.G.11
-
60
-
-
0348149019
-
Tbx5 specifies the left/right ventricles and ventricular septum position during cardiogenesis
-
Takeuchi JK, Ohgi M, Koshiba-Takeuchi K, Shiratori H, Sakaki I, Ogura K, Saijoh Y, Ogura T. Tbx5 specifies the left/right ventricles and ventricular septum position during cardiogenesis. Development. 2003;130:5953-5964. doi: 10.1242/dev.00797.
-
(2003)
Development
, vol.130
, pp. 5953-5964
-
-
Takeuchi, J.K.1
Ohgi, M.2
Koshiba-Takeuchi, K.3
Shiratori, H.4
Sakaki, I.5
Ogura, K.6
Saijoh, Y.7
Ogura, T.8
-
61
-
-
0032907924
-
The cardiac homeobox gene Csx/Nkx2. Lies genetically upstream of multiple genes essential for heart development
-
Tanaka M, Chen Z, Bartunkova S, Yamasaki N. The cardiac homeobox gene Csx/Nkx2. lies genetically upstream of multiple genes essential for heart development. Development. 1999;126:1269-1280.
-
(1999)
Development
, vol.126
, pp. 1269-1280
-
-
Tanaka, M.1
Chen, Z.2
Bartunkova, S.3
Yamasaki, N.4
-
62
-
-
33749361499
-
Gene regulatory networks in the evolution and development of the heart
-
Olson EN. Gene regulatory networks in the evolution and development of the heart. Science. 2006;313:1922-1927. doi: 10.1126/science.1132292.
-
(2006)
Science
, vol.313
, pp. 1922-1927
-
-
Olson, E.N.1
-
63
-
-
79955521591
-
Nkx2-5 represses Gata1 gene expression and modulates the cellular fate of cardiac progenitors during embryogenesis
-
Caprioli A, Koyano-Nakagawa N, Iacovino M, Shi X, Ferdous A, Harvey RP, Olson EN, Kyba M, Garry DJ. Nkx2-5 represses Gata1 gene expression and modulates the cellular fate of cardiac progenitors during embryogenesis. Circulation. 2011;123:1633-1641. doi: 10.1161/CIRCULATIONAHA.110.008185.
-
(2011)
Circulation
, vol.123
, pp. 1633-1641
-
-
Caprioli, A.1
Koyano-Nakagawa, N.2
Iacovino, M.3
Shi, X.4
Ferdous, A.5
Harvey, R.P.6
Olson, E.N.7
Kyba, M.8
Garry, D.J.9
-
64
-
-
84883740296
-
A HCN4+ cardiomyogenic progenitor derived from the first heart field and human pluripotent stem cells
-
Später D, Abramczuk MK, Buac K, Zangi L, Stachel MW, Clarke J, Sahara M, Ludwig A, Chien KR. A HCN4+ cardiomyogenic progenitor derived from the first heart field and human pluripotent stem cells. Nat Cell Biol. 2013;15:1098-1106. doi: 10.1038/ncb2824.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 1098-1106
-
-
Später, D.1
Abramczuk, M.K.2
Buac, K.3
Zangi, L.4
Stachel, M.W.5
Clarke, J.6
Sahara, M.7
Ludwig, A.8
Chien, K.R.9
-
65
-
-
84881661799
-
HCN4 dynamically marks the first heart field and conduction system precursors
-
Liang X, Wang G, Lin L, Lowe J, Zhang Q, Bu L, Chen Y, Chen J, Sun Y, Evans SM. HCN4 dynamically marks the first heart field and conduction system precursors. Circ Res. 2013;113:399-407. doi: 10.1161/CIRCRESAHA.113.301588.
-
(2013)
Circ Res
, vol.113
, pp. 399-407
-
-
Liang, X.1
Wang, G.2
Lin, L.3
Lowe, J.4
Zhang, Q.5
Bu, L.6
Chen, Y.7
Chen, J.8
Sun, Y.9
Evans, S.M.10
-
66
-
-
0346783332
-
Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart
-
Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, Evans S. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell. 2003;5:877-889.
-
(2003)
Dev Cell
, vol.5
, pp. 877-889
-
-
Cai, C.L.1
Liang, X.2
Shi, Y.3
Chu, P.H.4
Pfaff, S.L.5
Chen, J.6
Evans, S.7
-
67
-
-
33845457194
-
Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification
-
Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, Qyang Y, Bu L, Sasaki M, Martin-Puig S, Sun Y, Evans SM, Laugwitz KL, Chien KR. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell. 2006;127:1151-1165. doi: 10.1016/j.cell.2006.10.029.
-
(2006)
Cell
, vol.127
, pp. 1151-1165
-
-
Moretti, A.1
Caron, L.2
Nakano, A.3
Lam, J.T.4
Bernshausen, A.5
Chen, Y.6
Qyang, Y.7
Bu, L.8
Sasaki, M.9
Martin-Puig, S.10
Sun, Y.11
Evans, S.M.12
Laugwitz, K.L.13
Chien, K.R.14
-
68
-
-
67650071028
-
Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages
-
Bu L, Jiang X, Martin-Puig S, Caron L, Zhu S, Shao Y, Roberts DJ, Huang PL, Domian IJ, Chien KR. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature. 2009;460:113-117. doi: 10.1038/nature08191.
-
(2009)
Nature
, vol.460
, pp. 113-117
-
-
Bu, L.1
Jiang, X.2
Martin-Puig, S.3
Caron, L.4
Zhu, S.5
Shao, Y.6
Roberts, D.J.7
Huang, P.L.8
Domian, I.J.9
Chien, K.R.10
-
69
-
-
53649094995
-
Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activity
-
Ma Q, Zhou B, Pu WT. Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activity. Dev Biol. 2008;323:98-104. doi: 10.1016/j.ydbio.2008.08.013.
-
(2008)
Dev Biol
, vol.323
, pp. 98-104
-
-
Ma, Q.1
Zhou, B.2
Pu, W.T.3
-
70
-
-
20444480174
-
Morphogenesis of the right ventricle requires myocardial expression of Gata4
-
Zeisberg EM, Ma Q, Juraszek AL, Moses K, Schwartz RJ, Izumo S, Pu WT. Morphogenesis of the right ventricle requires myocardial expression of Gata4. J Clin Invest. 2005;115:1522-1531. doi: 10.1172/JCI23769.
-
(2005)
J Clin Invest
, vol.115
, pp. 1522-1531
-
-
Zeisberg, E.M.1
Ma, Q.2
Juraszek, A.L.3
Moses, K.4
Schwartz, R.J.5
Izumo, S.6
Pu, W.T.7
-
71
-
-
0030911475
-
Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C
-
Lin Q, Schwarz J, Bucana C, Olson EN. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science. 1997;276:1404-1407.
-
(1997)
Science
, vol.276
, pp. 1404-1407
-
-
Lin, Q.1
Schwarz, J.2
Bucana, C.3
Olson, E.N.4
-
72
-
-
4544236360
-
Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development
-
Dodou E, Verzi MP, Anderson JP, Xu SM, Black BL. Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development. 2004;131:3931-3942. doi: 10.1242/dev.01256.
-
(2004)
Development
, vol.131
, pp. 3931-3942
-
-
Dodou, E.1
Verzi, M.P.2
Anderson, J.P.3
Xu, S.M.4
Black, B.L.5
-
73
-
-
79551684662
-
Hand2 function in second heart field progenitors is essential for cardiogenesis
-
Tsuchihashi T, Maeda J, Shin CH, Ivey KN, Black BL, Olson EN, Yamagishi H, Srivastava D. Hand2 function in second heart field progenitors is essential for cardiogenesis. Dev Biol. 2011;351:62-69. doi: 10.1016/j.ydbio.2010.12.023.
-
(2011)
Dev Biol
, vol.351
, pp. 62-69
-
-
Tsuchihashi, T.1
Maeda, J.2
Shin, C.H.3
Ivey, K.N.4
Black, B.L.5
Olson, E.N.6
Yamagishi, H.7
Srivastava, D.8
-
74
-
-
33847344204
-
An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation
-
Prall OW, Menon MK, Solloway MJ, et al. An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell. 2007;128:947-959. doi: 10.1016/j.cell.2007.01.042.
-
(2007)
Cell
, vol.128
, pp. 947-959
-
-
Prall, O.W.1
Menon, M.K.2
Solloway, M.J.3
-
75
-
-
84925622556
-
Direct nkx2-5 transcriptional repression of isl1 controls cardiomyocyte subtype identity
-
Dorn T, Goedel A, Lam JT, et al. Direct nkx2-5 transcriptional repression of isl1 controls cardiomyocyte subtype identity. Stem Cells. 2015;33:1113-1129. doi: 10.1002/stem.1923.
-
(2015)
Stem Cells
, vol.33
, pp. 1113-1129
-
-
Dorn, T.1
Goedel, A.2
Lam, J.T.3
-
76
-
-
84978928250
-
The role of microRNAs in cardiac development and regenerative capacity
-
Katz MG, Fargnoli AS, Kendle AP, Hajjar RJ, Bridges CR. The role of microRNAs in cardiac development and regenerative capacity. Am J Physiol Heart Circ Physiol. 2016;310:H528-H541. doi: 10.1152/ajpheart.00181.2015.
-
(2016)
Am J Physiol Heart Circ Physiol
, vol.310
, pp. H528-H541
-
-
Katz, M.G.1
Fargnoli, A.S.2
Kendle, A.P.3
Hajjar, R.J.4
Bridges, C.R.5
-
77
-
-
84865343368
-
Roles of microRNAs and myocardial cell differentiation
-
Takaya T, Nishi H, Horie T, Ono K, Hasegawa K. Roles of microRNAs and myocardial cell differentiation. Prog Mol Biol Transl Sci. 2012;111:139-152. doi: 10.1016/B978-0-12-398459-3.00006-X.
-
(2012)
Prog Mol Biol Transl Sci
, vol.111
, pp. 139-152
-
-
Takaya, T.1
Nishi, H.2
Horie, T.3
Ono, K.4
Hasegawa, K.5
-
78
-
-
34147153781
-
Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2
-
Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007;129:303-317. doi: 10.1016/j.cell.2007.03.030.
-
(2007)
Cell
, vol.129
, pp. 303-317
-
-
Zhao, Y.1
Ransom, J.F.2
Li, A.3
Vedantham, V.4
Von Drehle, M.5
Muth, A.N.6
Tsuchihashi, T.7
McManus, M.T.8
Schwartz, R.J.9
Srivastava, D.10
-
79
-
-
41149147013
-
Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure
-
Chen JF, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z, Rojas M, Hammond SM, Schneider MD, Selzman CH, Meissner G, Patterson C, Hannon GJ, Wang DZ. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci USA. 2008;105:2111-2116. doi: 10.1073/pnas.0710228105.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 2111-2116
-
-
Chen, J.F.1
Murchison, E.P.2
Tang, R.3
Callis, T.E.4
Tatsuguchi, M.5
Deng, Z.6
Rojas, M.7
Hammond, S.M.8
Schneider, M.D.9
Selzman, C.H.10
Meissner, G.11
Patterson, C.12
Hannon, G.J.13
Wang, D.Z.14
-
80
-
-
31744432337
-
The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation
-
Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38:228-233. doi: 10.1038/ng1725.
