-
2
-
-
81055139468
-
Structural insights into anaphase-promoting complex function and mechanism
-
Barford D. Structural insights into anaphase-promoting complex function and mechanism. Philos Trans R Soc Lond B Biol Sci 2011, 366:3605-3624.
-
(2011)
Philos Trans R Soc Lond B Biol Sci
, vol.366
, pp. 3605-3624
-
-
Barford, D.1
-
3
-
-
79959555511
-
Cubism and the cell cycle: the many faces of the apc/c
-
Pines J. Cubism and the cell cycle: the many faces of the apc/c. Nat Rev Mol Cell Biol 2011, 12:427-438.
-
(2011)
Nat Rev Mol Cell Biol
, vol.12
, pp. 427-438
-
-
Pines, J.1
-
4
-
-
84876725501
-
Panta rhei: the apc/c at steady state
-
Primorac I., Musacchio A. Panta rhei: the apc/c at steady state. J Cell Biol 2013, 201:177-189.
-
(2013)
J Cell Biol
, vol.201
, pp. 177-189
-
-
Primorac, I.1
Musacchio, A.2
-
5
-
-
80054750354
-
Processive ubiquitin chain formation by the anaphase-promoting complex
-
Meyer H.J., Rape M. Processive ubiquitin chain formation by the anaphase-promoting complex. Semin Cell Dev Biol 2011, 22:544-550.
-
(2011)
Semin Cell Dev Biol
, vol.22
, pp. 544-550
-
-
Meyer, H.J.1
Rape, M.2
-
6
-
-
84879145033
-
Baculovirus expression: tackling the complexity challenge
-
Barford D., Takagi Y., Schultz P., Berger I. Baculovirus expression: tackling the complexity challenge. Curr Opin Struct Biol 2013, 23:357-364.
-
(2013)
Curr Opin Struct Biol
, vol.23
, pp. 357-364
-
-
Barford, D.1
Takagi, Y.2
Schultz, P.3
Berger, I.4
-
7
-
-
84906493054
-
Molecular architecture and mechanism of the anaphase-promoting complex
-
Chang L., Zhang Z., Yang J., McLaughlin S.H., Barford D. Molecular architecture and mechanism of the anaphase-promoting complex. Nature 2014, 10.1038/nature13543.
-
(2014)
Nature
-
-
Chang, L.1
Zhang, Z.2
Yang, J.3
McLaughlin, S.H.4
Barford, D.5
-
8
-
-
79951505095
-
Structural basis for the subunit assembly of the anaphase-promoting complex
-
Schreiber A., Stengel F., Zhang Z., Enchev R.I., Kong E.H., Morris E.P., Robinson C.V., da Fonseca P.C., Barford D. Structural basis for the subunit assembly of the anaphase-promoting complex. Nature 2011, 470:227-232.
-
(2011)
Nature
, vol.470
, pp. 227-232
-
-
Schreiber, A.1
Stengel, F.2
Zhang, Z.3
Enchev, R.I.4
Kong, E.H.5
Morris, E.P.6
Robinson, C.V.7
da Fonseca, P.C.8
Barford, D.9
-
9
-
-
84871404634
-
Recombinant expression, reconstitution and structure of human anaphase-promoting complex (apc/c)
-
Zhang Z., Yang J., Kong E.H., Chao W.C., Morris E.P., da Fonseca P.C., Barford D. Recombinant expression, reconstitution and structure of human anaphase-promoting complex (apc/c). Biochem J 2013, 449:365-371.
-
(2013)
Biochem J
, vol.449
, pp. 365-371
-
-
Zhang, Z.1
Yang, J.2
Kong, E.H.3
Chao, W.C.4
Morris, E.P.5
da Fonseca, P.C.6
Barford, D.7
-
10
-
-
84869025079
-
Apc15 mediates cdc20 autoubiquitylation by apc/c(mcc) and disassembly of the mitotic checkpoint complex
-
Uzunova K., Dye B.T., Schutz H., Ladurner R., Petzold G., Toyoda Y., Jarvis M.A., Brown N.G., Poser I., Novatchkova M., et al. Apc15 mediates cdc20 autoubiquitylation by apc/c(mcc) and disassembly of the mitotic checkpoint complex. Nat Struct Mol Biol 2012, 19:1116-1123.
