-
2
-
-
65649115267
-
Recognition and processing of ubiquitin-protein conjugates by the proteasome
-
Finley D. (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78: 477-513
-
(2009)
Annu. Rev. Biochem
, vol.78
, pp. 477-513
-
-
Finley, D.1
-
4
-
-
0034915764
-
Mechanisms underlying ubiquitination
-
Pickart CM. (2001). Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70: 503-33
-
(2001)
Annu. Rev. Biochem
, vol.70
, pp. 503-533
-
-
Pickart, C.M.1
-
6
-
-
0033279836
-
SCF and cullin/RING H2-based ubiquitin ligases
-
Deshaies RJ. (1999). SCF and cullin/RING H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15: 435-67
-
(1999)
Annu. Rev. Cell Dev. Biol
, vol.15
, pp. 435-467
-
-
Deshaies, R.J.1
-
8
-
-
84906515478
-
Insights into the anaphase-promoting complex: A molecular machine that regulates mitosis
-
Chang L, Barford D. (2014). Insights into the anaphase-promoting complex: a molecular machine that regulates mitosis. Curr. Opin. Struct. Biol. 29: 1-9
-
(2014)
Curr. Opin. Struct. Biol
, vol.29
, pp. 1-9
-
-
Chang, L.1
Barford, D.2
-
9
-
-
0036467574
-
The brca1/bard1 heterodimer, a tumor suppressor complex with ubiquitin e3 ligase activity
-
Baer R, Ludwig T. (2002). The BRCA1/BARD1 heterodimer, a tumor suppressor complex with ubiquitin E3 ligase activity. Curr. Opin. Genet. Dev. 12: 86-91
-
(2002)
Curr. Opin. Genet. Dev
, vol.12
, pp. 86-91
-
-
Baer, R.1
Ludwig, T.2
-
10
-
-
0034682718
-
Structure of a c-Cbl-UbcH7 complex: RINGdomain function in ubiquitin-protein ligases
-
Zheng N, Wang P, Jeffrey PD, Pavletich NP. (2000). Structure of a c-Cbl-UbcH7 complex: RINGdomain function in ubiquitin-protein ligases. Cell 102: 533-39
-
(2000)
Cell
, vol.102
, pp. 533-539
-
-
Zheng, N.1
Wang, P.2
Jeffrey, P.D.3
Pavletich, N.P.4
-
11
-
-
18344391432
-
Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex
-
Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, et al. (2002). Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416: 703-9
-
(2002)
Nature
, vol.416
, pp. 703-709
-
-
Zheng, N.1
Schulman, B.A.2
Song, L.3
Miller, J.J.4
Jeffrey, P.D.5
-
12
-
-
0034676443
-
Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex
-
Schulman BA, Carrano AC, Jeffrey PD, Bowen Z, Kinnucan ER, et al. (2000). Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 408: 381-86
-
(2000)
Nature
, vol.408
, pp. 381-386
-
-
Schulman, B.A.1
Carrano, A.C.2
Jeffrey, P.D.3
Bowen, Z.4
Kinnucan, E.R.5
-
13
-
-
27944495299
-
Chaperoned ubiquitylation-crystal structures of the CHIP Ubox E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex
-
Zhang M, Windheim M, Roe SM, Peggie M, Cohen P, et al. (2005). Chaperoned ubiquitylation-crystal structures of the CHIP Ubox E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell 20: 525-38
-
(2005)
Mol. Cell
, vol.20
, pp. 525-538
-
-
Zhang, M.1
Windheim, M.2
Roe, S.M.3
Peggie, M.4
Cohen, P.5
-
14
-
-
57649120782
-
Structures of the cIAP2 RING domain reveal conformational changes associated with ubiquitin-conjugating enzyme E2) recruitment
-
Mace PD, Linke K, Feltham R, Schumacher FR, Smith CA, et al. (2008). Structures of the cIAP2 RING domain reveal conformational changes associated with ubiquitin-conjugating enzyme (E2) recruitment. J. Biol. Chem. 283: 31633-40
-
(2008)
J. Biol. Chem
, vol.283
, pp. 31633-31640
-
-
Mace, P.D.1
Linke, K.2
Feltham, R.3
Schumacher, F.R.4
Smith, C.A.5
-
15
-
-
80155198826
-
Recognition of UbcH5c and the nucleosome by the Bmi1/Ring1b ubiquitin ligase complex
-
Bentley ML, Corn JE, Dong KC, Phung Q, Cheung TK, Cochran AG. (2011). Recognition of UbcH5c and the nucleosome by the Bmi1/Ring1b ubiquitin ligase complex. EMBO J. 30: 3285-97
-
(2011)
EMBO J
, vol.30
, pp. 3285-3297
-
-
Bentley, M.L.1
Corn, J.E.2
Dong, K.C.3
Phung, Q.4
Cheung, T.K.5
Cochran, A.G.6
-
16
-
-
67349242723
-
E2 interaction and dimerization in the crystal structure of TRAF6
-
Yin Q, Lin SC, Lamothe B, Lu M, Lo YC, et al. (2009). E2 interaction and dimerization in the crystal structure of TRAF6. Nat. Struct. Mol. Biol. 16: 658-66
-
(2009)
Nat. Struct. Mol. Biol
, vol.16
, pp. 658-666
-
-
Yin, Q.1
Lin, S.C.2
Lamothe, B.3
Lu, M.4
Lo, Y.C.5
-
17
-
-
30044437590
-
Mechanistic insight into the allosteric activation of a ubiquitinconjugating enzyme by RING-Type ubiquitin ligases
-
Ozkan E, Yu H, Deisenhofer J. (2005). Mechanistic insight into the allosteric activation of a ubiquitinconjugating enzyme by RING-Type ubiquitin ligases. PNAS 102: 18890-95
-
(2005)
PNAS
, vol.102
, pp. 18890-18895
-
-
Ozkan, E.1
Yu, H.2
Deisenhofer, J.3
-
18
-
-
77955493101
-
Molecular basis for the association of human E4B U box ubiquitin ligase with E2-conjugating enzymes UbcH5c and Ubc4
-
Benirschke RC, Thompson JR, Nominé Y, Wasielewski E, Juraníc N, et al. (2010). Molecular basis for the association of human E4B U box ubiquitin ligase with E2-conjugating enzymes UbcH5c and Ubc4. Structure 18: 955-65
-
(2010)
Structure
, vol.18
, pp. 955-965
-
-
Benirschke, R.C.1
Thompson, J.R.2
Nominé, Y.3
Wasielewski, E.4
Juraníc, N.5
-
19
-
-
0034788322
-
Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail
-
Hamilton KS, Ellison MJ, Barber KR, Williams RS, Huzil JT, et al. (2001). Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail. Structure 9: 897-904
-
(2001)
Structure
, vol.9
, pp. 897-904
-
-
Hamilton, K.S.1
Ellison, M.J.2
Barber, K.R.3
Williams, R.S.4
Huzil, J.T.5
-
20
-
-
79953296212
-
Essential role for ubiquitin-ubiquitinconjugating enzyme interaction in ubiquitin discharge from Cdc34 to substrate
-
Saha A, Lewis S, Kleiger G, Kuhlman B, Deshaies RJ. (2011). Essential role for ubiquitin-ubiquitinconjugating enzyme interaction in ubiquitin discharge from Cdc34 to substrate. Mol. Cell 42: 75-83
-
(2011)
Mol. Cell
, vol.42
, pp. 75-83
-
-
Saha, A.1
Lewis, S.2
Kleiger, G.3
Kuhlman, B.4
Deshaies, R.J.5
-
21
-
-
79952290609
-
The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2
-
Wickliffe KE, Lorenz S, Wemmer DE, Kuriyan J, Rape M. (2011). The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell 144: 769-81
-
(2011)
Cell
, vol.144
, pp. 769-781
-
-
Wickliffe, K.E.1
Lorenz, S.2
Wemmer, D.E.3
Kuriyan, J.4
Rape, M.5
-
22
-
-
80052442072
-
Mechanism of ubiquitylation by dimeric RING ligase RNF4
-
Plechanovová A, Jaffray EG, McMahon SA, Johnson KA, Navrátilová I, et al. (2011). Mechanism of ubiquitylation by dimeric RING ligase RNF4. Nat. Struct. Mol. Biol. 18: 1052-59
-
(2011)
Nat. Struct. Mol. Biol
, vol.18
, pp. 1052-1059
-
-
Plechanovová, A.1
Jaffray, E.G.2
McMahon, S.A.3
Johnson, K.A.4
Navrátilová, I.5
-
23
-
-
79952407243
-
Ubiquitin in motion: Structural studies of the ubiquitin-conjugating enzyme~ubiquitin conjugate
-
Pruneda JN, Stoll KE, Bolton LJ, Brzovic PS, Klevit RE. (2011). Ubiquitin in motion: structural studies of the ubiquitin-conjugating enzyme~ubiquitin conjugate. Biochemistry 50: 1624-33
-
(2011)
Biochemistry
, vol.50
, pp. 1624-1633
-
-
Pruneda, J.N.1
Stoll, K.E.2
Bolton, L.J.3
Brzovic, P.S.4
Klevit, R.E.5
-
24
-
-
73449088337
-
Crystal structure of UbcH5b~ubiquitin intermediate: Insight into the formation of the self-Assembled E2~Ub conjugates
-
Sakata E, Satoh T, Yamamoto S, Yamaguchi Y, Yagi-Utsumi M, et al. (2010). Crystal structure of UbcH5b~ubiquitin intermediate: insight into the formation of the self-Assembled E2~Ub conjugates. Structure 18: 138-47
-
(2010)
Structure
, vol.18
, pp. 138-147
-
-
Sakata, E.1
Satoh, T.2
Yamamoto, S.3
Yamaguchi, Y.4
Yagi-Utsumi, M.5
-
25
-
-
84877020980
-
Activation of UbcH5c~Ub is the result of a shift in interdomain motions of the conjugate bound to U-box E3 ligase E4B
-
Soss SE, Klevit RE, Chazin WJ. (2013). Activation of UbcH5c~Ub is the result of a shift in interdomain motions of the conjugate bound to U-box E3 ligase E4B. Biochemistry 52: 2991-99
-
(2013)
Biochemistry
, vol.52
, pp. 2991-2999
-
-
Soss, S.E.1
Klevit, R.E.2
Chazin, W.J.3
-
26
-
-
84866858702
-
Structure of an E3: E2~Ub complex reveals an allosteric mechanism shared among RING/U-box ligases
-
Pruneda JN, Littlefield PJ, Soss SE, Nordquist KA, Chazin WJ, et al. (2012). Structure of an E3: E2~Ub complex reveals an allosteric mechanism shared among RING/U-box ligases. Mol. Cell 47: 933-42
-
(2012)
Mol. Cell
, vol.47
, pp. 933-942
-
-
Pruneda, J.N.1
Littlefield, P.J.2
Soss, S.E.3
Nordquist, K.A.4
Chazin, W.J.5
-
27
-
-
84865781586
-
Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis
-
Plechanovová A, Jaffray EG, Tatham MH, Naismith JH, Hay RT. (2012). Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489: 115-20
-
(2012)
Nature
, vol.489
, pp. 115-120
-
-
Plechanovová, A.1
Jaffray, E.G.2
Tatham, M.H.3
Naismith, J.H.4
Hay, R.T.5
-
28
-
-
84866124869
-
BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer
-
Dou H, Buetow L, Sibbet GJ, Cameron K, Huang DT. (2012). BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer. Nat. Struct. Mol. Biol. 19: 876-83
-
(2012)
Nat. Struct. Mol. Biol
, vol.19
, pp. 876-883
-
-
Dou, H.1
Buetow, L.2
Sibbet, G.J.3
Cameron, K.4
Huang, D.T.5
-
29
-
-
84881478295
-
Essentiality of a non-RING element in priming donor ubiquitin for catalysis by a monomeric E3
-
Dou H, Buetow L, Sibbet GJ, Cameron K, Huang DT. (2013). Essentiality of a non-RING element in priming donor ubiquitin for catalysis by a monomeric E3. Nat. Struct. Mol. Biol. 20: 982-86
-
(2013)
Nat. Struct. Mol. Biol
, vol.20
, pp. 982-986
-
-
Dou, H.1
Buetow, L.2
Sibbet, G.J.3
Cameron, K.4
Huang, D.T.5
-
30
-
-
84928203901
-