-
(2006)
Nat Genet
, vol.38
, pp. 228-233
-
-
Chen, J.F.1
Mandel, E.M.2
Thomson, J.M.3
Wu, Q.4
Callis, T.E.5
Hammond, S.M.6
Conlon, F.L.7
Wang, D.Z.8
-
81
-
-
22444437609
-
Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis
-
Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436:214-220. doi: 10.1038/nature03817.
-
(2005)
Nature
, vol.436
, pp. 214-220
-
-
Zhao, Y.1
Samal, E.2
Srivastava, D.3
-
82
-
-
38049156025
-
An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133
-
Liu N, Williams AH, Kim Y, McAnally J, Bezprozvannaya S, Sutherland LB, Richardson JA, Bassel-Duby R, Olson EN. An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc Natl Acad Sci USA. 2007;104:20844-20849. doi: 10.1073/pnas.0710558105.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 20844-20849
-
-
Liu, N.1
Williams, A.H.2
Kim, Y.3
McAnally, J.4
Bezprozvannaya, S.5
Sutherland, L.B.6
Richardson, J.A.7
Bassel-Duby, R.8
Olson, E.N.9
-
83
-
-
84888115595
-
MicroRNA-1 regulates sarcomere formation and suppresses smooth muscle gene expression in the mammalian heart
-
Heidersbach A, Saxby C, Carver-Moore K, Huang Y, Ang YS, de Jong PJ, Ivey KN, Srivastava D. MicroRNA-1 regulates sarcomere formation and suppresses smooth muscle gene expression in the mammalian heart. Elife. 2013;2:e01323. doi: 10.7554/eLife.01323.
-
(2013)
Elife
, vol.2
, pp. e01323
-
-
Heidersbach, A.1
Saxby, C.2
Carver-Moore, K.3
Huang, Y.4
Ang, Y.S.5
De Jong, P.J.6
Ivey, K.N.7
Srivastava, D.8
-
84
-
-
57749121689
-
MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart
-
Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN. MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008;22:3242-3254. doi: 10.1101/gad.1738708.
-
(2008)
Genes Dev
, vol.22
, pp. 3242-3254
-
-
Liu, N.1
Bezprozvannaya, S.2
Williams, A.H.3
Qi, X.4
Richardson, J.A.5
Bassel-Duby, R.6
Olson, E.N.7
-
85
-
-
84884686777
-
MIR-1/133a clusters cooperatively specify the cardiomyogenic lineage by adjustment of myocardin levels during embryonic heart development
-
Wystub K, Besser J, Bachmann A, Boettger T, Braun T. miR-1/133a clusters cooperatively specify the cardiomyogenic lineage by adjustment of myocardin levels during embryonic heart development. PLoS Genet. 2013;9:e1003793. doi: 10.1371/journal.pgen.1003793.
-
(2013)
PLoS Genet
, vol.9
, pp. e1003793
-
-
Wystub, K.1
Besser, J.2
Bachmann, A.3
Boettger, T.4
Braun, T.5
-
86
-
-
84867704611
-
Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4 Mef2c and Tbx5
-
Inagawa K, Miyamoto K, Yamakawa H, Muraoka N, Sadahiro T, Umei T, Wada R, Katsumata Y, Kaneda R, Nakade K, Kurihara C, Obata Y, Miyake K, Fukuda K, Ieda M. Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5. Circ Res. 2012;111:1147-1156. doi: 10.1161/CIRCRESAHA.112.271148.
-
(2012)
Circ Res
, vol.111
, pp. 1147-1156
-
-
Inagawa, K.1
Miyamoto, K.2
Yamakawa, H.3
Muraoka, N.4
Sadahiro, T.5
Umei, T.6
Wada, R.7
Katsumata, Y.8
Kaneda, R.9
Nakade, K.10
Kurihara, C.11
Obata, Y.12
Miyake, K.13
Fukuda, K.14
Ieda, M.15
-
87
-
-
84863629484
-
In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes
-
Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485:593-598. doi: 10.1038/nature11044.
-
(2012)
Nature
, vol.485
, pp. 593-598
-
-
Qian, L.1
Huang, Y.2
Spencer, C.I.3
Foley, A.4
Vedantham, V.5
Liu, L.6
Conway, S.J.7
Fu, J.D.8
Srivastava, D.9
-
88
-
-
84883753931
-
Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state
-
Fu JD, Stone NR, Liu L, Spencer CI, Qian L, Hayashi Y, Delgado-Olguin P, Ding S, Bruneau BG, Srivastava D. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Reports. 2013;1:235-247. doi: 10.1016/j.stemcr.2013.07.005.
-
(2013)
Stem Cell Reports
, vol.1
, pp. 235-247
-
-
Fu, J.D.1
Stone, N.R.2
Liu, L.3
Spencer, C.I.4
Qian, L.5
Hayashi, Y.6
Delgado-Olguin, P.7
Ding, S.8
Bruneau, B.G.9
Srivastava, D.10
-
89
-
-
84863626782
-
Heart repair by reprogramming non-myocytes with cardiac transcription factors
-
Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG, Hill JA, Bassel-Duby R, Olson EN. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485:599-604. doi: 10.1038/nature11139.
-
(2012)
Nature
, vol.485
, pp. 599-604
-
-
Song, K.1
Nam, Y.J.2
Luo, X.3
Qi, X.4
Tan, W.5
Huang, G.N.6
Acharya, A.7
Smith, C.L.8
Tallquist, M.D.9
Neilson, E.G.10
Hill, J.A.11
Bassel-Duby, R.12
Olson, E.N.13
-
90
-
-
84864696029
-
Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors
-
Islas JF, Liu Y, Weng KC, Robertson MJ, Zhang S, Prejusa A, Harger J, Tikhomirova D, Chopra M, Iyer D, Mercola M, Oshima RG, Willerson JT, Potaman VN, Schwartz RJ. Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proc Natl Acad Sci USA. 2012;109:13016-13021. doi: 10.1073/pnas.1120299109.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 13016-13021
-
-
Islas, J.F.1
Liu, Y.2
Weng, K.C.3
Robertson, M.J.4
Zhang, S.5
Prejusa, A.6
Harger, J.7
Tikhomirova, D.8
Chopra, M.9
Iyer, D.10
Mercola, M.11
Oshima, R.G.12
Willerson, J.T.13
Potaman, V.N.14
Schwartz, R.J.15
-
91
-
-
84927643037
-
MicroRNA induced cardiac reprogramming in vivo: Evidence for mature cardiac myocytes and improved cardiac function
-
Jayawardena TM, Finch EA, Zhang L, Zhang H, Hodgkinson CP, Pratt RE, Rosenberg PB, Mirotsou M, Dzau VJ. MicroRNA induced cardiac reprogramming in vivo: evidence for mature cardiac myocytes and improved cardiac function. Circ Res. 2015;116:418-424. doi: 10.1161/CIRCRESAHA.116.304510.
-
(2015)
Circ Res
, vol.116
, pp. 418-424
-
-
Jayawardena, T.M.1
Finch, E.A.2
Zhang, L.3
Zhang, H.4
Hodgkinson, C.P.5
Pratt, R.E.6
Rosenberg, P.B.7
Mirotsou, M.8
Dzau, V.J.9
-
92
-
-
85027957068
-
Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4 Mef2c and Tbx5
-
Chen JX, Krane M, Deutsch MA, Wang L, Rav-Acha M, Gregoire S, Engels MC, Rajarajan K, Karra R, Abel ED, Wu JC, Milan D, Wu SM. Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5. Circ Res. 2012;111:50-55.
-
(2012)
Circ Res
, vol.111
, pp. 50-55
-
-
Chen, J.X.1
Krane, M.2
Deutsch, M.A.3
Wang, L.4
Rav-Acha, M.5
Gregoire, S.6
Engels, M.C.7
Rajarajan, K.8
Karra, R.9
Abel, E.D.10
Wu, J.C.11
Milan, D.12
Wu, S.M.13
-
93
-
-
0026595763
-
Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: I. Formation of the ventricular myocardium
-
Mikawa T, Borisov A, Brown AM, Fischman DA. Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: I. Formation of the ventricular myocardium. Dev Dyn. 1992;193:11-23. doi: 10.1002/aja.1001930104.
-
(1992)
Dev Dyn
, vol.193
, pp. 11-23
-
-
Mikawa, T.1
Borisov, A.2
Brown, A.M.3
Fischman, D.A.4
-
94
-
-
0041508378
-
A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart
-
Meilhac SM, Kelly RG, Rocancourt D, Eloy-Trinquet S, Nicolas JF, Buckingham ME. A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart. Development. 2003;130:3877-3889.
-
(2003)
Development
, vol.130
, pp. 3877-3889
-
-
Meilhac, S.M.1
Kelly, R.G.2
Rocancourt, D.3
Eloy-Trinquet, S.4
Nicolas, J.F.5
Buckingham, M.E.6
-
95
-
-
84860237424
-
Clonally dominant cardiomyocytes direct heart morphogenesis
-
Gupta V, Poss KD. Clonally dominant cardiomyocytes direct heart morphogenesis. Nature. 2012;484:479-484. doi: 10.1038/nature11045.
-
(2012)
Nature
, vol.484
, pp. 479-484
-
-
Gupta, V.1
Poss, K.D.2
-
96
-
-
84947725512
-
Hippo pathway in organ size control, tissue homeostasis, and cancer
-
Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 2015;163:811-828. doi: 10.1016/j.cell.2015.10.044.
-
(2015)
Cell
, vol.163
, pp. 811-828
-
-
Yu, F.X.1
Zhao, B.2
Guan, K.L.3
-
97
-
-
79960997489
-
The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal
-
Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol. 2011;13:877-883. doi: 10.1038/ncb2303.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 877-883
-
-
Zhao, B.1
Tumaneng, K.2
Guan, K.L.3
-
99
-
-
84911446779
-
Harnessing Hippo in the heart: Hippo/Yap signaling and applications to heart regeneration and rejuvenation
-
Lin Z, Pu WT. Harnessing Hippo in the heart: Hippo/Yap signaling and applications to heart regeneration and rejuvenation. Stem Cell Res. 2014;13:571-581. doi: 10.1016/j.scr.2014.04.010.
-
(2014)
Stem Cell Res.
, vol.13
, pp. 571-581
-
-
Lin, Z.1
Pu, W.T.2
-
100
-
-
79955405757
-
Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size
-
Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011;332:458-461. doi: 10.1126/science.1199010.
-
(2011)
Science
, vol.332
, pp. 458-461
-
-
Heallen, T.1
Zhang, M.2
Wang, J.3
Bonilla-Claudio, M.4
Klysik, E.5
Johnson, R.L.6
Martin, J.F.7
-
101
-
-
84904746093
-
Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model
-
Lin Z, von Gise A, Zhou P, Gu F, Ma Q, Jiang J, Yau AL, Buck JN, Gouin KA, van Gorp PR, Zhou B, Chen J, Seidman JG, Wang DZ, Pu WT. Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model. Circ Res. 2014;115:354-363. doi: 10.1161/CIRCRESAHA.115.303632.
