메뉴 건너뛰기




Volumn 86, Issue , 2017, Pages 129-157

Ubiquitin ligases: Structure, function, and regulation

Author keywords

Agonist; Degron; Posttranslational modification; PTM; Ubiquitin ligase; Ubiquitination

Indexed keywords

PHYTOHORMONE; UBIQUITIN PROTEIN LIGASE E3; VIRAL PROTEIN; BACTERIAL PROTEIN; NEW DRUG; UBIQUITIN; UBIQUITIN PROTEIN LIGASE;

EID: 85021691475     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-060815-014922     Document Type: Review
Times cited : (977)

References (213)
  • 2
    • 65649115267 scopus 로고    scopus 로고
    • Recognition and processing of ubiquitin-protein conjugates by the proteasome
    • Finley D. (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78: 477-513
    • (2009) Annu. Rev. Biochem , vol.78 , pp. 477-513
    • Finley, D.1
  • 4
    • 0034915764 scopus 로고    scopus 로고
    • Mechanisms underlying ubiquitination
    • Pickart CM. (2001). Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70: 503-33
    • (2001) Annu. Rev. Biochem , vol.70 , pp. 503-533
    • Pickart, C.M.1
  • 6
    • 0033279836 scopus 로고    scopus 로고
    • SCF and cullin/RING H2-based ubiquitin ligases
    • Deshaies RJ. (1999). SCF and cullin/RING H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15: 435-67
    • (1999) Annu. Rev. Cell Dev. Biol , vol.15 , pp. 435-467
    • Deshaies, R.J.1
  • 7
  • 8
    • 84906515478 scopus 로고    scopus 로고
    • Insights into the anaphase-promoting complex: A molecular machine that regulates mitosis
    • Chang L, Barford D. (2014). Insights into the anaphase-promoting complex: a molecular machine that regulates mitosis. Curr. Opin. Struct. Biol. 29: 1-9
    • (2014) Curr. Opin. Struct. Biol , vol.29 , pp. 1-9
    • Chang, L.1    Barford, D.2
  • 9
    • 0036467574 scopus 로고    scopus 로고
    • The brca1/bard1 heterodimer, a tumor suppressor complex with ubiquitin e3 ligase activity
    • Baer R, Ludwig T. (2002). The BRCA1/BARD1 heterodimer, a tumor suppressor complex with ubiquitin E3 ligase activity. Curr. Opin. Genet. Dev. 12: 86-91
    • (2002) Curr. Opin. Genet. Dev , vol.12 , pp. 86-91
    • Baer, R.1    Ludwig, T.2
  • 10
    • 0034682718 scopus 로고    scopus 로고
    • Structure of a c-Cbl-UbcH7 complex: RINGdomain function in ubiquitin-protein ligases
    • Zheng N, Wang P, Jeffrey PD, Pavletich NP. (2000). Structure of a c-Cbl-UbcH7 complex: RINGdomain function in ubiquitin-protein ligases. Cell 102: 533-39
    • (2000) Cell , vol.102 , pp. 533-539
    • Zheng, N.1    Wang, P.2    Jeffrey, P.D.3    Pavletich, N.P.4
  • 11
    • 18344391432 scopus 로고    scopus 로고
    • Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex
    • Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, et al. (2002). Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416: 703-9
    • (2002) Nature , vol.416 , pp. 703-709
    • Zheng, N.1    Schulman, B.A.2    Song, L.3    Miller, J.J.4    Jeffrey, P.D.5
  • 12
    • 0034676443 scopus 로고    scopus 로고
    • Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex
    • Schulman BA, Carrano AC, Jeffrey PD, Bowen Z, Kinnucan ER, et al. (2000). Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 408: 381-86
    • (2000) Nature , vol.408 , pp. 381-386
    • Schulman, B.A.1    Carrano, A.C.2    Jeffrey, P.D.3    Bowen, Z.4    Kinnucan, E.R.5
  • 13
    • 27944495299 scopus 로고    scopus 로고
    • Chaperoned ubiquitylation-crystal structures of the CHIP Ubox E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex
    • Zhang M, Windheim M, Roe SM, Peggie M, Cohen P, et al. (2005). Chaperoned ubiquitylation-crystal structures of the CHIP Ubox E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell 20: 525-38
    • (2005) Mol. Cell , vol.20 , pp. 525-538
    • Zhang, M.1    Windheim, M.2    Roe, S.M.3    Peggie, M.4    Cohen, P.5
  • 14
    • 57649120782 scopus 로고    scopus 로고
    • Structures of the cIAP2 RING domain reveal conformational changes associated with ubiquitin-conjugating enzyme E2) recruitment
    • Mace PD, Linke K, Feltham R, Schumacher FR, Smith CA, et al. (2008). Structures of the cIAP2 RING domain reveal conformational changes associated with ubiquitin-conjugating enzyme (E2) recruitment. J. Biol. Chem. 283: 31633-40
    • (2008) J. Biol. Chem , vol.283 , pp. 31633-31640
    • Mace, P.D.1    Linke, K.2    Feltham, R.3    Schumacher, F.R.4    Smith, C.A.5
  • 15
    • 80155198826 scopus 로고    scopus 로고
    • Recognition of UbcH5c and the nucleosome by the Bmi1/Ring1b ubiquitin ligase complex
    • Bentley ML, Corn JE, Dong KC, Phung Q, Cheung TK, Cochran AG. (2011). Recognition of UbcH5c and the nucleosome by the Bmi1/Ring1b ubiquitin ligase complex. EMBO J. 30: 3285-97
    • (2011) EMBO J , vol.30 , pp. 3285-3297
    • Bentley, M.L.1    Corn, J.E.2    Dong, K.C.3    Phung, Q.4    Cheung, T.K.5    Cochran, A.G.6
  • 16
    • 67349242723 scopus 로고    scopus 로고
    • E2 interaction and dimerization in the crystal structure of TRAF6
    • Yin Q, Lin SC, Lamothe B, Lu M, Lo YC, et al. (2009). E2 interaction and dimerization in the crystal structure of TRAF6. Nat. Struct. Mol. Biol. 16: 658-66
    • (2009) Nat. Struct. Mol. Biol , vol.16 , pp. 658-666
    • Yin, Q.1    Lin, S.C.2    Lamothe, B.3    Lu, M.4    Lo, Y.C.5
  • 17
    • 30044437590 scopus 로고    scopus 로고
    • Mechanistic insight into the allosteric activation of a ubiquitinconjugating enzyme by RING-Type ubiquitin ligases
    • Ozkan E, Yu H, Deisenhofer J. (2005). Mechanistic insight into the allosteric activation of a ubiquitinconjugating enzyme by RING-Type ubiquitin ligases. PNAS 102: 18890-95
    • (2005) PNAS , vol.102 , pp. 18890-18895
    • Ozkan, E.1    Yu, H.2    Deisenhofer, J.3
  • 18
    • 77955493101 scopus 로고    scopus 로고
    • Molecular basis for the association of human E4B U box ubiquitin ligase with E2-conjugating enzymes UbcH5c and Ubc4
    • Benirschke RC, Thompson JR, Nominé Y, Wasielewski E, Juraníc N, et al. (2010). Molecular basis for the association of human E4B U box ubiquitin ligase with E2-conjugating enzymes UbcH5c and Ubc4. Structure 18: 955-65
    • (2010) Structure , vol.18 , pp. 955-965
    • Benirschke, R.C.1    Thompson, J.R.2    Nominé, Y.3    Wasielewski, E.4    Juraníc, N.5
  • 19
    • 0034788322 scopus 로고    scopus 로고
    • Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail
    • Hamilton KS, Ellison MJ, Barber KR, Williams RS, Huzil JT, et al. (2001). Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail. Structure 9: 897-904
    • (2001) Structure , vol.9 , pp. 897-904
    • Hamilton, K.S.1    Ellison, M.J.2    Barber, K.R.3    Williams, R.S.4    Huzil, J.T.5
  • 20
    • 79953296212 scopus 로고    scopus 로고
    • Essential role for ubiquitin-ubiquitinconjugating enzyme interaction in ubiquitin discharge from Cdc34 to substrate
    • Saha A, Lewis S, Kleiger G, Kuhlman B, Deshaies RJ. (2011). Essential role for ubiquitin-ubiquitinconjugating enzyme interaction in ubiquitin discharge from Cdc34 to substrate. Mol. Cell 42: 75-83
    • (2011) Mol. Cell , vol.42 , pp. 75-83
    • Saha, A.1    Lewis, S.2    Kleiger, G.3    Kuhlman, B.4    Deshaies, R.J.5
  • 21
    • 79952290609 scopus 로고    scopus 로고
    • The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2
    • Wickliffe KE, Lorenz S, Wemmer DE, Kuriyan J, Rape M. (2011). The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell 144: 769-81
    • (2011) Cell , vol.144 , pp. 769-781
    • Wickliffe, K.E.1    Lorenz, S.2    Wemmer, D.E.3    Kuriyan, J.4    Rape, M.5
  • 23
    • 79952407243 scopus 로고    scopus 로고
    • Ubiquitin in motion: Structural studies of the ubiquitin-conjugating enzyme~ubiquitin conjugate
    • Pruneda JN, Stoll KE, Bolton LJ, Brzovic PS, Klevit RE. (2011). Ubiquitin in motion: structural studies of the ubiquitin-conjugating enzyme~ubiquitin conjugate. Biochemistry 50: 1624-33
    • (2011) Biochemistry , vol.50 , pp. 1624-1633
    • Pruneda, J.N.1    Stoll, K.E.2    Bolton, L.J.3    Brzovic, P.S.4    Klevit, R.E.5
  • 24
    • 73449088337 scopus 로고    scopus 로고
    • Crystal structure of UbcH5b~ubiquitin intermediate: Insight into the formation of the self-Assembled E2~Ub conjugates
    • Sakata E, Satoh T, Yamamoto S, Yamaguchi Y, Yagi-Utsumi M, et al. (2010). Crystal structure of UbcH5b~ubiquitin intermediate: insight into the formation of the self-Assembled E2~Ub conjugates. Structure 18: 138-47
    • (2010) Structure , vol.18 , pp. 138-147
    • Sakata, E.1    Satoh, T.2    Yamamoto, S.3    Yamaguchi, Y.4    Yagi-Utsumi, M.5
  • 25
    • 84877020980 scopus 로고    scopus 로고
    • Activation of UbcH5c~Ub is the result of a shift in interdomain motions of the conjugate bound to U-box E3 ligase E4B
    • Soss SE, Klevit RE, Chazin WJ. (2013). Activation of UbcH5c~Ub is the result of a shift in interdomain motions of the conjugate bound to U-box E3 ligase E4B. Biochemistry 52: 2991-99
    • (2013) Biochemistry , vol.52 , pp. 2991-2999
    • Soss, S.E.1    Klevit, R.E.2    Chazin, W.J.3
  • 26
    • 84866858702 scopus 로고    scopus 로고
    • Structure of an E3: E2~Ub complex reveals an allosteric mechanism shared among RING/U-box ligases
    • Pruneda JN, Littlefield PJ, Soss SE, Nordquist KA, Chazin WJ, et al. (2012). Structure of an E3: E2~Ub complex reveals an allosteric mechanism shared among RING/U-box ligases. Mol. Cell 47: 933-42
    • (2012) Mol. Cell , vol.47 , pp. 933-942
    • Pruneda, J.N.1    Littlefield, P.J.2    Soss, S.E.3    Nordquist, K.A.4    Chazin, W.J.5
  • 27
    • 84865781586 scopus 로고    scopus 로고
    • Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis
    • Plechanovová A, Jaffray EG, Tatham MH, Naismith JH, Hay RT. (2012). Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489: 115-20
    • (2012) Nature , vol.489 , pp. 115-120
    • Plechanovová, A.1    Jaffray, E.G.2    Tatham, M.H.3    Naismith, J.H.4    Hay, R.T.5
  • 28
    • 84866124869 scopus 로고    scopus 로고
    • BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer
    • Dou H, Buetow L, Sibbet GJ, Cameron K, Huang DT. (2012). BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer. Nat. Struct. Mol. Biol. 19: 876-83
    • (2012) Nat. Struct. Mol. Biol , vol.19 , pp. 876-883
    • Dou, H.1    Buetow, L.2    Sibbet, G.J.3    Cameron, K.4    Huang, D.T.5
  • 29
    • 84881478295 scopus 로고    scopus 로고
