-
1
-
-
0037055265
-
Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors
-
Motohashi H, O'Connor T, Katsuoka F, Engel JD, Yamamoto M. 2002. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 294:1-12. http://dx.doi.org/10.1016/S0378-1119(02)00788-6.
-
(2002)
Gene
, vol.294
, pp. 1-12
-
-
Motohashi, H.1
O'Connor, T.2
Katsuoka, F.3
Engel, J.D.4
Yamamoto, M.5
-
2
-
-
33748052967
-
Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species
-
Kobayashi M, Yamamoto M. 2006. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv. Enzyme Regul. 46:113-140. http://dx.doi.org/10.1016/j.advenzreg.2006.01.007.
-
(2006)
Adv. Enzyme Regul.
, vol.46
, pp. 113-140
-
-
Kobayashi, M.1
Yamamoto, M.2
-
3
-
-
78751703950
-
Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution
-
Taguchi K, Motohashi H, Yamamoto M. 2011. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 16:123-140. http://dx.doi.org/10.1111/j.1365-2443.2010.01473.x.
-
(2011)
Genes Cells
, vol.16
, pp. 123-140
-
-
Taguchi, K.1
Motohashi, H.2
Yamamoto, M.3
-
4
-
-
0032953192
-
Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain
-
Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M. 1999. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13:76-86.
-
(1999)
Genes Dev.
, vol.13
, pp. 76-86
-
-
Itoh, K.1
Wakabayashi, N.2
Katoh, Y.3
Ishii, T.4
Igarashi, K.5
Engel, J.D.6
Yamamoto, M.7
-
5
-
-
33750613056
-
Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism
-
Tong KI, Kobayashi A, Katsuoka F, Yamamoto M. 2006. Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol. Chem. 387:1311-1320.
-
(2006)
Biol. Chem.
, vol.387
, pp. 1311-1320
-
-
Tong, K.I.1
Kobayashi, A.2
Katsuoka, F.3
Yamamoto, M.4
-
6
-
-
3543008924
-
Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2
-
Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M. 2004. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell. Biol. 24:7130-7139. http://dx.doi.org/10.1128/MCB.24.16.7130-7139.2004.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 7130-7139
-
-
Kobayashi, A.1
Kang, M.I.2
Okawa, H.3
Ohtsuji, M.4
Zenke, Y.5
Chiba, T.6
Igarashi, K.7
Yamamoto, M.8
-
7
-
-
9944255781
-
Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome
-
Katoh Y, Iida K, Kang MI, Kobayashi A, Mizukami M, Tong KI, McMahon M, Hayes JD, Itoh K, Yamamoto M. 2005. Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome. Arch. Biochem. Biophys. 433: 342-350. http://dx.doi.org/10.1016/j.abb.2004.10.012.
-
(2005)
Arch. Biochem. Biophys.
, vol.433
, pp. 342-350
-
-
Katoh, Y.1
Iida, K.2
Kang, M.I.3
Kobayashi, A.4
Mizukami, M.5
Tong, K.I.6
McMahon, M.7
Hayes, J.D.8
Itoh, K.9
Yamamoto, M.10
-
8
-
-
3843104763
-
Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redoxinsensitive Neh6 degron
-
McMahon M, Thomas N, Itoh K, Yamamoto M, Hayes JD. 2004. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redoxinsensitive Neh6 degron. J. Biol. Chem. 279:31556-31567. http://dx.doi.org/10.1074/jbc.M403061200.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 31556-31567
-
-
McMahon, M.1
Thomas, N.2
Itoh, K.3
Yamamoto, M.4
Hayes, J.D.5
-
9
-
-
35648970026
-
Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response
-
Tong KI, Padmanabhan B, Kobayashi A, Shang C, Hirotsu Y, Yokoyama S, Yamamoto M. 2007. Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response. Mol. Cell. Biol. 27:7511-7521. http://dx.doi.org/10.1128/MCB.00753-07.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 7511-7521