-
(2014)
Circ Res
, vol.115
, pp. 354-363
-
-
Lin, Z.1
Von Gise, A.2
Zhou, P.3
Gu, F.4
Ma, Q.5
Jiang, J.6
Yau, A.L.7
Buck, J.N.8
Gouin, K.A.9
Van Gorp, P.R.10
Zhou, B.11
Chen, J.12
Seidman, J.G.13
Wang, D.Z.14
Pu, W.T.15
-
102
-
-
84857136357
-
YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy
-
von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, Ma Q, Ishiwata T, Zhou B, Camargo FD. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci USA. 2012;109:2394-2399. doi: 10.1073/pnas.1116136109.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 2394-2399
-
-
Von Gise, A.1
Lin, Z.2
Schlegelmilch, K.3
Honor, L.B.4
Pan, G.M.5
Buck, J.N.6
Ma, Q.7
Ishiwata, T.8
Zhou, B.9
Camargo, F.D.10
-
103
-
-
84882740716
-
Hippo pathway effector Yap promotes cardiac regeneration
-
Xin M, Kim Y, Sutherland LB, Murakami M, Qi X, McAnally J, Porrello ER, Mahmoud AI, Tan W, Shelton JM, Richardson JA, Sadek HA, Bassel-Duby R, Olson EN. Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci USA. 2013;110:13839-13844. doi: 10.1073/pnas.1313192110.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 13839-13844
-
-
Xin, M.1
Kim, Y.2
Sutherland, L.B.3
Murakami, M.4
Qi, X.5
McAnally, J.6
Porrello, E.R.7
Mahmoud, A.I.8
Tan, W.9
Shelton, J.M.10
Richardson, J.A.11
Sadek, H.A.12
Bassel-Duby, R.13
Olson, E.N.14
-
104
-
-
84992143334
-
Acetylation of VGLL4 regulates Hippo-YAP signaling and postnatal cardiac growth
-
Lin Z, Guo H, Cao Y, Zohrabian S, Zhou P, Ma Q, VanDusen N, Guo Y, Zhang J, Stevens SM, Liang F, Quan Q, van Gorp PR, Li A, Dos Remedios C, He A, Bezzerides VJ, Pu WT. Acetylation of VGLL4 regulates Hippo-YAP signaling and postnatal cardiac growth. Dev Cell. 2016;39:466-479.
-
(2016)
Dev Cell
, vol.39
, pp. 466-479
-
-
Lin, Z.1
Guo, H.2
Cao, Y.3
Zohrabian, S.4
Zhou, P.5
Ma, Q.6
Van Dusen, N.7
Guo, Y.8
Zhang, J.9
Stevens, S.M.10
Liang, F.11
Quan, Q.12
Van Gorp, P.R.13
Li, A.14
Dos Remedios, C.15
He, A.16
Bezzerides, V.J.17
Pu, W.T.18
-
105
-
-
84920768917
-
Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival
-
Lin Z, Zhou P, von Gise A, Gu F, Ma Q, Chen J, Guo H, van Gorp PR, Wang DZ, Pu WT. Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival. Circ Res. 2015;116:35-45. doi: 10.1161/CIRCRESAHA.115.304457.
-
(2015)
Circ Res
, vol.116
, pp. 35-45
-
-
Lin, Z.1
Zhou, P.2
Von Gise, A.3
Gu, F.4
Ma, Q.5
Chen, J.6
Guo, H.7
Van Gorp, P.R.8
Wang, D.Z.9
Pu, W.T.10
-
106
-
-
80054965145
-
Regulation of insulinlike growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size
-
Xin M, Kim Y, Sutherland LB, Qi X, McAnally J, Schwartz RJ, Richardson JA, Bassel-Duby R, Olson EN. Regulation of insulinlike growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal. 2011;4:70. doi: 10.1126/scisignal.2002278.
-
(2011)
Sci Signal
, vol.4
, pp. 70
-
-
Xin, M.1
Kim, Y.2
Sutherland, L.B.3
Qi, X.4
McAnally, J.5
Schwartz, R.J.6
Richardson, J.A.7
Bassel-Duby, R.8
Olson, E.N.9
-
107
-
-
0141816681
-
Epicardium is required for the full rate of myocyte proliferation and levels of expression of myocyte mitogenic factors FGF2 and its receptor, FGFR-1, but not for transmural myocardial patterning in the embryonic chick heart
-
Pennisi DJ, Ballard VL, Mikawa T. Epicardium is required for the full rate of myocyte proliferation and levels of expression of myocyte mitogenic factors FGF2 and its receptor, FGFR-1, but not for transmural myocardial patterning in the embryonic chick heart. Dev Dyn. 2003;228:161-172. doi: 10.1002/dvdy.10360.
-
(2003)
Dev Dyn
, vol.228
, pp. 161-172
-
-
Pennisi, D.J.1
Ballard, V.L.2
Mikawa, T.3
-
108
-
-
79955424835
-
IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development
-
Li P, Cavallero S, Gu Y, Chen TH, Hughes J, Hassan AB, Brüning JC, Pashmforoush M, Sucov HM. IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development. Development. 2011;138:1795-1805. doi: 10.1242/dev.054338.
-
(2011)
Development
, vol.138
, pp. 1795-1805
-
-
Li, P.1
Cavallero, S.2
Gu, Y.3
Chen, T.H.4
Hughes, J.5
Hassan, A.B.6
Brüning, J.C.7
Pashmforoush, M.8
Sucov, H.M.9
-
109
-
-
84879473619
-
Igf signaling is required for cardiomyocyte proliferation during Zebrafish heart development and regeneration
-
Huang Y, Harrison MR, Osorio A, Kim J, Baugh A, Duan C, Sucov HM, Lien CL. Igf signaling is required for cardiomyocyte proliferation during Zebrafish heart development and regeneration. PLoS One. 2013;8:e67266. doi: 10.1371/journal.pone.0067266.
-
(2013)
PLoS One
, vol.8
, pp. e67266
-
-
Huang, Y.1
Harrison, M.R.2
Osorio, A.3
Kim, J.4
Baugh, A.5
Duan, C.6
Sucov, H.M.7
Lien, C.L.8
-
110
-
-
84942519410
-
Epicardial FSTL1 reconstitution regenerates the adult mammalian heart
-
Wei K, Serpooshan V, Hurtado C, et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature. 2015;525:479-485. doi: 10.1038/nature15372.
-
(2015)
Nature
, vol.525
, pp. 479-485
-
-
Wei, K.1
Serpooshan, V.2
Hurtado, C.3
-
111
-
-
84930573048
-
HIF1 represses cell stress pathways to allow proliferation of hypoxic fetal cardiomyocytes
-
Guimarães-Camboa N, Stowe J, Aneas I, Sakabe N, Cattaneo P, Henderson L, Kilberg MS, Johnson RS, Chen J, McCulloch AD, Nobrega MA, Evans SM, Zambon AC. HIF1 represses cell stress pathways to allow proliferation of hypoxic fetal cardiomyocytes. Dev Cell. 2015;33:507-521. doi: 10.1016/j.devcel.2015.04.021.
-
(2015)
Dev Cell
, vol.33
, pp. 507-521
-
-
Guimarães-Camboa, N.1
Stowe, J.2
Aneas, I.3
Sakabe, N.4
Cattaneo, P.5
HenDerson, L.6
Kilberg, M.S.7
Johnson, R.S.8
Chen, J.9
McCulloch, A.D.10
Nobrega, M.A.11
Evans, S.M.12
Zambon, A.C.13
-
112
-
-
84959171488
-
Atypical protein kinase C-dependent polarized cell division is required for myocardial trabeculation
-
Passer D, van de Vrugt A, Atmanli A, Domian IJ. Atypical protein kinase C-dependent polarized cell division is required for myocardial trabeculation. Cell Rep. 2016;14:1662-1672. doi: 10.1016/j.celrep.2016.01.030.
-
(2016)
Cell Rep
, vol.14
, pp. 1662-1672
-
-
Passer, D.1
Van De Vrugt, A.2
Atmanli, A.3
Domian, I.J.4
-
113
-
-
33847203944
-
Notch signaling is essential for ventricular chamber development
-
Grego-Bessa J, Luna-Zurita L, del Monte G, et al. Notch signaling is essential for ventricular chamber development. Dev Cell. 2007;12:415-429. doi: 10.1016/j.devcel.2006.12.011.
-
(2007)
Dev Cell
, vol.12
, pp. 415-429
-
-
Grego-Bessa, J.1
Luna-Zurita, L.2
Del Monte, G.3
-
114
-
-
2042462926
-
BMP10 is essential for maintaining cardiac growth during murine cardiogenesis
-
Chen H, Shi S, Acosta L, Li W, Lu J, Bao S, Chen Z, Yang Z, Schneider MD, Chien KR, Conway SJ, Yoder MC, Haneline LS, Franco D, Shou W. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development. 2004;131:2219-2231. doi: 10.1242/dev.01094.
-
(2004)
Development
, vol.131
, pp. 2219-2231
-
-
Chen, H.1
Shi, S.2
Acosta, L.3
Li, W.4
Lu, J.5
Bao, S.6
Chen, Z.7
Yang, Z.8
Schneider, M.D.9
Chien, K.R.10
Conway, S.J.11
Yoder, M.C.12
Haneline, L.S.13
Franco, D.14
Shou, W.15
-
115
-
-
84875981663
-
Fkbp1a controls ventricular myocardium trabeculation and compaction by regulating endocardial Notch1 activity
-
Chen H, Zhang W, Sun X, et al. Fkbp1a controls ventricular myocardium trabeculation and compaction by regulating endocardial Notch1 activity. Development. 2013;140:1946-1957. doi: 10.1242/dev.089920.
-
(2013)
Development
, vol.140
, pp. 1946-1957
-
-
Chen, H.1
Zhang, W.2
Sun, X.3
-
116
-
-
84919876408
-
Hand2 is an essential regulator for two Notch-dependent functions within the embryonic endocardium
-
VanDusen NJ, Casanovas J, Vincentz JW, Firulli BA, Osterwalder M, Lopez-Rios J, Zeller R, Zhou B, Grego-Bessa J, De La Pompa JL, Shou W, Firulli AB. Hand2 is an essential regulator for two Notch-dependent functions within the embryonic endocardium. Cell Rep. 2014;9:2071-2083. doi: 10.1016/j.celrep.2014.11.021.
-
(2014)
Cell Rep
, vol.9
, pp. 2071-2083
-
-
Van Dusen, N.J.1
Casanovas, J.2
Vincentz, J.W.3
Firulli, B.A.4
Osterwalder, M.5
Lopez-Rios, J.6
Zeller, R.7
Zhou, B.8
Grego-Bessa, J.9
De La Pompa, J.L.10
Shou, W.11
Firulli, A.B.12
-
117
-
-
78149269363
-
A dual role for ErbB2 signaling in cardiac trabeculation
-
Liu J, Bressan M, Hassel D, Huisken J, Staudt D, Kikuchi K, Poss KD, Mikawa T, Stainier DY. A dual role for ErbB2 signaling in cardiac trabeculation. Development. 2010;137:3867-3875. doi: 10.1242/dev.053736.
-
(2010)
Development
, vol.137
, pp. 3867-3875
-
-
Liu, J.1
Bressan, M.2
Hassel, D.3
Huisken, J.4
Staudt, D.5
Kikuchi, K.6
Poss, K.D.7
Mikawa, T.8
Stainier, D.Y.9
-
118
-
-
84892774310
-
High-resolution imaging of cardiomyocyte behavior reveals two distinct steps in ventricular trabeculation
-
Staudt DW, Liu J, Thorn KS, Stuurman N, Liebling M, Stainier DY. High-resolution imaging of cardiomyocyte behavior reveals two distinct steps in ventricular trabeculation. Development. 2014;141:585-593. doi: 10.1242/dev.098632.