    • Essentiality of a non-RING element in priming donor ubiquitin for catalysis by a monomeric E3
    • Dou H, Buetow L, Sibbet GJ, Cameron K, Huang DT. (2013). Essentiality of a non-RING element in priming donor ubiquitin for catalysis by a monomeric E3. Nat. Struct. Mol. Biol. 20: 982-86
    • (2013) Nat. Struct. Mol. Biol , vol.20 , pp. 982-986
    • Dou, H.1    Buetow, L.2    Sibbet, G.J.3    Cameron, K.4    Huang, D.T.5
  • 30
    • 84928203901 scopus 로고    scopus 로고
    • Activation of a primed RING E3-E2-ubiquitin complex by non-covalent ubiquitin
    • Buetow L, Gabrielsen M, Anthony NG, Dou H, Patel A, et al. (2015). Activation of a primed RING E3-E2-ubiquitin complex by non-covalent ubiquitin. Mol. Cell 58: 297-310
    • (2015) Mol. Cell , vol.58 , pp. 297-310
    • Buetow, L.1    Gabrielsen, M.2    Anthony, N.G.3    Dou, H.4    Patel, A.5
  • 32
    • 20444384040 scopus 로고    scopus 로고
    • Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex
    • Reverter D, Lima CD. (2005). Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435: 687-92
    • (2005) Nature , vol.435 , pp. 687-692
    • Reverter, D.1    Lima, C.D.2
  • 33
    • 84903125623 scopus 로고    scopus 로고
    • Structure of a RING E3 trapped in action reveals ligation mechanism for the ubiquitin-like protein NEDD8
    • Scott DC, Sviderskiy VO, Monda JK, Lydeard JR, Cho SE, et al. (2014). Structure of a RING E3 trapped in action reveals ligation mechanism for the ubiquitin-like protein NEDD8. Cell 157: 1671-84
    • (2014) Cell , vol.157 , pp. 1671-1684
    • Scott, D.C.1    Sviderskiy, V.O.2    Monda, J.K.3    Lydeard, J.R.4    Cho, S.E.5
  • 34
    • 84874110594 scopus 로고    scopus 로고
    • A conserved asparagine has a structural role in ubiquitin-conjugating enzymes
    • Berndsen CE, Wiener R, Yu IW, Ringel AE, Wolberger C. (2013). A conserved asparagine has a structural role in ubiquitin-conjugating enzymes. Nat. Chem. Biol. 9: 154-56
    • (2013) Nat. Chem. Biol , vol.9 , pp. 154-156
    • Berndsen, C.E.1    Wiener, R.2    Yu, I.W.3    Ringel, A.E.4    Wolberger, C.5
  • 35
    • 0141753130 scopus 로고    scopus 로고
    • A conserved catalytic residue in the ubiquitin-conjugating enzyme family
    • Wu PY, Hanlon M, Eddins M, Tsui C, Rogers RS, et al. (2003). A conserved catalytic residue in the ubiquitin-conjugating enzyme family. EMBO J. 22: 5241-50
    • (2003) EMBO J , vol.22 , pp. 5241-5250
    • Wu, P.Y.1    Hanlon, M.2    Eddins, M.3    Tsui, C.4    Rogers, R.S.5
  • 36
    • 33744911377 scopus 로고    scopus 로고
    • Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway
    • Yunus AA, Lima CD. (2006). Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway. Nat. Struct. Mol. Biol. 13: 491-99
    • (2006) Nat. Struct. Mol. Biol , vol.13 , pp. 491-499
    • Yunus, A.A.1    Lima, C.D.2
  • 37
    • 33644850903 scopus 로고    scopus 로고
    • AUbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination
    • Brzovic PS, Lissounov A, Christensen DE, Hoyt DW, Klevit RE. (2006). AUbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. Mol. Cell 21: 873-80
    • (2006) Mol. Cell , vol.21 , pp. 873-880
    • Brzovic, P.S.1    Lissounov, A.2    Christensen, D.E.3    Hoyt, D.W.4    Klevit, R.E.5
  • 38
    • 67449110736 scopus 로고    scopus 로고
    • Allosteric activation of E2-RING finger-mediated ubiquitylation by a structurally defined specific E2-binding region of gp78
    • Das R, Mariano J, Tsai YC, Kalathur RC, Kostova Z, et al. (2009). Allosteric activation of E2-RING finger-mediated ubiquitylation by a structurally defined specific E2-binding region of gp78. Mol. Cell 34: 674-85
    • (2009) Mol. Cell , vol.34 , pp. 674-685
    • Das, R.1    Mariano, J.2    Tsai, Y.C.3    Kalathur, R.C.4    Kostova, Z.5
  • 39
    • 84884286514 scopus 로고    scopus 로고
    • Allosteric regulation of E2: E3 interactions promote a processive ubiquitination machine
    • Das R, Liang YH, Mariano J, Li J, Huang T, et al. (2013). Allosteric regulation of E2: E3 interactions promote a processive ubiquitination machine. EMBO J. 32: 2504-16
    • (2013) EMBO J , vol.32 , pp. 2504-2516
    • Das, R.1    Liang, Y.H.2    Mariano, J.3    Li, J.4    Huang, T.5
  • 40
    • 84954370395 scopus 로고    scopus 로고
    • Secondary ubiquitin-RING docking enhances Arkadia and Ark2C E3 ligase activity
    • Wright JD, Mace PD, Day CL. (2016). Secondary ubiquitin-RING docking enhances Arkadia and Ark2C E3 ligase activity. Nat. Struct. Mol. Biol. 23: 45-52
    • (2016) Nat. Struct. Mol. Biol , vol.23 , pp. 45-52
    • Wright, J.D.1    Mace, P.D.2    Day, C.L.3
  • 41
    • 71449123070 scopus 로고    scopus 로고
    • Detection of sequential polyubiquitylation on a millisecond timescale
    • Pierce NW, Kleiger G, Shan SO, Deshaies RJ. (2009). Detection of sequential polyubiquitylation on a millisecond timescale. Nature 462: 615-19
    • (2009) Nature , vol.462 , pp. 615-619
    • Pierce, N.W.1    Kleiger, G.2    Shan, S.O.3    Deshaies, R.J.4
  • 43
    • 34948848684 scopus 로고    scopus 로고
    • E2-brca1 ring interactions dictate synthesis of monoor specific polyubiquitin chain linkages
    • Christensen DE, Brzovic PS, Klevit RE. (2007). E2-BRCA1 RING interactions dictate synthesis of monoor specific polyubiquitin chain linkages. Nat. Struct. Mol. Biol. 14: 941-48
    • (2007) Nat. Struct. Mol. Biol , vol.14 , pp. 941-948
    • Christensen, D.E.1    Brzovic, P.S.2    Klevit, R.E.3
  • 44
    • 84892374224 scopus 로고    scopus 로고
    • Phosphorylation of p53 by TAF1 inactivates p53-dependent transcription in the DNA damage response
    • Wu Y, Lin JC, Piluso LG, Dhahbi JM, Bobadilla S, et al. (2014). Phosphorylation of p53 by TAF1 inactivates p53-dependent transcription in the DNA damage response. Mol. Cell 53: 63-74
    • (2014) Mol. Cell , vol.53 , pp. 63-74
    • Wu, Y.1    Lin, J.C.2    Piluso, L.G.3    Dhahbi, J.M.4    Bobadilla, S.5
  • 45
    • 43049162227 scopus 로고    scopus 로고
    • Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex
    • Jin L, Williamson A, Banerjee S, Philipp I, Rape M. (2008). Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133: 653-65
    • (2008) Cell , vol.133 , pp. 653-665
    • Jin, L.1    Williamson, A.2    Banerjee, S.3    Philipp, I.4    Rape, M.5
  • 46
    • 76549089605 scopus 로고    scopus 로고
    • UBE2S drives elongation of K11-linked ubiquitin chains by the anaphase-promoting complex
    • Wu T, Merbl Y, Huo Y, Gallop JL, Tzur A, Kirschner MW. (2010). UBE2S drives elongation of K11-linked ubiquitin chains by the anaphase-promoting complex. PNAS 107: 1355-60
    • (2010) PNAS , vol.107 , pp. 1355-1360
    • Wu, T.1    Merbl, Y.2    Huo, Y.3    Gallop, J.L.4    Tzur, A.5    Kirschner, M.W.6
  • 47
    • 70449529843 scopus 로고    scopus 로고
    • UBE2S elongates ubiquitin chains on APC/C substrates to promote mitotic exit
    • Garnett MJ, Mansfeld J, Godwin C, Matsusaka T, Wu J, et al. (2009). UBE2S elongates ubiquitin chains on APC/C substrates to promote mitotic exit. Nat. Cell Biol. 11: 1363-69
    • (2009) Nat. Cell Biol , vol.11 , pp. 1363-1369
    • Garnett, M.J.1    Mansfeld, J.2    Godwin, C.3    Matsusaka, T.4    Wu, J.5
  • 48
    • 70849116420 scopus 로고    scopus 로고
    • Identification of a physiological E2 module for the human anaphase-promoting complex
    • Williamson A, Wickliffe KE, Mellone BG, Song L, Karpen GH, Rape M. (2009). Identification of a physiological E2 module for the human anaphase-promoting complex. PNAS 106: 18213-18
    • (2009) PNAS , vol.106 , pp. 18213-18218
    • Williamson, A.1    Wickliffe, K.E.2    Mellone, B.G.3    Song, L.4    Karpen, G.H.5    Rape, M.6
  • 49
    • 28944435024 scopus 로고    scopus 로고
    • Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34
    • Petroski MD, Deshaies RJ. (2005). Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34. Cell 123: 1107-20
    • (2005) Cell , vol.123 , pp. 1107-1120
    • Petroski, M.D.1    Deshaies, R.J.2
  • 50
    • 53349121021 scopus 로고    scopus 로고
    • Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation
    • Saha A, Deshaies RJ. (2008). Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol. Cell 32: 21-31
    • (2008) Mol. Cell , vol.32 , pp. 21-31
    • Saha, A.1    Deshaies, R.J.2
  • 51
    • 77949548466 scopus 로고    scopus 로고
    • Priming and extending: A UbcH5/Cdc34 E2 handoff mechanism for polyubiquitination on a SCF substrate
    • Wu K, Kovacev J, Pan ZQ. (2010). Priming and extending: a UbcH5/Cdc34 E2 handoff mechanism for polyubiquitination on a SCF substrate. Mol. Cell 37: 784-96
    • (2010) Mol. Cell , vol.37 , pp. 784-796
    • Wu, K.1    Kovacev, J.2    Pan, Z.Q.3
  • 52
    • 70450218366 scopus 로고    scopus 로고
    • Rapid E2-E3 assembly and disassembly enable processive ubiquitylation of cullin-RING ubiquitin ligase substrates
    • Kleiger G, Saha A, Lewis S, Kuhlman B, Deshaies RJ. (2009). Rapid E2-E3 assembly and disassembly enable processive ubiquitylation of cullin-RING ubiquitin ligase substrates. Cell 139: 957-68
    • (2009) Cell , vol.139 , pp. 957-968
    • Kleiger, G.1    Saha, A.2    Lewis, S.3    Kuhlman, B.4    Deshaies, R.J.5
  • 53
    • 84922319624 scopus 로고    scopus 로고
    • Ubiquitin chain elongation requires E3-dependent tracking of the emerging conjugate
    • Kelly A, Wickliffe KE, Song L, Fedrigo I, Rape M. (2014). Ubiquitin chain elongation requires E3-dependent tracking of the emerging conjugate. Mol. Cell 56: 232-45
    • (2014) Mol. Cell , vol.56 , pp. 232-245
    • Kelly, A.1    Wickliffe, K.E.2    Song, L.3    Fedrigo, I.4    Rape, M.5
  • 54
    • 84929293495 scopus 로고    scopus 로고
    • Mechanism of polyubiquitination by human anaphase-promoting complex: RINGrepurposing for ubiquitin chain assembly
    • Brown NG, Watson ER, Weissmann F, Jarvis MA, VanderLinden R, et al. (2014). Mechanism of polyubiquitination by human anaphase-promoting complex: RINGrepurposing for ubiquitin chain assembly. Mol. Cell 56: 246-60
    • (2014) Mol. Cell , vol.56 , pp. 246-260
    • Brown, N.G.1    Watson, E.R.2    Weissmann, F.3    Jarvis, M.A.4    VanderLinden, R.5
  • 55
    • 84971517462 scopus 로고    scopus 로고
    • Dual RING E3 architectures regulate multiubiquitination and ubiquitin chain elongation by APC/C
    • Brown NG, VanderLinden R, Watson ER, Weissmann F, Ordureau A, et al. (2016). Dual RING E3 architectures regulate multiubiquitination and ubiquitin chain elongation by APC/C. Cell 165: 1440-53