-
-
Tong, K.I.1
Padmanabhan, B.2
Kobayashi, A.3
Shang, C.4
Hirotsu, Y.5
Yokoyama, S.6
Yamamoto, M.7
-
10
-
-
33344463325
-
Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model
-
Tong KI, Katoh Y, Kusunoki H, Itoh K, Tanaka T, Yamamoto M. 2006. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol. Cell. Biol. 26:2887-2900. http://dx.doi.org/10.1128/MCB.26.8.2887-2900.2006.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 2887-2900
-
-
Tong, K.I.1
Katoh, Y.2
Kusunoki, H.3
Itoh, K.4
Tanaka, T.5
Yamamoto, M.6
-
11
-
-
77649261371
-
Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains
-
Ogura T, Tong KI, Mio K, Maruyama Y, Kurokawa H, Sato C, Yamamoto M. 2010. Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains. Proc. Natl. Acad. Sci. U. S. A. 107:2842-2847. http://dx.doi.org/10.1073/pnas.0914036107.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 2842-2847
-
-
Ogura, T.1
Tong, K.I.2
Mio, K.3
Maruyama, Y.4
Kurokawa, H.5
Sato, C.6
Yamamoto, M.7
-
12
-
-
84878620505
-
Regulatory nexus of synthesis and degradation deciphers cellular Nrf2 expression levels
-
Suzuki T, Shibata T, Takaya K, Shiraishi K, Kohno T, Kunitoh H, Tsuta K, Furuta K, Goto K, Hosoda F, Sakamoto H, Motohashi H, Yamamoto M. 2013. Regulatory nexus of synthesis and degradation deciphers cellular Nrf2 expression levels. Mol. Cell. Biol. 33:2402-2412. http://dx.doi.org/10.1128/MCB.00065-13.
-
(2013)
Mol. Cell. Biol.
, vol.33
, pp. 2402-2412
-
-
Suzuki, T.1
Shibata, T.2
Takaya, K.3
Shiraishi, K.4
Kohno, T.5
Kunitoh, H.6
Tsuta, K.7
Furuta, K.8
Goto, K.9
Hosoda, F.10
Sakamoto, H.11
Motohashi, H.12
Yamamoto, M.13
-
13
-
-
84880682182
-
The Keap1-Nrf2 system prevents onset of diabetes mellitus
-
Uruno A, Furusawa Y, Yagishita Y, Fukutomi T, Muramatsu H, Negishi T, Sugawara A, Kensler TW, Yamamoto M. 2013. The Keap1-Nrf2 system prevents onset of diabetes mellitus. Mol. Cell. Biol. 33:2996-3010. http://dx.doi.org/10.1128/MCB.00225-13.
-
(2013)
Mol. Cell. Biol.
, vol.33
, pp. 2996-3010
-
-
Uruno, A.1
Furusawa, Y.2
Yagishita, Y.3
Fukutomi, T.4
Muramatsu, H.5
Negishi, T.6
Sugawara, A.7
Kensler, T.W.8
Yamamoto, M.9
-
14
-
-
84867777145
-
The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases
-
Joshi G, Johnson JA. 2012. The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases. Recent Pat. CNS Drug Discov. 7:218-229. http://dx.doi.org/10.2174/157488912803252023.
-
(2012)
Recent Pat. CNS Drug Discov.
, vol.7
, pp. 218-229
-
-
Joshi, G.1
Johnson, J.A.2
-
15
-
-
0037356451
-
Interactive effects of nrf2 genotype and oltipraz on benzo[a]pyrene-DNA adducts and tumor yield in mice
-
Ramos-Gomez M, Dolan PM, Itoh K, Yamamoto M, Kensler TW. 2003. Interactive effects of nrf2 genotype and oltipraz on benzo[a]pyrene-DNA adducts and tumor yield in mice. Carcinogenesis 24:461-467. http://dx.doi.org/10.1093/carcin/24.3.461.
-
(2003)
Carcinogenesis
, vol.24
, pp. 461-467
-
-
Ramos-Gomez, M.1
Dolan, P.M.2
Itoh, K.3
Yamamoto, M.4
Kensler, T.W.5
-
16
-
-
4644328941
-
Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis
-
Iida K, Itoh K, Kumagai Y, Oyasu R, Hattori K, Kawai K, Shimazui T, Akaza H, Yamamoto M. 2004. Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer Res. 64:6424-6431. http://dx.doi.org/10.1158/0008-5472.CAN-04-1906.