-
(2012)
Nat Struct Mol Biol
, vol.19
, pp. 1116-1123
-
-
Uzunova, K.1
Dye, B.T.2
Schutz, H.3
Ladurner, R.4
Petzold, G.5
Toyoda, Y.6
Jarvis, M.A.7
Brown, N.G.8
Poser, I.9
Novatchkova, M.10
-
11
-
-
84868444740
-
Relion: implementation of a bayesian approach to cryo-em structure determination
-
Scheres S.H. Relion: implementation of a bayesian approach to cryo-em structure determination. J Struct Biol 2012, 180:519-530.
-
(2012)
J Struct Biol
, vol.180
, pp. 519-530
-
-
Scheres, S.H.1
-
12
-
-
84897000286
-
Biochemistry. The resolution revolution
-
Kuhlbrandt W. Biochemistry. The resolution revolution. Science 2014, 343:1443-1444.
-
(2014)
Science
, vol.343
, pp. 1443-1444
-
-
Kuhlbrandt, W.1
-
13
-
-
29144527503
-
Localization of the coactivator cdh1 and the cullin subunit apc2 in a cryo-electron microscopy model of vertebrate apc/c
-
Dube P., Herzog F., Gieffers C., Sander B., Riedel D., Muller S.A., Engel A., Peters J.M., Stark H. Localization of the coactivator cdh1 and the cullin subunit apc2 in a cryo-electron microscopy model of vertebrate apc/c. Mol Cell 2005, 20:867-879.
-
(2005)
Mol Cell
, vol.20
, pp. 867-879
-
-
Dube, P.1
Herzog, F.2
Gieffers, C.3
Sander, B.4
Riedel, D.5
Muller, S.A.6
Engel, A.7
Peters, J.M.8
Stark, H.9
-
14
-
-
29144484041
-
Structural analysis of the anaphase-promoting complex reveals multiple active sites and insights into polyubiquitylation
-
Passmore L.A., Booth C.R., Venien-Bryan C., Ludtke S.J., Fioretto C., Johnson L.N., Chiu W., Barford D. Structural analysis of the anaphase-promoting complex reveals multiple active sites and insights into polyubiquitylation. Mol Cell 2005, 20:855-866.
-
(2005)
Mol Cell
, vol.20
, pp. 855-866
-
-
Passmore, L.A.1
Booth, C.R.2
Venien-Bryan, C.3
Ludtke, S.J.4
Fioretto, C.5
Johnson, L.N.6
Chiu, W.7
Barford, D.8
-
15
-
-
36749061942
-
Structural organization of the anaphase-promoting complex bound to the mitotic activator slp1
-
Ohi M.D., Feoktistova A., Ren L., Yip C., Cheng Y., Chen J.S., Yoon H.J., Wall J.S., Huang Z., Penczek P.A., et al. Structural organization of the anaphase-promoting complex bound to the mitotic activator slp1. Mol Cell 2007, 28:871-885.
-
(2007)
Mol Cell
, vol.28
, pp. 871-885
-
-
Ohi, M.D.1
Feoktistova, A.2
Ren, L.3
Yip, C.4
Cheng, Y.5
Chen, J.S.6
Yoon, H.J.7
Wall, J.S.8
Huang, Z.9
Penczek, P.A.10
-
16
-
-
62449220573
-
Structure of the anaphase-promoting complex/cyclosome interacting with a mitotic checkpoint complex
-
Herzog F., Primorac I., Dube P., Lenart P., Sander B., Mechtler K., Stark H., Peters J.M. Structure of the anaphase-promoting complex/cyclosome interacting with a mitotic checkpoint complex. Science 2009, 323:1477-1481.
-
(2009)
Science
, vol.323
, pp. 1477-1481
-
-
Herzog, F.1
Primorac, I.2
Dube, P.3
Lenart, P.4
Sander, B.5
Mechtler, K.6
Stark, H.7
Peters, J.M.8
-
17
-
-
79951491055
-
Structures of apc/c(cdh1) with substrates identify cdh1 and apc10 as the d-box co-receptor
-
da Fonseca P.C., Kong E.H., Zhang Z., Schreiber A., Williams M.A., Morris E.P., Barford D. Structures of apc/c(cdh1) with substrates identify cdh1 and apc10 as the d-box co-receptor. Nature 2011, 470:274-278.
