-
1
-
-
79955584998
-
The cryptochromes: Blue light photoreceptors in plants and animals
-
Chaves, I. et al. The cryptochromes: blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 62, 335-364 (2011).
-
(2011)
Annu. Rev. Plant Biol
, vol.62
, pp. 335-364
-
-
Chaves, I.1
-
2
-
-
48249119105
-
Structure and function of animal cryptochromes
-
Oztürk, N. et al. Structure and function of animal cryptochromes. Cold Spring Harb. Symp. Quant. Biol. 72, 119-131 (2007).
-
(2007)
Cold Spring Harb. Symp. Quant. Biol
, vol.72
, pp. 119-131
-
-
Oztürk, N.1
-
3
-
-
0141480569
-
Cryptochrome structure and signal transduction
-
Lin, C. & Shalitin, D. Cryptochrome structure and signal transduction. Annu. Rev. Plant Biol. 54, 469-496 (2003).
-
(2003)
Annu. Rev. Plant Biol
, vol.54
, pp. 469-496
-
-
Lin, C.1
Shalitin, D.2
-
4
-
-
34047220139
-
Insect cryptochromes: Gene duplication and loss define diverse ways to construct insect circadian clocks
-
Yuan, Q., Metterville, D., Briscoe, A. D. & Reppert, S. M. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24, 948-955 (2007).
-
(2007)
Mol. Biol. Evol
, vol.24
, pp. 948-955
-
-
Yuan, Q.1
Metterville, D.2
Briscoe, A.D.3
Reppert, S.M.4
-
5
-
-
28444447141
-
The two CRYs of the butterfly
-
erratum 16 730 2006
-
Zhu, H. et al. The two CRYs of the butterfly. Curr. Biol. 15, R953-R954 (2005); erratum 16, 730 (2006).
-
(2005)
Curr. Biol
, vol.15
-
-
Zhu, H.1
-
6
-
-
0032566970
-
The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila
-
Stanewsky, R. et al. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95, 681-692 (1998).
-
(1998)
Cell
, vol.95
, pp. 681-692
-
-
Stanewsky, R.1
-
7
-
-
0033560863
-
Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms
-
van der Horst, G. T. et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398, 627-630 (1999).
-
(1999)
Nature
, vol.398
, pp. 627-630
-
-
Van Der Horst, G.T.1
-
8
-
-
0041029974
-
Light-independent role of CRY1 and CRY2 in the mammalian circadian clock
-
Griffin, E. A., Staknis, D. & Weitz, C. J. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286, 768-771 (1999).
-
(1999)
Science
, vol.286
, pp. 768-771
-
-
Griffin, E.A.1
Staknis, D.2
Weitz, C.J.3
-
9
-
-
0037194790
-
Coordination of circadian timing in mammals
-
Reppert, S. M. & Weaver, D. R. Coordination of circadian timing in mammals. Nature 418, 935-941 (2002).
-
(2002)
Nature
, vol.418
, pp. 935-941
-
-
Reppert, S.M.1
Weaver, D.R.2
-
10
-
-
0034640253
-
Interacting molecular loops in the mammalian circadian clock
-
Shearman, L. P. et al. Interacting molecular loops in the mammalian circadian clock. Science 288, 1013-1019 (2000).
-
(2000)
Science
, vol.288
, pp. 1013-1019
-
-
Shearman, L.P.1
-
11
-
-
0035966317
-
Posttranslationalmechanisms regulate themammaliancircadianclock
-
Lee, C., Etchegaray, J. P., Cagampang, F. R., Loudon, A. S. & Reppert, S. M. Posttranslationalmechanisms regulate themammaliancircadianclock. Cell107,855-867(2001).
-
(2001)
Cell
, vol.107
, pp. 855-867
-
-
Lee, C.1
Etchegaray, J.P.2
Cagampang, F.R.3
Loudon, A.S.4
Reppert, S.M.5
-
12
-
-
77951889295
-
The mammalian circadian timing system: Organization and coordination of central and peripheral clocks
-
Dibner, C., Schibler, U. & Albrecht, U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517-549 (2010).
-
(2010)
Annu. Rev. Physiol
, vol.72
, pp. 517-549
-
-
Dibner, C.1
Schibler, U.2
Albrecht, U.3
-
13
-
-
50249100374
-
-
Green, C. B., Takahashi, J. S.&Bass, J. Themeter ofmetabolism.Cell 134, 728-742 (2008).
-
(2008)
J. Themeter Ofmetabolism.Cell
, vol.134
, pp. 728-742
-
-
Green, C.B.1
Takahashi, J.2
Bass, S.3
-
14
-
-
78649687209
-
Circadian integration of metabolism and energetics
-
Bass, J. & Takahashi, J. S. Circadian integration of metabolism and energetics. Science 330, 1349-1354 (2010).
-
(2010)
Science
, vol.330
, pp. 1349-1354
-
-
Bass, J.1
Takahashi, J.S.2
-
15
-
-
79551534130
-
Crosstalk between components of circadian andmetabolic cycles in mammals
-
Asher, G.&Schibler, U. Crosstalk between components of circadian andmetabolic cycles in mammals. Cell Metab. 13, 125-137 (2011).