-
(2004)
Cancer Res.
, vol.64
, pp. 6424-6431
-
-
Iida, K.1
Itoh, K.2
Kumagai, Y.3
Oyasu, R.4
Hattori, K.5
Kawai, K.6
Shimazui, T.7
Akaza, H.8
Yamamoto, M.9
-
17
-
-
84880048347
-
Nrf2 prevents initiation but accelerates progression through the Kras signaling pathway during lung carcinogenesis
-
Satoh H, Moriguchi T, Takai J, Ebina M, Yamamoto M. 2013. Nrf2 prevents initiation but accelerates progression through the Kras signaling pathway during lung carcinogenesis. Cancer Res. 73:4158-4168. http://dx.doi.org/10.1158/0008-5472.CAN-12-4499.
-
(2013)
Cancer Res.
, vol.73
, pp. 4158-4168
-
-
Satoh, H.1
Moriguchi, T.2
Takai, J.3
Ebina, M.4
Yamamoto, M.5
-
18
-
-
84874468267
-
Role of Keap1-Nrf2 system in upper aerodigestive tract carcinogenesis
-
Ohkoshi A, Suzuki T, Ono M, Kobayashi T, Yamamoto M. 2013. Role of Keap1-Nrf2 system in upper aerodigestive tract carcinogenesis. Cancer Prev. Res. 6:149 -159. http://dx.doi.org/10.1158/1940-6207.CAPR-12-0401-T.
-
(2013)
Cancer Prev. Res.
, vol.6
-
-
Ohkoshi, A.1
Suzuki, T.2
Ono, M.3
Kobayashi, T.4
Yamamoto, M.5
-
19
-
-
51649130168
-
Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy
-
Shibata T, Ohta T, Tong KI, Kokubu A, Odogawa R, Tsuta K, Asamura H, Yamamoto M, Hirohashi S. 2008. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc. Natl. Acad. Sci. U. S. A. 105:13568-13573. http://dx.doi.org/10.1073/pnas.0806268105.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 13568-13573
-
-
Shibata, T.1
Ohta, T.2
Tong, K.I.3
Kokubu, A.4
Odogawa, R.5
Tsuta, K.6
Asamura, H.7
Yamamoto, M.8
Hirohashi, S.9
-
20
-
-
77958129306
-
Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance
-
Singh A, Bodas M, Wakabayashi N, Bunz F, Biswal S. 2010. Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance. Antioxid. Redox Signal. 13:1627-1637. http://dx.doi.org/10.1089/ars.2010.3219.
-
(2010)
Antioxid. Redox Signal.
, vol.13
, pp. 1627-1637
-
-
Singh, A.1
Bodas, M.2
Wakabayashi, N.3
Bunz, F.4
Biswal, S.5
-
21
-
-
76649089973
-
Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth
-
Zhang P, Singh A, Yegnasubramanian S, Esopi D, Kombairaju P, Bodas M, Wu H, Bova SG, Biswal S. 2010. Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol. Cancer Ther. 9:336- 346. http://dx.doi.org/10.1158/1535-7163.MCT-09-0589.
-
(2010)
Mol. Cancer Ther.
, vol.9
-
-
Zhang, P.1
Singh, A.2
Yegnasubramanian, S.3
Esopi, D.4
Kombairaju, P.5
Bodas, M.6
Wu, H.7
Bova, S.G.8
Biswal, S.9
-
22
-
-
80053439769
-
NRF2 Mutation confers malignant potential and resistance to chemoradiation therapy in advanced esophageal squamous cancer
-
Shibata T, Kokubu A, Saito S, Narisawa-Saito M, Sasaki H, Aoyagi K, Yoshimatsu Y, Tachimori Y, Kushima R, Kiyono T, Yamamoto M. 2011. NRF2 Mutation confers malignant potential and resistance to chemoradiation therapy in advanced esophageal squamous cancer. Neoplasia 13:864-873. http://dx.doi.org/10.1593/neo.11750.