-
(2014)
Development
, vol.141
, pp. 585-593
-
-
Staudt, D.W.1
Liu, J.2
Thorn, K.S.3
Stuurman, N.4
Liebling, M.5
Stainier, D.Y.6
-
119
-
-
84977161001
-
Coordinating cardiomyocyte interactions to direct ventricular chamber morphogenesis
-
Han P, Bloomekatz J, Ren J, Zhang R, Grinstein JD, Zhao L, Burns CG, Burns CE, Anderson RM, Chi NC. Coordinating cardiomyocyte interactions to direct ventricular chamber morphogenesis. Nature. 2016;534:700-704. doi: 10.1038/nature18310.
-
(2016)
Nature
, vol.534
, pp. 700-704
-
-
Han, P.1
Bloomekatz, J.2
Ren, J.3
Zhang, R.4
Grinstein, J.D.5
Zhao, L.6
Burns, C.G.7
Burns, C.E.8
Anderson, R.M.9
Chi, N.C.10
-
120
-
-
85003026472
-
In vivo visualization of cardiomyocyte apicobasal polarity reveals epithelial to mesenchymal-like transition during cardiac trabeculation
-
Jiménez-Amilburu V, Rasouli SJ, Staudt DW, Nakajima H, Chiba A, Mochizuki N, Stainier DY. In vivo visualization of cardiomyocyte apicobasal polarity reveals epithelial to mesenchymal-like transition during cardiac trabeculation. Cell Rep. 2016;17:2687-2699. doi: 10.1016/j.celrep.2016.11.023.
-
(2016)
Cell Rep
, vol.17
, pp. 2687-2699
-
-
Jiménez-Amilburu, V.1
Rasouli, S.J.2
Staudt, D.W.3
Nakajima, H.4
Chiba, A.5
Mochizuki, N.6
Stainier, D.Y.7
-
121
-
-
84931571363
-
Dynamics of cell generation and turnover in the human heart
-
Bergmann O, Zdunek S, Felker A, et al. Dynamics of cell generation and turnover in the human heart. Cell. 2015;161:1566-1575. doi: 10.1016/j.cell.2015.05.026.
-
(2015)
Cell
, vol.161
, pp. 1566-1575
-
-
Bergmann, O.1
Zdunek, S.2
Felker, A.3
-
122
-
-
84872611623
-
Mammalian heart renewal by pre-existing cardiomyocytes
-
Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP, Lee RT. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2013;493:433-436. doi: 10.1038/nature11682.
-
(2013)
Nature
, vol.493
, pp. 433-436
-
-
Senyo, S.E.1
Steinhauser, M.L.2
Pizzimenti, C.L.3
Yang, V.K.4
Cai, L.5
Wang, M.6
Wu, T.D.7
Guerquin-Kern, J.L.8
Lechene, C.P.9
Lee, R.T.10
-
123
-
-
84902602979
-
Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice
-
Ali SR, Hippenmeyer S, Saadat LV, Luo L, Weissman IL, Ardehali R. Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc Natl Acad Sci USA. 2014;111:8850-8855. doi: 10.1073/pnas.1408233111.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 8850-8855
-
-
Ali, S.R.1
Hippenmeyer, S.2
Saadat, L.V.3
Luo, L.4
Weissman, I.L.5
Ardehali, R.6
-
124
-
-
64249107059
-
Evidence for cardiomyocyte renewal in humans
-
Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J. Evidence for cardiomyocyte renewal in humans. Science. 2009;324:98-102. doi: 10.1126/science.1164680.
-
(2009)
Science
, vol.324
, pp. 98-102
-
-
Bergmann, O.1
Bhardwaj, R.D.2
Bernard, S.3
Zdunek, S.4
Barnabé-Heider, F.5
Walsh, S.6
Zupicich, J.7
Alkass, K.8
Buchholz, B.A.9
Druid, H.10
Jovinge, S.11
Frisén, J.12
-
125
-
-
33750734736
-
Cardiomyocyte DNA synthesis and binucleation during murine development
-
Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol. 1996;271:H2183-H2189.
-
(1996)
Am J Physiol
, vol.271
, pp. H2183-H2189
-
-
Soonpaa, M.H.1
Kim, K.K.2
Pajak, L.3
Franklin, M.4
Field, L.J.5
-
126
-
-
79952065525
-
Transient regenerative potential of the neonatal mouse heart
-
Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331:1078-1080. doi: 10.1126/science.1200708.
-
(2011)
Science
, vol.331
, pp. 1078-1080
-
-
Porrello, E.R.1
Mahmoud, A.I.2
Simpson, E.3
Hill, J.A.4
Richardson, J.A.5
Olson, E.N.6
Sadek, H.A.7
-
127
-
-
84872876842
-
Cardiomyocyte proliferation contributes to heart growth in young humans
-
Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY, Silberstein LE, Dos Remedios CG, Graham D, Colan S, Kühn B. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci USA. 2013;110:1446-1451. doi: 10.1073/pnas.1214608110.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 1446-1451
-
-
Mollova, M.1
Bersell, K.2
Walsh, S.3
Savla, J.4
Das, L.T.5
Park, S.Y.6
Silberstein, L.E.7
Dos Remedios, C.G.8
Graham, D.9
Colan, S.10
Kühn, B.11
-
128
-
-
84928938582
-
ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation
-
D'Uva G, Aharonov A, Lauriola M, et al. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol. 2015;17:627-638. doi: 10.1038/ncb3149.
-
(2015)
Nat Cell Biol
, vol.17
, pp. 627-638
-
-
D'Uva, G.1
Aharonov, A.2
Lauriola, M.3
-
129
-
-
84877775012
-
Meis1 regulates postnatal cardiomyocyte cell cycle arrest
-
Mahmoud AI, Kocabas F, Muralidhar SA, Kimura W, Koura AS, Thet S, Porrello ER, Sadek HA. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature. 2013;497:249-253. doi: 10.1038/nature12054.
-
(2013)
Nature
, vol.497
, pp. 249-253
-
-
Mahmoud, A.I.1
Kocabas, F.2
Muralidhar, S.A.3
Kimura, W.4
Koura, A.S.5
Thet, S.6
Porrello, E.R.7
Sadek, H.A.8
-
130
-
-
80052586181
-
Rb and p130 control cell cycle gene silencing to maintain the postmitotic phenotype in cardiac myocytes
-
Sdek P, Zhao P, Wang Y, Huang CJ, Ko CY, Butler PC, Weiss JN, Maclellan WR. Rb and p130 control cell cycle gene silencing to maintain the postmitotic phenotype in cardiac myocytes. J Cell Biol. 2011;194:407-423. doi: 10.1083/jcb.201012049.
-
(2011)
J Cell Biol
, vol.194
, pp. 407-423
-
-
Sdek, P.1
Zhao, P.2
Wang, Y.3
Huang, C.J.4
Ko, C.Y.5
Butler, P.C.6
Weiss, J.N.7
MacLellan, W.R.8
-
131
-
-
14644398126
-
Overlapping roles of pocket proteins in the myocardium are unmasked by germ line deletion of p130 plus heart-specific deletion of Rb
-
MacLellan WR, Garcia A, Oh H, Frenkel P, Jordan MC, Roos KP, Schneider MD. Overlapping roles of pocket proteins in the myocardium are unmasked by germ line deletion of p130 plus heart-specific deletion of Rb. Mol Cell Biol. 2005;25:2486-2497. doi: 10.1128/MCB.25.6.2486-2497.2005.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 2486-2497
-
-
MacLellan, W.R.1
Garcia, A.2
Oh, H.3
Frenkel, P.4
Jordan, M.C.5
Roos, K.P.6
Schneider, M.D.7
-
132
-
-
84856707310
-
Polycomb repressive complex 2 regulates normal development of the mouse heart
-
He A, Ma Q, Cao J, et al. Polycomb repressive complex 2 regulates normal development of the mouse heart. Circ Res. 2012;110:406-415. doi: 10.1161/CIRCRESAHA.111.252205.
-
(2012)
Circ Res
, vol.110
, pp. 406-415
-
-
He, A.1
Ma, Q.2
Cao, J.3
-
133
-
-
84871992154
-
Regulation of neonatal and adult mammalian heart regeneration by the MIR-15 family
-
Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, Mammen PP, Rothermel BA, Olson EN, Sadek HA. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci USA. 2013;110:187-192. doi: 10.1073/pnas.1208863110.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 187-192
-
-
Porrello, E.R.1
Mahmoud, A.I.2
Simpson, E.3
Johnson, B.A.4
Grinsfelder, D.5
Canseco, D.6
Mammen, P.P.7
Rothermel, B.A.8
Olson, E.N.9
Sadek, H.A.10
-
134
-
-
18844383961
-
P38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes
-
Engel FB, Schebesta M, Duong MT, Lu G, Ren S, Madwed JB, Jiang H, Wang Y, Keating MT. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev. 2005;19:1175-1187. doi: 10.1101/gad.1306705.
-
(2005)
Genes Dev
, vol.19
, pp. 1175-1187
-
-
Engel, F.B.1
Schebesta, M.2
Duong, M.T.3
Lu, G.4
Ren, S.5
Madwed, J.B.6
Jiang, H.7
Wang, Y.8
Keating, M.T.9
-
135
-
-
33750298315
-
FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction
-
Engel FB, Hsieh PC, Lee RT, Keating MT. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci USA. 2006;103:15546-15551. doi: 10.1073/pnas.0607382103.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 15546-15551
-
-
Engel, F.B.1
Hsieh, P.C.2
Lee, R.T.3
Keating, M.T.4
-
136
-
-
84899533827
-
The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response
-
Puente BN, Kimura W, Muralidhar SA, et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell. 2014;157:565-579. doi: 10.1016/j.cell.2014.03.032.
-
(2014)
Cell
, vol.157
, pp. 565-579
-
-
Puente, B.N.1
Kimura, W.2
Muralidhar, S.A.3
-
137
-
-
84975217547
-
Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation
-
Aix E, Gutiérrez-Gutiérrez Ó, Sánchez-Ferrer C, Aguado T, Flores I. Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation. J Cell Biol. 2016;213:571-583. doi: 10.1083/jcb.201510091.
-
(2016)
J Cell Biol
, vol.213
, pp. 571-583
-
-
Aix, E.1
Gutiérrez-Gutiérrez, O.2
Sánchez-Ferrer, C.3
Aguado, T.4
Flores, I.5
-
138
-
-
84923378607
-
Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction
-
Bär C, Bernardes de Jesus B, Serrano R, et al. Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction. Nat Commun. 2014;5:5863. doi: 10.1038/ncomms6863.
-
(2014)
Nat Commun
, vol.5
, pp. 5863
-
-
Bär, C.1
Bernardes De Jesus, B.2
Serrano, R.3
-
139
-
-
20444407162
-
Centrosome control of the cell cycle
-
Doxsey S, Zimmerman W, Mikule K. Centrosome control of the cell cycle. Trends Cell Biol. 2005;15:303-311. doi: 10.1016/j.tcb.2005.04.008.
-
(2005)
Trends Cell Biol
, vol.15
, pp. 303-311
-
-
Doxsey, S.1
Zimmerman, W.2
Mikule, K.3
-
140
-
-
84908884225
-
Centrosomes and the art of mitotic spindle maintenance
-
Hinchcliffe EH. Centrosomes and the art of mitotic spindle maintenance. Int Rev Cell Mol Biol. 2014;313:179-217. doi: 10.1016/B978-0-12-800177-6.00006-2.