Activation of a primed RING E3-E2-ubiquitin complex by non-covalent ubiquitin
-
Buetow L, Gabrielsen M, Anthony NG, Dou H, Patel A, et al. (2015). Activation of a primed RING E3-E2-ubiquitin complex by non-covalent ubiquitin. Mol. Cell 58: 297-310
-
(2015)
Mol. Cell
, vol.58
, pp. 297-310
-
-
Buetow, L.1
Gabrielsen, M.2
Anthony, N.G.3
Dou, H.4
Patel, A.5
-
31
-
-
84938749159
-
Structural basis for the RINGcatalyzed synthesis of K63-linked ubiquitin chains
-
Branigan E, Plechanovová A, Jaffray EG, Naismith JH, Hay RT. (2015). Structural basis for the RINGcatalyzed synthesis of K63-linked ubiquitin chains. Nat. Struct. Mol. Biol. 22: 597-602
-
(2015)
Nat. Struct. Mol. Biol
, vol.22
, pp. 597-602
-
-
Branigan, E.1
Plechanovová, A.2
Jaffray, E.G.3
Naismith, J.H.4
Hay, R.T.5
-
32
-
-
20444384040
-
Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex
-
Reverter D, Lima CD. (2005). Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435: 687-92
-
(2005)
Nature
, vol.435
, pp. 687-692
-
-
Reverter, D.1
Lima, C.D.2
-
33
-
-
84903125623
-
Structure of a RING E3 trapped in action reveals ligation mechanism for the ubiquitin-like protein NEDD8
-
Scott DC, Sviderskiy VO, Monda JK, Lydeard JR, Cho SE, et al. (2014). Structure of a RING E3 trapped in action reveals ligation mechanism for the ubiquitin-like protein NEDD8. Cell 157: 1671-84
-
(2014)
Cell
, vol.157
, pp. 1671-1684
-
-
Scott, D.C.1
Sviderskiy, V.O.2
Monda, J.K.3
Lydeard, J.R.4
Cho, S.E.5
-
34
-
-
84874110594
-
A conserved asparagine has a structural role in ubiquitin-conjugating enzymes
-
Berndsen CE, Wiener R, Yu IW, Ringel AE, Wolberger C. (2013). A conserved asparagine has a structural role in ubiquitin-conjugating enzymes. Nat. Chem. Biol. 9: 154-56
-
(2013)
Nat. Chem. Biol
, vol.9
, pp. 154-156
-
-
Berndsen, C.E.1
Wiener, R.2
Yu, I.W.3
Ringel, A.E.4
Wolberger, C.5
-
35
-
-
0141753130
-
A conserved catalytic residue in the ubiquitin-conjugating enzyme family
-
Wu PY, Hanlon M, Eddins M, Tsui C, Rogers RS, et al. (2003). A conserved catalytic residue in the ubiquitin-conjugating enzyme family. EMBO J. 22: 5241-50
-
(2003)
EMBO J
, vol.22
, pp. 5241-5250
-
-
Wu, P.Y.1
Hanlon, M.2
Eddins, M.3
Tsui, C.4
Rogers, R.S.5
-
36
-
-
33744911377
-
Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway
-
Yunus AA, Lima CD. (2006). Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway. Nat. Struct. Mol. Biol. 13: 491-99
-
(2006)
Nat. Struct. Mol. Biol
, vol.13
, pp. 491-499
-
-
Yunus, A.A.1
Lima, C.D.2
-
37
-
-
33644850903
-
AUbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination
-
Brzovic PS, Lissounov A, Christensen DE, Hoyt DW, Klevit RE. (2006). AUbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. Mol. Cell 21: 873-80
-
(2006)
Mol. Cell
, vol.21
, pp. 873-880
-
-
Brzovic, P.S.1
Lissounov, A.2
Christensen, D.E.3
Hoyt, D.W.4
Klevit, R.E.5
-
38
-
-
67449110736
-
Allosteric activation of E2-RING finger-mediated ubiquitylation by a structurally defined specific E2-binding region of gp78
-
Das R, Mariano J, Tsai YC, Kalathur RC, Kostova Z, et al. (2009). Allosteric activation of E2-RING finger-mediated ubiquitylation by a structurally defined specific E2-binding region of gp78. Mol. Cell 34: 674-85
-
(2009)
Mol. Cell
, vol.34
, pp. 674-685
-
-
Das, R.1
Mariano, J.2
Tsai, Y.C.3
Kalathur, R.C.4
Kostova, Z.5
-
39
-
-
84884286514
-
Allosteric regulation of E2: E3 interactions promote a processive ubiquitination machine
-
Das R, Liang YH, Mariano J, Li J, Huang T, et al. (2013). Allosteric regulation of E2: E3 interactions promote a processive ubiquitination machine. EMBO J. 32: 2504-16
-
(2013)
EMBO J
, vol.32
, pp. 2504-2516
-
-
Das, R.1
Liang, Y.H.2
Mariano, J.3
Li, J.4
Huang, T.5
-
40
-
-
84954370395
-
Secondary ubiquitin-RING docking enhances Arkadia and Ark2C E3 ligase activity
-
Wright JD, Mace PD, Day CL. (2016). Secondary ubiquitin-RING docking enhances Arkadia and Ark2C E3 ligase activity. Nat. Struct. Mol. Biol. 23: 45-52
-
(2016)
Nat. Struct. Mol. Biol
, vol.23
, pp. 45-52
-
-
Wright, J.D.1
Mace, P.D.2
Day, C.L.3
-
41
-
-
71449123070
-
Detection of sequential polyubiquitylation on a millisecond timescale
-
Pierce NW, Kleiger G, Shan SO, Deshaies RJ. (2009). Detection of sequential polyubiquitylation on a millisecond timescale. Nature 462: 615-19
-
(2009)
Nature
, vol.462
, pp. 615-619
-
-
Pierce, N.W.1
Kleiger, G.2
Shan, S.O.3
Deshaies, R.J.4
-
43
-
-
34948848684
-
E2-brca1 ring interactions dictate synthesis of monoor specific polyubiquitin chain linkages
-
Christensen DE, Brzovic PS, Klevit RE. (2007). E2-BRCA1 RING interactions dictate synthesis of monoor specific polyubiquitin chain linkages. Nat. Struct. Mol. Biol. 14: 941-48
-
(2007)
Nat. Struct. Mol. Biol
, vol.14
, pp. 941-948
-
-
Christensen, D.E.1
Brzovic, P.S.2
Klevit, R.E.3
-
44
-
-
84892374224
-
Phosphorylation of p53 by TAF1 inactivates p53-dependent transcription in the DNA damage response
-
Wu Y, Lin JC, Piluso LG, Dhahbi JM, Bobadilla S, et al. (2014). Phosphorylation of p53 by TAF1 inactivates p53-dependent transcription in the DNA damage response. Mol. Cell 53: 63-74
-
(2014)
Mol. Cell
, vol.53
, pp. 63-74
-
-
Wu, Y.1
Lin, J.C.2
Piluso, L.G.3
Dhahbi, J.M.4
Bobadilla, S.5
-
45
-
-
43049162227
-
Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex
-
Jin L, Williamson A, Banerjee S, Philipp I, Rape M. (2008). Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133: 653-65
-
(2008)
Cell
, vol.133
, pp. 653-665
-
-
Jin, L.1
Williamson, A.2
Banerjee, S.3
Philipp, I.4
Rape, M.5
-
46
-
-
76549089605
-
UBE2S drives elongation of K11-linked ubiquitin chains by the anaphase-promoting complex
-
Wu T, Merbl Y, Huo Y, Gallop JL, Tzur A, Kirschner MW. (2010). UBE2S drives elongation of K11-linked ubiquitin chains by the anaphase-promoting complex. PNAS 107: 1355-60
-
(2010)
PNAS
, vol.107
, pp. 1355-1360
-
-
Wu, T.1
Merbl, Y.2
Huo, Y.3
Gallop, J.L.4
Tzur, A.5
Kirschner, M.W.6
-
47
-
-
70449529843
-
UBE2S elongates ubiquitin chains on APC/C substrates to promote mitotic exit
-
Garnett MJ, Mansfeld J, Godwin C, Matsusaka T, Wu J, et al. (2009). UBE2S elongates ubiquitin chains on APC/C substrates to promote mitotic exit. Nat. Cell Biol. 11: 1363-69
-
(2009)
Nat. Cell Biol
, vol.11
, pp. 1363-1369
-
-
Garnett, M.J.1
Mansfeld, J.2
Godwin, C.3
Matsusaka, T.4
Wu, J.5
-
48
-
-
70849116420
-
Identification of a physiological E2 module for the human anaphase-promoting complex
-
Williamson A, Wickliffe KE, Mellone BG, Song L, Karpen GH, Rape M. (2009). Identification of a physiological E2 module for the human anaphase-promoting complex. PNAS 106: 18213-18
-
(2009)
PNAS
, vol.106
, pp. 18213-18218
-
-
Williamson, A.1
Wickliffe, K.E.2
Mellone, B.G.3
Song, L.4
Karpen, G.H.5
Rape, M.6
-
49
-
-
28944435024
-
Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34
-
Petroski MD, Deshaies RJ. (2005). Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34. Cell 123: 1107-20
-
(2005)
Cell
, vol.123
, pp. 1107-1120
-
-
Petroski, M.D.1
Deshaies, R.J.2
-
50
-
-
53349121021
-
Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation
-
Saha A, Deshaies RJ. (2008). Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol. Cell 32: 21-31
-
(2008)
Mol. Cell
, vol.32
, pp. 21-31
-
-
Saha, A.1
Deshaies, R.J.2
-
51
-
-
77949548466
-
Priming and extending: A UbcH5/Cdc34 E2 handoff mechanism for polyubiquitination on a SCF substrate
-
Wu K, Kovacev J, Pan ZQ. (2010). Priming and extending: a UbcH5/Cdc34 E2 handoff mechanism for polyubiquitination on a SCF substrate. Mol. Cell 37: 784-96
-
(2010)
Mol. Cell
, vol.37
, pp. 784-796
-
-
Wu, K.1
Kovacev, J.2
Pan, Z.Q.3
-
52
-
-
70450218366
-
Rapid E2-E3 assembly and disassembly enable processive ubiquitylation of cullin-RING ubiquitin ligase substrates
-
Kleiger G, Saha A, Lewis S, Kuhlman B, Deshaies RJ. (2009). Rapid E2-E3 assembly and disassembly enable processive ubiquitylation of cullin-RING ubiquitin ligase substrates. Cell 139: 957-68
-
(2009)
Cell
, vol.139
, pp. 957-968
-
-
Kleiger, G.1
Saha, A.2
Lewis, S.3
Kuhlman, B.4
Deshaies, R.J.5
-
53
-
-
84922319624
-
Ubiquitin chain elongation requires E3-dependent tracking of the emerging conjugate
-
Kelly A, Wickliffe KE, Song L, Fedrigo I, Rape M. (2014). Ubiquitin chain elongation requires E3-dependent tracking of the emerging conjugate. Mol. Cell 56: 232-45
-
(2014)
Mol. Cell
, vol.56
, pp. 232-245
-
-
Kelly, A.1
Wickliffe, K.E.2
Song, L.3
Fedrigo, I.4
Rape, M.5
-
54
-
-
84929293495
-
Mechanism of polyubiquitination by human anaphase-promoting complex: RINGrepurposing for ubiquitin chain assembly
-
Brown NG, Watson ER, Weissmann F, Jarvis MA, VanderLinden R, et al. (2014). Mechanism of polyubiquitination by human anaphase-promoting complex: RINGrepurposing for ubiquitin chain assembly. Mol. Cell 56: 246-60
-
(2014)
Mol. Cell
, vol.56
, pp. 246-260
-
-
Brown, N.G.1
Watson, E.R.2
Weissmann, F.3
Jarvis, M.A.4
VanderLinden, R.5
-
55
-
-
84971517462
-
Dual RING E3 architectures regulate multiubiquitination and ubiquitin chain elongation by APC/C
-
Brown NG, VanderLinden R, Watson ER, Weissmann F, Ordureau A, et al. (2016). Dual RING E3 architectures regulate multiubiquitination and ubiquitin chain elongation by APC/C. Cell 165: 1440-53
-
(2016)
Cell
, vol.165
, pp. 1440-1453
-
-
Brown, N.G.1
VanderLinden, R.2
Watson, E.R.3
Weissmann, F.4
Ordureau, A.5
-
56
-
-
84927555890
-
Specificity of the anaphase-promoting complex: A single-molecule study
-
Lu Y, Wang W, Kirschner MW. (2015). Specificity of the anaphase-promoting complex: a single-molecule study. Science 348: 1248737