-
(2011)
Nature
, vol.470
, pp. 274-278
-
-
da Fonseca, P.C.1
Kong, E.H.2
Zhang, Z.3
Schreiber, A.4
Williams, M.A.5
Morris, E.P.6
Barford, D.7
-
18
-
-
78650982520
-
Substrate binding on the apc/c occurs between the coactivator cdh1 and the processivity factor doc1
-
Buschhorn B.A., Petzold G., Galova M., Dube P., Kraft C., Herzog F., Stark H., Peters J.M. Substrate binding on the apc/c occurs between the coactivator cdh1 and the processivity factor doc1. Nat Struct Mol Biol 2011, 18:6-13.
-
(2011)
Nat Struct Mol Biol
, vol.18
, pp. 6-13
-
-
Buschhorn, B.A.1
Petzold, G.2
Galova, M.3
Dube, P.4
Kraft, C.5
Herzog, F.6
Stark, H.7
Peters, J.M.8
-
19
-
-
84857935771
-
The structure of the 26s proteasome subunit rpn2 reveals its pc repeat domain as a closed toroid of two concentric alpha-helical rings
-
He J., Kulkarni K., da Fonseca P.C., Krutauz D., Glickman M.H., Barford D., Morris E.P. The structure of the 26s proteasome subunit rpn2 reveals its pc repeat domain as a closed toroid of two concentric alpha-helical rings. Structure 2012, 20:513-521.
-
(2012)
Structure
, vol.20
, pp. 513-521
-
-
He, J.1
Kulkarni, K.2
da Fonseca, P.C.3
Krutauz, D.4
Glickman, M.H.5
Barford, D.6
Morris, E.P.7
-
20
-
-
84878881252
-
Insights into degron recognition by apc/c coactivators from the structure of an acm1-cdh1 complex
-
He J., Chao W.C., Zhang Z., Yang J., Cronin N., Barford D. Insights into degron recognition by apc/c coactivators from the structure of an acm1-cdh1 complex. Mol Cell 2013, 50:649-660.
-
(2013)
Mol Cell
, vol.50
, pp. 649-660
-
-
He, J.1
Chao, W.C.2
Zhang, Z.3
Yang, J.4
Cronin, N.5
Barford, D.6
-
21
-
-
0026089183
-
Cyclin is degraded by the ubiquitin pathway
-
Glotzer M., Murray A.W., Kirschner M.W. Cyclin is degraded by the ubiquitin pathway. Nature 1991, 349:132-138.
-
(1991)
Nature
, vol.349
, pp. 132-138
-
-
Glotzer, M.1
Murray, A.W.2
Kirschner, M.W.3
-
22
-
-
0034654399
-
The ken box: an apc recognition signal distinct from the d box targeted by cdh1
-
Pfleger C.M., Kirschner M.W. The ken box: an apc recognition signal distinct from the d box targeted by cdh1. Genes Dev 2000, 14:655-665.
-
(2000)
Genes Dev
, vol.14
, pp. 655-665
-
-
Pfleger, C.M.1
Kirschner, M.W.2
-
23
-
-
84862776998
-
Structure of the mitotic checkpoint complex
-
Chao W.C., Kulkarni K., Zhang Z., Kong E.H., Barford D. Structure of the mitotic checkpoint complex. Nature 2012, 484:208-213.
-
(2012)
Nature
, vol.484
, pp. 208-213
-
-
Chao, W.C.1
Kulkarni, K.2
Zhang, Z.3
Kong, E.H.4
Barford, D.5
-
24
-
-
84868551354
-
Structural analysis of human cdc20 supports multisite degron recognition by apc/c
-
Tian W., Li B., Warrington R., Tomchick D.R., Yu H., Luo X. Structural analysis of human cdc20 supports multisite degron recognition by apc/c. Proc Natl Acad Sci U S A 2012, 109:18419-18424.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 18419-18424
-
-
Tian, W.1
Li, B.2
Warrington, R.3
Tomchick, D.R.4
Yu, H.5
Luo, X.6
-
25
-
-
11844279698
-
The apc subunit doc1 promotes recognition of the substrate destruction box
-
Carroll C.W., Enquist-Newman M., Morgan D.O. The apc subunit doc1 promotes recognition of the substrate destruction box. Curr Biol 2005, 15:11-18.