    • (2016) Cell , vol.165 , pp. 1440-1453
    • Brown, N.G.1    VanderLinden, R.2    Watson, E.R.3    Weissmann, F.4    Ordureau, A.5
  • 56
    • 84927555890 scopus 로고    scopus 로고
    • Specificity of the anaphase-promoting complex: A single-molecule study
    • Lu Y, Wang W, Kirschner MW. (2015). Specificity of the anaphase-promoting complex: a single-molecule study. Science 348: 1248737
    • (2015) Science , vol.348 , pp. 1248737
    • Lu, Y.1    Wang, W.2    Kirschner, M.W.3
  • 57
    • 67349132223 scopus 로고    scopus 로고
    • Physiological functions of the HECT family of ubiquitin ligases
    • Rotin D, Kumar S. (2009). Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 10: 398-409
    • (2009) Nat. Rev. Mol. Cell Biol , vol.10 , pp. 398-409
    • Rotin, D.1    Kumar, S.2
  • 58
    • 0032741446 scopus 로고    scopus 로고
    • Structure of an E6AP-UbcH7 complex: Insights into ubiquitination by the E2-E3 enzyme cascade
    • Huang L, Kinnucan E, Wang G, Beaudenon S, Howley PM, et al. (1999). Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 286: 1321-26
    • (1999) Science , vol.286 , pp. 1321-1326
    • Huang, L.1    Kinnucan, E.2    Wang, G.3    Beaudenon, S.4    Howley, P.M.5
  • 59
    • 0037249354 scopus 로고    scopus 로고
    • Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase
    • Verdecia MA, Joazeiro CA, Wells NJ, Ferrer JL, Bowman ME, et al. (2003). Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol. Cell 11: 249-59
    • (2003) Mol. Cell , vol.11 , pp. 249-259
    • Verdecia, M.A.1    Joazeiro, C.A.2    Wells, N.J.3    Ferrer, J.L.4    Bowman, M.E.5
  • 60
    • 23044505285 scopus 로고    scopus 로고
    • Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain
    • Ogunjimi AA, Briant DJ, Pece-Barbara N, Le Roy C, Di Guglielmo GM, et al. (2005). Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol. Cell 19: 297-308
    • (2005) Mol. Cell , vol.19 , pp. 297-308
    • Ogunjimi, A.A.1    Briant, D.J.2    Pece-Barbara, N.3    Le Roy, C.4    Di Guglielmo, G.M.5
  • 61
    • 72149107116 scopus 로고    scopus 로고
    • Insights into ubiquitin transfer cascades from a structure of a UbcH5B~Ubiquitin-HECTNEDD4L complex
    • Kamadurai HB, Souphron J, Scott DC, Duda DM, Miller DJ, et al. (2009). Insights into ubiquitin transfer cascades from a structure of a UbcH5B~Ubiquitin-HECTNEDD4L complex. Mol. Cell 36: 1095-102
    • (2009) Mol. Cell , vol.36 , pp. 1095-1102
    • Kamadurai, H.B.1    Souphron, J.2    Scott, D.C.3    Duda, D.M.4    Miller, D.J.5
  • 62
    • 84878900697 scopus 로고    scopus 로고
    • Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming
    • Maspero E, Valentini E, Mari S, Cecatiello V, Soffientini P, et al. (2013). Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming. Nat. Struct. Mol. Biol. 20: 696-701
    • (2013) Nat. Struct. Mol. Biol , vol.20 , pp. 696-701
    • Maspero, E.1    Valentini, E.2    Mari, S.3    Cecatiello, V.4    Soffientini, P.5
  • 63
    • 84881518558 scopus 로고    scopus 로고
    • Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3
    • Kamadurai HB, Qiu Y, Deng A, Harrison JS, Macdonald C, et al. (2013). Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3. eLife 2: e00828
    • (2013) ELife , vol.2 , pp. e00828
    • Kamadurai, H.B.1    Qiu, Y.2    Deng, A.3    Harrison, J.S.4    Macdonald, C.5
  • 64
    • 67649227630 scopus 로고    scopus 로고
    • Polyubiquitination by HECT E3s and the determinants of chain type specificity
    • Kim HC, Huibregtse JM. (2009). Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol. Cell. Biol. 29: 3307-18
    • (2009) Mol. Cell. Biol , vol.29 , pp. 3307-3318
    • Kim, H.C.1    Huibregtse, J.M.2
  • 65
    • 66449125689 scopus 로고    scopus 로고
    • Regulation of the RSP5 ubiquitin ligase by an intrinsic ubiquitin-binding site
    • French ME, Kretzmann BR, Hicke L. (2009). Regulation of the RSP5 ubiquitin ligase by an intrinsic ubiquitin-binding site. J. Biol. Chem. 284: 12071-79
    • (2009) J. Biol. Chem , vol.284 , pp. 12071-12079
    • French, M.E.1    Kretzmann, B.R.2    Hicke, L.3
  • 67
    • 77949888615 scopus 로고    scopus 로고
    • The ubiquitin binding region of the Smurf HECT domain facilitates polyubiquitylation and binding of ubiquitylated substrates
    • Ogunjimi AA, Wiesner S, Briant DJ, Varelas X, Sicheri F, et al. (2010). The ubiquitin binding region of the Smurf HECT domain facilitates polyubiquitylation and binding of ubiquitylated substrates. J. Biol. Chem. 285: 6308-15
    • (2010) J. Biol. Chem , vol.285 , pp. 6308-6315
    • Ogunjimi, A.A.1    Wiesner, S.2    Briant, D.J.3    Varelas, X.4    Sicheri, F.5
  • 68
    • 79953325889 scopus 로고    scopus 로고
    • Structure of the HECT: Ubiquitin complex and its role in ubiquitin chain elongation
    • Maspero E, Mari S, Valentini E, Musacchio A, Fish A, et al. (2011). Structure of the HECT: ubiquitin complex and its role in ubiquitin chain elongation. EMBO Rep. 12: 342-49
    • (2011) EMBO Rep , vol.12 , pp. 342-349
    • Maspero, E.1    Mari, S.2    Valentini, E.3    Musacchio, A.4    Fish, A.5
  • 69
    • 84873085753 scopus 로고    scopus 로고
    • A strategy for modulation of enzymes in the ubiquitin system
    • Ernst A, Avvakumov G, Tong J, Fan Y, Zhao Y, et al. (2013). A strategy for modulation of enzymes in the ubiquitin system. Science 339: 590-95
    • (2013) Science , vol.339 , pp. 590-595
    • Ernst, A.1    Avvakumov, G.2    Tong, J.3    Fan, Y.4    Zhao, Y.5
  • 70
    • 84959285658 scopus 로고    scopus 로고
    • System-wide modulation of HECT E3 ligases with selective ubiquitin variant probes
    • Zhang W, Wu KP, Sartori MA, Kamadurai HB, Ordureau A, et al. (2016). System-wide modulation of HECT E3 ligases with selective ubiquitin variant probes. Mol. Cell 62: 121-36
    • (2016) Mol. Cell , vol.62 , pp. 121-136
    • Zhang, W.1    Wu, K.P.2    Sartori, M.A.3    Kamadurai, H.B.4    Ordureau, A.5
  • 71
    • 79957949190 scopus 로고    scopus 로고
    • UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids
    • Wenzel DM, Lissounov A, Brzovic PS, Klevit RE. (2011). UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 474: 105-8
    • (2011) Nature , vol.474 , pp. 105-108
    • Wenzel, D.M.1    Lissounov, A.2    Brzovic, P.S.3    Klevit, R.E.4
  • 73
    • 0037610801 scopus 로고    scopus 로고
    • Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex
    • Brzovic PS, Keeffe JR, Nishikawa H, Miyamoto K, Fox D, et al. (2003). Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. PNAS 100: 5646-51
    • (2003) PNAS , vol.100 , pp. 5646-5651
    • Brzovic, P.S.1    Keeffe, J.R.2    Nishikawa, H.3    Miyamoto, K.4    Fox, D.5
  • 74
    • 0033933048 scopus 로고    scopus 로고
    • Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase
    • Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, et al. (2000). Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 25: 302-5
    • (2000) Nat. Genet , vol.25 , pp. 302-305
    • Shimura, H.1    Hattori, N.2    Kubo, S.3    Mizuno, Y.4    Asakawa, S.5
  • 75
    • 84867096523 scopus 로고    scopus 로고
    • The E3 ligaseHOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension
    • Smit JJ, Monteferrario D, Noordermeer SM, van Dijk WJ, van der Reijden BA, Sixma TK. (2012). The E3 ligaseHOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension. EMBO J. 31: 3833-44
    • (2012) EMBO J , vol.31 , pp. 3833-3844
    • Smit, J.J.1    Monteferrario, D.2    Noordermeer, S.M.3    Van Dijk, W.J.4    Van Der Reijden, B.A.5    Sixma, T.K.6
  • 77
    • 84896870884 scopus 로고    scopus 로고
    • RBR E3 ubiquitin ligases: New structures, new insights, new questions
    • Spratt DE, Walden H, Shaw GS. (2014). RBR E3 ubiquitin ligases: new structures, new insights, new questions. Biochem. J. 458: 421-37
    • (2014) Biochem. J , vol.458 , pp. 421-437
    • Spratt, D.E.1    Walden, H.2    Shaw, G.S.3
  • 78
    • 0032499264 scopus 로고    scopus 로고
    • Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
    • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, et al. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605-8
    • (1998) Nature , vol.392 , pp. 605-608
    • Kitada, T.1    Asakawa, S.2    Hattori, N.3    Matsumine, H.4    Yamamura, Y.5
  • 79
    • 33750219981 scopus 로고    scopus 로고
    • A ubiquitin ligase complex assembles linear polyubiquitin chains
    • Kirisako T, Kamei K, Murata S, Kato M, Fukumoto H, et al. (2006). A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25: 4877-87
    • (2006) EMBO J , vol.25 , pp. 4877-4887
    • Kirisako, T.1    Kamei, K.2    Murata, S.3    Kato, M.4    Fukumoto, H.5
  • 80
    • 0033925333 scopus 로고    scopus 로고
    • Ariadne-1: A vital Drosophila gene is required in development and defines a new conserved family of ring-finger proteins
    • Aguilera M, Oliveros M, Martínez-Padrón M, Barbas JA, Ferrús A. (2000). Ariadne-1: a vital Drosophila gene is required in development and defines a new conserved family of ring-finger proteins. Genetics 155: 1231-44
    • (2000) Genetics , vol.155 , pp. 1231-1244
    • Aguilera, M.1    Oliveros, M.2    Martínez-Padrón, M.3    Barbas, J.A.4    Ferrús, A.5
  • 81
    • 79953239980 scopus 로고    scopus 로고
    • SHARPIN forms a linear ubiquitin ligase complex regulating NF-?B activity and apoptosis
    • Ikeda F, Deribe YL, SkÅnland SS, Stieglitz B, Grabbe C, et al. (2011). SHARPIN forms a linear ubiquitin ligase complex regulating NF-?B activity and apoptosis. Nature 471: 637-41
    • (2011) Nature , vol.471 , pp. 637-641
    • Ikeda, F.1    Deribe, Y.L.2    SkÅnland, S.S.3    Stieglitz, B.4    Grabbe, C.5
  • 82
    • 79953237668 scopus 로고    scopus 로고
    • SHARPIN is a component of the NF-?B-Activating linear ubiquitin chain assembly complex
    • Tokunaga F, Nakagawa T, Nakahara M, Saeki Y, Taniguchi M, et al. (2011). SHARPIN is a component of the NF-?B-Activating linear ubiquitin chain assembly complex. Nature 471: 633-36
    • (2011) Nature , vol.471 , pp. 633-636
    • Tokunaga, F.1    Nakagawa, T.2    Nakahara, M.3    Saeki, Y.4    Taniguchi, M.5
  • 83
    • 79960649509 scopus 로고    scopus 로고
    • Autoregulation of Parkin activity through its ubiquitin-like domain
    • Chaugule VK, Burchell L, Barber KR, Sidhu A, Leslie SJ, et al. (2011). Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J. 30: 2853-67