-
(2011)
Neoplasia
, vol.13
, pp. 864-873
-
-
Shibata, T.1
Kokubu, A.2
Saito, S.3
Narisawa-Saito, M.4
Sasaki, H.5
Aoyagi, K.6
Yoshimatsu, Y.7
Tachimori, Y.8
Kushima, R.9
Kiyono, T.10
Yamamoto, M.11
-
23
-
-
77953139490
-
NFE2L2 gene mutation in male Japanese squamous cell carcinoma of the lung
-
Sasaki H, Hikosaka Y, Okuda K, Kawano O, Moriyama S, Yano M, Fujii Y. 2010. NFE2L2 gene mutation in male Japanese squamous cell carcinoma of the lung. J. Thorac. Oncol. 5:786-789. http://dx.doi.org/10.1097/JTO.0b013e3181db3dd3.
-
(2010)
J. Thorac. Oncol.
, vol.5
, pp. 786-789
-
-
Sasaki, H.1
Hikosaka, Y.2
Okuda, K.3
Kawano, O.4
Moriyama, S.5
Yano, M.6
Fujii, Y.7
-
24
-
-
77950823830
-
Mutations in Keap1 are a potential prognostic factor in resected non-small cell lung cancer
-
Takahashi T, Sonobe M, Menju T, Nakayama E, Mino N, Iwakiri S, Nagai S, Sato K, Miyahara R, Okubo K, Hirata T, Date H, Wada H. 2010. Mutations in Keap1 are a potential prognostic factor in resected non-small cell lung cancer. J. Surg. Oncol. 101:500-506. http://dx.doi.org/10.1002/jso.21520.
-
(2010)
J. Surg. Oncol.
, vol.101
, pp. 500-506
-
-
Takahashi, T.1
Sonobe, M.2
Menju, T.3
Nakayama, E.4
Mino, N.5
Iwakiri, S.6
Nagai, S.7
Sato, K.8
Miyahara, R.9
Okubo, K.10
Hirata, T.11
Date, H.12
Wada, H.13
-
25
-
-
84862811895
-
Accumulation of p62/SQSTM1 is associated with poor prognosis in patients with lung adenocarcinoma
-
Inoue D, Suzuki T, Mitsuishi Y, Miki Y, Suzuki S, Sugawara S, Watanabe M, Sakurada A, Endo C, Uruno A, Sasano H, Nakagawa T, Satoh K, Tanaka N, Kubo H, Motohashi H, Yamamoto M. 2012. Accumulation of p62/SQSTM1 is associated with poor prognosis in patients with lung adenocarcinoma. Cancer Sci. 103:760-766. http://dx.doi.org/10.1111/j.1349-7006.2012.02216.x.
-
(2012)
Cancer Sci.
, vol.103
, pp. 760-766
-
-
Inoue, D.1
Suzuki, T.2
Mitsuishi, Y.3
Miki, Y.4
Suzuki, S.5
Sugawara, S.6
Watanabe, M.7
Sakurada, A.8
Endo, C.9
Uruno, A.10
Sasano, H.11
Nakagawa, T.12
Satoh, K.13
Tanaka, N.14
Kubo, H.15
Motohashi, H.16
Yamamoto, M.17
-
26
-
-
84883830467
-
Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy
-
Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T, Fukutomi T, Hoshii T, Hirao A, Takagi K, Mizushima T, Motohashi H, Lee MS, Yoshimori T, Tanaka K, Yamamoto M, Komatsu M. 2013. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell 51:618-631. http://dx.doi.org/10.1016/j.molcel.2013.08.003.
-
(2013)
Mol. Cell
, vol.51
, pp. 618-631
-
-
Ichimura, Y.1
Waguri, S.2
Sou, Y.S.3
Kageyama, S.4
Hasegawa, J.5
Ishimura, R.6
Saito, T.7
Yang, Y.8
Kouno, T.9
Fukutomi, T.10
Hoshii, T.11
Hirao, A.12
Takagi, K.13
Mizushima, T.14
Motohashi, H.15
Lee, M.S.16
Yoshimori, T.17
Tanaka, K.18
Yamamoto, M.19
Komatsu, M.20
more..