-
(2005)
Curr Biol
, vol.15
, pp. 11-18
-
-
Carroll, C.W.1
Enquist-Newman, M.2
Morgan, D.O.3
-
26
-
-
84900872161
-
Pp2a delays apc/c-dependent degradation of separase-associated but not free securin
-
Hellmuth S., Bottger F., Pan C., Mann M., Stemmann O. Pp2a delays apc/c-dependent degradation of separase-associated but not free securin. EMBO J 2014, 33:1134-1147.
-
(2014)
EMBO J
, vol.33
, pp. 1134-1147
-
-
Hellmuth, S.1
Bottger, F.2
Pan, C.3
Mann, M.4
Stemmann, O.5
-
27
-
-
47549083849
-
Positive feedback sharpens the anaphase switch
-
Holt L.J., Krutchinsky A.N., Morgan D.O. Positive feedback sharpens the anaphase switch. Nature 2008, 454:353-357.
-
(2008)
Nature
, vol.454
, pp. 353-357
-
-
Holt, L.J.1
Krutchinsky, A.N.2
Morgan, D.O.3
-
28
-
-
25144525540
-
Cdks promote DNA replication origin licensing in human cells by protecting cdc6 from apc/c-dependent proteolysis
-
Mailand N., Diffley J.F. Cdks promote DNA replication origin licensing in human cells by protecting cdc6 from apc/c-dependent proteolysis. Cell 2005, 122:915-926.
-
(2005)
Cell
, vol.122
, pp. 915-926
-
-
Mailand, N.1
Diffley, J.F.2
-
29
-
-
84897823745
-
Co-regulation proteomics reveals substrates and mechanisms of apc/c-dependent degradation
-
Singh S.A., Winter D., Kirchner M., Chauhan R., Ahmed S., Ozlu N., Tzur A., Steen J.A., Steen H. Co-regulation proteomics reveals substrates and mechanisms of apc/c-dependent degradation. EMBO J 2014, 33:385-399.
-
(2014)
EMBO J
, vol.33
, pp. 385-399
-
-
Singh, S.A.1
Winter, D.2
Kirchner, M.3
Chauhan, R.4
Ahmed, S.5
Ozlu, N.6
Tzur, A.7
Steen, J.A.8
Steen, H.9
-
30
-
-
79955581195
-
Mechanisms of pseudosubstrate inhibition of the anaphase promoting complex by acm1
-
Burton J.L., Xiong Y., Solomon M.J. Mechanisms of pseudosubstrate inhibition of the anaphase promoting complex by acm1. EMBO J 2011, 30:1818-1829.
-
(2011)
EMBO J
, vol.30
, pp. 1818-1829
-
-
Burton, J.L.1
Xiong, Y.2
Solomon, M.J.3
-
31
-
-
43449139689
-
Modulation of the mitotic regulatory network by apc-dependent destruction of the cdh1 inhibitor acm1
-
Enquist-Newman M., Sullivan M., Morgan D.O. Modulation of the mitotic regulatory network by apc-dependent destruction of the cdh1 inhibitor acm1. Mol Cell 2008, 30:437-446.
-
(2008)
Mol Cell
, vol.30
, pp. 437-446
-
-
Enquist-Newman, M.1
Sullivan, M.2
Morgan, D.O.3
-
32
-
-
84872849589
-
Mechanisms controlling the temporal degradation of nek2a and kif18a by the apc/c-cdc20 complex
-
Sedgwick G.G., Hayward D.G., Di Fiore B., Pardo M., Yu L., Pines J., Nilsson J. Mechanisms controlling the temporal degradation of nek2a and kif18a by the apc/c-cdc20 complex. EMBO J 2013, 32:303-314.