    • (2011) EMBO J , vol.30 , pp. 2853-2867
    • Chaugule, V.K.1    Burchell, L.2    Barber, K.R.3    Sidhu, A.4    Leslie, S.J.5
  • 84
    • 84879251778 scopus 로고    scopus 로고
    • Structure of parkin reveals mechanisms for ubiquitin ligase activation
    • Trempe JF, Sauvé V, Grenier K, Seirafi M, Tang MY, et al. (2013). Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340: 1451-55
    • (2013) Science , vol.340 , pp. 1451-1455
    • Trempe, J.F.1    Sauvé, V.2    Grenier, K.3    Seirafi, M.4    Tang, M.Y.5
  • 85
    • 84879674444 scopus 로고    scopus 로고
    • Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases
    • Riley BE, Lougheed JC, Callaway K, Velasquez M, Brecht E, et al. (2013). Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat. Commun. 4: 1982
    • (2013) Nat. Commun , vol.4 , pp. 1982
    • Riley, B.E.1    Lougheed, J.C.2    Callaway, K.3    Velasquez, M.4    Brecht, E.5
  • 86
    • 84881477223 scopus 로고    scopus 로고
    • Structure of the human Parkin ligase domain in an autoinhibited state
    • Wauer T, Komander D. (2013). Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J. 32: 2099-112
    • (2013) EMBO J , vol.32 , pp. 2099-2112
    • Wauer, T.1    Komander, D.2
  • 87
    • 84878840303 scopus 로고    scopus 로고
    • Structure of HHARI, a RING-IBR-RING ubiquitin ligase: Autoinhibition of an Ariadne-family E3 and insights into ligation mechanism
    • Duda DM, Olszewski JL, Schuermann JP, Kurinov I, Miller DJ, et al. (2013). Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism. Structure 21: 1030-41
    • (2013) Structure , vol.21 , pp. 1030-1041
    • Duda, D.M.1    Olszewski, J.L.2    Schuermann, J.P.3    Kurinov, I.4    Miller, D.J.5
  • 88
    • 84956664551 scopus 로고    scopus 로고
    • Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation
    • Lechtenberg BC, Rajput A, Sanishvili R, Dobaczewska MK, Ware CF, et al. (2016). Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Nature 529: 546-50
    • (2016) Nature , vol.529 , pp. 546-550
    • Lechtenberg, B.C.1    Rajput, A.2    Sanishvili, R.3    Dobaczewska, M.K.4    Ware, C.F.5
  • 89
    • 84939795423 scopus 로고    scopus 로고
    • Mechanism of phospho-ubiquitin-induced PARKIN activation
    • Wauer T, Simicek M, Schubert A, Komander D. (2015). Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524: 370-74
    • (2015) Nature , vol.524 , pp. 370-374
    • Wauer, T.1    Simicek, M.2    Schubert, A.3    Komander, D.4
  • 90
    • 84888034624 scopus 로고    scopus 로고
    • Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP
    • Stieglitz B, Rana RR, Koliopoulos MG, Morris-Davies AC, Schaeffer V, et al. (2013). Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP. Nature 503: 422-26
    • (2013) Nature , vol.503 , pp. 422-426
    • Stieglitz, B.1    Rana, R.R.2    Koliopoulos, M.G.3    Morris-Davies, A.C.4    Schaeffer, V.5
  • 91
    • 30844458212 scopus 로고    scopus 로고
    • A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase
    • Janjusevic R, Abramovitch RB, Martin GB, Stebbins CE. (2006). A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science 311: 222-26
    • (2006) Science , vol.311 , pp. 222-226
    • Janjusevic, R.1    Abramovitch, R.B.2    Martin, G.B.3    Stebbins, C.E.4
  • 92
    • 77954670354 scopus 로고    scopus 로고
    • NleG type 3 effectors from enterohaemorrhagic Escherichia coli are U-Box E3 ubiquitin ligases
    • Wu B, Skarina T, Yee A, Jobin MC, Dileo R, et al. (2010). NleG type 3 effectors from enterohaemorrhagic Escherichia coli are U-Box E3 ubiquitin ligases. PLOS Pathog. 6: e1000960
    • (2010) PLOS Pathog , vol.6 , pp. e1000960
    • Wu, B.1    Skarina, T.2    Yee, A.3    Jobin, M.C.4    Dileo, R.5
  • 93
    • 84863184187 scopus 로고    scopus 로고
    • Crystal structures of two bacterial HECT-like E3 ligases in complex with a human E2 reveal atomic details of pathogen-host interactions
    • Lin DY, Diao J, Chen J. (2012). Crystal structures of two bacterial HECT-like E3 ligases in complex with a human E2 reveal atomic details of pathogen-host interactions. PNAS 109: 1925-30
    • (2012) PNAS , vol.109 , pp. 1925-1930
    • Lin, D.Y.1    Diao, J.2    Chen, J.3
  • 94
    • 78650931837 scopus 로고    scopus 로고
    • Biochemical and structural studies of a HECT-like ubiquitin ligase from Escherichia coli O157
    • Lin DY, Diao J, Zhou D, Chen J. (2011). Biochemical and structural studies of a HECT-like ubiquitin ligase from Escherichia coli O157: H7. J. Biol. Chem. 286: 441-49
    • (2011) J. Biol. Chem H7 , vol.286 , pp. 441-449
    • Lin, D.Y.1    Diao, J.2    Zhou, D.3    Chen, J.4
  • 95
    • 37849010910 scopus 로고    scopus 로고
    • Crystal structure of Sop A, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase
    • Diao J, Zhang Y, Huibregtse JM, Zhou D, Chen J. (2008). Crystal structure of Sop A, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase. Nat. Struct. Mol. Biol. 15: 65-70
    • (2008) Nat. Struct. Mol. Biol , vol.15 , pp. 65-70
    • Diao, J.1    Zhang, Y.2    Huibregtse, J.M.3    Zhou, D.4    Chen, J.5
  • 97
    • 57149098210 scopus 로고    scopus 로고
    • Structure of a Shigella effector reveals a new class of ubiquitin ligases
    • Zhu Y, Li H, Hu L, Wang J, Zhou Y, et al. (2008). Structure of a Shigella effector reveals a new class of ubiquitin ligases. Nat. Struct. Mol. Biol. 15: 1302-8
    • (2008) Nat. Struct. Mol. Biol , vol.15 , pp. 1302-1308
    • Zhu, Y.1    Li, H.2    Hu, L.3    Wang, J.4    Zhou, Y.5
  • 98
    • 57149105701 scopus 로고    scopus 로고
    • Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases
    • Singer AU, Rohde JR, Lam R, Skarina T, Kagan O, et al. (2008). Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases. Nat. Struct. Mol. Biol. 15: 1293-301
    • (2008) Nat. Struct. Mol. Biol , vol.15 , pp. 1293-1301
    • Singer, A.U.1    Rohde, J.R.2    Lam, R.3    Skarina, T.4    Kagan, O.5
  • 99
    • 63849280748 scopus 로고    scopus 로고
    • A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases
    • Quezada CM, Hicks SW, Galán JE, Stebbins CE. (2009). A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases. PNAS 106: 4864-69
    • (2009) PNAS , vol.106 , pp. 4864-4869
    • Quezada, C.M.1    Hicks, S.W.2    Galán, J.E.3    Stebbins, C.E.4
  • 100
    • 84855287935 scopus 로고    scopus 로고
    • Conserved structural mechanisms for autoinhibition in IpaH ubiquitin ligases
    • Chou YC, Keszei AF, Rohde JR, Tyers M, Sicheri F. (2012). Conserved structural mechanisms for autoinhibition in IpaH ubiquitin ligases. J. Biol. Chem. 287: 268-75
    • (2012) J. Biol. Chem , vol.287 , pp. 268-275
    • Chou, Y.C.1    Keszei, A.F.2    Rohde, J.R.3    Tyers, M.4    Sicheri, F.5
  • 101
    • 84892473685 scopus 로고    scopus 로고
    • Structure of an SspH1-PKN1 complex reveals the basis for host substrate recognition and mechanism of activation for a bacterial E3 ubiquitin ligase
    • Keszei AF, Tang X, McCormick C, Zeqiraj E, Rohde JR, et al. (2014). Structure of an SspH1-PKN1 complex reveals the basis for host substrate recognition and mechanism of activation for a bacterial E3 ubiquitin ligase. Mol. Cell. Biol. 34: 362-73
    • (2014) Mol. Cell. Biol , vol.34 , pp. 362-373
    • Keszei, A.F.1    Tang, X.2    McCormick, C.3    Zeqiraj, E.4    Rohde, J.R.5
  • 102
    • 84908365192 scopus 로고    scopus 로고
    • The structure of the Slrp-Trx1 complex sheds light on the autoinhibition mechanism of the type III secretion system effectors of the NEL family
    • Zouhir S, Bernal-Bayard J, Cordero-Alba M, Cardenal-Mũnoz E, Guimaraes B, et al. (2014). The structure of the Slrp-Trx1 complex sheds light on the autoinhibition mechanism of the type III secretion system effectors of the NEL family. Biochem. J. 464: 135-44
    • (2014) Biochem. J , vol.464 , pp. 135-144
    • Zouhir, S.1    Bernal-Bayard, J.2    Cordero-Alba, M.3    Cardenal-Mũnoz, E.4    Guimaraes, B.5
  • 103
    • 84966350690 scopus 로고    scopus 로고
    • Ubiquitination independent of E1 and E2 enzymes by bacterial effectors
    • Qiu J, Sheedlo MJ, Yu K, Tan Y, Nakayasu ES, et al. (2016). Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature 533: 120-24
    • (2016) Nature , vol.533 , pp. 120-124
    • Qiu, J.1    Sheedlo, M.J.2    Yu, K.3    Tan, Y.4    Nakayasu, E.S.5
  • 104
    • 85001889664 scopus 로고    scopus 로고
    • Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination
    • Bhogaraju S, Kalayil S, Liu Y, Bonn F, Colby T, et al. (2016). Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination. Cell 167: 1636-49
    • (2016) Cell , vol.167 , pp. 1636-1649
    • Bhogaraju, S.1    Kalayil, S.2    Liu, Y.3    Bonn, F.4    Colby, T.5
  • 105
    • 1842591231 scopus 로고    scopus 로고
    • Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases
    • Marmor MD, Yarden Y. (2004). Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene 23: 2057-70
    • (2004) Oncogene , vol.23 , pp. 2057-2070
    • Marmor, M.D.1    Yarden, Y.2
  • 106
    • 0033392493 scopus 로고    scopus 로고
    • Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1
    • Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, et al. (1999). Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell 4: 1029-40
    • (1999) Mol. Cell , vol.4 , pp. 1029-1040
    • Levkowitz, G.1    Waterman, H.2    Ettenberg, S.A.3    Katz, M.4    Tsygankov, A.Y.5
  • 107
    • 3142618052 scopus 로고    scopus 로고
    • Regulation of ubiquitin protein ligase activity in c-Cbl by phosphorylation-induced conformational change and constitutive activation by tyrosine to glutamate point mutations
    • Kassenbrock CK, Anderson SM. (2004). Regulation of ubiquitin protein ligase activity in c-Cbl by phosphorylation-induced conformational change and constitutive activation by tyrosine to glutamate point mutations. J. Biol. Chem. 279: 28017-27
    • (2004) J. Biol. Chem , vol.279 , pp. 28017-28027
    • Kassenbrock, C.K.1    Anderson, S.M.2
  • 108
    • 77954928407 scopus 로고    scopus 로고
    • The N terminus of Cbl-c regulates ubiquitin ligase activity by modulating affinity for the ubiquitin-conjugating enzyme
    • Ryan PE, Sivadasan-Nair N, Nau MM, Nicholas S, Lipkowitz S. (2010). The N terminus of Cbl-c regulates ubiquitin ligase activity by modulating affinity for the ubiquitin-conjugating enzyme. J. Biol. Chem. 285: 23687-98