-
27
-
-
0031059866
-
Processing of X-ray diffraction data collected in oscillation mode
-
Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276:307-326. http://dx.doi.org/10.1016/S0076-6879(97)76066-X.
-
(1997)
Methods Enzymol.
, vol.276
, pp. 307-326
-
-
Otwinowski, Z.1
Minor, W.2
-
29
-
-
13244281317
-
Coot: model-building tools for molecular graphics
-
Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60:2126-2132. http://dx.doi.org/10.1107/S0907444904019158.
-
(2004)
Acta Crystallogr. D Biol. Crystallogr.
, vol.60
, pp. 2126-2132
-
-
Emsley, P.1
Cowtan, K.2
-
30
-
-
0030924992
-
Refinement of macromolecular structures by the maximum-likelihood method
-
Murshudov GN, Vagin AA, Dodson EJ. 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr.DBiol. Crystallogr. 53:240-255. http://dx.doi.org/10.1107/S0907444996012255.
-
(1997)
Acta Crystallogr.DBiol. Crystallogr.
, vol.53
, pp. 240-255
-
-
Murshudov, G.N.1
Vagin, A.A.2
Dodson, E.J.3
-
31
-
-
76449098262
-
PHENIX: a comprehensive Python-based system for macromolecular structure solution
-
Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH. 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66: 213-221. http://dx.doi.org/10.1107/S0907444909052925.
-
(2010)
Acta Crystallogr. D Biol. Crystallogr.
, vol.66
, pp. 213-221
-
-
Adams, P.D.1
Afonine, P.V.2
Bunkóczi, G.3
Chen, V.B.4
Davis, I.W.5
Echols, N.6
Headd, J.J.7
Hung, L.W.8
Kapral, G.J.9
Grosse-Kunstleve, R.W.10
McCoy, A.J.11
Moriarty, N.W.12
Oeffner, R.13
Read, R.J.14
Richardson, D.C.15
Richardson, J.S.16
Terwilliger, T.C.17
Zwart, P.H.18
-
32
-
-
84863091925
-
Mutation of the Nrf2 gene in non-small cell lung cancer
-
Hu Y, Ju Y, Lin D, Wang Z, Huang Y, Zhang S, Wu C, Jiao S. 2012. Mutation of the Nrf2 gene in non-small cell lung cancer. Mol. Biol. Rep. 39:4743-4747. http://dx.doi.org/10.1007/s11033-011-1266-4.
-
(2012)
Mol. Biol. Rep.
, vol.39
, pp. 4743-4747
-
-
Hu, Y.1
Ju, Y.2
Lin, D.3
Wang, Z.4
Huang, Y.5
Zhang, S.6
Wu, C.7
Jiao, S.8
-
33
-
-
84880858384
-
Genomic structure and variation of nuclear factor (erythroid- derived 2)-like 2
-
Cho HY. 2013. Genomic structure and variation of nuclear factor (erythroid- derived 2)-like 2. Oxid. Med. Cell. Longev. 2013:286524. http://dx.doi.org/10.1155/2013/286524.
-
(2013)
Oxid. Med. Cell. Longev.
, vol.2013
, pp. 286524
-
-
Cho, H.Y.1
-
34
-
-
78651330430
-
COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer
-
Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, Teague JW, Campbell PJ, Stratton MR, Futreal PA. 2011. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39:D945- D950. http://dx.doi.org/10.1093/nar/gkq929.
-
(2011)
Nucleic Acids Res.
, vol.39
-
-
Forbes, S.A.1
Bindal, N.2
Bamford, S.3
Cole, C.4
Kok, C.Y.5
Beare, D.6
Jia, M.7
Shepherd, R.8
Leung, K.9
Menzies, A.10
Teague, J.W.11
Campbell, P.J.12
Stratton, M.R.13
Futreal, P.A.14
-
35
-
-
37249005205
-
The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability
-
Niesen FH, Berglund H, Vedadi M. 2007. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2:2212-2221. http://dx.doi.org/10.1038/nprot.2007.321.
-
(2007)
Nat. Protoc.