-
(2013)
EMBO J
, vol.32
, pp. 303-314
-
-
Sedgwick, G.G.1
Hayward, D.G.2
Di Fiore, B.3
Pardo, M.4
Yu, L.5
Pines, J.6
Nilsson, J.7
-
33
-
-
84892869124
-
Microtubule-dependent regulation of mitotic protein degradation
-
Song L., Craney A., Rape M. Microtubule-dependent regulation of mitotic protein degradation. Mol Cell 2014, 53:179-192.
-
(2014)
Mol Cell
, vol.53
, pp. 179-192
-
-
Song, L.1
Craney, A.2
Rape, M.3
-
34
-
-
55949119059
-
A role for the fizzy/cdc20 family of proteins in activation of the apc/c distinct from substrate recruitment
-
Kimata Y., Baxter J.E., Fry A.M., Yamano H. A role for the fizzy/cdc20 family of proteins in activation of the apc/c distinct from substrate recruitment. Mol Cell 2008, 32:576-583.
-
(2008)
Mol Cell
, vol.32
, pp. 576-583
-
-
Kimata, Y.1
Baxter, J.E.2
Fry, A.M.3
Yamano, H.4
-
35
-
-
0035903652
-
Yeast hct1 recognizes the mitotic cyclin clb2 and other substrates of the ubiquitin ligase apc
-
Schwab M., Neutzner M., Mocker D., Seufert W. Yeast hct1 recognizes the mitotic cyclin clb2 and other substrates of the ubiquitin ligase apc. EMBO J 2001, 20:5165-5175.
-
(2001)
EMBO J
, vol.20
, pp. 5165-5175
-
-
Schwab, M.1
Neutzner, M.2
Mocker, D.3
Seufert, W.4
-
36
-
-
84904049928
-
Activation of the apc/c ubiquitin ligase by enhanced e2 efficiency
-
Van Voorhis V.A., Morgan D. Activation of the apc/c ubiquitin ligase by enhanced e2 efficiency. Curr Biol 2014, 24:1556-1562.
-
(2014)
Curr Biol
, vol.24
, pp. 1556-1562
-
-
Van Voorhis, V.A.1
Morgan, D.2
-
37
-
-
34447097834
-
Sequential e2s drive polyubiquitin chain assembly on apc targets
-
Rodrigo-Brenni M.C., Morgan D.O. Sequential e2s drive polyubiquitin chain assembly on apc targets. Cell 2007, 130:127-139.
-
(2007)
Cell
, vol.130
, pp. 127-139
-
-
Rodrigo-Brenni, M.C.1
Morgan, D.O.2
-
38
-
-
84880329682
-
Emi1 preferentially inhibits ubiquitin chain elongation by the anaphase-promoting complex
-
Wang W., Kirschner M.W. Emi1 preferentially inhibits ubiquitin chain elongation by the anaphase-promoting complex. Nat Cell Biol 2013, 15:797-806.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 797-806
-
-
Wang, W.1
Kirschner, M.W.2
-
39
-
-
79952290609
-
The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit e2
-
Wickliffe K.E., Lorenz S., Wemmer D.E., Kuriyan J., Rape M. The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit e2. Cell 2011, 144:769-781.
-
(2011)
Cell
, vol.144
, pp. 769-781
-
-
Wickliffe, K.E.1
Lorenz, S.2
Wemmer, D.E.3
Kuriyan, J.4
Rape, M.5
-
40
-
-
70849116420
-
Identification of a physiological e2 module for the human anaphase-promoting complex
-
Williamson A., Wickliffe K.E., Mellone B.G., Song L., Karpen G.H., Rape M. Identification of a physiological e2 module for the human anaphase-promoting complex. Proc Natl Acad Sci U S A 2009, 106:18213-18218.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 18213-18218
-
-
Williamson, A.1
Wickliffe, K.E.2
Mellone, B.G.3
Song, L.4
Karpen, G.H.5
Rape, M.6
-
41
-
-
76549089605
-
Ube2s drives elongation of k11-linked ubiquitin chains by the anaphase-promoting complex
-
Wu T., Merbl Y., Huo Y., Gallop J.L., Tzur A., Kirschner M.W. Ube2s drives elongation of k11-linked ubiquitin chains by the anaphase-promoting complex. Proc Natl Acad Sci U S A 2010, 107:1355-1360.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 1355-1360
-
-
Wu, T.1
Merbl, Y.2
Huo, Y.3
Gallop, J.L.4
Tzur, A.5
Kirschner, M.W.6
-
42
-
-
43049162227
-
Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex
-
Jin L., Williamson A., Banerjee S., Philipp I., Rape M. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 2008, 133:653-665.