-
(2011)
Cell Metab
, vol.13
, pp. 125-137
-
-
Asher, G.1
Schibler, U.2
-
16
-
-
0035543363
-
The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1
-
Yang, H. Q., Tang, R. H. & Cashmore, A. R. The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 13, 2573-2587 (2001).
-
(2001)
Plant Cell
, vol.13
, pp. 2573-2587
-
-
Yang, H.Q.1
Tang, R.H.2
Cashmore, A.R.3
-
17
-
-
0035812725
-
Direct interaction of arabidopsis cryptochromes with COP1 in light controldevelopment
-
Wang, H., Ma, L. G., Li, J. M., Zhao, H. Y. & Deng, X. W. Direct interaction of Arabidopsis cryptochromeswithCOP1inlight controldevelopment. Science294,154-158(2001).
-
(2001)
Science
, vol.294
, pp. 154-158
-
-
Wang, H.1
Ma, L.G.2
Li, J.M.3
Zhao, H.Y.4
Deng, X.W.5
-
18
-
-
59349113774
-
Light-dependent interactions between the Drosophila circadian clock factors Cryptochrome
-
Peschel, N., Chen, K. F., Szabo, G. & Stanewsky, R. Light-dependent interactions between the Drosophila circadian clock factors Cryptochrome, Jetlag, and Timeless. Curr. Biol. 19, 241-247 (2009).
-
(2009)
Jetlag, and Timeless. Curr. Biol
, vol.19
, pp. 241-247
-
-
Peschel, N.1
Chen, K.F.2
Szabo, G.3
Stanewsky, R.4
-
19
-
-
33745503975
-
JETLAG resets the Drosophila circadian clock by promoting light-induceddegradationofTIMELESS
-
Koh, K., Zheng, X. & Sehgal, A. JETLAG resets the Drosophila circadian clock by promoting light-induceddegradationofTIMELESS. Science312,1809-1812(2006).
-
(2006)
Science
, vol.312
, pp. 1809-1812
-
-
Koh, K.1
Zheng, X.2
Sehgal, A.3
-
20
-
-
83555164721
-
Structure of full-length Drosophila cryptochrome
-
Zoltowski, B. D. et al. Structure of full-length Drosophila cryptochrome. Nature 480, 396-399 (2011).
-
(2011)
Nature
, vol.480
, pp. 396-399
-
-
Zoltowski, B.D.1
-
21
-
-
78049313173
-
Searching for a photocycle of the cryptochrome photoreceptors
-
Liu, B., Liu, H., Zhong, D. & Lin, C. Searching for a photocycle of the cryptochrome photoreceptors. Curr. Opin. Plant Biol. 13, 578-586 (2010).
-
(2010)
Curr. Opin. Plant Biol
, vol.13
, pp. 578-586
-
-
Liu, B.1
Liu, H.2
Zhong, D.3
Lin, C.4
-
22
-
-
34248566788
-
SCFFBXL3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
-
Busino, L. et al. SCFFBXL3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316, 900-904 (2007).
-
(2007)
Science
, vol.316
, pp. 900-904
-
-
Busino, L.1
-
23
-
-
34248525919
-
The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period
-
Godinho, S. I. et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316, 897-900 (2007).
-
(2007)
Science
, vol.316
, pp. 897-900
-
-
Godinho, S.I.1
-
24
-
-
34249097203
-
Circadianmutant Overtime reveals F-box protein FBXL3 regulation of Cryptochrome and Period gene expression
-
Siepka, S.M. et al. Circadianmutant Overtime reveals F-box protein FBXL3 regulation of Cryptochrome and Period gene expression. Cell 129, 1011-1023 (2007).
-
(2007)
Cell
, vol.129
, pp. 1011-1023
-
-
Siepka, S.M.1
-
25
-
-
70350128135
-
AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
-
Lamia, K. A. et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326, 437-440 (2009).
-
(2009)
Science
, vol.326
, pp. 437-440
-
-
Lamia, K.A.1
-
26
-
-
84865558040
-
Identification ofsmallmolecule activators of cryptochrome
-
Hirota, T. et al. Identification ofsmallmolecule activators of cryptochrome. Science 337, 1094-1097 (2012).
-
(2012)
Science
, vol.337
, pp. 1094-1097
-
-
Hirota, T.1
-
27
-
-
66549109071
-
Structural biology of DNA photolyases and cryptochromes
-
Müller, M. & Carell, T. Structural biology of DNA photolyases and cryptochromes. Curr. Opin. Struct. Biol. 19, 277-285 (2009).
-
(2009)
Curr. Opin. Struct. Biol
, vol.19
, pp. 277-285
-
-
Müller, M.1
Carell, T.2
-
28
-
-
66349083857
-
Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes
-
Hitomi, K. et al. Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes. Proc. Natl Acad. Sci. USA 106, 6962-6967 (2009).