, vol.2
, pp. 2212-2221
-
-
Niesen, F.H.1
Berglund, H.2
Vedadi, M.3
-
36
-
-
0035442411
-
Direct measurement of protein binding energetics by isothermal titration calorimetry
-
Leavitt S, Freire E. 2001. Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr. Opin. Struct. Biol. 11: 560-566. http://dx.doi.org/10.1016/S0959-440X(00)00248-7.
-
(2001)
Curr. Opin. Struct. Biol.
, vol.11
, pp. 560-566
-
-
Leavitt, S.1
Freire, E.2
-
37
-
-
0037044791
-
Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response elementmediated transcription
-
Huang HC, Nguyen T, Pickett CB. 2002. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response elementmediated transcription. J. Biol. Chem. 277:42769-42774. http://dx.doi.org/10.1074/jbc.M206911200.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 42769-42774
-
-
Huang, H.C.1
Nguyen, T.2
Pickett, C.B.3
-
38
-
-
0033731182
-
Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NFE2- related factor 2
-
Huang HC, Nguyen T, Pickett CB. 2000. Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NFE2- related factor 2. Proc. Natl. Acad. Sci. U. S. A. 97:12475-12480. http://dx.doi.org/10.1073/pnas.220418997.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 12475-12480
-
-
Huang, H.C.1
Nguyen, T.2
Pickett, C.B.3
-
39
-
-
0242666198
-
Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response elementmediated NAD(P)H:quinone oxidoreductase-1 gene expression
-
Bloom DA, Jaiswal AK. 2003. Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response elementmediated NAD(P)H:quinone oxidoreductase-1 gene expression. J. Biol. Chem. 278:44675-44682. http://dx.doi.org/10.1074/jbc.M307633200.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 44675-44682
-
-
Bloom, D.A.1
Jaiswal, A.K.2
-
40
-
-
71449099635
-
Antioxidant-induced modification of INrf2 cysteine 151 and PKC-σ-mediated phosphorylation of Nrf2 serine 40 are both required for stabilization and nuclear translocation of Nrf2 and increased drug resistance
-
Niture SK, Jain AK, Jaiswal AK. 2009. Antioxidant-induced modification of INrf2 cysteine 151 and PKC-σ-mediated phosphorylation of Nrf2 serine 40 are both required for stabilization and nuclear translocation of Nrf2 and increased drug resistance. J. Cell Sci. 122:4452-4464. http://dx.doi.org/10.1242/jcs.058537.
-
(2009)
J. Cell Sci.
, vol.122
, pp. 4452-4464
-
-
Niture, S.K.1
Jain, A.K.2
Jaiswal, A.K.3
-
41
-
-
42449150854
-
Structural insights into the similar modes of Nrf2 transcription factor recognition by the cytoplasmic repressor Keap1
-
Padmanabhan B, Tong KI, Kobayashi A, Yamamoto M, Yokoyama S. 2008. Structural insights into the similar modes of Nrf2 transcription factor recognition by the cytoplasmic repressor Keap1. J. Synchrotron Radiat. 15:273-276. http://dx.doi.org/10.1107/S090904950705114X.
-
(2008)
J. Synchrotron Radiat.
, vol.15
, pp. 273-276
-
-
Padmanabhan, B.1
Tong, K.I.2
Kobayashi, A.3
Yamamoto, M.4
Yokoyama, S.5
-
42
-
-
33344456501
-
Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer
-
Padmanabhan B, Tong KI, Ohta T, Nakamura Y, Scharlock M, Ohtsuji M, Kang MI, Kobayashi A, Yokoyama S, Yamamoto M. 2006. Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol. Cell 21:689-700. http://dx.doi.org/10.1016/j.molcel.2006.01.013.
-
(2006)
Mol. Cell
, vol.21
, pp. 689-700
-
-
Padmanabhan, B.1
Tong, K.I.2
Ohta, T.3
Nakamura, Y.4
Scharlock, M.5
Ohtsuji, M.6
Kang, M.I.7
Kobayashi, A.8
Yokoyama, S.9
Yamamoto, M.10
-
43
-
-
77954947797
-
The critical role of nitric oxide signaling, via protein S-guanylation and nitrated cyclic GMP, in the antioxidant adaptive response
-
Fujii S, Sawa T, Ihara H, Tong KI, Ida T, Okamoto T, Ahtesham AK, Ishima Y, Motohashi H, Yamamoto M, Akaike T. 2010. The critical role of nitric oxide signaling, via protein S-guanylation and nitrated cyclic GMP, in the antioxidant adaptive response. J. Bol. Chem. 285:23970- 23984. http://dx.doi.org/10.1074/jbc.M110.145441.