-
(2015)
Science
, vol.348
, pp. 1248737
-
-
Lu, Y.1
Wang, W.2
Kirschner, M.W.3
-
57
-
-
67349132223
-
Physiological functions of the HECT family of ubiquitin ligases
-
Rotin D, Kumar S. (2009). Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 10: 398-409
-
(2009)
Nat. Rev. Mol. Cell Biol
, vol.10
, pp. 398-409
-
-
Rotin, D.1
Kumar, S.2
-
58
-
-
0032741446
-
Structure of an E6AP-UbcH7 complex: Insights into ubiquitination by the E2-E3 enzyme cascade
-
Huang L, Kinnucan E, Wang G, Beaudenon S, Howley PM, et al. (1999). Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 286: 1321-26
-
(1999)
Science
, vol.286
, pp. 1321-1326
-
-
Huang, L.1
Kinnucan, E.2
Wang, G.3
Beaudenon, S.4
Howley, P.M.5
-
59
-
-
0037249354
-
Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase
-
Verdecia MA, Joazeiro CA, Wells NJ, Ferrer JL, Bowman ME, et al. (2003). Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol. Cell 11: 249-59
-
(2003)
Mol. Cell
, vol.11
, pp. 249-259
-
-
Verdecia, M.A.1
Joazeiro, C.A.2
Wells, N.J.3
Ferrer, J.L.4
Bowman, M.E.5
-
60
-
-
23044505285
-
Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain
-
Ogunjimi AA, Briant DJ, Pece-Barbara N, Le Roy C, Di Guglielmo GM, et al. (2005). Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol. Cell 19: 297-308
-
(2005)
Mol. Cell
, vol.19
, pp. 297-308
-
-
Ogunjimi, A.A.1
Briant, D.J.2
Pece-Barbara, N.3
Le Roy, C.4
Di Guglielmo, G.M.5
-
61
-
-
72149107116
-
Insights into ubiquitin transfer cascades from a structure of a UbcH5B~Ubiquitin-HECTNEDD4L complex
-
Kamadurai HB, Souphron J, Scott DC, Duda DM, Miller DJ, et al. (2009). Insights into ubiquitin transfer cascades from a structure of a UbcH5B~Ubiquitin-HECTNEDD4L complex. Mol. Cell 36: 1095-102
-
(2009)
Mol. Cell
, vol.36
, pp. 1095-1102
-
-
Kamadurai, H.B.1
Souphron, J.2
Scott, D.C.3
Duda, D.M.4
Miller, D.J.5
-
62
-
-
84878900697
-
Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming
-
Maspero E, Valentini E, Mari S, Cecatiello V, Soffientini P, et al. (2013). Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming. Nat. Struct. Mol. Biol. 20: 696-701
-
(2013)
Nat. Struct. Mol. Biol
, vol.20
, pp. 696-701
-
-
Maspero, E.1
Valentini, E.2
Mari, S.3
Cecatiello, V.4
Soffientini, P.5
-
63
-
-
84881518558
-
Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3
-
Kamadurai HB, Qiu Y, Deng A, Harrison JS, Macdonald C, et al. (2013). Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3. eLife 2: e00828
-
(2013)
ELife
, vol.2
, pp. e00828
-
-
Kamadurai, H.B.1
Qiu, Y.2
Deng, A.3
Harrison, J.S.4
Macdonald, C.5
-
64
-
-
67649227630
-
Polyubiquitination by HECT E3s and the determinants of chain type specificity
-
Kim HC, Huibregtse JM. (2009). Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol. Cell. Biol. 29: 3307-18
-
(2009)
Mol. Cell. Biol
, vol.29
, pp. 3307-3318
-
-
Kim, H.C.1
Huibregtse, J.M.2
-
65
-
-
66449125689
-
Regulation of the RSP5 ubiquitin ligase by an intrinsic ubiquitin-binding site
-
French ME, Kretzmann BR, Hicke L. (2009). Regulation of the RSP5 ubiquitin ligase by an intrinsic ubiquitin-binding site. J. Biol. Chem. 284: 12071-79
-
(2009)
J. Biol. Chem
, vol.284
, pp. 12071-12079
-
-
French, M.E.1
Kretzmann, B.R.2
Hicke, L.3
-
66
-
-
79953310074
-
Structure and function of a HECT domain ubiquitin-binding site
-
Kim HC, Steffen AM, Oldham ML, Chen J, Huibregtse JM. (2011). Structure and function of a HECT domain ubiquitin-binding site. EMBO Rep. 12: 334-41
-
(2011)
EMBO Rep
, vol.12
, pp. 334-341
-
-
Kim, H.C.1
Steffen, A.M.2
Oldham, M.L.3
Chen, J.4
Huibregtse, J.M.5
-
67
-
-
77949888615
-
The ubiquitin binding region of the Smurf HECT domain facilitates polyubiquitylation and binding of ubiquitylated substrates
-
Ogunjimi AA, Wiesner S, Briant DJ, Varelas X, Sicheri F, et al. (2010). The ubiquitin binding region of the Smurf HECT domain facilitates polyubiquitylation and binding of ubiquitylated substrates. J. Biol. Chem. 285: 6308-15
-
(2010)
J. Biol. Chem
, vol.285
, pp. 6308-6315
-
-
Ogunjimi, A.A.1
Wiesner, S.2
Briant, D.J.3
Varelas, X.4
Sicheri, F.5
-
68
-
-
79953325889
-
Structure of the HECT: Ubiquitin complex and its role in ubiquitin chain elongation
-
Maspero E, Mari S, Valentini E, Musacchio A, Fish A, et al. (2011). Structure of the HECT: ubiquitin complex and its role in ubiquitin chain elongation. EMBO Rep. 12: 342-49
-
(2011)
EMBO Rep
, vol.12
, pp. 342-349
-
-
Maspero, E.1
Mari, S.2
Valentini, E.3
Musacchio, A.4
Fish, A.5
-
69
-
-
84873085753
-
A strategy for modulation of enzymes in the ubiquitin system
-
Ernst A, Avvakumov G, Tong J, Fan Y, Zhao Y, et al. (2013). A strategy for modulation of enzymes in the ubiquitin system. Science 339: 590-95
-
(2013)
Science
, vol.339
, pp. 590-595
-
-
Ernst, A.1
Avvakumov, G.2
Tong, J.3
Fan, Y.4
Zhao, Y.5
-
70
-
-
84959285658
-
System-wide modulation of HECT E3 ligases with selective ubiquitin variant probes
-
Zhang W, Wu KP, Sartori MA, Kamadurai HB, Ordureau A, et al. (2016). System-wide modulation of HECT E3 ligases with selective ubiquitin variant probes. Mol. Cell 62: 121-36
-
(2016)
Mol. Cell
, vol.62
, pp. 121-136
-
-
Zhang, W.1
Wu, K.P.2
Sartori, M.A.3
Kamadurai, H.B.4
Ordureau, A.5
-
71
-
-
79957949190
-
UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids
-
Wenzel DM, Lissounov A, Brzovic PS, Klevit RE. (2011). UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 474: 105-8
-
(2011)
Nature
, vol.474
, pp. 105-108
-
-
Wenzel, D.M.1
Lissounov, A.2
Brzovic, P.S.3
Klevit, R.E.4
-
72
-
-
58149098846
-
E2-c-Cbl recognition is necessary but not sufficient for ubiquitination activity
-
Huang A, de Jong RN, Wienk H, Winkler GS, Timmers HT, Boelens R. (2009). E2-c-Cbl recognition is necessary but not sufficient for ubiquitination activity. J. Mol. Biol. 385: 507-19
-
(2009)
J. Mol. Biol
, vol.385
, pp. 507-519
-
-
Huang, A.1
De Jong, R.N.2
Wienk, H.3
Winkler, G.S.4
Timmers, H.T.5
Boelens, R.6
-
73
-
-
0037610801
-
Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex
-
Brzovic PS, Keeffe JR, Nishikawa H, Miyamoto K, Fox D, et al. (2003). Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. PNAS 100: 5646-51
-
(2003)
PNAS
, vol.100
, pp. 5646-5651
-
-
Brzovic, P.S.1
Keeffe, J.R.2
Nishikawa, H.3
Miyamoto, K.4
Fox, D.5
-
74
-
-
0033933048
-
Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase
-
Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, et al. (2000). Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 25: 302-5
-
(2000)
Nat. Genet
, vol.25
, pp. 302-305
-
-
Shimura, H.1
Hattori, N.2
Kubo, S.3
Mizuno, Y.4
Asakawa, S.5
-
75
-
-
84867096523
-
The E3 ligaseHOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension
-
Smit JJ, Monteferrario D, Noordermeer SM, van Dijk WJ, van der Reijden BA, Sixma TK. (2012). The E3 ligaseHOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension. EMBO J. 31: 3833-44
-
(2012)
EMBO J
, vol.31
, pp. 3833-3844
-
-
Smit, J.J.1
Monteferrario, D.2
Noordermeer, S.M.3
Van Dijk, W.J.4
Van Der Reijden, B.A.5
Sixma, T.K.6
-
76
-
-
84865709638
-
LUBAC synthesizes linear ubiquitin chains via a thioester intermediate
-
Stieglitz B, Morris-Davies AC, Koliopoulos MG, Christodoulou E, Rittinger K. (2012). LUBAC synthesizes linear ubiquitin chains via a thioester intermediate. EMBO Rep. 13: 840-46
-
(2012)
EMBO Rep
, vol.13
, pp. 840-846
-
-
Stieglitz, B.1
Morris-Davies, A.C.2
Koliopoulos, M.G.3
Christodoulou, E.4
Rittinger, K.5
-
77
-
-
84896870884
-
RBR E3 ubiquitin ligases: New structures, new insights, new questions
-
Spratt DE, Walden H, Shaw GS. (2014). RBR E3 ubiquitin ligases: new structures, new insights, new questions. Biochem. J. 458: 421-37
-
(2014)
Biochem. J
, vol.458
, pp. 421-437
-
-
Spratt, D.E.1
Walden, H.2
Shaw, G.S.3
-
78
-
-
0032499264
-
Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
-
Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, et al. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605-8
-
(1998)
Nature
, vol.392
, pp. 605-608
-
-
Kitada, T.1
Asakawa, S.2
Hattori, N.3
Matsumine, H.4
Yamamura, Y.5
-
79
-
-
33750219981
-
A ubiquitin ligase complex assembles linear polyubiquitin chains
-
Kirisako T, Kamei K, Murata S, Kato M, Fukumoto H, et al. (2006). A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25: 4877-87
-
(2006)
EMBO J
, vol.25
, pp. 4877-4887
-
-
Kirisako, T.1
Kamei, K.2
Murata, S.3
Kato, M.4
Fukumoto, H.5
-
80
-
-
0033925333
-
Ariadne-1: A vital Drosophila gene is required in development and defines a new conserved family of ring-finger proteins
-
Aguilera M, Oliveros M, Martínez-Padrón M, Barbas JA, Ferrús A. (2000). Ariadne-1: a vital Drosophila gene is required in development and defines a new conserved family of ring-finger proteins. Genetics 155: 1231-44
-
(2000)
Genetics
, vol.155
, pp. 1231-1244
-
-
Aguilera, M.1
Oliveros, M.2
Martínez-Padrón, M.3
Barbas, J.A.4
Ferrús, A.5
-
81
-
-
79953239980
-
SHARPIN forms a linear ubiquitin ligase complex regulating NF-?B activity and apoptosis
-
Ikeda F, Deribe YL, SkÅnland SS, Stieglitz B, Grabbe C, et al. (2011). SHARPIN forms a linear ubiquitin ligase complex regulating NF-?B activity and apoptosis. Nature 471: 637-41
-
(2011)
Nature
, vol.471
, pp. 637-641
-
-
Ikeda, F.1
Deribe, Y.L.2
SkÅnland, S.S.3
Stieglitz, B.4
Grabbe, C.5
-
82
-
-
79953237668
-
SHARPIN is a component of the NF-?B-Activating linear ubiquitin chain assembly complex
-