    • (2010) J. Biol. Chem , vol.285 , pp. 23687-23698
    • Ryan, P.E.1    Sivadasan-Nair, N.2    Nau, M.M.3    Nicholas, S.4    Lipkowitz, S.5
  • 110
    • 0033592868 scopus 로고    scopus 로고
    • Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage
    • Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D. (1999). Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. PNAS 96: 14973-77
    • (1999) PNAS , vol.96 , pp. 14973-14977
    • Khosravi, R.1    Maya, R.2    Gottlieb, T.3    Oren, M.4    Shiloh, Y.5    Shkedy, D.6
  • 111
    • 18244392958 scopus 로고    scopus 로고
    • Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na+ channel cell surface expression
    • Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, et al. (2001). Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na+ channel cell surface expression. EMBO J. 20: 7052-59
    • (2001) EMBO J , vol.20 , pp. 7052-7059
    • Debonneville, C.1    Flores, S.Y.2    Kamynina, E.3    Plant, P.J.4    Tauxe, C.5
  • 112
    • 84966925960 scopus 로고    scopus 로고
    • Molecular mechanism of APC/C activation by mitotic phosphorylation
    • Zhang S, Chang L, Alfieri C, Zhang Z, Yang J, et al. (2016). Molecular mechanism of APC/C activation by mitotic phosphorylation. Nature 533: 260-64
    • (2016) Nature , vol.533 , pp. 260-264
    • Zhang, S.1    Chang, L.2    Alfieri, C.3    Zhang, Z.4    Yang, J.5
  • 113
    • 84964507666 scopus 로고    scopus 로고
    • Cyclin-dependent kinase 1-dependent activation of APC/C ubiquitin ligase
    • Fujimitsu K, Grimaldi M, Yamano H. (2016). Cyclin-dependent kinase 1-dependent activation of APC/C ubiquitin ligase. Science 352: 1121-24
    • (2016) Science , vol.352 , pp. 1121-1124
    • Fujimitsu, K.1    Grimaldi, M.2    Yamano, H.3
  • 114
    • 50449110781 scopus 로고    scopus 로고
    • Autoinhibitory regulation of SCF-mediated ubiquitination by human cullin 1s C-Terminal tail
    • Yamoah K, Oashi T, Sarikas A, Gazdoiu S, Osman R, Pan ZQ. (2008). Autoinhibitory regulation of SCF-mediated ubiquitination by human cullin 1s C-Terminal tail. PNAS 105: 12230-35
    • (2008) PNAS , vol.105 , pp. 12230-12235
    • Yamoah, K.1    Oashi, T.2    Sarikas, A.3    Gazdoiu, S.4    Osman, R.5    Pan, Z.Q.6
  • 115
    • 50449108516 scopus 로고    scopus 로고
    • Structural insights into NEDD8 activation of cullin-RING ligases: Conformational control of conjugation
    • Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA. (2008). Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134: 995-1006
    • (2008) Cell , vol.134 , pp. 995-1006
    • Duda, D.M.1    Borg, L.A.2    Scott, D.C.3    Hunt, H.W.4    Hammel, M.5    Schulman, B.A.6
  • 116
    • 33749535905 scopus 로고    scopus 로고
    • Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery
    • Angers S, Li T, Yi X, MacCoss MJ, Moon RT, Zheng N. (2006). Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443: 590-93
    • (2006) Nature , vol.443 , pp. 590-593
    • Angers, S.1    Li, T.2    Yi, X.3    MacCoss, M.J.4    Moon, R.T.5    Zheng, N.6
  • 117
    • 77956296853 scopus 로고    scopus 로고
    • Glutamine deamidation and dysfunction of ubiquitin/ NEDD8 induced by a bacterial effector family
    • Cui J, Yao Q, Li S, Ding X, Lu Q, et al. (2010). Glutamine deamidation and dysfunction of ubiquitin/ NEDD8 induced by a bacterial effector family. Science 329: 1215-18
    • (2010) Science , vol.329 , pp. 1215-1218
    • Cui, J.1    Yao, Q.2    Li, S.3    Ding, X.4    Lu, Q.5
  • 118
    • 84949293487 scopus 로고    scopus 로고
    • Gln40 deamidation blocks structural reconfiguration and activation of SCF ubiquitin ligase complex by Nedd8
    • Yu C, Mao H, Novitsky EJ, Tang X, Rychnovsky SD, et al. (2015). Gln40 deamidation blocks structural reconfiguration and activation of SCF ubiquitin ligase complex by Nedd8. Nat. Commun. 6: 10053
    • (2015) Nat. Commun , vol.6 , pp. 10053
    • Yu, C.1    Mao, H.2    Novitsky, E.J.3    Tang, X.4    Rychnovsky, S.D.5
  • 119
    • 78149309149 scopus 로고    scopus 로고
    • Pathogenic bacteria target NEDD8-conjugated cullins to hijack host-cell signaling pathways
    • Jubelin G, Taieb F, Duda DM, Hsu Y, Samba-Louaka A, et al. (2010). Pathogenic bacteria target NEDD8-conjugated cullins to hijack host-cell signaling pathways. PLOS Pathog. 6: e1001128
    • (2010) PLOS Pathog , vol.6 , pp. e1001128
    • Jubelin, G.1    Taieb, F.2    Duda, D.M.3    Hsu, Y.4    Samba-Louaka, A.5
  • 120
    • 80054750064 scopus 로고    scopus 로고
    • Inhibition of cullin RING ligases by cycle inhibiting factor: Evidence for interference with Nedd8-induced conformational control
    • Boh BK, Ng MY, Leck YC, Shaw B, Long J, et al. (2011). Inhibition of cullin RING ligases by cycle inhibiting factor: evidence for interference with Nedd8-induced conformational control. J. Mol. Biol. 413: 430-37
    • (2011) J. Mol. Biol , vol.413 , pp. 430-437
    • Boh, B.K.1    Ng, M.Y.2    Leck, Y.C.3    Shaw, B.4    Long, J.5
  • 121
    • 80051733972 scopus 로고    scopus 로고
    • Ubiquitination of E3 ligases: Self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms
    • de Bie P, Ciechanover A. (2011). Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death Differ. 18: 1393-402
    • (2011) Cell Death Differ , vol.18 , pp. 1393-1402
    • De Bie, P.1    Ciechanover, A.2
  • 122
    • 84879582826 scopus 로고    scopus 로고
    • Auto-ubiquitination of Mdm2 enhances its substrate ubiquitin ligase activity
    • Ranaweera RS, Yang X. (2013). Auto-ubiquitination of Mdm2 enhances its substrate ubiquitin ligase activity. J. Biol. Chem. 288: 18939-46
    • (2013) J. Biol. Chem , vol.288 , pp. 18939-18946
    • Ranaweera, R.S.1    Yang, X.2
  • 123
    • 33751515474 scopus 로고    scopus 로고
    • The polycomb protein Ring1B generates self atypical mixed ubiquitin chains required for its in vitro histone H2A ligase activity
    • Ben-Saadon R, Zaaroor D, Ziv T, Ciechanover A. (2006). The polycomb protein Ring1B generates self atypical mixed ubiquitin chains required for its in vitro histone H2A ligase activity. Mol. Cell 24: 701-11
    • (2006) Mol. Cell , vol.24 , pp. 701-711
    • Ben-Saadon, R.1    Zaaroor, D.2    Ziv, T.3    Ciechanover, A.4
  • 124
    • 53149103943 scopus 로고    scopus 로고
    • Regulation of Nedd4-2 self-ubiquitination and stability by a PY motif located within its HECT-domain
    • Bruce MC, Kanelis V, Fouladkou F, Debonneville A, Staub O, Rotin D. (2008). Regulation of Nedd4-2 self-ubiquitination and stability by a PY motif located within its HECT-domain. Biochem. J. 415: 155-63
    • (2008) Biochem. J , vol.415 , pp. 155-163
    • Bruce, M.C.1    Kanelis, V.2    Fouladkou, F.3    Debonneville, A.4    Staub, O.5    Rotin, D.6
  • 125
    • 84978435047 scopus 로고    scopus 로고
    • Autoubiquitination of the Hrd1 ligase triggers protein retrotranslocation in ERAD
    • Baldridge RD, Rapoport TA. (2016). Autoubiquitination of the Hrd1 ligase triggers protein retrotranslocation in ERAD. Cell 166: 394-407
    • (2016) Cell , vol.166 , pp. 394-407
    • Baldridge, R.D.1    Rapoport, T.A.2
  • 126
    • 84964894737 scopus 로고    scopus 로고
    • Interplay between ubiquitin, SUMO, and poly(ADP-ribose) in the cellular response to genotoxic stress
    • Pellegrino S, Altmeyer M. (2016). Interplay between ubiquitin, SUMO, and poly(ADP-ribose) in the cellular response to genotoxic stress. Front. Genet. 7: 63
    • (2016) Front. Genet , vol.7 , pp. 63
    • Pellegrino, S.1    Altmeyer, M.2
  • 127
    • 84964893893 scopus 로고    scopus 로고
    • Readers of poly(ADP-ribose): Designed to be fit for purpose
    • Teloni F, Altmeyer M. (2016). Readers of poly(ADP-ribose): designed to be fit for purpose. Nucleic Acids Res. 44: 993-1006
    • (2016) Nucleic Acids Res , vol.44 , pp. 993-1006
    • Teloni, F.1    Altmeyer, M.2
  • 128
    • 79955617241 scopus 로고    scopus 로고
    • RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling
    • Zhang Y, Liu S, Mickanin C, Feng Y, Charlat O, et al. (2011). RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat. Cell Biol. 13: 623-29
    • (2011) Nat. Cell Biol , vol.13 , pp. 623-629
    • Zhang, Y.1    Liu, S.2    Mickanin, C.3    Feng, Y.4    Charlat, O.5
  • 129
    • 84877823968 scopus 로고    scopus 로고
    • Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation
    • Li M, Yu X. (2013). Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell 23: 693-704
    • (2013) Cancer Cell , vol.23 , pp. 693-704
    • Li, M.1    Yu, X.2
  • 130
    • 84863010981 scopus 로고    scopus 로고
    • Recognition of the iso-ADPribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADPribosyl) ation-dependent ubiquitination
    • Wang Z, Michaud GA, Cheng Z, Zhang Y, Hinds TR, et al. (2012). Recognition of the iso-ADPribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADPribosyl) ation-dependent ubiquitination. Genes Dev. 26: 235-40
    • (2012) Genes Dev , vol.26 , pp. 235-240
    • Wang, Z.1    Michaud, G.A.2    Cheng, Z.3    Zhang, Y.4    Hinds, T.R.5
  • 131
    • 84920024622 scopus 로고    scopus 로고
    • Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal
    • DaRosa PA, Wang Z, Jiang X, Pruneda JN, Cong F, et al. (2015). Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal. Nature 517: 223-26
    • (2015) Nature , vol.517 , pp. 223-226
    • DaRosa, P.A.1    Wang, Z.2    Jiang, X.3    Pruneda, J.N.4    Cong, F.5
  • 132
    • 50149086108 scopus 로고    scopus 로고
    • Diversity of degradation signals in the ubiquitin-proteasome system
    • Ravid T, Hochstrasser M. (2008). Diversity of degradation signals in the ubiquitin-proteasome system. Nat. Rev. Mol. Cell Biol. 9: 679-90
    • (2008) Nat. Rev. Mol. Cell Biol , vol.9 , pp. 679-690
    • Ravid, T.1    Hochstrasser, M.2
  • 133
    • 0037756787 scopus 로고    scopus 로고
    • Structure of a β-TrCP1-Skp1-β-catenin complex: Destruction motif binding and lysine specificity of the SCFβ-TrCP1 ubiquitin ligase
    • Wu G, Xu G, Schulman BA, Jeffrey PD, Harper JW, Pavletich NP. (2003). Structure of a β-TrCP1-Skp1-β-catenin complex: destruction motif binding and lysine specificity of the SCFβ-TrCP1 ubiquitin ligase. Mol. Cell 11: 1445-56
    • (2003) Mol. Cell , vol.11 , pp. 1445-1456
    • Wu, G.1    Xu, G.2    Schulman, B.A.3    Jeffrey, P.D.4    Harper, J.W.5    Pavletich, N.P.6