-
(2008)
Cell
, vol.133
, pp. 653-665
-
-
Jin, L.1
Williamson, A.2
Banerjee, S.3
Philipp, I.4
Rape, M.5
-
43
-
-
77955990685
-
Catalysis of lysine 48-specific ubiquitin chain assembly by residues in e2 and ubiquitin
-
Rodrigo-Brenni M.C., Foster S.A., Morgan D.O. Catalysis of lysine 48-specific ubiquitin chain assembly by residues in e2 and ubiquitin. Mol Cell 2010, 39:548-559.
-
(2010)
Mol Cell
, vol.39
, pp. 548-559
-
-
Rodrigo-Brenni, M.C.1
Foster, S.A.2
Morgan, D.O.3
-
44
-
-
79959347898
-
Regulation of ubiquitin chain initiation to control the timing of substrate degradation
-
Williamson A., Banerjee S., Zhu X., Philipp I., Iavarone A.T., Rape M. Regulation of ubiquitin chain initiation to control the timing of substrate degradation. Mol Cell 2011, 42:744-757.
-
(2011)
Mol Cell
, vol.42
, pp. 744-757
-
-
Williamson, A.1
Banerjee, S.2
Zhu, X.3
Philipp, I.4
Iavarone, A.T.5
Rape, M.6
-
45
-
-
84900337781
-
Enhanced protein degradation by branched ubiquitin chains
-
Meyer H.J., Rape M. Enhanced protein degradation by branched ubiquitin chains. Cell 2014, 157:910-921.
-
(2014)
Cell
, vol.157
, pp. 910-921
-
-
Meyer, H.J.1
Rape, M.2
-
46
-
-
84862776836
-
Apc/c-mediated multiple monoubiquitylation provides an alternative degradation signal for cyclin b1
-
Dimova N.V., Hathaway N.A., Lee B.H., Kirkpatrick D.S., Berkowitz M.L., Gygi S.P., Finley D., King R.W. Apc/c-mediated multiple monoubiquitylation provides an alternative degradation signal for cyclin b1. Nat Cell Biol 2012, 14:168-176.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 168-176
-
-
Dimova, N.V.1
Hathaway, N.A.2
Lee, B.H.3
Kirkpatrick, D.S.4
Berkowitz, M.L.5
Gygi, S.P.6
Finley, D.7
King, R.W.8
-
48
-
-
0036161468
-
The mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either mad1 or cdc20
-
Luo X., Tang Z., Rizo J., Yu H. The mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either mad1 or cdc20. Mol Cell 2002, 9:59-71.
-
(2002)
Mol Cell
, vol.9
, pp. 59-71
-
-
Luo, X.1
Tang, Z.2
Rizo, J.3
Yu, H.4
-
49
-
-
0037093326
-
Crystal structure of the tetrameric mad1-mad2 core complex: implications of a 'safety belt' binding mechanism for the spindle checkpoint
-
Sironi L., Mapelli M., Knapp S., De Antoni A., Jeang K.T., Musacchio A. Crystal structure of the tetrameric mad1-mad2 core complex: implications of a 'safety belt' binding mechanism for the spindle checkpoint. EMBO J 2002, 21:2496-2506.
-
(2002)
EMBO J
, vol.21
, pp. 2496-2506
-
-
Sironi, L.1
Mapelli, M.2
Knapp, S.3
De Antoni, A.4
Jeang, K.T.5
Musacchio, A.6
-
50
-
-
33947310066
-
Mad3p, a pseudosubstrate inhibitor of apccdc20 in the spindle assembly checkpoint
-
Burton J.L., Solomon M.J. Mad3p, a pseudosubstrate inhibitor of apccdc20 in the spindle assembly checkpoint. Genes Dev 2007, 21:655-667.