-
(2014)
Int Rev Cell Mol Biol
, vol.313
, pp. 179-217
-
-
Hinchcliffe, E.H.1
-
141
-
-
84943147389
-
Lamins position the nuclear pores and centrosomes by modulating dynein
-
Guo Y, Zheng Y. Lamins position the nuclear pores and centrosomes by modulating dynein. Mol Biol Cell. 2015;26:3379-3389. doi: 10.1091/mbc.E15-07-0482.
-
(2015)
Mol Biol Cell
, vol.26
, pp. 3379-3389
-
-
Guo, Y.1
Zheng, Y.2
-
142
-
-
84940507351
-
Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes
-
Zebrowski DC, Vergarajauregui S, Wu CC, Piatkowski T, Becker R, Leone M, Hirth S, Ricciardi F, Falk N, Giessl A, Just S, Braun T, Weidinger G, Engel FB. Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes. Elife. 2015;4.
-
(2015)
Elife
, pp. 4
-
-
Zebrowski, D.C.1
Vergarajauregui, S.2
Wu, C.C.3
Piatkowski, T.4
Becker, R.5
Leone, M.6
Hirth, S.7
Ricciardi, F.8
Falk, N.9
Giessl, A.10
Just, S.11
Braun, T.12
Weidinger, G.13
Engel, F.B.14
-
143
-
-
47149111304
-
Mechanisms of post-infarct left ventricular remodeling
-
French BA, Kramer CM. Mechanisms of post-infarct left ventricular remodeling. Drug Discov Today Dis Mech. 2007;4:185-196. doi: 10.1016/j.ddmec.2007.12.006.
-
(2007)
Drug Discov Today Dis Mech
, vol.4
, pp. 185-196
-
-
French, B.A.1
Kramer, C.M.2
-
144
-
-
78651386028
-
Left ventricular remodeling in heart failure: Current concepts in clinical significance and assessment
-
Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson JE. Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc Imaging. 2011;4:98-108. doi: 10.1016/j.jcmg.2010.10.008.
-
(2011)
JACC Cardiovasc Imaging
, vol.4
, pp. 98-108
-
-
Konstam, M.A.1
Kramer, D.G.2
Patel, A.R.3
Maron, M.S.4
Udelson, J.E.5
-
145
-
-
84886292766
-
The zebrafish as a model for complex tissue regeneration
-
Gemberling M, Bailey TJ, Hyde DR, Poss KD. The zebrafish as a model for complex tissue regeneration. Trends Genet. 2013;29:611-620. doi: 10.1016/j.tig.2013.07.003.
-
(2013)
Trends Genet
, vol.29
, pp. 611-620
-
-
Gemberling, M.1
Bailey, T.J.2
Hyde, D.R.3
Poss, K.D.4
-
146
-
-
46749111476
-
Zebrafish heart regeneration as a model for cardiac tissue repair
-
Major RJ, Poss KD. Zebrafish heart regeneration as a model for cardiac tissue repair. Drug Discov Today Dis Models. 2007;4:219-225. doi: 10.1016/j.ddmod.2007.09.002.
-
(2007)
Drug Discov Today Dis Models
, vol.4
, pp. 219-225
-
-
Major, R.J.1
Poss, K.D.2
-
147
-
-
63349086813
-
From fish to amphibians to mammals: In search of novel strategies to optimize cardiac regeneration
-
Ausoni S, Sartore S. From fish to amphibians to mammals: in search of novel strategies to optimize cardiac regeneration. J Cell Biol. 2009;184:357-364. doi: 10.1083/jcb.200810094.
-
(2009)
J Cell Biol
, vol.184
, pp. 357-364
-
-
Ausoni, S.1
Sartore, S.2
-
148
-
-
77950200829
-
Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation
-
Jopling C, Sleep E, Raya M, Martí M, Raya A, Izpisuá Belmonte JC. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 2010;464:606-609. doi: 10.1038/nature08899.
-
(2010)
Nature
, vol.464
, pp. 606-609
-
-
Jopling, C.1
Sleep, E.2
Raya, M.3
Martí, M.4
Raya, A.5
Izpisuá Belmonte, J.C.6
-
149
-
-
77950201708
-
Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes
-
Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DY, Poss KD. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature. 2010;464:601-605. doi: 10.1038/nature08804.
-
(2010)
Nature
, vol.464
, pp. 601-605
-
-
Kikuchi, K.1
Holdway, J.E.2
Werdich, A.A.3
Anderson, R.M.4
Fang, Y.5
Egnaczyk, G.F.6
Evans, T.7
MacRae, C.A.8
Stainier, D.Y.9
Poss, K.D.10
-
150
-
-
79960778952
-
The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion
-
Wang J, Panáková D, Kikuchi K, Holdway JE, Gemberling M, Burris JS, Singh SP, Dickson AL, Lin YF, Sabeh MK, Werdich AA, Yelon D, Macrae CA, Poss KD. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development. 2011;138:3421-3430. doi: 10.1242/dev.068601.
-
(2011)
Development
, vol.138
, pp. 3421-3430
-
-
Wang, J.1
Panáková, D.2
Kikuchi, K.3
Holdway, J.E.4
Gemberling, M.5
Burris, J.S.6
Singh, S.P.7
Dickson, A.L.8
Lin, Y.F.9
Sabeh, M.K.10
Werdich, A.A.11
Yelon, D.12
MacRae, C.A.13
Poss, K.D.14
-
151
-
-
53249133042
-
Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development
-
Drenckhahn JD, Schwarz QP, Gray S, Laskowski A, Kiriazis H, Ming Z, Harvey RP, Du XJ, Thorburn DR, Cox TC. Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development. Dev Cell. 2008;15:521-533. doi: 10.1016/j.devcel.2008.09.005.
-
(2008)
Dev Cell
, vol.15
, pp. 521-533
-
-
Drenckhahn, J.D.1
Schwarz, Q.P.2
Gray, S.3
Laskowski, A.4
Kiriazis, H.5
Ming, Z.6
Harvey, R.P.7
Du, X.J.8
Thorburn, D.R.9
Cox, T.C.10
-
152
-
-
84937577143
-
Fetal mammalian heart generates a robust compensatory response to cell loss
-
Sturzu AC, Rajarajan K, Passer D, et al. Fetal mammalian heart generates a robust compensatory response to cell loss. Circulation. 2015;132:109-121. doi: 10.1161/CIRCULATIONAHA.114.011490.
-
(2015)
Circulation
, vol.132
, pp. 109-121
-
-
Sturzu, A.C.1
Rajarajan, K.2
Passer, D.3
-
153
-
-
84904176540
-
Multi-investigator letter on reproducibility of neonatal heart regeneration following apical resection
-
Sadek HA, Martin JF, Takeuchi JK, Leor J, Nie Y, Nei Y, Giacca M, Lee RT. Multi-investigator letter on reproducibility of neonatal heart regeneration following apical resection. Stem Cell Reports. 2014;3:1. doi: 10.1016/j.stemcr.2014.06.009.
-
(2014)
Stem Cell Reports
, vol.3
, pp. 1
-
-
Sadek, H.A.1
Martin, J.F.2
Takeuchi, J.K.3
Leor, J.4
Nie, Y.5
Nei, Y.6
Giacca, M.7
Lee, R.T.8
-
154
-
-
84898406320
-
Do neonatal mouse hearts regenerate following heart apex resection
-
Andersen DC, Ganesalingam S, Jensen CH, Sheikh SP. Do neonatal mouse hearts regenerate following heart apex resection. Stem Cell Reports. 2014;2:406-413. doi: 10.1016/j.stemcr.2014.02.008.
-
(2014)
Stem Cell Reports
, vol.2
, pp. 406-413
-
-
Andersen, D.C.1
Ganesalingam, S.2
Jensen, C.H.3
Sheikh, S.P.4
-
155
-
-
84920973650
-
A systematic analysis of neonatal mouse heart regeneration after apical resection
-
Bryant DM, O'Meara CC, Ho NN, Gannon J, Cai L, Lee RT. A systematic analysis of neonatal mouse heart regeneration after apical resection. J Mol Cell Cardiol. 2015;79:315-318. doi: 10.1016/j.yjmcc.2014.12.011.
-
(2015)
J Mol Cell Cardiol
, vol.79
, pp. 315-318
-
-
Bryant, D.M.1
O'Meara, C.C.2
Ho, N.N.3
Gannon, J.4
Cai, L.5
Lee, R.T.6
-
156
-
-
84896799309
-
Macrophages are required for neonatal heart regeneration
-
Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN. Macrophages are required for neonatal heart regeneration. J Clin Invest. 2014;124:1382-1392. doi: 10.1172/JCI72181.
-
(2014)
J Clin Invest
, vol.124
, pp. 1382-1392
-
-
Aurora, A.B.1
Porrello, E.R.2
Tan, W.3
Mahmoud, A.I.4
Hill, J.A.5
Bassel-Duby, R.6
Sadek, H.A.7
Olson, E.N.8
-
157
-
-
4344717801
-
Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes
-
Ahuja P, Perriard E, Perriard JC, Ehler E. Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes. J Cell Sci. 2004;117:3295-3306. doi: 10.1242/jcs.01159.
-
(2004)
J Cell Sci
, vol.117
, pp. 3295-3306
-
-
Ahuja, P.1
Perriard, E.2
Perriard, J.C.3
Ehler, E.4
-
158
-
-
67650569135
-
Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury
-
Bersell K, Arab S, Haring B, Kühn B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell. 2009;138:257-270. doi: 10.1016/j.cell.2009.04.060.
-
(2009)
Cell
, vol.138
, pp. 257-270
-
-
Bersell, K.1
Arab, S.2
Haring, B.3
Kühn, B.4
-
159
-
-
84924367823
-
Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration
-
O'Meara CC, Wamstad JA, Gladstone RA, Fomovsky GM, Butty VL, Shrikumar A, Gannon JB, Boyer LA, Lee RT. Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration. Circ Res. 2015;116:804-815. doi: 10.1161/CIRCRESAHA.116.304269.
-
(2015)
Circ Res
, vol.116
, pp. 804-815
-
-
O'Meara, C.C.1
Wamstad, J.A.2
Gladstone, R.A.3
Fomovsky, G.M.4
Butty, V.L.5
Shrikumar, A.6
Gannon, J.B.7
Boyer, L.A.8
Lee, R.T.9
-
160
-
-
26444459762
-
Cardiomyocyte proliferation: A platform for mammalian cardiac repair
-
Engel FB. Cardiomyocyte proliferation: a platform for mammalian cardiac repair. Cell Cycle. 2005;4:1360-1363. doi: 10.4161/cc.4.10.2081.
-
(2005)
Cell Cycle
, vol.4
, pp. 1360-1363
-
-
Engel, F.B.1
-
161
-
-
84952714823
-
Harnessing the microRNA pathway for cardiac regeneration
-
Giacca M, Zacchigna S. Harnessing the microRNA pathway for cardiac regeneration. J Mol Cell Cardiol. 2015;89:68-74. doi: 10.1016/j.yjmcc.2015.09.017.