Tokunaga F, Nakagawa T, Nakahara M, Saeki Y, Taniguchi M, et al. (2011). SHARPIN is a component of the NF-?B-Activating linear ubiquitin chain assembly complex. Nature 471: 633-36
-
(2011)
Nature
, vol.471
, pp. 633-636
-
-
Tokunaga, F.1
Nakagawa, T.2
Nakahara, M.3
Saeki, Y.4
Taniguchi, M.5
-
83
-
-
79960649509
-
Autoregulation of Parkin activity through its ubiquitin-like domain
-
Chaugule VK, Burchell L, Barber KR, Sidhu A, Leslie SJ, et al. (2011). Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J. 30: 2853-67
-
(2011)
EMBO J
, vol.30
, pp. 2853-2867
-
-
Chaugule, V.K.1
Burchell, L.2
Barber, K.R.3
Sidhu, A.4
Leslie, S.J.5
-
84
-
-
84879251778
-
Structure of parkin reveals mechanisms for ubiquitin ligase activation
-
Trempe JF, Sauvé V, Grenier K, Seirafi M, Tang MY, et al. (2013). Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340: 1451-55
-
(2013)
Science
, vol.340
, pp. 1451-1455
-
-
Trempe, J.F.1
Sauvé, V.2
Grenier, K.3
Seirafi, M.4
Tang, M.Y.5
-
85
-
-
84879674444
-
Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases
-
Riley BE, Lougheed JC, Callaway K, Velasquez M, Brecht E, et al. (2013). Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat. Commun. 4: 1982
-
(2013)
Nat. Commun
, vol.4
, pp. 1982
-
-
Riley, B.E.1
Lougheed, J.C.2
Callaway, K.3
Velasquez, M.4
Brecht, E.5
-
86
-
-
84881477223
-
Structure of the human Parkin ligase domain in an autoinhibited state
-
Wauer T, Komander D. (2013). Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J. 32: 2099-112
-
(2013)
EMBO J
, vol.32
, pp. 2099-2112
-
-
Wauer, T.1
Komander, D.2
-
87
-
-
84878840303
-
Structure of HHARI, a RING-IBR-RING ubiquitin ligase: Autoinhibition of an Ariadne-family E3 and insights into ligation mechanism
-
Duda DM, Olszewski JL, Schuermann JP, Kurinov I, Miller DJ, et al. (2013). Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism. Structure 21: 1030-41
-
(2013)
Structure
, vol.21
, pp. 1030-1041
-
-
Duda, D.M.1
Olszewski, J.L.2
Schuermann, J.P.3
Kurinov, I.4
Miller, D.J.5
-
88
-
-
84956664551
-
Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation
-
Lechtenberg BC, Rajput A, Sanishvili R, Dobaczewska MK, Ware CF, et al. (2016). Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Nature 529: 546-50
-
(2016)
Nature
, vol.529
, pp. 546-550
-
-
Lechtenberg, B.C.1
Rajput, A.2
Sanishvili, R.3
Dobaczewska, M.K.4
Ware, C.F.5
-
89
-
-
84939795423
-
Mechanism of phospho-ubiquitin-induced PARKIN activation
-
Wauer T, Simicek M, Schubert A, Komander D. (2015). Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524: 370-74
-
(2015)
Nature
, vol.524
, pp. 370-374
-
-
Wauer, T.1
Simicek, M.2
Schubert, A.3
Komander, D.4
-
90
-
-
84888034624
-
Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP
-
Stieglitz B, Rana RR, Koliopoulos MG, Morris-Davies AC, Schaeffer V, et al. (2013). Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP. Nature 503: 422-26
-
(2013)
Nature
, vol.503
, pp. 422-426
-
-
Stieglitz, B.1
Rana, R.R.2
Koliopoulos, M.G.3
Morris-Davies, A.C.4
Schaeffer, V.5
-
91
-
-
30844458212
-
A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase
-
Janjusevic R, Abramovitch RB, Martin GB, Stebbins CE. (2006). A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science 311: 222-26
-
(2006)
Science
, vol.311
, pp. 222-226
-
-
Janjusevic, R.1
Abramovitch, R.B.2
Martin, G.B.3
Stebbins, C.E.4
-
92
-
-
77954670354
-
NleG type 3 effectors from enterohaemorrhagic Escherichia coli are U-Box E3 ubiquitin ligases
-
Wu B, Skarina T, Yee A, Jobin MC, Dileo R, et al. (2010). NleG type 3 effectors from enterohaemorrhagic Escherichia coli are U-Box E3 ubiquitin ligases. PLOS Pathog. 6: e1000960
-
(2010)
PLOS Pathog
, vol.6
, pp. e1000960
-
-
Wu, B.1
Skarina, T.2
Yee, A.3
Jobin, M.C.4
Dileo, R.5
-
93
-
-
84863184187
-
Crystal structures of two bacterial HECT-like E3 ligases in complex with a human E2 reveal atomic details of pathogen-host interactions
-
Lin DY, Diao J, Chen J. (2012). Crystal structures of two bacterial HECT-like E3 ligases in complex with a human E2 reveal atomic details of pathogen-host interactions. PNAS 109: 1925-30
-
(2012)
PNAS
, vol.109
, pp. 1925-1930
-
-
Lin, D.Y.1
Diao, J.2
Chen, J.3
-
94
-
-
78650931837
-
Biochemical and structural studies of a HECT-like ubiquitin ligase from Escherichia coli O157
-
Lin DY, Diao J, Zhou D, Chen J. (2011). Biochemical and structural studies of a HECT-like ubiquitin ligase from Escherichia coli O157: H7. J. Biol. Chem. 286: 441-49
-
(2011)
J. Biol. Chem H7
, vol.286
, pp. 441-449
-
-
Lin, D.Y.1
Diao, J.2
Zhou, D.3
Chen, J.4
-
95
-
-
37849010910
-
Crystal structure of Sop A, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase
-
Diao J, Zhang Y, Huibregtse JM, Zhou D, Chen J. (2008). Crystal structure of Sop A, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase. Nat. Struct. Mol. Biol. 15: 65-70
-
(2008)
Nat. Struct. Mol. Biol
, vol.15
, pp. 65-70
-
-
Diao, J.1
Zhang, Y.2
Huibregtse, J.M.3
Zhou, D.4
Chen, J.5
-
96
-
-
33947727977
-
Type III secretion effectors of the IpaH family are E3 ubiquitin ligases
-
Rohde JR, Breitkreutz A, Chenal A, Sansonetti PJ, Parsot C. (2007). Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 1: 77-83
-
(2007)
Cell Host Microbe
, vol.1
, pp. 77-83
-
-
Rohde, J.R.1
Breitkreutz, A.2
Chenal, A.3
Sansonetti, P.J.4
Parsot, C.5
-
97
-
-
57149098210
-
Structure of a Shigella effector reveals a new class of ubiquitin ligases
-
Zhu Y, Li H, Hu L, Wang J, Zhou Y, et al. (2008). Structure of a Shigella effector reveals a new class of ubiquitin ligases. Nat. Struct. Mol. Biol. 15: 1302-8
-
(2008)
Nat. Struct. Mol. Biol
, vol.15
, pp. 1302-1308
-
-
Zhu, Y.1
Li, H.2
Hu, L.3
Wang, J.4
Zhou, Y.5
-
98
-
-
57149105701
-
Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases
-
Singer AU, Rohde JR, Lam R, Skarina T, Kagan O, et al. (2008). Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases. Nat. Struct. Mol. Biol. 15: 1293-301
-
(2008)
Nat. Struct. Mol. Biol
, vol.15
, pp. 1293-1301
-
-
Singer, A.U.1
Rohde, J.R.2
Lam, R.3
Skarina, T.4
Kagan, O.5
-
99
-
-
63849280748
-
A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases
-
Quezada CM, Hicks SW, Galán JE, Stebbins CE. (2009). A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases. PNAS 106: 4864-69
-
(2009)
PNAS
, vol.106
, pp. 4864-4869
-
-
Quezada, C.M.1
Hicks, S.W.2
Galán, J.E.3
Stebbins, C.E.4
-
100
-
-
84855287935
-
Conserved structural mechanisms for autoinhibition in IpaH ubiquitin ligases
-
Chou YC, Keszei AF, Rohde JR, Tyers M, Sicheri F. (2012). Conserved structural mechanisms for autoinhibition in IpaH ubiquitin ligases. J. Biol. Chem. 287: 268-75
-
(2012)
J. Biol. Chem
, vol.287
, pp. 268-275
-
-
Chou, Y.C.1
Keszei, A.F.2
Rohde, J.R.3
Tyers, M.4
Sicheri, F.5
-
101
-
-
84892473685
-
Structure of an SspH1-PKN1 complex reveals the basis for host substrate recognition and mechanism of activation for a bacterial E3 ubiquitin ligase
-
Keszei AF, Tang X, McCormick C, Zeqiraj E, Rohde JR, et al. (2014). Structure of an SspH1-PKN1 complex reveals the basis for host substrate recognition and mechanism of activation for a bacterial E3 ubiquitin ligase. Mol. Cell. Biol. 34: 362-73
-
(2014)
Mol. Cell. Biol
, vol.34
, pp. 362-373
-
-
Keszei, A.F.1
Tang, X.2
McCormick, C.3
Zeqiraj, E.4
Rohde, J.R.5
-
102
-
-
84908365192
-
The structure of the Slrp-Trx1 complex sheds light on the autoinhibition mechanism of the type III secretion system effectors of the NEL family
-
Zouhir S, Bernal-Bayard J, Cordero-Alba M, Cardenal-Mũnoz E, Guimaraes B, et al. (2014). The structure of the Slrp-Trx1 complex sheds light on the autoinhibition mechanism of the type III secretion system effectors of the NEL family. Biochem. J. 464: 135-44
-
(2014)
Biochem. J
, vol.464
, pp. 135-144
-
-
Zouhir, S.1
Bernal-Bayard, J.2
Cordero-Alba, M.3
Cardenal-Mũnoz, E.4
Guimaraes, B.5
-
103
-
-
84966350690
-
Ubiquitination independent of E1 and E2 enzymes by bacterial effectors
-
Qiu J, Sheedlo MJ, Yu K, Tan Y, Nakayasu ES, et al. (2016). Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature 533: 120-24
-
(2016)
Nature
, vol.533
, pp. 120-124
-
-
Qiu, J.1
Sheedlo, M.J.2
Yu, K.3
Tan, Y.4
Nakayasu, E.S.5
-
104
-
-
85001889664
-
Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination
-
Bhogaraju S, Kalayil S, Liu Y, Bonn F, Colby T, et al. (2016). Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination. Cell 167: 1636-49
-
(2016)
Cell
, vol.167
, pp. 1636-1649
-
-
Bhogaraju, S.1
Kalayil, S.2
Liu, Y.3
Bonn, F.4
Colby, T.5
-
105
-
-
1842591231
-
Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases
-
Marmor MD, Yarden Y. (2004). Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene 23: 2057-70
-
(2004)
Oncogene
, vol.23
, pp. 2057-2070
-
-
Marmor, M.D.1
Yarden, Y.2
-
106
-
-
0033392493
-
Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1
-
Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, et al. (1999). Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell 4: 1029-40
-
(1999)
Mol. Cell
, vol.4
, pp. 1029-1040
-
-
Levkowitz, G.1
Waterman, H.2
Ettenberg, S.A.3
Katz, M.4
Tsygankov, A.Y.5
-
107
-
-
3142618052
-
Regulation of ubiquitin protein ligase activity in c-Cbl by phosphorylation-induced conformational change and constitutive activation by tyrosine to glutamate point mutations
-
Kassenbrock CK, Anderson SM. (2004). Regulation of ubiquitin protein ligase activity in c-Cbl by phosphorylation-induced conformational change and constitutive activation by tyrosine to glutamate point mutations. J. Biol. Chem. 279: 28017-27
-
(2004)