-
(2007)
Genes Dev
, vol.21
, pp. 655-667
-
-
Burton, J.L.1
Solomon, M.J.2
-
51
-
-
56149107126
-
Mad3 ken boxes mediate both cdc20 and mad3 turnover, and are critical for the spindle checkpoint
-
King E.M., van der Sar S.J., Hardwick K.G. Mad3 ken boxes mediate both cdc20 and mad3 turnover, and are critical for the spindle checkpoint. PloS One 2007, 2:e342.
-
(2007)
PloS One
, vol.2
-
-
King, E.M.1
van der Sar, S.J.2
Hardwick, K.G.3
-
52
-
-
53149152614
-
The spindle checkpoint functions of mad3 and mad2 depend on a mad3 ken box-mediated interaction with cdc20-anaphase-promoting complex (apc/c)
-
Sczaniecka M., Feoktistova A., May K.M., Chen J.S., Blyth J., Gould K.L., Hardwick K.G. The spindle checkpoint functions of mad3 and mad2 depend on a mad3 ken box-mediated interaction with cdc20-anaphase-promoting complex (apc/c). J Biol Chem 2008, 283:23039-23047.
-
(2008)
J Biol Chem
, vol.283
, pp. 23039-23047
-
-
Sczaniecka, M.1
Feoktistova, A.2
May, K.M.3
Chen, J.S.4
Blyth, J.5
Gould, K.L.6
Hardwick, K.G.7
-
53
-
-
84856905741
-
Bubr1 blocks substrate recruitment to the apc/c in a ken-box-dependent manner
-
Lara-Gonzalez P., Scott M.I., Diez M., Sen O., Taylor S.S. Bubr1 blocks substrate recruitment to the apc/c in a ken-box-dependent manner. J Cell Sci 2011, 124:4332-4345.
-
(2011)
J Cell Sci
, vol.124
, pp. 4332-4345
-
-
Lara-Gonzalez, P.1
Scott, M.I.2
Diez, M.3
Sen, O.4
Taylor, S.S.5
-
54
-
-
13444288299
-
The mad1/mad2 complex as a template for mad2 activation in the spindle assembly checkpoint
-
De Antoni A., Pearson C.G., Cimini D., Canman J.C., Sala V., Nezi L., Mapelli M., Sironi L., Faretta M., Salmon E.D., Musacchio A. The mad1/mad2 complex as a template for mad2 activation in the spindle assembly checkpoint. Curr Biol 2005, 15:214-225.
-
(2005)
Curr Biol
, vol.15
, pp. 214-225
-
-
De Antoni, A.1
Pearson, C.G.2
Cimini, D.3
Canman, J.C.4
Sala, V.5
Nezi, L.6
Mapelli, M.7
Sironi, L.8
Faretta, M.9
Salmon, E.D.10
Musacchio, A.11
-
55
-
-
84869046948
-
Mad2 and the apc/c compete for the same site on cdc20 to ensure proper chromosome segregation
-
Izawa D., Pines J. Mad2 and the apc/c compete for the same site on cdc20 to ensure proper chromosome segregation. J Cell Biol 2012, 199:27-37.
-
(2012)
J Cell Biol
, vol.199
, pp. 27-37
-
-
Izawa, D.1
Pines, J.2
-
56
-
-
0034952728
-
Identification of an overlapping binding domain on cdc20 for mad2 and anaphase-promoting complex: model for spindle checkpoint regulation
-
Zhang Y., Lees E. Identification of an overlapping binding domain on cdc20 for mad2 and anaphase-promoting complex: model for spindle checkpoint regulation. Mol Cell Biol 2001, 21:5190-5199.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 5190-5199
-
-
Zhang, Y.1
Lees, E.2
-
57
-
-
84857030052
-
Mad2 and mad3 cooperate to arrest budding yeast in mitosis
-
Lau D.T., Murray A.W. Mad2 and mad3 cooperate to arrest budding yeast in mitosis. Curr Biol 2012, 22:180-190.