-
(2009)
Proc. Natl Acad. Sci. USA
, vol.106
, pp. 6962-6967
-
-
Hitomi, K.1
-
29
-
-
4344702547
-
Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana
-
Brautigam, C. A. et al. Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 101, 12142-12147 (2004).
-
(2004)
Proc. Natl Acad. Sci. USA
, vol.101
, pp. 12142-12147
-
-
Brautigam, C.A.1
-
30
-
-
57749084494
-
Crystal structure and mechanism of a DNA (6-4) photolyase
-
Maul, M. J. et al. Crystal structure and mechanism of a DNA (6-4) photolyase. Angew. Chem. Int. Edn Engl. 47, 10076-10080 (2008).
-
(2008)
Angew. Chem. Int. Edn Engl
, vol.47
, pp. 10076-10080
-
-
Maul, M.J.1
-
31
-
-
0028812143
-
Crystal structure of DNA photolyase from Escherichia coli
-
Park, H. W., Kim, S. T., Sancar, A. & Deisenhofer, J. Crystal structure of DNA photolyase from Escherichia coli. Science 268, 1866-1872 (1995).
-
(1995)
Science
, vol.268
, pp. 1866-1872
-
-
Park, H.W.1
Kim, S.T.2
Sancar, A.3
Deisenhofer, J.4
-
32
-
-
77956463069
-
Identification of two amino acids in the C-terminal domain ofmouse CRY2 essential for PER2 interaction
-
Ozber, N. et al. Identification of two amino acids in the C-terminal domain ofmouse CRY2 essential for PER2 interaction. BMC Mol. Biol. 11, 69 (2010).
-
(2010)
BMC Mol. Biol
, vol.11
, pp. 69
-
-
Ozber, N.1
-
33
-
-
33644559348
-
Functional evolution of the photolyase/cryptochrome protein family: Importance of the C terminus of mammalian CRY1 for circadian core oscillator performance
-
Chaves, I. et al. Functional evolution of the photolyase/cryptochrome protein family: importance of the C terminus of mammalian CRY1 for circadian core oscillator performance. Mol. Cell. Biol. 26, 1743-1753 (2006).
-
(2006)
Mol. Cell. Biol
, vol.26
, pp. 1743-1753
-
-
Chaves, I.1
-
34
-
-
0037086535
-
Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein
-
Yagita, K. et al. Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein. EMBO J. 21, 1301-1314 (2002).
-
(2002)
EMBO J
, vol.21
, pp. 1301-1314
-
-
Yagita, K.1
-
35
-
-
70449093653
-
Rhythmic per abundance defines a critical nodal point for negative feedback within the circadian clock mechanism
-
Chen, R. et al. Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol. Cell 36, 417-430 (2009).
-
(2009)
Mol. Cell
, vol.36
, pp. 417-430
-
-
Chen, R.1
-
36
-
-
4444227060
-
Serinephosphorylation ofmCRY1 andmCRY2 bymitogen-activated protein kinase
-
Sanada, K.,Harada,Y.,Sakai,M., Todo,T.&Fukada,Y.Serinephosphorylation ofmCRY1 andmCRY2 bymitogen-activated protein kinase. Genes Cells 9, 697-708 (2004).
-
(2004)
Genes Cells
, vol.9
, pp. 697-708
-
-
Sanada, K.1
Harada, Y.2
Sakai, M.3
Todo, T.4
Fukada, Y.5
-
37
-
-
25844441096
-
Structural basis of the Cks1-dependent recognition of p27Kip1 by the SCFSkp2 ubiquitin ligase
-
Hao, B. et al. Structural basis of the Cks1-dependent recognition of p27Kip1 by the SCFSkp2 ubiquitin ligase. Mol. Cell 20, 9-19 (2005).
-
(2005)
Mol. Cell
, vol.20
, pp. 9-19
-
-
Hao, B.1
-
38
-
-
34247219263
-
Mechanism of auxin perception by the TIR1 ubiquitin ligase
-
Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640-645 (2007).
-
(2007)
Nature
, vol.446
, pp. 640-645
-
-
Tan, X.1
-
39
-
-
0031059866
-
-
eds Carter, C. W.& Sweet, R. M. Academic Press
-
Otwinowski, Z. & Minor, W. In Methods in Enzymology Vol. 276 (eds Carter, C. W.& Sweet, R. M.) 307-326 (Academic Press, 1997).
-
(1997)
Methods in Enzymology
, vol.276
, pp. 307-326
-
-
Otwinowski, Z.1
Minor, W.2
-
40
-
-
14244272868
-
PHENIX: Buildingnew software for automated crystallographic structure determination
-
Adams, P. D. et al.PHENIX: buildingnewsoftware for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948-1954 (2002).
-
(2002)
Acta Crystallogr D
, vol.58
, pp. 1948-1954
-
-
Adams, P.D.1
-
41
-
-
0028103275
-
-
Collaborative Computational Project number 4 The CCP4 Suite: programs for protein crystallography
-
Collaborative Computational Project, number 4. The CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D 50, 760-763 (1994).
-
(1994)
Acta Crystallogr D
, vol.50
, pp. 760-763
-
-
|