J. Biol. Chem
, vol.279
, pp. 28017-28027
-
-
Kassenbrock, C.K.1
Anderson, S.M.2
-
108
-
-
77954928407
-
The N terminus of Cbl-c regulates ubiquitin ligase activity by modulating affinity for the ubiquitin-conjugating enzyme
-
Ryan PE, Sivadasan-Nair N, Nau MM, Nicholas S, Lipkowitz S. (2010). The N terminus of Cbl-c regulates ubiquitin ligase activity by modulating affinity for the ubiquitin-conjugating enzyme. J. Biol. Chem. 285: 23687-98
-
(2010)
J. Biol. Chem
, vol.285
, pp. 23687-23698
-
-
Ryan, P.E.1
Sivadasan-Nair, N.2
Nau, M.M.3
Nicholas, S.4
Lipkowitz, S.5
-
109
-
-
84856708226
-
Structural basis for autoinhibition and phosphorylation-dependent activation of c-Cbl
-
Dou H, Buetow L, Hock A, Sibbet GJ, Vousden KH, Huang DT. (2012). Structural basis for autoinhibition and phosphorylation-dependent activation of c-Cbl. Nat. Struct. Mol. Biol. 19: 184-92
-
(2012)
Nat. Struct. Mol. Biol
, vol.19
, pp. 184-192
-
-
Dou, H.1
Buetow, L.2
Hock, A.3
Sibbet, G.J.4
Vousden, K.H.5
Huang, D.T.6
-
110
-
-
0033592868
-
Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage
-
Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D. (1999). Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. PNAS 96: 14973-77
-
(1999)
PNAS
, vol.96
, pp. 14973-14977
-
-
Khosravi, R.1
Maya, R.2
Gottlieb, T.3
Oren, M.4
Shiloh, Y.5
Shkedy, D.6
-
111
-
-
18244392958
-
Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na+ channel cell surface expression
-
Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, et al. (2001). Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na+ channel cell surface expression. EMBO J. 20: 7052-59
-
(2001)
EMBO J
, vol.20
, pp. 7052-7059
-
-
Debonneville, C.1
Flores, S.Y.2
Kamynina, E.3
Plant, P.J.4
Tauxe, C.5
-
112
-
-
84966925960
-
Molecular mechanism of APC/C activation by mitotic phosphorylation
-
Zhang S, Chang L, Alfieri C, Zhang Z, Yang J, et al. (2016). Molecular mechanism of APC/C activation by mitotic phosphorylation. Nature 533: 260-64
-
(2016)
Nature
, vol.533
, pp. 260-264
-
-
Zhang, S.1
Chang, L.2
Alfieri, C.3
Zhang, Z.4
Yang, J.5
-
113
-
-
84964507666
-
Cyclin-dependent kinase 1-dependent activation of APC/C ubiquitin ligase
-
Fujimitsu K, Grimaldi M, Yamano H. (2016). Cyclin-dependent kinase 1-dependent activation of APC/C ubiquitin ligase. Science 352: 1121-24
-
(2016)
Science
, vol.352
, pp. 1121-1124
-
-
Fujimitsu, K.1
Grimaldi, M.2
Yamano, H.3
-
114
-
-
50449110781
-
Autoinhibitory regulation of SCF-mediated ubiquitination by human cullin 1s C-Terminal tail
-
Yamoah K, Oashi T, Sarikas A, Gazdoiu S, Osman R, Pan ZQ. (2008). Autoinhibitory regulation of SCF-mediated ubiquitination by human cullin 1s C-Terminal tail. PNAS 105: 12230-35
-
(2008)
PNAS
, vol.105
, pp. 12230-12235
-
-
Yamoah, K.1
Oashi, T.2
Sarikas, A.3
Gazdoiu, S.4
Osman, R.5
Pan, Z.Q.6
-
115
-
-
50449108516
-
Structural insights into NEDD8 activation of cullin-RING ligases: Conformational control of conjugation
-
Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA. (2008). Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134: 995-1006
-
(2008)
Cell
, vol.134
, pp. 995-1006
-
-
Duda, D.M.1
Borg, L.A.2
Scott, D.C.3
Hunt, H.W.4
Hammel, M.5
Schulman, B.A.6
-
116
-
-
33749535905
-
Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery
-
Angers S, Li T, Yi X, MacCoss MJ, Moon RT, Zheng N. (2006). Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443: 590-93
-
(2006)
Nature
, vol.443
, pp. 590-593
-
-
Angers, S.1
Li, T.2
Yi, X.3
MacCoss, M.J.4
Moon, R.T.5
Zheng, N.6
-
117
-
-
77956296853
-
Glutamine deamidation and dysfunction of ubiquitin/ NEDD8 induced by a bacterial effector family
-
Cui J, Yao Q, Li S, Ding X, Lu Q, et al. (2010). Glutamine deamidation and dysfunction of ubiquitin/ NEDD8 induced by a bacterial effector family. Science 329: 1215-18
-
(2010)
Science
, vol.329
, pp. 1215-1218
-
-
Cui, J.1
Yao, Q.2
Li, S.3
Ding, X.4
Lu, Q.5
-
118
-
-
84949293487
-
Gln40 deamidation blocks structural reconfiguration and activation of SCF ubiquitin ligase complex by Nedd8
-
Yu C, Mao H, Novitsky EJ, Tang X, Rychnovsky SD, et al. (2015). Gln40 deamidation blocks structural reconfiguration and activation of SCF ubiquitin ligase complex by Nedd8. Nat. Commun. 6: 10053
-
(2015)
Nat. Commun
, vol.6
, pp. 10053
-
-
Yu, C.1
Mao, H.2
Novitsky, E.J.3
Tang, X.4
Rychnovsky, S.D.5
-
119
-
-
78149309149
-
Pathogenic bacteria target NEDD8-conjugated cullins to hijack host-cell signaling pathways
-
Jubelin G, Taieb F, Duda DM, Hsu Y, Samba-Louaka A, et al. (2010). Pathogenic bacteria target NEDD8-conjugated cullins to hijack host-cell signaling pathways. PLOS Pathog. 6: e1001128
-
(2010)
PLOS Pathog
, vol.6
, pp. e1001128
-
-
Jubelin, G.1
Taieb, F.2
Duda, D.M.3
Hsu, Y.4
Samba-Louaka, A.5
-
120
-
-
80054750064
-
Inhibition of cullin RING ligases by cycle inhibiting factor: Evidence for interference with Nedd8-induced conformational control
-
Boh BK, Ng MY, Leck YC, Shaw B, Long J, et al. (2011). Inhibition of cullin RING ligases by cycle inhibiting factor: evidence for interference with Nedd8-induced conformational control. J. Mol. Biol. 413: 430-37
-
(2011)
J. Mol. Biol
, vol.413
, pp. 430-437
-
-
Boh, B.K.1
Ng, M.Y.2
Leck, Y.C.3
Shaw, B.4
Long, J.5
-
121
-
-
80051733972
-
Ubiquitination of E3 ligases: Self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms
-
de Bie P, Ciechanover A. (2011). Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death Differ. 18: 1393-402
-
(2011)
Cell Death Differ
, vol.18
, pp. 1393-1402
-
-
De Bie, P.1
Ciechanover, A.2
-
122
-
-
84879582826
-
Auto-ubiquitination of Mdm2 enhances its substrate ubiquitin ligase activity
-
Ranaweera RS, Yang X. (2013). Auto-ubiquitination of Mdm2 enhances its substrate ubiquitin ligase activity. J. Biol. Chem. 288: 18939-46
-
(2013)
J. Biol. Chem
, vol.288
, pp. 18939-18946
-
-
Ranaweera, R.S.1
Yang, X.2
-
123
-
-
33751515474
-
The polycomb protein Ring1B generates self atypical mixed ubiquitin chains required for its in vitro histone H2A ligase activity
-
Ben-Saadon R, Zaaroor D, Ziv T, Ciechanover A. (2006). The polycomb protein Ring1B generates self atypical mixed ubiquitin chains required for its in vitro histone H2A ligase activity. Mol. Cell 24: 701-11
-
(2006)
Mol. Cell
, vol.24
, pp. 701-711
-
-
Ben-Saadon, R.1
Zaaroor, D.2
Ziv, T.3
Ciechanover, A.4
-
124
-
-
53149103943
-
Regulation of Nedd4-2 self-ubiquitination and stability by a PY motif located within its HECT-domain
-
Bruce MC, Kanelis V, Fouladkou F, Debonneville A, Staub O, Rotin D. (2008). Regulation of Nedd4-2 self-ubiquitination and stability by a PY motif located within its HECT-domain. Biochem. J. 415: 155-63
-
(2008)
Biochem. J
, vol.415
, pp. 155-163
-
-
Bruce, M.C.1
Kanelis, V.2
Fouladkou, F.3
Debonneville, A.4
Staub, O.5
Rotin, D.6
-
125
-
-
84978435047
-
Autoubiquitination of the Hrd1 ligase triggers protein retrotranslocation in ERAD
-
Baldridge RD, Rapoport TA. (2016). Autoubiquitination of the Hrd1 ligase triggers protein retrotranslocation in ERAD. Cell 166: 394-407
-
(2016)
Cell
, vol.166
, pp. 394-407
-
-
Baldridge, R.D.1
Rapoport, T.A.2
-
126
-
-
84964894737
-
Interplay between ubiquitin, SUMO, and poly(ADP-ribose) in the cellular response to genotoxic stress
-
Pellegrino S, Altmeyer M. (2016). Interplay between ubiquitin, SUMO, and poly(ADP-ribose) in the cellular response to genotoxic stress. Front. Genet. 7: 63
-
(2016)
Front. Genet
, vol.7
, pp. 63
-
-
Pellegrino, S.1
Altmeyer, M.2
-
127
-
-
84964893893
-
Readers of poly(ADP-ribose): Designed to be fit for purpose
-
Teloni F, Altmeyer M. (2016). Readers of poly(ADP-ribose): designed to be fit for purpose. Nucleic Acids Res. 44: 993-1006
-
(2016)
Nucleic Acids Res
, vol.44
, pp. 993-1006
-
-
Teloni, F.1
Altmeyer, M.2
-
128
-
-
79955617241
-
RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling
-
Zhang Y, Liu S, Mickanin C, Feng Y, Charlat O, et al. (2011). RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat. Cell Biol. 13: 623-29
-
(2011)
Nat. Cell Biol
, vol.13
, pp. 623-629
-
-
Zhang, Y.1
Liu, S.2
Mickanin, C.3
Feng, Y.4
Charlat, O.5
-
129
-
-
84877823968
-
Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation
-
Li M, Yu X. (2013). Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell 23: 693-704
-
(2013)
Cancer Cell
, vol.23
, pp. 693-704
-
-
Li, M.1
Yu, X.2
-
130
-
-
84863010981
-
Recognition of the iso-ADPribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADPribosyl) ation-dependent ubiquitination
-
Wang Z, Michaud GA, Cheng Z, Zhang Y, Hinds TR, et al. (2012). Recognition of the iso-ADPribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADPribosyl) ation-dependent ubiquitination. Genes Dev. 26: 235-40
-
(2012)
Genes Dev
, vol.26
, pp. 235-240
-
-
Wang, Z.1
Michaud, G.A.2
Cheng, Z.3
Zhang, Y.4
Hinds, T.R.5
-
131
-
-
84920024622
-
Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal
-
DaRosa PA, Wang Z, Jiang X, Pruneda JN, Cong F, et al. (2015). Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal. Nature 517: 223-26
-
(2015)
Nature
, vol.517
, pp. 223-226
-
-
DaRosa, P.A.1
Wang, Z.2
Jiang, X.3
Pruneda, J.N.4
Cong, F.5
-
132
-
-
50149086108
-
Diversity of degradation signals in the ubiquitin-proteasome system
-
Ravid T, Hochstrasser M. (2008). Diversity of degradation signals in the ubiquitin-proteasome system. Nat. Rev. Mol. Cell Biol. 9: 679-90
-
(2008)
Nat. Rev. Mol. Cell Biol
, vol.9
, pp. 679-690
-
-
Ravid, T.1
Hochstrasser, M.2
-
133
-
-
0037756787
-