  • 134
    • 0037035851 scopus 로고    scopus 로고
    • Structure of an HIF-1α-pVHL complex: Hydroxyproline recognition in signaling
    • Min JH, Yang H, Ivan M, Gertler F, Kaelin WG, Pavletich NP. (2002). Structure of an HIF-1α-pVHL complex: hydroxyproline recognition in signaling. Science 296: 1886-89
    • (2002) Science , vol.296 , pp. 1886-1889
    • Min, J.H.1    Yang, H.2    Ivan, M.3    Gertler, F.4    Kaelin, W.G.5    Pavletich, N.P.6
  • 135
    • 34047249627 scopus 로고    scopus 로고
    • Structure of a Fbw7-Skp1-cyclin e complex: Multisite-phosphorylated substrate recognition by SCF ubiquitin ligases
    • Hao B, Oehlmann S, Sowa ME, Harper JW, Pavletich NP. (2007). Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol. Cell 26: 131-43
    • (2007) Mol. Cell , vol.26 , pp. 131-143
    • Hao, B.1    Oehlmann, S.2    Sowa, M.E.3    Harper, J.W.4    Pavletich, N.P.5
  • 136
    • 25844441096 scopus 로고    scopus 로고
    • Structural basis of the Cks1-dependent recognition of p27Kip1 by the SCFSkp2 ubiquitin ligase
    • Hao B, Zheng N, Schulman BA, Wu G, Miller JJ, et al. (2005). Structural basis of the Cks1-dependent recognition of p27Kip1 by the SCFSkp2 ubiquitin ligase. Mol. Cell 20: 9-19
    • (2005) Mol. Cell , vol.20 , pp. 9-19
    • Hao, B.1    Zheng, N.2    Schulman, B.A.3    Wu, G.4    Miller, J.J.5
  • 137
    • 34250017680 scopus 로고    scopus 로고
    • Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination
    • Tang X, Orlicky S, Lin Z, Willems A, Neculai D, et al. (2007). Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Cell 129: 1165-76
    • (2007) Cell , vol.129 , pp. 1165-1176
    • Tang, X.1    Orlicky, S.2    Lin, Z.3    Willems, A.4    Neculai, D.5
  • 138
    • 0033522219 scopus 로고    scopus 로고
    • Structure of the amino-Terminal domain of Cbl complexed to its binding site on ZAP-70 kinase
    • Meng W, Sawasdikosol S, Burakoff SJ, Eck MJ. (1999). Structure of the amino-Terminal domain of Cbl complexed to its binding site on ZAP-70 kinase. Nature 398: 84-90
    • (1999) Nature , vol.398 , pp. 84-90
    • Meng, W.1    Sawasdikosol, S.2    Burakoff, S.J.3    Eck, M.J.4
  • 139
    • 84941584669 scopus 로고    scopus 로고
    • TheMLLE domain of the ubiquitin ligase UBR5 binds to its catalytic domain to regulate substrate binding
    • Muñoz-Escobar J, Matta-Camacho E, Kozlov G, Gehring K. (2015). TheMLLE domain of the ubiquitin ligase UBR5 binds to its catalytic domain to regulate substrate binding. J. Biol. Chem. 290: 22841-50
    • (2015) J. Biol. Chem , vol.290 , pp. 22841-22850
    • Muñoz-Escobar, J.1    Matta-Camacho, E.2    Kozlov, G.3    Gehring, K.4
  • 140
    • 0035027506 scopus 로고    scopus 로고
    • Solution structure of a nedd4wwdomain-enac peptide complex
    • Kanelis V, Rotin D, Forman-Kay JD. (2001). Solution structure of a Nedd4WWdomain-ENaC peptide complex. Nat. Struct. Biol. 8: 407-12
    • (2001) Nat. Struct. Biol , vol.8 , pp. 407-412
    • Kanelis, V.1    Rotin, D.2    Forman-Kay, J.D.3
  • 141
    • 33344456501 scopus 로고    scopus 로고
    • Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer
    • Padmanabhan B, Tong KI, Ohta T, Nakamura Y, Scharlock M, et al. (2006). Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol. Cell 21: 689-700
    • (2006) Mol. Cell , vol.21 , pp. 689-700
    • Padmanabhan, B.1    Tong, K.I.2    Ohta, T.3    Nakamura, Y.4    Scharlock, M.5
  • 142
    • 33747606306 scopus 로고    scopus 로고
    • Structure of the Keap1: Nrf2 interface provides mechanistic insight into Nrf2 signaling
    • Lo SC, Li X, Henzl MT, Beamer LJ, Hannink M. (2006). Structure of the Keap1: Nrf2 interface provides mechanistic insight into Nrf2 signaling. EMBO J. 25: 3605-17
    • (2006) EMBO J , vol.25 , pp. 3605-3617
    • Lo, S.C.1    Li, X.2    Henzl, M.T.3    Beamer, L.J.4    Hannink, M.5
  • 143
    • 84893840509 scopus 로고    scopus 로고
    • Kinetic, thermodynamic, and structural characterizations of the association between Nrf2-DLGex degron and Keap1
    • Fukutomi T, Takagi K, Mizushima T, Ohuchi N, Yamamoto M. (2014). Kinetic, thermodynamic, and structural characterizations of the association between Nrf2-DLGex degron and Keap1. Mol. Cell. Biol. 34: 832-46
    • (2014) Mol. Cell. Biol , vol.34 , pp. 832-846
    • Fukutomi, T.1    Takagi, K.2    Mizushima, T.3    Ohuchi, N.4    Yamamoto, M.5
  • 144
    • 84900518004 scopus 로고    scopus 로고
    • Structural and biochemical characterization of the KLHL3-WNK kinase interaction important in blood pressure regulation
    • Schumacher FR, Sorrell FJ, Alessi DR, Bullock AN, Kurz T. (2014). Structural and biochemical characterization of the KLHL3-WNK kinase interaction important in blood pressure regulation. Biochem. J. 460: 237-46
    • (2014) Biochem. J , vol.460 , pp. 237-246
    • Schumacher, F.R.1    Sorrell, F.J.2    Alessi, D.R.3    Bullock, A.N.4    Kurz, T.5
  • 145
    • 84857377700 scopus 로고    scopus 로고
    • Ubiquitin-dependent regulation of COPII coat size and function
    • Jin L, Pahuja KB, Wickliffe KE, Gorur A, Baumgärtel C, et al. (2012). Ubiquitin-dependent regulation of COPII coat size and function. Nature 482: 495-500
    • (2012) Nature , vol.482 , pp. 495-500
    • Jin, L.1    Pahuja, K.B.2    Wickliffe, K.E.3    Gorur, A.4    Baumgärtel, C.5
  • 146
    • 84971291437 scopus 로고    scopus 로고
    • Molecular basis of the Keap1-Nrf2 system
    • Suzuki T, Yamamoto M. (2015). Molecular basis of the Keap1-Nrf2 system. Free Radic. Biol. Med. 88: 93-100
    • (2015) Free Radic. Biol. Med , vol.88 , pp. 93-100
    • Suzuki, T.1    Yamamoto, M.2
  • 147
    • 84883830467 scopus 로고    scopus 로고
    • Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy
    • Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, et al. (2013). Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell 51: 618-31
    • (2013) Mol. Cell , vol.51 , pp. 618-631
    • Ichimura, Y.1    Waguri, S.2    Sou, Y.S.3    Kageyama, S.4    Hasegawa, J.5
  • 148
    • 84901824023 scopus 로고    scopus 로고
    • Structural insights into the TRIM family of ubiquitin E3 ligases
    • Li Y, Wu H, Wu W, Zhuo W, Liu W, et al. (2014). Structural insights into the TRIM family of ubiquitin E3 ligases. Cell Res. 24: 762-65
    • (2014) Cell Res , vol.24 , pp. 762-765
    • Li, Y.1    Wu, H.2    Wu, W.3    Zhuo, W.4    Liu, W.5
  • 149
    • 77649261371 scopus 로고    scopus 로고
    • Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-Terminal domains
    • Ogura T, Tong KI, Mio K, Maruyama Y, Kurokawa H, et al. (2010). Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-Terminal domains. PNAS 107: 2842-47
    • (2010) PNAS , vol.107 , pp. 2842-2847
    • Ogura, T.1    Tong, K.I.2    Mio, K.3    Maruyama, Y.4    Kurokawa, H.5
  • 150
    • 70349769327 scopus 로고    scopus 로고
    • Structures of SPOP-substrate complexes: Insights into molecular architectures of BTB-Cul3 ubiquitin ligases
    • Zhuang M, Calabrese MF, Liu J, Waddell MB, Nourse A, et al. (2009). Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Mol. Cell 36: 39-50
    • (2009) Mol. Cell , vol.36 , pp. 39-50
    • Zhuang, M.1    Calabrese, M.F.2    Liu, J.3    Waddell, M.B.4    Nourse, A.5
  • 151
    • 84888869831 scopus 로고    scopus 로고
    • Fbw7 dimerization determines the specificity and robustness of substrate degradation
    • Welcker M, Larimore EA, Swanger J, Bengoechea-Alonso MT, Grim JE, et al. (2013). Fbw7 dimerization determines the specificity and robustness of substrate degradation. Genes Dev. 27: 2531-36
    • (2013) Genes Dev , vol.27 , pp. 2531-2536
    • Welcker, M.1    Larimore, E.A.2    Swanger, J.3    Bengoechea-Alonso, M.T.4    Grim, J.E.5
  • 152
    • 84868551354 scopus 로고    scopus 로고
    • Structural analysis of human Cdc20 supports multisite degron recognition by APC/C
    • Tian W, Li B, Warrington R, Tomchick DR, Yu H, Luo X. (2012). Structural analysis of human Cdc20 supports multisite degron recognition by APC/C. PNAS 109: 18419-24
    • (2012) PNAS , vol.109 , pp. 18419-18424
    • Tian, W.1    Li, B.2    Warrington, R.3    Tomchick, D.R.4    Yu, H.5    Luo, X.6
  • 153
    • 84878881252 scopus 로고    scopus 로고
    • Insights into degron recognition by APC/C coactivators from the structure of an Acm 1-Cdh1 complex
    • He J, Chao WC, Zhang Z, Yang J, Cronin N, Barford D. (2013). Insights into degron recognition by APC/C coactivators from the structure of an Acm1-Cdh1 complex. Mol. Cell 50: 649-60
    • (2013) Mol. Cell , vol.50 , pp. 649-660
    • He, J.1    Chao, W.C.2    Zhang, Z.3    Yang, J.4    Cronin, N.5    Barford, D.6
  • 154
    • 84923879189 scopus 로고    scopus 로고
    • A tail of two sites: A bipartite mechanism for recognition of notch ligands by mind bomb E3 ligases
    • McMillan BJ, Schnute B, Ohlenhard N, Zimmerman B, Miles L, et al. (2015). A tail of two sites: a bipartite mechanism for recognition of notch ligands by mind bomb E3 ligases. Mol. Cell 57: 912-24
    • (2015) Mol. Cell , vol.57 , pp. 912-924
    • McMillan, B.J.1    Schnute, B.2    Ohlenhard, N.3    Zimmerman, B.4    Miles, L.5
  • 155
    • 77957805791 scopus 로고    scopus 로고
    • Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases
    • Choi WS, Jeong BC, Joo YJ, Lee MR, Kim J, et al. (2010). Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases. Nat. Struct. Mol. Biol. 17: 1175-81
    • (2010) Nat. Struct. Mol. Biol , vol.17 , pp. 1175-1181
    • Choi, W.S.1    Jeong, B.C.2    Joo, Y.J.3    Lee, M.R.4    Kim, J.5
  • 156
    • 77957790301 scopus 로고    scopus 로고
    • Structural basis of substrate recognition and specificity in the N-end rule pathway
    • Matta-Camacho E, Kozlov G, Li FF, Gehring K. (2010). Structural basis of substrate recognition and specificity in the N-end rule pathway. Nat. Struct. Mol. Biol. 17: 1182-87
    • (2010) Nat. Struct. Mol. Biol , vol.17 , pp. 1182-1187
    • Matta-Camacho, E.1    Kozlov, G.2    Li, F.F.3    Gehring, K.4
  • 157
    • 84871675699 scopus 로고    scopus 로고
    • The auto-generated fragment of the Usp1 deubiquitylase is a physiological substrate of the N-end rule pathway
    • Piatkov KI, Colnaghi L, Békés M, Varshavsky A, Huang TT. (2012). The auto-generated fragment of the Usp1 deubiquitylase is a physiological substrate of the N-end rule pathway. Mol. Cell 48: 926-33