-
(2015)
J Mol Cell Cardiol
, vol.89
, pp. 68-74
-
-
Giacca, M.1
Zacchigna, S.2
-
162
-
-
84880839534
-
Mending broken hearts: Cardiac development as a basis for adult heart regeneration and repair
-
Xin M, Olson EN, Bassel-Duby R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol. 2013;14:529-541. doi: 10.1038/nrm3619.
-
(2013)
Nat Rev Mol Cell Biol
, vol.14
, pp. 529-541
-
-
Xin, M.1
Olson, E.N.2
Bassel-Duby, R.3
-
163
-
-
84903140599
-
Strategies for cardiac regeneration and repair
-
Lin Z, Pu WT. Strategies for cardiac regeneration and repair. Sci Transl Med. 2014;6:239rv1. doi: 10.1126/scitranslmed.3006681.
-
(2014)
Sci Transl Med
, vol.6
, pp. 239rv1
-
-
Lin, Z.1
Pu, W.T.2
-
164
-
-
85003054958
-
Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish
-
Gemberling M, Karra R, Dickson AL, Poss KD. Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. Elife. 2015;4.
-
(2015)
Elife
, pp. 4
-
-
Gemberling, M.1
Karra, R.2
Dickson, A.L.3
Poss, K.D.4
-
165
-
-
84964354323
-
Modulation of tissue repair by regeneration enhancer elements
-
Kang J, Hu J, Karra R, Dickson AL, Tornini VA, Nachtrab G, Gemberling M, Goldman JA, Black BL, Poss KD. Modulation of tissue repair by regeneration enhancer elements. Nature. 2016;532:201-206. doi: 10.1038/nature17644.
-
(2016)
Nature
, vol.532
, pp. 201-206
-
-
Kang, J.1
Hu, J.2
Karra, R.3
Dickson, A.L.4
Tornini, V.A.5
Nachtrab, G.6
Gemberling, M.7
Goldman, J.A.8
Black, B.L.9
Poss, K.D.10
-
166
-
-
84926443383
-
Neuregulin stimulation of cardiomyocyte regeneration in mice and human myocardium reveals a therapeutic window
-
Polizzotti BD, Ganapathy B, Walsh S, Choudhury S, Ammanamanchi N, Bennett DG, dos Remedios CG, Haubner BJ, Penninger JM, Kühn B. Neuregulin stimulation of cardiomyocyte regeneration in mice and human myocardium reveals a therapeutic window. Sci Transl Med. 2015;7:281ra45. doi: 10.1126/scitranslmed.aaa5171.
-
(2015)
Sci Transl Med
, vol.7
, pp. 281ra45
-
-
Polizzotti, B.D.1
Ganapathy, B.2
Walsh, S.3
Choudhury, S.4
Ammanamanchi, N.5
Bennett, D.G.6
Dos Remedios, C.G.7
Haubner, B.J.8
Penninger, J.M.9
Kühn, B.10
-
167
-
-
78650412123
-
Parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses
-
Jabbour A, Hayward CS, Keogh AM, Kotlyar E, McCrohon JA, England JF, Amor R, Liu X, Li XY, Zhou MD, Graham RM, Macdonald PS. Parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses. Eur J Heart Fail. 2011;13:83-92. doi: 10.1093/eurjhf/hfq152.
-
(2011)
Eur J Heart Fail
, vol.13
, pp. 83-92
-
-
Jabbour, A.1
Hayward, C.S.2
Keogh, A.M.3
Kotlyar, E.4
McCrohon, J.A.5
England, J.F.6
Amor, R.7
Liu, X.8
Li, X.Y.9
Zhou, M.D.10
Graham, R.M.11
MacDonald, P.S.12
-
168
-
-
84920087867
-
Recombinant neuregulin 1 does not activate cardiomyocyte DNA synthesis in normal or infarcted adult mice
-
Reuter S, Soonpaa MH, Firulli AB, Chang AN, Field LJ. Recombinant neuregulin 1 does not activate cardiomyocyte DNA synthesis in normal or infarcted adult mice. PLoS One. 2014;9:e115871. doi: 10.1371/journal. pone.0115871.
-
(2014)
PLoS One
, vol.9
, pp. e115871
-
-
Reuter, S.1
Soonpaa, M.H.2
Firulli, A.B.3
Chang, A.N.4
Field, L.J.5
-
169
-
-
0032562770
-
Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes
-
Zhao YY, Sawyer DR, Baliga RR, Opel DJ, Han X, Marchionni MA, Kelly RA. Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem. 1998;273:10261-10269.
-
(1998)
J Biol Chem
, vol.273
, pp. 10261-10269
-
-
Zhao, Y.Y.1
Sawyer, D.R.2
Baliga, R.R.3
Opel, D.J.4
Han, X.5
Marchionni, M.A.6
Kelly, R.A.7
-
170
-
-
78149338262
-
Neuregulin-1beta1 rapidly modulates nitric oxide synthesis and calcium handling in rat cardiomyocytes
-
Brero A, Ramella R, Fitou A, Dati C, Alloatti G, Gallo MP, Levi R. Neuregulin-1beta1 rapidly modulates nitric oxide synthesis and calcium handling in rat cardiomyocytes. Cardiovasc Res. 2010;88:443-452. doi: 10.1093/cvr/cvq238.
-
(2010)
Cardiovasc Res
, vol.88
, pp. 443-452
-
-
Brero, A.1
Ramella, R.2
Fitou, A.3
Dati, C.4
Alloatti, G.5
Gallo, M.P.6
Levi, R.7
-
171
-
-
84873665320
-
Yes-associated protein isoform 1 (Yap1) promotes cardiomyocyte survival and growth to protect against myocardial ischemic injury
-
Del Re DP, Yang Y, Nakano N, Cho J, Zhai P, Yamamoto T, Zhang N, Yabuta N, Nojima H, Pan D, Sadoshima J. Yes-associated protein isoform 1 (Yap1) promotes cardiomyocyte survival and growth to protect against myocardial ischemic injury. J Biol Chem. 2013;288:3977-3988. doi: 10.1074/jbc.M112.436311.
-
(2013)
J Biol Chem
, vol.288
, pp. 3977-3988
-
-
Del Re, D.P.1
Yang, Y.2
Nakano, N.3
Cho, J.4
Zhai, P.5
Yamamoto, T.6
Zhang, N.7
Yabuta, N.8
Nojima, H.9
Pan, D.10
Sadoshima, J.11
-
172
-
-
79958284636
-
Role of YAP/TAZ in mechanotransduction
-
Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474:179-183. doi: 10.1038/nature10137.
-
(2011)
Nature
, vol.474
, pp. 179-183
-
-
Dupont, S.1
Morsut, L.2
Aragona, M.3
Enzo, E.4
Giulitti, S.5
Cordenonsi, M.6
Zanconato, F.7
Le Digabel, J.8
Forcato, M.9
Bicciato, S.10
Elvassore, N.11
Piccolo, S.12
-
173
-
-
84883466306
-
A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors
-
Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, Dupont S, Piccolo S. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell. 2013;154:1047-1059. doi: 10.1016/j.cell.2013.07.042.
-
(2013)
Cell
, vol.154
, pp. 1047-1059
-
-
Aragona, M.1
Panciera, T.2
Manfrin, A.3
Giulitti, S.4
Michielin, F.5
Elvassore, N.6
Dupont, S.7
Piccolo, S.8
-
174
-
-
84929089950
-
Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice
-
Morikawa Y, Zhang M, Heallen T, Leach J, Tao G, Xiao Y, Bai Y, Li W, Willerson JT, Martin JF. Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice. Sci Signal. 2015;8:41. doi: 10.1126/scisignal.2005781.
-
(2015)
Sci Signal
, vol.8
, pp. 41
-
-
Morikawa, Y.1
Zhang, M.2
Heallen, T.3
Leach, J.4
Tao, G.5
Xiao, Y.6
Bai, Y.7
Li, W.8
Willerson, J.T.9
Martin, J.F.10
-
175
-
-
84973630830
-
Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury
-
Tao G, Kahr PC, Morikawa Y, Zhang M, Rahmani M, Heallen TR, Li L, Sun Z, Olson EN, Amendt BA, Martin JF. Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury. Nature. 2016;534:119-123. doi: 10.1038/nature17959.
-
(2016)
Nature
, vol.534
, pp. 119-123
-
-
Tao, G.1
Kahr, P.C.2
Morikawa, Y.3
Zhang, M.4
Rahmani, M.5
Heallen, T.R.6
Li, L.7
Sun, Z.8
Olson, E.N.9
Amendt, B.A.10
Martin, J.F.11
-
176
-
-
84985905091
-
ErbB2 signaling at the crossing between heart failure and cancer
-
Vermeulen Z, Segers VF, De Keulenaer GW. ErbB2 signaling at the crossing between heart failure and cancer. Basic Res Cardiol. 2016;111:60. doi: 10.1007/s00395-016-0576-z.
-
(2016)
Basic Res Cardiol
, vol.111
, pp. 60
-
-
Vermeulen, Z.1
Segers, V.F.2
De Keulenaer, G.W.3
-
178
-
-
84936857429
-
Dynamic alterations to-actinin accompanying sarcomere disassembly and reassembly during cardiomyocyte mitosis
-
Fan X, Hughes BG, Ali MA, Cho WJ, Lopez W, Schulz R. Dynamic alterations to-actinin accompanying sarcomere disassembly and reassembly during cardiomyocyte mitosis. PLoS One. 2015;10:e0129176. doi: 10.1371/journal.pone.0129176.
-
(2015)
PLoS One
, vol.10
, pp. e0129176
-
-
Fan, X.1
Hughes, B.G.2
Ali, M.A.3
Cho, W.J.4
Lopez, W.5
Schulz, R.6
-
179
-
-
79251554060
-
Cardiomyocyte differentiation of pluripotent stem cells and their use as cardiac disease models
-
Dambrot C, Passier R, Atsma D, Mummery CL. Cardiomyocyte differentiation of pluripotent stem cells and their use as cardiac disease models. Biochem J. 2011;434:25-35. doi: 10.1042/BJ20101707.
-
(2011)
Biochem J
, vol.434
, pp. 25-35
-
-
Dambrot, C.1
Passier, R.2
Atsma, D.3
Mummery, C.L.4
-
180
-
-
84859958334
-
Contractile properties of early human embryonic stem cell-derived cardiomyocytes: Beta-adrenergic stimulation induces positive chronotropy and lusitropy but not inotropy
-
Pillekamp F, Haustein M, Khalil M, Emmelheinz M, Nazzal R, Adelmann R, Nguemo F, Rubenchyk O, Pfannkuche K, Matzkies M, Reppel M, Bloch W, Brockmeier K, Hescheler J. Contractile properties of early human embryonic stem cell-derived cardiomyocytes: beta-adrenergic stimulation induces positive chronotropy and lusitropy but not inotropy. Stem Cells Dev. 2012;21:2111-2121. doi: 10.1089/scd.2011.0312.
-
(2012)
Stem Cells Dev
, vol.21
, pp. 2111-2121
-
-
Pillekamp, F.1
Haustein, M.2
Khalil, M.3
Emmelheinz, M.4
Nazzal, R.5
Adelmann, R.6
Nguemo, F.7
Rubenchyk, O.8
Pfannkuche, K.9
Matzkies, M.10
Reppel, M.11
Bloch, W.12
Brockmeier, K.13
Hescheler, J.14
-
181
-
-
84859641526
-
Application of human stem cell-derived cardiomyocytes in safety pharmacology requires caution beyond hERG
-
Jonsson MK, Vos MA, Mirams GR, Duker G, Sartipy P, de Boer TP, van Veen TA. Application of human stem cell-derived cardiomyocytes in safety pharmacology requires caution beyond hERG. J Mol Cell Cardiol. 2012;52:998-1008. doi: 10.1016/j.yjmcc.2012.02.002.