Structure of a β-TrCP1-Skp1-β-catenin complex: Destruction motif binding and lysine specificity of the SCFβ-TrCP1 ubiquitin ligase
-
Wu G, Xu G, Schulman BA, Jeffrey PD, Harper JW, Pavletich NP. (2003). Structure of a β-TrCP1-Skp1-β-catenin complex: destruction motif binding and lysine specificity of the SCFβ-TrCP1 ubiquitin ligase. Mol. Cell 11: 1445-56
-
(2003)
Mol. Cell
, vol.11
, pp. 1445-1456
-
-
Wu, G.1
Xu, G.2
Schulman, B.A.3
Jeffrey, P.D.4
Harper, J.W.5
Pavletich, N.P.6
-
134
-
-
0037035851
-
Structure of an HIF-1α-pVHL complex: Hydroxyproline recognition in signaling
-
Min JH, Yang H, Ivan M, Gertler F, Kaelin WG, Pavletich NP. (2002). Structure of an HIF-1α-pVHL complex: hydroxyproline recognition in signaling. Science 296: 1886-89
-
(2002)
Science
, vol.296
, pp. 1886-1889
-
-
Min, J.H.1
Yang, H.2
Ivan, M.3
Gertler, F.4
Kaelin, W.G.5
Pavletich, N.P.6
-
135
-
-
34047249627
-
Structure of a Fbw7-Skp1-cyclin e complex: Multisite-phosphorylated substrate recognition by SCF ubiquitin ligases
-
Hao B, Oehlmann S, Sowa ME, Harper JW, Pavletich NP. (2007). Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol. Cell 26: 131-43
-
(2007)
Mol. Cell
, vol.26
, pp. 131-143
-
-
Hao, B.1
Oehlmann, S.2
Sowa, M.E.3
Harper, J.W.4
Pavletich, N.P.5
-
136
-
-
25844441096
-
Structural basis of the Cks1-dependent recognition of p27Kip1 by the SCFSkp2 ubiquitin ligase
-
Hao B, Zheng N, Schulman BA, Wu G, Miller JJ, et al. (2005). Structural basis of the Cks1-dependent recognition of p27Kip1 by the SCFSkp2 ubiquitin ligase. Mol. Cell 20: 9-19
-
(2005)
Mol. Cell
, vol.20
, pp. 9-19
-
-
Hao, B.1
Zheng, N.2
Schulman, B.A.3
Wu, G.4
Miller, J.J.5
-
137
-
-
34250017680
-
Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination
-
Tang X, Orlicky S, Lin Z, Willems A, Neculai D, et al. (2007). Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Cell 129: 1165-76
-
(2007)
Cell
, vol.129
, pp. 1165-1176
-
-
Tang, X.1
Orlicky, S.2
Lin, Z.3
Willems, A.4
Neculai, D.5
-
138
-
-
0033522219
-
Structure of the amino-Terminal domain of Cbl complexed to its binding site on ZAP-70 kinase
-
Meng W, Sawasdikosol S, Burakoff SJ, Eck MJ. (1999). Structure of the amino-Terminal domain of Cbl complexed to its binding site on ZAP-70 kinase. Nature 398: 84-90
-
(1999)
Nature
, vol.398
, pp. 84-90
-
-
Meng, W.1
Sawasdikosol, S.2
Burakoff, S.J.3
Eck, M.J.4
-
139
-
-
84941584669
-
TheMLLE domain of the ubiquitin ligase UBR5 binds to its catalytic domain to regulate substrate binding
-
Muñoz-Escobar J, Matta-Camacho E, Kozlov G, Gehring K. (2015). TheMLLE domain of the ubiquitin ligase UBR5 binds to its catalytic domain to regulate substrate binding. J. Biol. Chem. 290: 22841-50
-
(2015)
J. Biol. Chem
, vol.290
, pp. 22841-22850
-
-
Muñoz-Escobar, J.1
Matta-Camacho, E.2
Kozlov, G.3
Gehring, K.4
-
140
-
-
0035027506
-
Solution structure of a nedd4wwdomain-enac peptide complex
-
Kanelis V, Rotin D, Forman-Kay JD. (2001). Solution structure of a Nedd4WWdomain-ENaC peptide complex. Nat. Struct. Biol. 8: 407-12
-
(2001)
Nat. Struct. Biol
, vol.8
, pp. 407-412
-
-
Kanelis, V.1
Rotin, D.2
Forman-Kay, J.D.3
-
141
-
-
33344456501
-
Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer
-
Padmanabhan B, Tong KI, Ohta T, Nakamura Y, Scharlock M, et al. (2006). Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol. Cell 21: 689-700
-
(2006)
Mol. Cell
, vol.21
, pp. 689-700
-
-
Padmanabhan, B.1
Tong, K.I.2
Ohta, T.3
Nakamura, Y.4
Scharlock, M.5
-
142
-
-
33747606306
-
Structure of the Keap1: Nrf2 interface provides mechanistic insight into Nrf2 signaling
-
Lo SC, Li X, Henzl MT, Beamer LJ, Hannink M. (2006). Structure of the Keap1: Nrf2 interface provides mechanistic insight into Nrf2 signaling. EMBO J. 25: 3605-17
-
(2006)
EMBO J
, vol.25
, pp. 3605-3617
-
-
Lo, S.C.1
Li, X.2
Henzl, M.T.3
Beamer, L.J.4
Hannink, M.5
-
143
-
-
84893840509
-
Kinetic, thermodynamic, and structural characterizations of the association between Nrf2-DLGex degron and Keap1
-
Fukutomi T, Takagi K, Mizushima T, Ohuchi N, Yamamoto M. (2014). Kinetic, thermodynamic, and structural characterizations of the association between Nrf2-DLGex degron and Keap1. Mol. Cell. Biol. 34: 832-46
-
(2014)
Mol. Cell. Biol
, vol.34
, pp. 832-846
-
-
Fukutomi, T.1
Takagi, K.2
Mizushima, T.3
Ohuchi, N.4
Yamamoto, M.5
-
144
-
-
84900518004
-
Structural and biochemical characterization of the KLHL3-WNK kinase interaction important in blood pressure regulation
-
Schumacher FR, Sorrell FJ, Alessi DR, Bullock AN, Kurz T. (2014). Structural and biochemical characterization of the KLHL3-WNK kinase interaction important in blood pressure regulation. Biochem. J. 460: 237-46
-
(2014)
Biochem. J
, vol.460
, pp. 237-246
-
-
Schumacher, F.R.1
Sorrell, F.J.2
Alessi, D.R.3
Bullock, A.N.4
Kurz, T.5
-
145
-
-
84857377700
-
Ubiquitin-dependent regulation of COPII coat size and function
-
Jin L, Pahuja KB, Wickliffe KE, Gorur A, Baumgärtel C, et al. (2012). Ubiquitin-dependent regulation of COPII coat size and function. Nature 482: 495-500
-
(2012)
Nature
, vol.482
, pp. 495-500
-
-
Jin, L.1
Pahuja, K.B.2
Wickliffe, K.E.3
Gorur, A.4
Baumgärtel, C.5
-
146
-
-
84971291437
-
Molecular basis of the Keap1-Nrf2 system
-
Suzuki T, Yamamoto M. (2015). Molecular basis of the Keap1-Nrf2 system. Free Radic. Biol. Med. 88: 93-100
-
(2015)
Free Radic. Biol. Med
, vol.88
, pp. 93-100
-
-
Suzuki, T.1
Yamamoto, M.2
-
147
-
-
84883830467
-
Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy
-
Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, et al. (2013). Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell 51: 618-31
-
(2013)
Mol. Cell
, vol.51
, pp. 618-631
-
-
Ichimura, Y.1
Waguri, S.2
Sou, Y.S.3
Kageyama, S.4
Hasegawa, J.5
-
148
-
-
84901824023
-
Structural insights into the TRIM family of ubiquitin E3 ligases
-
Li Y, Wu H, Wu W, Zhuo W, Liu W, et al. (2014). Structural insights into the TRIM family of ubiquitin E3 ligases. Cell Res. 24: 762-65
-
(2014)
Cell Res
, vol.24
, pp. 762-765
-
-
Li, Y.1
Wu, H.2
Wu, W.3
Zhuo, W.4
Liu, W.5
-
149
-
-
77649261371
-
Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-Terminal domains
-
Ogura T, Tong KI, Mio K, Maruyama Y, Kurokawa H, et al. (2010). Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-Terminal domains. PNAS 107: 2842-47
-
(2010)
PNAS
, vol.107
, pp. 2842-2847
-
-
Ogura, T.1
Tong, K.I.2
Mio, K.3
Maruyama, Y.4
Kurokawa, H.5
-
150
-
-
70349769327
-
Structures of SPOP-substrate complexes: Insights into molecular architectures of BTB-Cul3 ubiquitin ligases
-
Zhuang M, Calabrese MF, Liu J, Waddell MB, Nourse A, et al. (2009). Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Mol. Cell 36: 39-50
-
(2009)
Mol. Cell
, vol.36
, pp. 39-50
-
-
Zhuang, M.1
Calabrese, M.F.2
Liu, J.3
Waddell, M.B.4
Nourse, A.5
-
151
-
-
84888869831
-
Fbw7 dimerization determines the specificity and robustness of substrate degradation
-
Welcker M, Larimore EA, Swanger J, Bengoechea-Alonso MT, Grim JE, et al. (2013). Fbw7 dimerization determines the specificity and robustness of substrate degradation. Genes Dev. 27: 2531-36
-
(2013)
Genes Dev
, vol.27
, pp. 2531-2536
-
-
Welcker, M.1
Larimore, E.A.2
Swanger, J.3
Bengoechea-Alonso, M.T.4
Grim, J.E.5
-
152
-
-
84868551354
-
Structural analysis of human Cdc20 supports multisite degron recognition by APC/C
-
Tian W, Li B, Warrington R, Tomchick DR, Yu H, Luo X. (2012). Structural analysis of human Cdc20 supports multisite degron recognition by APC/C. PNAS 109: 18419-24
-
(2012)
PNAS
, vol.109
, pp. 18419-18424
-
-
Tian, W.1
Li, B.2
Warrington, R.3
Tomchick, D.R.4
Yu, H.5
Luo, X.6
-
153
-
-
84878881252
-
Insights into degron recognition by APC/C coactivators from the structure of an Acm 1-Cdh1 complex
-
He J, Chao WC, Zhang Z, Yang J, Cronin N, Barford D. (2013). Insights into degron recognition by APC/C coactivators from the structure of an Acm1-Cdh1 complex. Mol. Cell 50: 649-60
-
(2013)
Mol. Cell
, vol.50
, pp. 649-660
-
-
He, J.1
Chao, W.C.2
Zhang, Z.3
Yang, J.4
Cronin, N.5
Barford, D.6
-
154
-
-
84923879189
-
A tail of two sites: A bipartite mechanism for recognition of notch ligands by mind bomb E3 ligases
-
McMillan BJ, Schnute B, Ohlenhard N, Zimmerman B, Miles L, et al. (2015). A tail of two sites: a bipartite mechanism for recognition of notch ligands by mind bomb E3 ligases. Mol. Cell 57: 912-24
-
(2015)
Mol. Cell
, vol.57
, pp. 912-924
-
-
McMillan, B.J.1
Schnute, B.2
Ohlenhard, N.3
Zimmerman, B.4
Miles, L.5
-
155
-
-
77957805791
-
Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases
-
Choi WS, Jeong BC, Joo YJ, Lee MR, Kim J, et al. (2010). Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases. Nat. Struct. Mol. Biol. 17: 1175-81
-
(2010)
Nat. Struct. Mol. Biol
, vol.17
, pp. 1175-1181
-
-
Choi, W.S.1
Jeong, B.C.2
Joo, Y.J.3
Lee, M.R.4
Kim, J.5
-
156
-
-
77957790301
-
Structural basis of substrate recognition and specificity in the N-end rule pathway
-
Matta-Camacho E, Kozlov G, Li FF, Gehring K. (2010). Structural basis of substrate recognition and specificity in the N-end rule pathway. Nat. Struct. Mol. Biol. 17: 1182-87
-
(2010)
Nat. Struct. Mol. Biol
, vol.17
, pp. 1182-1187
-
-
Matta-Camacho, E.1
Kozlov, G.2
Li, F.F.3
Gehring, K.4
-
157
-
-
84871675699
-
The auto-generated fragment of the Usp1 deubiquitylase is a physiological substrate of the N-end rule pathway
-
Piatkov KI, Colnaghi L, Békés M, Varshavsky A, Huang TT. (2012). The auto-generated fragment of the Usp1 deubiquitylase is a physiological substrate of the N-end rule pathway. Mol. Cell 48: 926-33