    • (2012) Mol. Cell , vol.48 , pp. 926-933
    • Piatkov, K.I.1    Colnaghi, L.2    Békés, M.3    Varshavsky, A.4    Huang, T.T.5
  • 158
    • 84936139864 scopus 로고    scopus 로고
    • CRL2 AIDS elimination of truncated selenoproteins produced by failed UGA/Sec decoding
    • Lin HC, Ho SC, Chen YY, Khoo KH, Hsu PH, Yen HC. (2015). CRL2 aids elimination of truncated selenoproteins produced by failed UGA/Sec decoding. Science 349: 91-95
    • (2015) Science , vol.349 , pp. 91-95
    • Lin, H.C.1    Ho, S.C.2    Chen, Y.Y.3    Khoo, K.H.4    Hsu, P.H.5    Yen, H.C.6
  • 159
    • 78650731442 scopus 로고    scopus 로고
    • Disorder targets misorder in nuclear quality control degradation: A disordered ubiquitin ligase directly recognizes its misfolded substrates
    • Rosenbaum JC, Fredrickson EK, Oeser ML, Garrett-Engele CM, Locke MN, et al. (2011). Disorder targets misorder in nuclear quality control degradation: A disordered ubiquitin ligase directly recognizes its misfolded substrates. Mol. Cell 41: 93-106
    • (2011) Mol. Cell , vol.41 , pp. 93-106
    • Rosenbaum, J.C.1    Fredrickson, E.K.2    Oeser, M.L.3    Garrett-Engele, C.M.4    Locke, M.N.5
  • 161
    • 76249092490 scopus 로고    scopus 로고
    • Structural basis of selective ubiquitination of TRF1 by SCFFbx4
    • Zeng Z, Wang W, Yang Y, Chen Y, Yang X, et al. (2010). Structural basis of selective ubiquitination of TRF1 by SCFFbx4. Dev. Cell 18: 214-25
    • (2010) Dev. Cell , vol.18 , pp. 214-225
    • Zeng, Z.1    Wang, W.2    Yang, Y.3    Chen, Y.4    Yang, X.5
  • 162
    • 0037610123 scopus 로고    scopus 로고
    • TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres
    • Chang W, Dynek JN, Smith S. (2003). TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres. Genes Dev. 17: 1328-33
    • (2003) Genes Dev , vol.17 , pp. 1328-1333
    • Chang, W.1    Dynek, J.N.2    Smith, S.3
  • 163
    • 84875899177 scopus 로고    scopus 로고
    • SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket
    • Xing W, Busino L, Hinds TR, Marionni ST, Saifee NH, et al. (2013). SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 496: 64-68
    • (2013) Nature , vol.496 , pp. 64-68
    • Xing, W.1    Busino, L.2    Hinds, T.R.3    Marionni, S.T.4    Saifee, N.H.5
  • 164
    • 84892976423 scopus 로고    scopus 로고
    • Molecular architecture of the mammalian circadian clock
    • Partch CL, Green CB, Takahashi JS. (2014). Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 24: 90-99
    • (2014) Trends Cell Biol , vol.24 , pp. 90-99
    • Partch, C.L.1    Green, C.B.2    Takahashi, J.S.3
  • 165
    • 22844432019 scopus 로고    scopus 로고
    • SCFβ-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein
    • Shirogane T, Jin J, Ang XL, Harper JW. (2005). SCFβ-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J. Biol. Chem. 280: 26863-72
    • (2005) J. Biol. Chem , vol.280 , pp. 26863-26872
    • Shirogane, T.1    Jin, J.2    Ang, X.L.3    Harper, J.W.4
  • 166
    • 34248566788 scopus 로고    scopus 로고
    • SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
    • Busino L, Bassermann F, Maiolica A, Lee C, Nolan PM, et al. (2007). SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316: 900-4
    • (2007) Science , vol.316 , pp. 900-904
    • Busino, L.1    Bassermann, F.2    Maiolica, A.3    Lee, C.4    Nolan, P.M.5
  • 167
    • 84889093349 scopus 로고    scopus 로고
    • Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase
    • Nangle S, Xing W, Zheng N. (2013). Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase. Cell Res. 23: 1417-19
    • (2013) Cell Res , vol.23 , pp. 1417-1419
    • Nangle, S.1    Xing, W.2    Zheng, N.3
  • 168
    • 84901358563 scopus 로고    scopus 로고
    • Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation
    • Schmalen I, Reischl S, Wallach T, Klemz R, Grudziecki A, et al. (2014). Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. Cell 157: 1203-15
    • (2014) Cell , vol.157 , pp. 1203-1215
    • Schmalen, I.1    Reischl, S.2    Wallach, T.3    Klemz, R.4    Grudziecki, A.5
  • 169
    • 84867788817 scopus 로고    scopus 로고
    • Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer
    • Cao J, Yan Q. (2012). Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front. Oncol. 2: 26
    • (2012) Front. Oncol , vol.2 , pp. 26
    • Cao, J.1    Yan, Q.2
  • 170
    • 84908408859 scopus 로고    scopus 로고
    • Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome
    • McGinty RK, Henrici RC, Tan S. (2014). Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome. Nature 514: 591-96
    • (2014) Nature , vol.514 , pp. 591-596
    • McGinty, R.K.1    Henrici, R.C.2    Tan, S.3
  • 172
    • 67649391002 scopus 로고    scopus 로고
    • Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection
    • Isaacson MK, Ploegh HL. (2009). Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection. Cell Host Microbe 5: 559-70
    • (2009) Cell Host Microbe , vol.5 , pp. 559-570
    • Isaacson, M.K.1    Ploegh, H.L.2
  • 173
    • 79955772653 scopus 로고    scopus 로고
    • HSV-1 ICP0: Paving the way for viral replication
    • Smith MC, Boutell C, Davido DJ. (2011). HSV-1 ICP0: paving the way for viral replication. Future Virol. 6: 421-29
    • (2011) Future Virol , vol.6 , pp. 421-429
    • Smith, M.C.1    Boutell, C.2    Davido, D.J.3
  • 174
    • 84859731169 scopus 로고    scopus 로고
    • Viral E3 ubiquitin ligase-mediated degradation of a cellular E3: Viral mimicry of a cellular phosphorylation mark targets the RNF8 FHA domain
    • Chaurushiya MS, Lilley CE, Aslanian A, Meisenhelder J, Scott DC, et al. (2012). Viral E3 ubiquitin ligase-mediated degradation of a cellular E3: viral mimicry of a cellular phosphorylation mark targets the RNF8 FHA domain. Mol. Cell 46: 79-90
    • (2012) Mol. Cell , vol.46 , pp. 79-90
    • Chaurushiya, M.S.1    Lilley, C.E.2    Aslanian, A.3    Meisenhelder, J.4    Scott, D.C.5
  • 175
    • 0028898424 scopus 로고
    • Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade
    • Scheffner M, Nuber U, Huibregtse JM. (1995). Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373: 81-83
    • (1995) Nature , vol.373 , pp. 81-83
    • Scheffner, M.1    Nuber, U.2    Huibregtse, J.M.3
  • 176
    • 84964301688 scopus 로고    scopus 로고
    • Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53
    • Martinez-Zapien D, Ruiz FX, Poirson J, Mitschler A, Ramirez J, et al. (2016). Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature 529: 541-45
    • (2016) Nature , vol.529 , pp. 541-545
    • Martinez-Zapien, D.1    Ruiz, F.X.2    Poirson, J.3    Mitschler, A.4    Ramirez, J.5
  • 177
    • 84929907228 scopus 로고    scopus 로고
    • Intrinsic host restrictions to HIV-1 and mechanisms of viral escape
    • Simon V, Bloch N, Landau NR. (2015). Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat. Immunol. 16: 546-53
    • (2015) Nat. Immunol , vol.16 , pp. 546-553
    • Simon, V.1    Bloch, N.2    Landau, N.R.3
  • 178
    • 0242578406 scopus 로고    scopus 로고
    • Induction ofAPOBEC3Gubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex
    • Yu X, Yu Y, Liu B, Luo K, Kong W, et al. (2003). Induction ofAPOBEC3Gubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302: 1056-60
    • (2003) Science , vol.302 , pp. 1056-1060
    • Yu, X.1    Yu, Y.2    Liu, B.3    Luo, K.4    Kong, W.5
  • 179
    • 84892188402 scopus 로고    scopus 로고
    • Structural basis for hijacking CBF-βand CUL5 E3 ligase complex by HIV-1 Vif
    • Guo Y, Dong L, Qiu X, Wang Y, Zhang B, et al. (2014). Structural basis for hijacking CBF-βand CUL5 E3 ligase complex by HIV-1 Vif. Nature 505: 229-33
    • (2014) Nature , vol.505 , pp. 229-233
    • Guo, Y.1    Dong, L.2    Qiu, X.3    Wang, Y.4    Zhang, B.5
  • 180
    • 84949008864 scopus 로고    scopus 로고
    • Identification of the HIV-1 Vif and human APOBEC3G protein interface
    • Letko M, Booiman T, Kootstra N, Simon V, Ooms M. (2015). Identification of the HIV-1 Vif and human APOBEC3G protein interface. Cell Rep. 13: 1789-99
    • (2015) Cell Rep , vol.13 , pp. 1789-1799
    • Letko, M.1    Booiman, T.2    Kootstra, N.3    Simon, V.4    Ooms, M.5
  • 181
    • 84892171421 scopus 로고    scopus 로고
    • Structural basis of lentiviral subversion of a cellular protein degradation pathway
    • Schwefel D, Groom HC, Boucherit VC, Christodoulou E, Walker PA, et al. (2014). Structural basis of lentiviral subversion of a cellular protein degradation pathway. Nature 505: 234-38
    • (2014) Nature , vol.505 , pp. 234-238
    • Schwefel, D.1    Groom, H.C.2    Boucherit, V.C.3    Christodoulou, E.4    Walker, P.A.5
  • 182
    • 77449113802 scopus 로고    scopus 로고
    • A promiscuous α-helical motif anchors viral hijackers and substrate receptors to the CUL4-DDB1 ubiquitin ligase machinery
    • Li T, Robert EI, van Breugel PC, Strubin M, Zheng N. (2010). A promiscuous α-helical motif anchors viral hijackers and substrate receptors to the CUL4-DDB1 ubiquitin ligase machinery. Nat. Struct. Mol. Biol. 17: 105-11
    • (2010) Nat. Struct. Mol. Biol , vol.17 , pp. 105-111
    • Li, T.1    Robert, E.I.2    Van Breugel, P.C.3    Strubin, M.4    Zheng, N.5
  • 183
    • 30344460705 scopus 로고    scopus 로고
    • Structure ofDDB1in complex with a paramyxovirus v protein: Viral hijack of a propeller cluster in ubiquitin ligase
    • Li T, Chen X, Garbutt KC, Zhou P, Zheng N. (2006). Structure ofDDB1in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell 124: 105-17
    • (2006) Cell , vol.124 , pp. 105-117
    • Li, T.1    Chen, X.2    Garbutt, K.C.3    Zhou, P.4    Zheng, N.5
  • 184
    • 84982154746 scopus 로고    scopus 로고
    • Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor
    • Decorsière A, Mueller H, van Breugel PC, Abdul F, Gerossier L, et al. (2016). Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature 531: 386-89
    • (2016) Nature , vol.531 , pp. 386-389
    • Decorsière, A.1    Mueller, H.2    Van Breugel, P.C.3    Abdul, F.4    Gerossier, L.5
  • 185
    • 27144433162 scopus 로고    scopus 로고
    • Simian virus 5 v protein acts as an adaptor, linkingDDB1to STAT2, to facilitate the ubiquitination of STAT1
    • Precious B, Childs K, Fitzpatrick-Swallow V, Goodbourn S, Randall RE. (2005). Simian virus 5 V protein acts as an adaptor, linkingDDB1to STAT2, to facilitate the ubiquitination of STAT1. J. Virol. 79: 13434-41