-
(2012)
J Mol Cell Cardiol
, vol.52
, pp. 998-1008
-
-
Jonsson, M.K.1
Vos, M.A.2
Mirams, G.R.3
Duker, G.4
Sartipy, P.5
De Boer, T.P.6
Van Veen, T.A.7
-
182
-
-
77951620985
-
Mechanical stress-induced sarcomere assembly for cardiac muscle growth in length and width
-
Russell B, Curtis MW, Koshman YE, Samarel AM. Mechanical stress-induced sarcomere assembly for cardiac muscle growth in length and width. J Mol Cell Cardiol. 2010;48:817-823. doi: 10.1016/j.yjmcc.2010.02.016.
-
(2010)
J Mol Cell Cardiol
, vol.48
, pp. 817-823
-
-
Russell, B.1
Curtis, M.W.2
Koshman, Y.E.3
Samarel, A.M.4
-
183
-
-
0030219688
-
Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development
-
Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol. 1996;28:1737-1746. doi: 10.1006/jmcc.1996.0163.
-
(1996)
J Mol Cell Cardiol
, vol.28
, pp. 1737-1746
-
-
Li, F.1
Wang, X.2
Capasso, J.M.3
Gerdes, A.M.4
-
184
-
-
79251617662
-
Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth
-
Kehat I, Davis J, Tiburcy M, Accornero F, Saba-El-Leil MK, Maillet M, York AJ, Lorenz JN, Zimmermann WH, Meloche S, Molkentin JD. Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth. Circ Res. 2011;108:176-183. doi: 10.1161/CIRCRESAHA.110.231514.
-
(2011)
Circ Res
, vol.108
, pp. 176-183
-
-
Kehat, I.1
Davis, J.2
Tiburcy, M.3
Accornero, F.4
Saba-El-Leil, M.K.5
Maillet, M.6
York, A.J.7
Lorenz, J.N.8
Zimmermann, W.H.9
Meloche, S.10
Molkentin, J.D.11
-
185
-
-
84901725630
-
Matrix elasticity regulates the optimal cardiac myocyte shape for contractility
-
McCain ML, Yuan H, Pasqualini FS, Campbell PH, Parker KK. Matrix elasticity regulates the optimal cardiac myocyte shape for contractility. Am J Physiol Heart Circ Physiol. 2014;306:H1525-H1539. doi: 10.1152/ajpheart.00799.2013.
-
(2014)
Am J Physiol Heart Circ Physiol
, vol.306
, pp. H1525-H1539
-
-
McCain, M.L.1
Yuan, H.2
Pasqualini, F.S.3
Campbell, P.H.4
Parker, K.K.5
-
186
-
-
77951618536
-
Influence of substrate stiffness on the phenotype of heart cells
-
Bhana B, Iyer RK, Chen WL, Zhao R, Sider KL, Likhitpanichkul M, Simmons CA, Radisic M. Influence of substrate stiffness on the phenotype of heart cells. Biotechnol Bioeng. 2010;105:1148-1160. doi: 10.1002/bit.22647.
-
(2010)
Biotechnol Bioeng
, vol.105
, pp. 1148-1160
-
-
Bhana, B.1
Iyer, R.K.2
Chen, W.L.3
Zhao, R.4
Sider, K.L.5
Likhitpanichkul, M.6
Simmons, C.A.7
Radisic, M.8
-
187
-
-
84944096646
-
Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness
-
Ribeiro AJ, Ang Y-S, Fu J-D, Rivas RN, Mohamed TM, Higgs GC, Srivastava D, Pruitt BL. Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proc Natl Acad Sci USA. 2015;112:12705-12710.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. 12705-12710
-
-
Ribeiro, A.J.1
Ang, Y.-S.2
Fu, J.-D.3
Rivas, R.N.4
Mohamed, T.M.5
Higgs, G.C.6
Srivastava, D.7
Pruitt, B.L.8
-
188
-
-
49149106635
-
Sarcomere alignment is regulated by myocyte shape
-
Bray MA, Sheehy SP, Parker KK. Sarcomere alignment is regulated by myocyte shape. Cell Motil Cytoskeleton. 2008;65:641-651. doi: 10.1002/cm.20290.
-
(2008)
Cell Motil Cytoskeleton
, vol.65
, pp. 641-651
-
-
Bray, M.A.1
Sheehy, S.P.2
Parker, K.K.3
-
189
-
-
0027481546
-
Troponin isoform switching in the developing heart and its functional consequences
-
Schiaffino S, Gorza L, Ausoni S. Troponin isoform switching in the developing heart and its functional consequences. Trends Cardiovasc Med. 1993;3:12-17. doi: 10.1016/1050-1738(93)90022-X.
-
(1993)
Trends Cardiovasc Med
, vol.3
, pp. 12-17
-
-
Schiaffino, S.1
Gorza, L.2
Ausoni, S.3
-
190
-
-
1842830381
-
Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart
-
Opitz CA, Leake MC, Makarenko I, Benes V, Linke WA. Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ Res. 2004;94:967-975. doi: 10.1161/01. RES.0000124301.48193.E1.
-
(2004)
Circ Res.
, vol.94
, pp. 967-975
-
-
Opitz, C.A.1
Leake, M.C.2
Makarenko, I.3
Benes, V.4
Linke, W.A.5
-
192
-
-
0034616196
-
A novel marker for vertebrate embryonic heart, the EH-myomesin isoform
-
Agarkova I, Auerbach D, Ehler E, Perriard JC. A novel marker for vertebrate embryonic heart, the EH-myomesin isoform. J Biol Chem. 2000;275:10256-10264.
-
(2000)
J Biol Chem
, vol.275
, pp. 10256-10264
-
-
Agarkova, I.1
Auerbach, D.2
Ehler, E.3
Perriard, J.C.4
-
193
-
-
84908052815
-
Acquisition of a quantitative, stoichiometrically conserved ratiometric marker of maturation status in stem cell-derived cardiac myocytes
-
Bedada FB, Chan SS, Metzger SK, Zhang L, Zhang J, Garry DJ, Kamp TJ, Kyba M, Metzger JM. Acquisition of a quantitative, stoichiometrically conserved ratiometric marker of maturation status in stem cell-derived cardiac myocytes. Stem Cell Reports. 2014;3:594-605. doi: 10.1016/j.stemcr.2014.07.012.
-
(2014)
Stem Cell Reports
, vol.3
, pp. 594-605
-
-
Bedada, F.B.1
Chan, S.S.2
Metzger, S.K.3
Zhang, L.4
Zhang, J.5
Garry, D.J.6
Kamp, T.J.7
Kyba, M.8
Metzger, J.M.9
-
194
-
-
34447517547
-
Resurgence of cardiac t-tubule research
-
Brette F, Orchard C. Resurgence of cardiac t-tubule research. Physiology (Bethesda). 2007;22:167-173. doi: 10.1152/physiol.00005.2007.
-
(2007)
Physiology (Bethesda)
, vol.22
, pp. 167-173
-
-
Brette, F.1
Orchard, C.2
-
195
-
-
80051499864
-
The structure and function of cardiac t-tubules in health and disease
-
Ibrahim M, Gorelik J, Yacoub MH, Terracciano CM. The structure and function of cardiac t-tubules in health and disease. Proc Biol Sci. 2011;278:2714-2723. doi: 10.1098/rspb.2011.0624.
-
(2011)
Proc Biol Sci
, vol.278
, pp. 2714-2723
-
-
Ibrahim, M.1
Gorelik, J.2
Yacoub, M.H.3
Terracciano, C.M.4
-
196
-
-
84887944835
-
Junctophilin-2 is necessary for T-tubule maturation during mouse heart development
-
Reynolds JO, Chiang DY, Wang W, Beavers DL, Dixit SS, Skapura DG, Landstrom AP, Song L-S, Ackerman MJ, Wehrens XH. Junctophilin-2 is necessary for T-tubule maturation during mouse heart development. Cardiovasc Res. 2013;100:44-53. doi: 10.1093/cvr/cvt133.
-
(2013)
Cardiovasc Res
, vol.100
, pp. 44-53
-
-
Reynolds, J.O.1
Chiang, D.Y.2
Wang, W.3
Beavers, D.L.4
Dixit, S.S.5
Skapura, D.G.6
Landstrom, A.P.7
Song, L.-S.8
Ackerman, M.J.9
Wehrens, X.H.10
-
197
-
-
84902208952
-
Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia
-
Hong T, Yang H, Zhang SS, Cho HC, Kalashnikova M, Sun B, Zhang H, Bhargava A, Grabe M, Olgin J, Gorelik J, Marbán E, Jan LY, Shaw RM. Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nat Med. 2014;20:624-632. doi: 10.1038/nm.3543.
-
(2014)
Nat Med
, vol.20
, pp. 624-632
-
-
Hong, T.1
Yang, H.2
Zhang, S.S.3
Cho, H.C.4
Kalashnikova, M.5
Sun, B.6
Zhang, H.7
Bhargava, A.8
Grabe, M.9
Olgin, J.10
Gorelik, J.11
Marbán, E.12
Jan, L.Y.13
Shaw, R.M.14
-
198
-
-
84961217707
-
Metabolic remodeling in early development and cardiomyocyte maturation
-
Ellen Kreipke R, Wang Y, Miklas JW, Mathieu J, Ruohola-Baker H. Metabolic remodeling in early development and cardiomyocyte maturation. Semin Cell Dev Biol. 2016;52:84-92. doi: 10.1016/j.semcdb.2016.02.004.
-
(2016)
Semin Cell Dev Biol
, vol.52
, pp. 84-92
-
-
Ellen Kreipke, R.1
Wang, Y.2
Miklas, J.W.3
Mathieu, J.4
Ruohola-Baker, H.5
-
199
-
-
84866894493
-
Mitofusins 1 and 2 are essential for postnatal metabolic remodeling in heart
-
Papanicolaou KN, Kikuchi R, Ngoh GA, Coughlan KA, Dominguez I, Stanley WC, Walsh K. Mitofusins 1 and 2 are essential for postnatal metabolic remodeling in heart. Circ Res. 2012;111:1012-1026. doi: 10.1161/CIRCRESAHA.112.274142.
-
(2012)
Circ Res
, vol.111
, pp. 1012-1026
-
-
Papanicolaou, K.N.1
Kikuchi, R.2
Ngoh, G.A.3
Coughlan, K.A.4
Dominguez, I.5
Stanley, W.C.6
Walsh, K.7
-
200
-
-
84894160639
-
Engineering adolescence: Maturation of human pluripotent stem cell-derived cardiomyocytes
-
Yang X, Pabon L, Murry CE. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res. 2014;114:511-523. doi: 10.1161/CIRCRESAHA.114.300558.
-
(2014)
Circ Res
, vol.114
, pp. 511-523
-
-
Yang, X.1
Pabon, L.2
Murry, C.E.3
-
201
-
-
77954502577
-
Postnatal development of mouse heart: Formation of energetic microdomains
-
Piquereau J, Novotova M, Fortin D, Garnier A, Ventura-Clapier R, Veksler V, Joubert F. Postnatal development of mouse heart: formation of energetic microdomains. J Physiol. 2010;588:2443-2454. doi: 10.1113/jphysiol.2010.189670.