-
(2012)
Mol. Cell
, vol.48
, pp. 926-933
-
-
Piatkov, K.I.1
Colnaghi, L.2
Békés, M.3
Varshavsky, A.4
Huang, T.T.5
-
158
-
-
84936139864
-
CRL2 AIDS elimination of truncated selenoproteins produced by failed UGA/Sec decoding
-
Lin HC, Ho SC, Chen YY, Khoo KH, Hsu PH, Yen HC. (2015). CRL2 aids elimination of truncated selenoproteins produced by failed UGA/Sec decoding. Science 349: 91-95
-
(2015)
Science
, vol.349
, pp. 91-95
-
-
Lin, H.C.1
Ho, S.C.2
Chen, Y.Y.3
Khoo, K.H.4
Hsu, P.H.5
Yen, H.C.6
-
159
-
-
78650731442
-
Disorder targets misorder in nuclear quality control degradation: A disordered ubiquitin ligase directly recognizes its misfolded substrates
-
Rosenbaum JC, Fredrickson EK, Oeser ML, Garrett-Engele CM, Locke MN, et al. (2011). Disorder targets misorder in nuclear quality control degradation: A disordered ubiquitin ligase directly recognizes its misfolded substrates. Mol. Cell 41: 93-106
-
(2011)
Mol. Cell
, vol.41
, pp. 93-106
-
-
Rosenbaum, J.C.1
Fredrickson, E.K.2
Oeser, M.L.3
Garrett-Engele, C.M.4
Locke, M.N.5
-
160
-
-
12144289596
-
Structural basis of sugar-recognizing ubiquitin ligase
-
Mizushima T, Hirao T, Yoshida Y, Lee SJ, Chiba T, et al. (2004). Structural basis of sugar-recognizing ubiquitin ligase. Nat. Struct. Mol. Biol. 11: 365-70
-
(2004)
Nat. Struct. Mol. Biol
, vol.11
, pp. 365-370
-
-
Mizushima, T.1
Hirao, T.2
Yoshida, Y.3
Lee, S.J.4
Chiba, T.5
-
161
-
-
76249092490
-
Structural basis of selective ubiquitination of TRF1 by SCFFbx4
-
Zeng Z, Wang W, Yang Y, Chen Y, Yang X, et al. (2010). Structural basis of selective ubiquitination of TRF1 by SCFFbx4. Dev. Cell 18: 214-25
-
(2010)
Dev. Cell
, vol.18
, pp. 214-225
-
-
Zeng, Z.1
Wang, W.2
Yang, Y.3
Chen, Y.4
Yang, X.5
-
162
-
-
0037610123
-
TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres
-
Chang W, Dynek JN, Smith S. (2003). TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres. Genes Dev. 17: 1328-33
-
(2003)
Genes Dev
, vol.17
, pp. 1328-1333
-
-
Chang, W.1
Dynek, J.N.2
Smith, S.3
-
163
-
-
84875899177
-
SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket
-
Xing W, Busino L, Hinds TR, Marionni ST, Saifee NH, et al. (2013). SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 496: 64-68
-
(2013)
Nature
, vol.496
, pp. 64-68
-
-
Xing, W.1
Busino, L.2
Hinds, T.R.3
Marionni, S.T.4
Saifee, N.H.5
-
165
-
-
22844432019
-
SCFβ-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein
-
Shirogane T, Jin J, Ang XL, Harper JW. (2005). SCFβ-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J. Biol. Chem. 280: 26863-72
-
(2005)
J. Biol. Chem
, vol.280
, pp. 26863-26872
-
-
Shirogane, T.1
Jin, J.2
Ang, X.L.3
Harper, J.W.4
-
166
-
-
34248566788
-
SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
-
Busino L, Bassermann F, Maiolica A, Lee C, Nolan PM, et al. (2007). SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316: 900-4
-
(2007)
Science
, vol.316
, pp. 900-904
-
-
Busino, L.1
Bassermann, F.2
Maiolica, A.3
Lee, C.4
Nolan, P.M.5
-
167
-
-
84889093349
-
Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase
-
Nangle S, Xing W, Zheng N. (2013). Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase. Cell Res. 23: 1417-19
-
(2013)
Cell Res
, vol.23
, pp. 1417-1419
-
-
Nangle, S.1
Xing, W.2
Zheng, N.3
-
168
-
-
84901358563
-
Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation
-
Schmalen I, Reischl S, Wallach T, Klemz R, Grudziecki A, et al. (2014). Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. Cell 157: 1203-15
-
(2014)
Cell
, vol.157
, pp. 1203-1215
-
-
Schmalen, I.1
Reischl, S.2
Wallach, T.3
Klemz, R.4
Grudziecki, A.5
-
169
-
-
84867788817
-
Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer
-
Cao J, Yan Q. (2012). Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front. Oncol. 2: 26
-
(2012)
Front. Oncol
, vol.2
, pp. 26
-
-
Cao, J.1
Yan, Q.2
-
170
-
-
84908408859
-
Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome
-
McGinty RK, Henrici RC, Tan S. (2014). Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome. Nature 514: 591-96
-
(2014)
Nature
, vol.514
, pp. 591-596
-
-
McGinty, R.K.1
Henrici, R.C.2
Tan, S.3
-
171
-
-
33745753378
-
Structure and E3-ligase activity of the Ring-Ring complex of polycomb proteins Bmi1 and Ring1b
-
Buchwald G, van der Stoop P, Weichenrieder O, Perrakis A, van Lohuizen M, Sixma TK. (2006). Structure and E3-ligase activity of the Ring-Ring complex of polycomb proteins Bmi1 and Ring1b. EMBO J. 25: 2465-74
-
(2006)
EMBO J
, vol.25
, pp. 2465-2474
-
-
Buchwald, G.1
Van Der Stoop, P.2
Weichenrieder, O.3
Perrakis, A.4
Van Lohuizen, M.5
Sixma, T.K.6
-
172
-
-
67649391002
-
Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection
-
Isaacson MK, Ploegh HL. (2009). Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection. Cell Host Microbe 5: 559-70
-
(2009)
Cell Host Microbe
, vol.5
, pp. 559-570
-
-
Isaacson, M.K.1
Ploegh, H.L.2
-
173
-
-
79955772653
-
HSV-1 ICP0: Paving the way for viral replication
-
Smith MC, Boutell C, Davido DJ. (2011). HSV-1 ICP0: paving the way for viral replication. Future Virol. 6: 421-29
-
(2011)
Future Virol
, vol.6
, pp. 421-429
-
-
Smith, M.C.1
Boutell, C.2
Davido, D.J.3
-
174
-
-
84859731169
-
Viral E3 ubiquitin ligase-mediated degradation of a cellular E3: Viral mimicry of a cellular phosphorylation mark targets the RNF8 FHA domain
-
Chaurushiya MS, Lilley CE, Aslanian A, Meisenhelder J, Scott DC, et al. (2012). Viral E3 ubiquitin ligase-mediated degradation of a cellular E3: viral mimicry of a cellular phosphorylation mark targets the RNF8 FHA domain. Mol. Cell 46: 79-90
-
(2012)
Mol. Cell
, vol.46
, pp. 79-90
-
-
Chaurushiya, M.S.1
Lilley, C.E.2
Aslanian, A.3
Meisenhelder, J.4
Scott, D.C.5
-
175
-
-
0028898424
-
Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade
-
Scheffner M, Nuber U, Huibregtse JM. (1995). Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373: 81-83
-
(1995)
Nature
, vol.373
, pp. 81-83
-
-
Scheffner, M.1
Nuber, U.2
Huibregtse, J.M.3
-
176
-
-
84964301688
-
Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53
-
Martinez-Zapien D, Ruiz FX, Poirson J, Mitschler A, Ramirez J, et al. (2016). Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature 529: 541-45
-
(2016)
Nature
, vol.529
, pp. 541-545
-
-
Martinez-Zapien, D.1
Ruiz, F.X.2
Poirson, J.3
Mitschler, A.4
Ramirez, J.5
-
177
-
-
84929907228
-
Intrinsic host restrictions to HIV-1 and mechanisms of viral escape
-
Simon V, Bloch N, Landau NR. (2015). Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat. Immunol. 16: 546-53
-
(2015)
Nat. Immunol
, vol.16
, pp. 546-553
-
-
Simon, V.1
Bloch, N.2
Landau, N.R.3
-
178
-
-
0242578406
-
Induction ofAPOBEC3Gubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex
-
Yu X, Yu Y, Liu B, Luo K, Kong W, et al. (2003). Induction ofAPOBEC3Gubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302: 1056-60
-
(2003)
Science
, vol.302
, pp. 1056-1060
-
-
Yu, X.1
Yu, Y.2
Liu, B.3
Luo, K.4
Kong, W.5
-
179
-
-
84892188402
-
Structural basis for hijacking CBF-βand CUL5 E3 ligase complex by HIV-1 Vif
-
Guo Y, Dong L, Qiu X, Wang Y, Zhang B, et al. (2014). Structural basis for hijacking CBF-βand CUL5 E3 ligase complex by HIV-1 Vif. Nature 505: 229-33
-
(2014)
Nature
, vol.505
, pp. 229-233
-
-
Guo, Y.1
Dong, L.2
Qiu, X.3
Wang, Y.4
Zhang, B.5
-
180
-
-
84949008864
-
Identification of the HIV-1 Vif and human APOBEC3G protein interface
-
Letko M, Booiman T, Kootstra N, Simon V, Ooms M. (2015). Identification of the HIV-1 Vif and human APOBEC3G protein interface. Cell Rep. 13: 1789-99
-
(2015)
Cell Rep
, vol.13
, pp. 1789-1799
-
-
Letko, M.1
Booiman, T.2
Kootstra, N.3
Simon, V.4
Ooms, M.5
-
181
-
-
84892171421
-
Structural basis of lentiviral subversion of a cellular protein degradation pathway
-
Schwefel D, Groom HC, Boucherit VC, Christodoulou E, Walker PA, et al. (2014). Structural basis of lentiviral subversion of a cellular protein degradation pathway. Nature 505: 234-38
-
(2014)
Nature
, vol.505
, pp. 234-238
-
-
Schwefel, D.1
Groom, H.C.2
Boucherit, V.C.3
Christodoulou, E.4
Walker, P.A.5
-
182
-
-
77449113802
-
A promiscuous α-helical motif anchors viral hijackers and substrate receptors to the CUL4-DDB1 ubiquitin ligase machinery
-
Li T, Robert EI, van Breugel PC, Strubin M, Zheng N. (2010). A promiscuous α-helical motif anchors viral hijackers and substrate receptors to the CUL4-DDB1 ubiquitin ligase machinery. Nat. Struct. Mol. Biol. 17: 105-11
-
(2010)
Nat. Struct. Mol. Biol
, vol.17
, pp. 105-111
-
-
Li, T.1
Robert, E.I.2
Van Breugel, P.C.3
Strubin, M.4
Zheng, N.5
-
183
-
-
30344460705
-
Structure ofDDB1in complex with a paramyxovirus v protein: Viral hijack of a propeller cluster in ubiquitin ligase
-
Li T, Chen X, Garbutt KC, Zhou P, Zheng N. (2006). Structure ofDDB1in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell 124: 105-17
-
(2006)
Cell
, vol.124
, pp. 105-117
-
-
Li, T.1
Chen, X.2
Garbutt, K.C.3
Zhou, P.4
Zheng, N.5
-
184
-
-
84982154746
-
Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor
-
Decorsière A, Mueller H, van Breugel PC, Abdul F, Gerossier L, et al. (2016). Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature 531: 386-89
-
(2016)
Nature
, vol.531
, pp. 386-389
-
-
Decorsière, A.1
Mueller, H.2
Van Breugel, P.C.3
Abdul, F.4
Gerossier, L.5
-
185
-
-
27144433162
-
Simian virus 5 v protein acts as an adaptor, linkingDDB1to STAT2, to facilitate the ubiquitination of STAT1
-