-
(2010)
J. Bol. Chem.
, vol.285
-
-
Fujii, S.1
Sawa, T.2
Ihara, H.3
Tong, K.I.4
Ida, T.5
Okamoto, T.6
Ahtesham, A.K.7
Ishima, Y.8
Motohashi, H.9
Yamamoto, M.10
Akaike, T.11
-
44
-
-
0342813129
-
Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors
-
Karlsson R, Fält A. 1997. Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J. Immunol. Methods 200:121-133. http://dx.doi.org/10.1016/S0022-1759(96)00195-0.
-
(1997)
J. Immunol. Methods
, vol.200
, pp. 121-133
-
-
Karlsson, R.1
Fält, A.2
-
45
-
-
0034426852
-
Experimental design for analysis of complex kinetics using surface plasmon resonance
-
Lipschultz CA, Li Y, Smith-Gill S. 2000. Experimental design for analysis of complex kinetics using surface plasmon resonance. Methods 20:310- 318. http://dx.doi.org/10.1006/meth.1999.0924.
-
(2000)
Methods
, vol.20
-
-
Lipschultz, C.A.1
Li, Y.2
Smith-Gill, S.3
-
46
-
-
81355124042
-
Kinetic analyses of Keap1-Nrf2 interaction and determination of the minimal Nrf2 peptide sequence required for Keap1 binding using surface plasmon resonance
-
Chen Y, Inoyama D, Kong AN, Beamer LJ, Hu L. 2011. Kinetic analyses of Keap1-Nrf2 interaction and determination of the minimal Nrf2 peptide sequence required for Keap1 binding using surface plasmon resonance. Chem. Biol. Drug Des. 78:1014-1021. http://dx.doi.org/10.1111/j.1747-0285.2011.01240.x.
-
(2011)
Chem. Biol. Drug Des.
, vol.78
, pp. 1014-1021
-
-
Chen, Y.1
Inoyama, D.2
Kong, A.N.3
Beamer, L.J.4
Hu, L.5
-
47
-
-
33747728194
-
Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a "tethering" mechanism: a two-site interaction model for the Nrf2-Keap1 complex
-
McMahon M, Thomas N, Itoh K, Yamamoto M, Hayes JD. 2006. Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a "tethering" mechanism: a two-site interaction model for the Nrf2-Keap1 complex. J. Biol. Chem. 281:24756-24768. http://dx.doi.org/10.1074/jbc.M601119200.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 24756-24768
-
-
McMahon, M.1
Thomas, N.2
Itoh, K.3
Yamamoto, M.4
Hayes, J.D.5
-
48
-
-
77649265091
-
The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
-
Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou YS, Ueno I, Sakamoto A, Tong KI, Kim M, Nishito Y, Iemura S, Natsume T, Ueno T, Kominami E, Motohashi H, Tanaka K, Yamamoto M. 2010. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12:213-223. http://dx.doi.org/10.1038/ncb2021.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 213-223
-
-
Komatsu, M.1
Kurokawa, H.2
Waguri, S.3
Taguchi, K.4
Kobayashi, A.5
Ichimura, Y.6
Sou, Y.S.7
Ueno, I.8
Sakamoto, A.9
Tong, K.I.10
Kim, M.11
Nishito, Y.12
Iemura, S.13
Natsume, T.14
Ueno, T.15
Kominami, E.16
Motohashi, H.17
Tanaka, K.18
Yamamoto, M.19
-
49
-
-
84884338770
-
Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex
-
Baird L, Llères D, Swift S, Dinkova-Kostova AT. 2013. Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex. Proc. Natl. Acad. Sci. U. S. A. 110:15259-15264. http://dx.doi.org/10.1073/pnas.1305687110.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 15259-15264
-
-
Baird, L.1
Llères, D.2
Swift, S.3
Dinkova-Kostova, A.T.4
|