    • (2005) J. Virol , vol.79 , pp. 13434-13441
    • Precious, B.1    Childs, K.2    Fitzpatrick-Swallow, V.3    Goodbourn, S.4    Randall, R.E.5
  • 186
    • 14844312051 scopus 로고    scopus 로고
    • The SV40 largeTantigen contains a decoy phosphodegron that mediates its interactions with Fbw7/hCdc4
    • Welcker M, Clurman BE. (2005). The SV40 largeTantigen contains a decoy phosphodegron that mediates its interactions with Fbw7/hCdc4. J. Biol. Chem. 280: 7654-58
    • (2005) J. Biol. Chem , vol.280 , pp. 7654-7658
    • Welcker, M.1    Clurman, B.E.2
  • 187
    • 0036278326 scopus 로고    scopus 로고
    • Turnover of hepatitis B virus X protein is regulated by damaged DNA-binding complex
    • Bergametti F, Sitterlin D, Transy C. (2002). Turnover of hepatitis B virus X protein is regulated by damaged DNA-binding complex. J. Virol. 76: 6495-501
    • (2002) J. Virol , vol.76 , pp. 6495-6501
    • Bergametti, F.1    Sitterlin, D.2    Transy, C.3
  • 188
    • 84898768916 scopus 로고    scopus 로고
    • Plant ubiquitin ligases as signaling hubs
    • Shabek N, Zheng N. (2014). Plant ubiquitin ligases as signaling hubs. Nat. Struct. Mol. Biol. 21: 293-96
    • (2014) Nat. Struct. Mol. Biol , vol.21 , pp. 293-296
    • Shabek, N.1    Zheng, N.2
  • 189
    • 19544379019 scopus 로고    scopus 로고
    • The F-box protein TIR1 is an auxin receptor
    • Dharmasiri N, Dharmasiri S, Estelle M. (2005). The F-box protein TIR1 is an auxin receptor. Nature 435: 441-45
    • (2005) Nature , vol.435 , pp. 441-445
    • Dharmasiri, N.1    Dharmasiri, S.2    Estelle, M.3
  • 190
    • 19544386804 scopus 로고    scopus 로고
    • The Arabidopsis F-box proteinTIR1 is an auxin receptor
    • Kepinski S, Leyser O. (2005). The Arabidopsis F-box proteinTIR1 is an auxin receptor. Nature 435: 446-51
    • (2005) Nature , vol.435 , pp. 446-451
    • Kepinski, S.1    Leyser, O.2
  • 193
    • 78549274705 scopus 로고    scopus 로고
    • Jasmonate perception by inositolphosphate-potentiated COI1-JAZ co-receptor
    • Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, et al. (2010). Jasmonate perception by inositolphosphate-potentiated COI1-JAZ co-receptor. Nature 468: 400-5
    • (2010) Nature , vol.468 , pp. 400-405
    • Sheard, L.B.1    Tan, X.2    Mao, H.3    Withers, J.4    Ben-Nissan, G.5
  • 194
    • 57049155555 scopus 로고    scopus 로고
    • Gibberellin-induced della recognition by the gibberellin receptor GID1
    • Murase K, Hirano Y, Sun TP, Hakoshima T. (2008). Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456: 459-63
    • (2008) Nature , vol.456 , pp. 459-463
    • Murase, K.1    Hirano, Y.2    Sun, T.P.3    Hakoshima, T.4
  • 195
    • 57049177946 scopus 로고    scopus 로고
    • Structural basis for gibberellin recognition by its receptor GID1
    • Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, et al. (2008). Structural basis for gibberellin recognition by its receptor GID1. Nature 456: 520-23
    • (2008) Nature , vol.456 , pp. 520-523
    • Shimada, A.1    Ueguchi-Tanaka, M.2    Nakatsu, T.3    Nakajima, M.4    Naoe, Y.5
  • 196
    • 84928943192 scopus 로고    scopus 로고
    • VIH2 regulates the synthesis of inositol pyrophosphate InsP8 and jasmonate-dependent defenses in Arabidopsis
    • Laha D, Johnen P, Azevedo C, Dynowski M, Weiß M, et al. (2015). VIH2 regulates the synthesis of inositol pyrophosphate InsP8 and jasmonate-dependent defenses in Arabidopsis. Plant Cell 27: 1082-97
    • (2015) Plant Cell , vol.27 , pp. 1082-1097
    • Laha, D.1    Johnen, P.2    Azevedo, C.3    Dynowski, M.4    Weiß, M.5
  • 197
    • 84963818660 scopus 로고    scopus 로고
    • Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains
    • Wild R, Gerasimaite R, Jung JY, Truffault V, Pavlovic I, et al. (2016). Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 352: 986-90
    • (2016) Science , vol.352 , pp. 986-990
    • Wild, R.1    Gerasimaite, R.2    Jung, J.Y.3    Truffault, V.4    Pavlovic, I.5
  • 198
    • 84897107855 scopus 로고    scopus 로고
    • F-box and leucine-rich repeat protein 5 (FBXL5): Sensing intracellular iron and oxygen
    • Ruiz JC, Bruick RK. (2014). F-box and leucine-rich repeat protein 5 (FBXL5): sensing intracellular iron and oxygen. J. Inorg. Biochem. 133: 73-77
    • (2014) J. Inorg. Biochem , vol.133 , pp. 73-77
    • Ruiz, J.C.1    Bruick, R.K.2
  • 199
    • 77953923379 scopus 로고    scopus 로고
    • Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2
    • Alvarez SE, Harikumar KB, Hait NC, Allegood J, Strub GM, et al. (2010). Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465: 1084-88
    • (2010) Nature , vol.465 , pp. 1084-1088
    • Alvarez, S.E.1    Harikumar, K.B.2    Hait, N.C.3    Allegood, J.4    Strub, G.M.5
  • 200
    • 80054837173 scopus 로고    scopus 로고
    • Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination
    • Dueber EC, Schoeffler AJ, Lingel A, Elliott JM, Fedorova AV, et al. (2011). Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination. Science 334: 376-80
    • (2011) Science , vol.334 , pp. 376-380
    • Dueber, E.C.1    Schoeffler, A.J.2    Lingel, A.3    Elliott, J.M.4    Fedorova, A.V.5
  • 201
    • 77954499965 scopus 로고    scopus 로고
    • Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase
    • Aghajan M, Jonai N, Flick K, Fu F, Luo M, et al. (2010). Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase. Nat. Biotechnol. 28: 738-42
    • (2010) Nat. Biotechnol , vol.28 , pp. 738-742
    • Aghajan, M.1    Jonai, N.2    Flick, K.3    Fu, F.4    Luo, M.5
  • 202
    • 77954513389 scopus 로고    scopus 로고
    • An allosteric inhibitor of substrate recognition by the SCFCdc4 ubiquitin ligase
    • Orlicky S, Tang X, Neduva V, Elowe N, Brown ED, et al. (2010). An allosteric inhibitor of substrate recognition by the SCFCdc4 ubiquitin ligase. Nat. Biotechnol. 28: 733-37
    • (2010) Nat. Biotechnol , vol.28 , pp. 733-737
    • Orlicky, S.1    Tang, X.2    Neduva, V.3    Elowe, N.4    Brown, E.D.5
  • 203
    • 84881192827 scopus 로고    scopus 로고
    • Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression
    • Chan CH, Morrow JK, Li CF, Gao Y, Jin G, et al. (2013). Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 154: 556-68
    • (2013) Cell , vol.154 , pp. 556-568
    • Chan, C.H.1    Morrow, J.K.2    Li, C.F.3    Gao, Y.4    Jin, G.5
  • 204
    • 84871569969 scopus 로고    scopus 로고
    • Specific small molecule inhibitors of Skp2-mediated p27 degradation
    • Wu L, Grigoryan AV, Li Y, Hao B, Pagano M, Cardozo TJ. (2012). Specific small molecule inhibitors of Skp2-mediated p27 degradation. Chem. Biol. 19: 1515-24
    • (2012) Chem. Biol , vol.19 , pp. 1515-1524
    • Wu, L.1    Grigoryan, A.V.2    Li, Y.3    Hao, B.4    Pagano, M.5    Cardozo, T.J.6
  • 205
    • 0035902475 scopus 로고    scopus 로고
    • Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation
    • Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. (2001). Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. PNAS 98: 8554-59
    • (2001) PNAS , vol.98 , pp. 8554-8559
    • Sakamoto, K.M.1    Kim, K.B.2    Kumagai, A.3    Mercurio, F.4    Crews, C.M.5    Deshaies, R.J.6
  • 206
    • 77949350034 scopus 로고    scopus 로고
    • Identification of a primary target of thalidomide teratogenicity
    • Ito T, Ando H, Suzuki T, Ogura T, Hotta K, et al. (2010). Identification of a primary target of thalidomide teratogenicity. Science 327: 1345-50
    • (2010) Science , vol.327 , pp. 1345-1350
    • Ito, T.1    Ando, H.2    Suzuki, T.3    Ogura, T.4    Hotta, K.5
  • 207
    • 84892593087 scopus 로고    scopus 로고
    • Themyeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins
    • Lu G, Middleton RE, Sun H, Naniong M, Ott CJ, et al. (2014). Themyeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343: 305-9
    • (2014) Science , vol.343 , pp. 305-309
    • Lu, G.1    Middleton, R.E.2    Sun, H.3    Naniong, M.4    Ott, C.J.5
  • 208
    • 84892576029 scopus 로고    scopus 로고
    • Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells
    • Krönke J, Udeshi ND, Narla A, Grauman P, Hurst SN, et al. (2014). Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343: 301-5
    • (2014) Science , vol.343 , pp. 301-305
    • Krönke, J.1    Udeshi, N.D.2    Narla, A.3    Grauman, P.4    Hurst, S.N.5
  • 209
    • 84936930551 scopus 로고    scopus 로고
    • Lenalidomide induces ubiquitination and degradation of CK1αin del(5q) MDS
    • Krönke J, Fink EC, Hollenbach PW, MacBeth KJ, Hurst SN, et al. (2015). Lenalidomide induces ubiquitination and degradation of CK1αin del(5q) MDS. Nature 523: 183-88
    • (2015) Nature , vol.523 , pp. 183-188
    • Krönke, J.1    Fink, E.C.2    Hollenbach, P.W.3    MacBeth, K.J.4    Hurst, S.N.5
  • 210
    • 84978715161 scopus 로고    scopus 로고
    • A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase
    • Matyskiela ME, Lu G, Ito T, Pagarigan B, Lu CC, et al. (2016). A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase. Nature 535: 252-57
    • (2016) Nature , vol.535 , pp. 252-257
    • Matyskiela, M.E.1    Lu, G.2    Ito, T.3    Pagarigan, B.4    Lu, C.C.5
  • 211
    • 84963542597 scopus 로고    scopus 로고
    • Structural basis of lenalidomide-induced CK1αdegradation by the CRL4CRBN ubiquitin ligase
    • Petzold G, Fischer ES, Thomä NH. (2016). Structural basis of lenalidomide-induced CK1αdegradation by the CRL4CRBN ubiquitin ligase. Nature 532: 127-30
    • (2016) Nature , vol.532 , pp. 127-130
    • Petzold, G.1    Fischer, E.S.2    Thomä, N.H.3
  • 212
    • 84932634729 scopus 로고    scopus 로고
    • Phthalimide conjugation as a strategy for in vivo target protein degradation
    • Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A, et al. (2015). Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348: 1376-81
    • (2015) Science , vol.348 , pp. 1376-1381
    • Winter, G.E.1    Buckley, D.L.2    Paulk, J.3    Roberts, J.M.4    Souza, A.5
  • 213
    • 84931560527 scopus 로고    scopus 로고
    • Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4
    • Lu J, Qian Y, Altieri M, Dong H, Wang J, et al. (2015). Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol. 22: 755-63
    • (2015) Chem. Biol , vol.22 , pp. 755-763
    • Lu, J.1    Qian, Y.2    Altieri, M.3    Dong, H.4    Wang, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.