Precious B, Childs K, Fitzpatrick-Swallow V, Goodbourn S, Randall RE. (2005). Simian virus 5 V protein acts as an adaptor, linkingDDB1to STAT2, to facilitate the ubiquitination of STAT1. J. Virol. 79: 13434-41
-
(2005)
J. Virol
, vol.79
, pp. 13434-13441
-
-
Precious, B.1
Childs, K.2
Fitzpatrick-Swallow, V.3
Goodbourn, S.4
Randall, R.E.5
-
186
-
-
14844312051
-
The SV40 largeTantigen contains a decoy phosphodegron that mediates its interactions with Fbw7/hCdc4
-
Welcker M, Clurman BE. (2005). The SV40 largeTantigen contains a decoy phosphodegron that mediates its interactions with Fbw7/hCdc4. J. Biol. Chem. 280: 7654-58
-
(2005)
J. Biol. Chem
, vol.280
, pp. 7654-7658
-
-
Welcker, M.1
Clurman, B.E.2
-
187
-
-
0036278326
-
Turnover of hepatitis B virus X protein is regulated by damaged DNA-binding complex
-
Bergametti F, Sitterlin D, Transy C. (2002). Turnover of hepatitis B virus X protein is regulated by damaged DNA-binding complex. J. Virol. 76: 6495-501
-
(2002)
J. Virol
, vol.76
, pp. 6495-6501
-
-
Bergametti, F.1
Sitterlin, D.2
Transy, C.3
-
188
-
-
84898768916
-
Plant ubiquitin ligases as signaling hubs
-
Shabek N, Zheng N. (2014). Plant ubiquitin ligases as signaling hubs. Nat. Struct. Mol. Biol. 21: 293-96
-
(2014)
Nat. Struct. Mol. Biol
, vol.21
, pp. 293-296
-
-
Shabek, N.1
Zheng, N.2
-
189
-
-
19544379019
-
The F-box protein TIR1 is an auxin receptor
-
Dharmasiri N, Dharmasiri S, Estelle M. (2005). The F-box protein TIR1 is an auxin receptor. Nature 435: 441-45
-
(2005)
Nature
, vol.435
, pp. 441-445
-
-
Dharmasiri, N.1
Dharmasiri, S.2
Estelle, M.3
-
190
-
-
19544386804
-
The Arabidopsis F-box proteinTIR1 is an auxin receptor
-
Kepinski S, Leyser O. (2005). The Arabidopsis F-box proteinTIR1 is an auxin receptor. Nature 435: 446-51
-
(2005)
Nature
, vol.435
, pp. 446-451
-
-
Kepinski, S.1
Leyser, O.2
-
192
-
-
34247219263
-
Mechanism of auxin perception by the TIR1 ubiquitin ligase
-
Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, et al. (2007). Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446: 640-45
-
(2007)
Nature
, vol.446
, pp. 640-645
-
-
Tan, X.1
Calderon-Villalobos, L.I.2
Sharon, M.3
Zheng, C.4
Robinson, C.V.5
-
193
-
-
78549274705
-
Jasmonate perception by inositolphosphate-potentiated COI1-JAZ co-receptor
-
Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, et al. (2010). Jasmonate perception by inositolphosphate-potentiated COI1-JAZ co-receptor. Nature 468: 400-5
-
(2010)
Nature
, vol.468
, pp. 400-405
-
-
Sheard, L.B.1
Tan, X.2
Mao, H.3
Withers, J.4
Ben-Nissan, G.5
-
194
-
-
57049155555
-
Gibberellin-induced della recognition by the gibberellin receptor GID1
-
Murase K, Hirano Y, Sun TP, Hakoshima T. (2008). Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456: 459-63
-
(2008)
Nature
, vol.456
, pp. 459-463
-
-
Murase, K.1
Hirano, Y.2
Sun, T.P.3
Hakoshima, T.4
-
195
-
-
57049177946
-
Structural basis for gibberellin recognition by its receptor GID1
-
Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, et al. (2008). Structural basis for gibberellin recognition by its receptor GID1. Nature 456: 520-23
-
(2008)
Nature
, vol.456
, pp. 520-523
-
-
Shimada, A.1
Ueguchi-Tanaka, M.2
Nakatsu, T.3
Nakajima, M.4
Naoe, Y.5
-
196
-
-
84928943192
-
VIH2 regulates the synthesis of inositol pyrophosphate InsP8 and jasmonate-dependent defenses in Arabidopsis
-
Laha D, Johnen P, Azevedo C, Dynowski M, Weiß M, et al. (2015). VIH2 regulates the synthesis of inositol pyrophosphate InsP8 and jasmonate-dependent defenses in Arabidopsis. Plant Cell 27: 1082-97
-
(2015)
Plant Cell
, vol.27
, pp. 1082-1097
-
-
Laha, D.1
Johnen, P.2
Azevedo, C.3
Dynowski, M.4
Weiß, M.5
-
197
-
-
84963818660
-
Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains
-
Wild R, Gerasimaite R, Jung JY, Truffault V, Pavlovic I, et al. (2016). Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 352: 986-90
-
(2016)
Science
, vol.352
, pp. 986-990
-
-
Wild, R.1
Gerasimaite, R.2
Jung, J.Y.3
Truffault, V.4
Pavlovic, I.5
-
198
-
-
84897107855
-
F-box and leucine-rich repeat protein 5 (FBXL5): Sensing intracellular iron and oxygen
-
Ruiz JC, Bruick RK. (2014). F-box and leucine-rich repeat protein 5 (FBXL5): sensing intracellular iron and oxygen. J. Inorg. Biochem. 133: 73-77
-
(2014)
J. Inorg. Biochem
, vol.133
, pp. 73-77
-
-
Ruiz, J.C.1
Bruick, R.K.2
-
199
-
-
77953923379
-
Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2
-
Alvarez SE, Harikumar KB, Hait NC, Allegood J, Strub GM, et al. (2010). Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465: 1084-88
-
(2010)
Nature
, vol.465
, pp. 1084-1088
-
-
Alvarez, S.E.1
Harikumar, K.B.2
Hait, N.C.3
Allegood, J.4
Strub, G.M.5
-
200
-
-
80054837173
-
Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination
-
Dueber EC, Schoeffler AJ, Lingel A, Elliott JM, Fedorova AV, et al. (2011). Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination. Science 334: 376-80
-
(2011)
Science
, vol.334
, pp. 376-380
-
-
Dueber, E.C.1
Schoeffler, A.J.2
Lingel, A.3
Elliott, J.M.4
Fedorova, A.V.5
-
201
-
-
77954499965
-
Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase
-
Aghajan M, Jonai N, Flick K, Fu F, Luo M, et al. (2010). Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase. Nat. Biotechnol. 28: 738-42
-
(2010)
Nat. Biotechnol
, vol.28
, pp. 738-742
-
-
Aghajan, M.1
Jonai, N.2
Flick, K.3
Fu, F.4
Luo, M.5
-
202
-
-
77954513389
-
An allosteric inhibitor of substrate recognition by the SCFCdc4 ubiquitin ligase
-
Orlicky S, Tang X, Neduva V, Elowe N, Brown ED, et al. (2010). An allosteric inhibitor of substrate recognition by the SCFCdc4 ubiquitin ligase. Nat. Biotechnol. 28: 733-37
-
(2010)
Nat. Biotechnol
, vol.28
, pp. 733-737
-
-
Orlicky, S.1
Tang, X.2
Neduva, V.3
Elowe, N.4
Brown, E.D.5
-
203
-
-
84881192827
-
Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression
-
Chan CH, Morrow JK, Li CF, Gao Y, Jin G, et al. (2013). Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 154: 556-68
-
(2013)
Cell
, vol.154
, pp. 556-568
-
-
Chan, C.H.1
Morrow, J.K.2
Li, C.F.3
Gao, Y.4
Jin, G.5
-
204
-
-
84871569969
-
Specific small molecule inhibitors of Skp2-mediated p27 degradation
-
Wu L, Grigoryan AV, Li Y, Hao B, Pagano M, Cardozo TJ. (2012). Specific small molecule inhibitors of Skp2-mediated p27 degradation. Chem. Biol. 19: 1515-24
-
(2012)
Chem. Biol
, vol.19
, pp. 1515-1524
-
-
Wu, L.1
Grigoryan, A.V.2
Li, Y.3
Hao, B.4
Pagano, M.5
Cardozo, T.J.6
-
205
-
-
0035902475
-
Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation
-
Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. (2001). Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. PNAS 98: 8554-59
-
(2001)
PNAS
, vol.98
, pp. 8554-8559
-
-
Sakamoto, K.M.1
Kim, K.B.2
Kumagai, A.3
Mercurio, F.4
Crews, C.M.5
Deshaies, R.J.6
-
206
-
-
77949350034
-
Identification of a primary target of thalidomide teratogenicity
-
Ito T, Ando H, Suzuki T, Ogura T, Hotta K, et al. (2010). Identification of a primary target of thalidomide teratogenicity. Science 327: 1345-50
-
(2010)
Science
, vol.327
, pp. 1345-1350
-
-
Ito, T.1
Ando, H.2
Suzuki, T.3
Ogura, T.4
Hotta, K.5
-
207
-
-
84892593087
-
Themyeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins
-
Lu G, Middleton RE, Sun H, Naniong M, Ott CJ, et al. (2014). Themyeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343: 305-9
-
(2014)
Science
, vol.343
, pp. 305-309
-
-
Lu, G.1
Middleton, R.E.2
Sun, H.3
Naniong, M.4
Ott, C.J.5
-
208
-
-
84892576029
-
Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells
-
Krönke J, Udeshi ND, Narla A, Grauman P, Hurst SN, et al. (2014). Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343: 301-5
-
(2014)
Science
, vol.343
, pp. 301-305
-
-
Krönke, J.1
Udeshi, N.D.2
Narla, A.3
Grauman, P.4
Hurst, S.N.5
-
209
-
-
84936930551
-
Lenalidomide induces ubiquitination and degradation of CK1αin del(5q) MDS
-
Krönke J, Fink EC, Hollenbach PW, MacBeth KJ, Hurst SN, et al. (2015). Lenalidomide induces ubiquitination and degradation of CK1αin del(5q) MDS. Nature 523: 183-88
-
(2015)
Nature
, vol.523
, pp. 183-188
-
-
Krönke, J.1
Fink, E.C.2
Hollenbach, P.W.3
MacBeth, K.J.4
Hurst, S.N.5
-
210
-
-
84978715161
-
A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase
-
Matyskiela ME, Lu G, Ito T, Pagarigan B, Lu CC, et al. (2016). A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase. Nature 535: 252-57
-
(2016)
Nature
, vol.535
, pp. 252-257
-
-
Matyskiela, M.E.1
Lu, G.2
Ito, T.3
Pagarigan, B.4
Lu, C.C.5
-
211
-
-
84963542597
-
Structural basis of lenalidomide-induced CK1αdegradation by the CRL4CRBN ubiquitin ligase
-
Petzold G, Fischer ES, Thomä NH. (2016). Structural basis of lenalidomide-induced CK1αdegradation by the CRL4CRBN ubiquitin ligase. Nature 532: 127-30
-
(2016)
Nature
, vol.532
, pp. 127-130
-
-
Petzold, G.1
Fischer, E.S.2
Thomä, N.H.3
-
212
-
-
84932634729
-
Phthalimide conjugation as a strategy for in vivo target protein degradation
-
Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A, et al. (2015). Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348: 1376-81
-
(2015)
Science
, vol.348
, pp. 1376-1381
-
-
Winter, G.E.1
Buckley, D.L.2
Paulk, J.3
Roberts, J.M.4
Souza, A.5
-
213
-
-
84931560527
-
Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4
-
Lu J, Qian Y, Altieri M, Dong H, Wang J, et al. (2015). Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol. 22: 755-63
-
(2015)
Chem. Biol
, vol.22
, pp. 755-763
-
-
Lu, J.1
Qian, Y.2
Altieri, M.3
Dong, H.4
Wang, J.5
|