-
(2012)
Curr Biol
, vol.22
, pp. 180-190
-
-
Lau, D.T.1
Murray, A.W.2
-
58
-
-
80053561641
-
Apc15 drives the turnover of mcc-cdc20 to make the spindle assembly checkpoint responsive to kinetochore attachment
-
Mansfeld J., Collin P., Collins M.O., Choudhary J.S., Pines J. Apc15 drives the turnover of mcc-cdc20 to make the spindle assembly checkpoint responsive to kinetochore attachment. Nat Cell Biol 2011, 13:1234-1243.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 1234-1243
-
-
Mansfeld, J.1
Collin, P.2
Collins, M.O.3
Choudhary, J.S.4
Pines, J.5
-
59
-
-
84866850568
-
The apc/c subunit mnd2/apc15 promotes cdc20 autoubiquitination and spindle assembly checkpoint inactivation
-
Foster S.A., Morgan D.O. The apc/c subunit mnd2/apc15 promotes cdc20 autoubiquitination and spindle assembly checkpoint inactivation. Mol Cell 2012, 47:921-932.
-
(2012)
Mol Cell
, vol.47
, pp. 921-932
-
-
Foster, S.A.1
Morgan, D.O.2
-
60
-
-
0037011119
-
Identification of a mad2-binding protein, cmt2, and its role in mitosis
-
Habu T., Kim S.H., Weinstein J., Matsumoto T. Identification of a mad2-binding protein, cmt2, and its role in mitosis. EMBO J 2002, 21:6419-6428.
-
(2002)
EMBO J
, vol.21
, pp. 6419-6428
-
-
Habu, T.1
Kim, S.H.2
Weinstein, J.3
Matsumoto, T.4
-
61
-
-
36049028674
-
P31comet blocks mad2 activation through structural mimicry
-
Yang M., Li B., Tomchick D.R., Machius M., Rizo J., Yu H., Luo X. P31comet blocks mad2 activation through structural mimicry. Cell 2007, 131:744-755.
-
(2007)
Cell
, vol.131
, pp. 744-755
-
-
Yang, M.1
Li, B.2
Tomchick, D.R.3
Machius, M.4
Rizo, J.5
Yu, H.6
Luo, X.7
-
62
-
-
33748279259
-
Emi1 stably binds and inhibits the anaphase-promoting complex/cyclosome as a pseudosubstrate inhibitor
-
Miller J.J., Summers M.K., Hansen D.V., Nachury M.V., Lehman N.L., Loktev A., Jackson P.K. Emi1 stably binds and inhibits the anaphase-promoting complex/cyclosome as a pseudosubstrate inhibitor. Genes Dev 2006, 20:2410-2420.
-
(2006)
Genes Dev
, vol.20
, pp. 2410-2420
-
-
Miller, J.J.1
Summers, M.K.2
Hansen, D.V.3
Nachury, M.V.4
Lehman, N.L.5
Loktev, A.6
Jackson, P.K.7
-
63
-
-
84880171038
-
Electron microscopy structure of human apc/c(cdh1)-emi1 reveals multimodal mechanism of e3 ligase shutdown
-
Frye J.J., Brown N.G., Petzold G., Watson E.R., Grace C.R., Nourse A., Jarvis M.A., Kriwacki R.W., Peters J.M., Stark H., Schulman B.A. Electron microscopy structure of human apc/c(cdh1)-emi1 reveals multimodal mechanism of e3 ligase shutdown. Nat Struct Mol Biol 2013, 20:827-835.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 827-835
-
-
Frye, J.J.1
Brown, N.G.2
Petzold, G.3
Watson, E.R.4
Grace, C.R.5
Nourse, A.6
Jarvis, M.A.7
Kriwacki, R.W.8
Peters, J.M.9
Stark, H.10
Schulman, B.A.11
-
64
-
-
84886892399
-
Sequestration of cdh1 by mad2l2 prevents premature apc/c activation prior to anaphase onset
-
Listovsky T., Sale J.E. Sequestration of cdh1 by mad2l2 prevents premature apc/c activation prior to anaphase onset. J Cell Biol 2013, 203:87-100.
-
(2013)
J Cell Biol
, vol.203
, pp. 87-100
-
-
Listovsky, T.1
Sale, J.E.2
|