-
(2010)
J Physiol
, vol.588
, pp. 2443-2454
-
-
Piquereau, J.1
Novotova, M.2
Fortin, D.3
Garnier, A.4
Ventura-Clapier, R.5
Veksler, V.6
Joubert, F.7
-
202
-
-
33846501510
-
Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells
-
Chung S, Dzeja PP, Faustino RS, Perez-Terzic C, Behfar A, Terzic A. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat Clin Pract Cardiovasc Med. 2007;4(suppl 1):S60-S67. doi: 10.1038/ncpcardio0766.
-
(2007)
Nat Clin Pract Cardiovasc Med
, vol.4
, pp. S60-S67
-
-
Chung, S.1
Dzeja, P.P.2
Faustino, R.S.3
Perez-Terzic, C.4
Behfar, A.5
Terzic, A.6
-
203
-
-
84952871968
-
Transcriptional landscape of cardiomyocyte maturation
-
Uosaki H, Cahan P, Lee DI, Wang S, Miyamoto M, Fernandez L, Kass DA, Kwon C. Transcriptional landscape of cardiomyocyte maturation. Cell Rep. 2015;13:1705-1716. doi: 10.1016/j.celrep.2015.10.032.
-
(2015)
Cell Rep
, vol.13
, pp. 1705-1716
-
-
Uosaki, H.1
Cahan, P.2
Lee, D.I.3
Wang, S.4
Miyamoto, M.5
Fernandez, L.6
Kass, D.A.7
Kwon, C.8
-
204
-
-
80052691753
-
The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation
-
Hom JR, Quintanilla RA, Hoffman DL, de Mesy Bentley KL, Molkentin JD, Sheu SS, Porter GA Jr. The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Dev Cell. 2011;21:469-478. doi: 10.1016/j.devcel.2011.08.008.
-
(2011)
Dev Cell
, vol.21
, pp. 469-478
-
-
Hom, J.R.1
Quintanilla, R.A.2
Hoffman, D.L.3
De Mesy Bentley, K.L.4
Molkentin, J.D.5
Sheu, S.S.6
Porter, G.A.7
-
205
-
-
84883425232
-
Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes
-
Kolwicz SC Jr, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res. 2013;113:603-616. doi: 10.1161/CIRCRESAHA.113.302095.
-
(2013)
Circ Res
, vol.113
, pp. 603-616
-
-
Kolwicz, S.C.1
Purohit, S.2
Tian, R.3
-
206
-
-
77955980416
-
Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation
-
Lopaschuk GD, Jaswal JS. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol. 2010;56:130-140. doi: 10.1097/FJC.0b013e3181e74a14.
-
(2010)
J Cardiovasc Pharmacol
, vol.56
, pp. 130-140
-
-
Lopaschuk, G.D.1
Jaswal, J.S.2
-
207
-
-
84930224849
-
Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes
-
Kuppusamy KT, Jones DC, Sperber H, Madan A, Fischer KA, Rodriguez ML, Pabon L, Zhu W-Z, Tulloch NL, Yang X. Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. Proc Natl Acad Sci USA. 2015;112:E2785-E2794.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. E2785-E2794
-
-
Kuppusamy, K.T.1
Jones, D.C.2
Sperber, H.3
Madan, A.4
Fischer, K.A.5
Rodriguez, M.L.6
Pabon, L.7
Zhu, W.-Z.8
Tulloch, N.L.9
Yang, X.10
-
208
-
-
84932605032
-
Novel roles of GATA4/6 in the postnatal heart identified through temporally controlled, cardiomyocyte-specific gene inactivation by adeno-associated virus delivery of Cre recombinase
-
Prendiville TW, Guo H, Lin Z, Zhou P, Stevens SM, He A, VanDusen N, Chen J, Zhong L, Wang DZ, Gao G, Pu WT. Novel roles of GATA4/6 in the postnatal heart identified through temporally controlled, cardiomyocyte-specific gene inactivation by adeno-associated virus delivery of Cre recombinase. PLoS One. 2015;10:e0128105. doi: 10.1371/journal. pone.0128105.
-
(2015)
PLoS One
, vol.10
, pp. e0128105
-
-
Prendiville, T.W.1
Guo, H.2
Lin, Z.3
Zhou, P.4
Stevens, S.M.5
He, A.6
Van Dusen, N.7
Chen, J.8
Zhong, L.9
Wang, D.Z.10
Gao, G.11
Pu, W.T.12
-
209
-
-
84954521442
-
A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9
-
Carroll KJ, Makarewich CA, McAnally J, Anderson DM, Zentilin L, Liu N, Giacca M, Bassel-Duby R, Olson EN. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9. Proc Natl Acad Sci USA. 2016;113:338-343. doi: 10.1073/pnas.1523918113.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, pp. 338-343
-
-
Carroll, K.J.1
Makarewich, C.A.2
McAnally, J.3
Anderson, D.M.4
Zentilin, L.5
Liu, N.6
Giacca, M.7
Bassel-Duby, R.8
Olson, E.N.9
-
210
-
-
84912101598
-
CRISPR-Cas9 knockin mice for genome editing and cancer modeling
-
Platt RJ, Chen S, Zhou Y, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159:440-455. doi: 10.1016/j.cell.2014.09.014.
-
(2014)
Cell
, vol.159
, pp. 440-455
-
-
Platt, R.J.1
Chen, S.2
Zhou, Y.3
-
211
-
-
84877794737
-
Tissueengineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes
-
Zhang D, Shadrin IY, Lam J, Xian HQ, Snodgrass HR, Bursac N. Tissueengineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials. 2013;34:5813-5820. doi: 10.1016/j.biomaterials.2013.04.026.
-
(2013)
Biomaterials
, vol.34
, pp. 5813-5820
-
-
Zhang, D.1
Shadrin, I.Y.2
Lam, J.3
Xian, H.Q.4
Snodgrass, H.R.5
Bursac, N.6
-
212
-
-
84881480907
-
Biowire: A platform for maturation of human pluripotent stem cell-derived cardiomyocytes
-
Nunes SS, Miklas JW, Liu J, et al. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods. 2013;10:781-787. doi: 10.1038/nmeth.2524.
-
(2013)
Nat Methods
, vol.10
, pp. 781-787
-
-
Nunes, S.S.1
Miklas, J.W.2
Liu, J.3
-
213
-
-
84895041557
-
The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes
-
Mihic A, Li J, Miyagi Y, Gagliardi M, Li SH, Zu J, Weisel RD, Keller G, Li RK. The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes. Biomaterials. 2014;35:2798-2808. doi: 10.1016/j.biomaterials.2013.12.052.
-
(2014)
Biomaterials
, vol.35
, pp. 2798-2808
-
-
Mihic, A.1
Li, J.2
Miyagi, Y.3
Gagliardi, M.4
Li, S.H.5
Zu, J.6
Weisel, R.D.7
Keller, G.8
Li, R.K.9
-
214
-
-
79960023610
-
Growth of engineered human myocardium with mechanical loading and vascular coculture
-
Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, Pabon L, Reinecke H, Murry CE. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res. 2011;109:47-59. doi: 10.1161/CIRCRESAHA.110.237206.
-
(2011)
Circ Res
, vol.109
, pp. 47-59
-
-
Tulloch, N.L.1
Muskheli, V.2
Razumova, M.V.3
Korte, F.S.4
Regnier, M.5
Hauch, K.D.6
Pabon, L.7
Reinecke, H.8
Murry, C.E.9
-
215
-
-
55949086081
-
Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes
-
Jacot JG, McCulloch AD, Omens JH. Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys J. 2008;95:3479-3487. doi: 10.1529/biophysj.107.124545.
-
(2008)
Biophys J
, vol.95
, pp. 3479-3487
-
-
Jacot, J.G.1
McCulloch, A.D.2
Omens, J.H.3
-
216
-
-
84963984775
-
A tension-based model distinguishes hypertrophic versus dilated cardiomyopathy
-
Davis J, Davis LC, Correll RN, et al. A tension-based model distinguishes hypertrophic versus dilated cardiomyopathy. Cell. 2016;165:1147-1159. doi: 10.1016/j.cell.2016.04.002.
-
(2016)
Cell
, vol.165
, pp. 1147-1159
-
-
Davis, J.1
Davis, L.C.2
Correll, R.N.3
-
217
-
-
84923303475
-
Mechanosensitive kinases regulate stiffness-induced cardiomyocyte maturation
-
Young JL, Kretchmer K, Ondeck MG, Zambon AC, Engler AJ. Mechanosensitive kinases regulate stiffness-induced cardiomyocyte maturation. Sci Rep. 2014;4:6425. doi: 10.1038/srep06425.
-
(2014)
Sci Rep
, vol.4
, pp. 6425
-
-
Young, J.L.1
Kretchmer, K.2
Ondeck, M.G.3
Zambon, A.C.4
Engler, A.J.5
-
218
-
-
72149109285
-
Mechanobiology of cardiomyocyte development
-
Jacot JG, Martin JC, Hunt DL. Mechanobiology of cardiomyocyte development. J Biomech. 2010;43:93-98. doi: 10.1016/j.jbiomech.2009.09.014.
-
(2010)
J Biomech
, vol.43
, pp. 93-98
-
-
Jacot, J.G.1
Martin, J.C.2
Hunt, D.L.3
-
219
-
-
84855387076
-
Thyroid hormone drives fetal cardiomyocyte maturation
-
Chattergoon NN, Giraud GD, Louey S, Stork P, Fowden AL, Thornburg KL. Thyroid hormone drives fetal cardiomyocyte maturation. FASEB J. 2012;26:397-408. doi: 10.1096/fj.10-179895.
-
(2012)
FASEB J
, vol.26
, pp. 397-408
-
-
Chattergoon, N.N.1
Giraud, G.D.2
Louey, S.3
Stork, P.4
Fowden, A.L.5
Thornburg, K.L.6
-
220
-
-
84880227000
-
Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells
-
Lundy SD, Zhu WZ, Regnier M, Laflamme MA. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 2013;22:1991-2002. doi: 10.1089/scd.2012.0490.
-
(2013)
Stem Cells Dev
, vol.22
, pp. 1991-2002
-
-
Lundy, S.D.1
Zhu, W.Z.2
Regnier, M.3
Laflamme, M.A.4
-
221
-
-
84881088589
-
Induction of human cardiomyocyte-like cells from fibroblasts by defined factors
-
Wada R, Muraoka N, Inagawa K, et al. Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proc Natl Acad Sci USA. 2013;110:12667-12672. doi: 10.1073/pnas. 1304053110.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 12667-12672
-
-
Wada, R.1
Muraoka, N.2
Inagawa, K.3
-
222
-
-
30044442758
-
Establishment of cardiac cytoarchitecture in the developing mouse heart
-
Hirschy A, Schatzmann F, Ehler E, Perriard JC. Establishment of cardiac cytoarchitecture in the developing mouse heart. Dev Biol. 2006;289:430-441. doi: 10.1016/j.ydbio.2005.10.046.
-
(2006)
Dev Biol
, vol.289
, pp. 430-441
-
-
Hirschy, A.1
Schatzmann, F.2
Ehler, E.3
Perriard, J.C.4
|