-
1
-
-
4544362674
-
Mammalian circadian biology: elucidating genome-wide levels of temporal organization
-
Lowrey P., Takahashi J. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 2004, 5:407-441.
-
(2004)
Annu. Rev. Genomics Hum. Genet.
, vol.5
, pp. 407-441
-
-
Lowrey, P.1
Takahashi, J.2
-
2
-
-
62449268975
-
Circadian oscillation of nucleotide excision repair in mammalian brain
-
Kang T.H., et al. Circadian oscillation of nucleotide excision repair in mammalian brain. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:2864-2867.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 2864-2867
-
-
Kang, T.H.1
-
3
-
-
77950422142
-
Circadian control of XPA and excision repair of cisplatin-DNA damage by cryptochrome and HERC2 ubiquitin ligase
-
Kang T-H., et al. Circadian control of XPA and excision repair of cisplatin-DNA damage by cryptochrome and HERC2 ubiquitin ligase. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:4890-4895.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 4890-4895
-
-
Kang, T.-H.1
-
4
-
-
33749031807
-
Molecular components of the mammalian circadian clock
-
Special issue 2
-
Ko C., Takahashi J. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 2006, 15(Special issue 2):7.
-
(2006)
Hum. Mol. Genet.
, vol.15
, pp. 7
-
-
Ko, C.1
Takahashi, J.2
-
5
-
-
79959875504
-
Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators
-
Mohawk J., Takahashi J. Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci. 2011, 34:349-358.
-
(2011)
Trends Neurosci.
, vol.34
, pp. 349-358
-
-
Mohawk, J.1
Takahashi, J.2
-
6
-
-
77957960061
-
Temperature as a universal resetting cue for mammalian circadian oscillators
-
Buhr E., et al. Temperature as a universal resetting cue for mammalian circadian oscillators. Science 2010, 330:379-385.
-
(2010)
Science
, vol.330
, pp. 379-385
-
-
Buhr, E.1
-
7
-
-
77951889295
-
The mammalian circadian timing system: organization and coordination of central and peripheral clocks
-
Dibner C., et al. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 2010, 72:517-549.
-
(2010)
Annu. Rev. Physiol.
, vol.72
, pp. 517-549
-
-
Dibner, C.1
-
8
-
-
11144353910
-
PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues
-
Yoo S-H., et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:5339-5346.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 5339-5346
-
-
Yoo, S.-H.1
-
9
-
-
34247516815
-
Intercellular coupling confers robustness against mutations in the SCN circadian clock network
-
Liu A., et al. Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 2007, 129:605-616.
-
(2007)
Cell
, vol.129
, pp. 605-616
-
-
Liu, A.1
-
10
-
-
0025021084
-
Transplanted suprachiasmatic nucleus determines circadian period
-
Ralph M., et al. Transplanted suprachiasmatic nucleus determines circadian period. Science 1990, 247:975-978.
-
(1990)
Science
, vol.247
, pp. 975-978
-
-
Ralph, M.1
-
11
-
-
48249145719
-
Nuclear receptors, metabolism, and the circadian clock
-
Yang X., et al. Nuclear receptors, metabolism, and the circadian clock. Cold Spring Harb. Symp. Quant. Biol. 2007, 72:387-394.
-
(2007)
Cold Spring Harb. Symp. Quant. Biol.
, vol.72
, pp. 387-394
-
-
Yang, X.1
-
12
-
-
0037125939
-
Rhythms of mammalian body temperature can sustain peripheral circadian clocks
-
Brown S., et al. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr. Biol. 2002, 12:1574-1583.
-
(2002)
Curr. Biol.
, vol.12
, pp. 1574-1583
-
-
Brown, S.1
-
13
-
-
84858321758
-
Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators
-
Saini C., et al. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators. Genes Dev. 2012, 26:567-580.
-
(2012)
Genes Dev.
, vol.26
, pp. 567-580
-
-
Saini, C.1
-
14
-
-
33750706567
-
Properties, entrainment, and physiological functions of mammalian peripheral oscillators
-
Stratmann M., Schibler U. Properties, entrainment, and physiological functions of mammalian peripheral oscillators. J. Biol. Rhythms 2006, 21:494-506.
-
(2006)
J. Biol. Rhythms
, vol.21
, pp. 494-506
-
-
Stratmann, M.1
Schibler, U.2
-
15
-
-
84860264490
-
Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β
-
Cho H., et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 2012, 485:123-127.
-
(2012)
Nature
, vol.485
, pp. 123-127
-
-
Cho, H.1
-
16
-
-
34247526990
-
CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock
-
DeBruyne J., et al. CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat. Neurosci. 2007, 10:543-545.
-
(2007)
Nat. Neurosci.
, vol.10
, pp. 543-545
-
-
DeBruyne, J.1
-
17
-
-
40149090376
-
Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms
-
Liu A., et al. Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet. 2008, 4:e1000023.
-
(2008)
PLoS Genet.
, vol.4
-
-
Liu, A.1
-
18
-
-
0034989269
-
Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock
-
Bae K., et al. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 2001, 30:525-536.
-
(2001)
Neuron
, vol.30
, pp. 525-536
-
-
Bae, K.1
-
19
-
-
79953211112
-
Stoichiometric relationship among clock proteins determines robustness of circadian rhythms
-
Lee Y., et al. Stoichiometric relationship among clock proteins determines robustness of circadian rhythms. J. Biol. Chem. 2011, 286:7033-7042.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 7033-7042
-
-
Lee, Y.1
-
20
-
-
33746191906
-
Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock
-
Kondratov R., et al. Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev. 2006, 20:1868-1873.
-
(2006)
Genes Dev.
, vol.20
, pp. 1868-1873
-
-
Kondratov, R.1
-
21
-
-
33751565112
-
Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice
-
McDearmon E., et al. Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science 2006, 314:1304-1308.
-
(2006)
Science
, vol.314
, pp. 1304-1308
-
-
McDearmon, E.1
-
22
-
-
33845409608
-
The mortality of MOP3 deficient mice with a systemic functional failure
-
Sun Y., et al. The mortality of MOP3 deficient mice with a systemic functional failure. J. Biomed. Sci. 2006, 13:845-851.
-
(2006)
J. Biomed. Sci.
, vol.13
, pp. 845-851
-
-
Sun, Y.1
-
23
-
-
80054742534
-
Tissue-intrinsic dysfunction of circadian clock confers transplant arteriosclerosis
-
Cheng B., et al. Tissue-intrinsic dysfunction of circadian clock confers transplant arteriosclerosis. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:17147-17152.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 17147-17152
-
-
Cheng, B.1
-
24
-
-
54449085416
-
Physiological significance of a peripheral tissue circadian clock
-
Lamia K., et al. Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:15172-15177.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 15172-15177
-
-
Lamia, K.1
-
25
-
-
77954848215
-
Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
-
Marcheva B., et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010, 466:627-631.
-
(2010)
Nature
, vol.466
, pp. 627-631
-
-
Marcheva, B.1
-
26
-
-
34547939468
-
Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information
-
Storch K-F., et al. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 2007, 130:730-741.
-
(2007)
Cell
, vol.130
, pp. 730-741
-
-
Storch, K.-F.1
-
27
-
-
33846944676
-
System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock
-
Kornmann B., et al. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol. 2007, 5:e34.
-
(2007)
PLoS Biol.
, vol.5
-
-
Kornmann, B.1
-
28
-
-
33847632469
-
Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation
-
Miller B., et al. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:3342-3347.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 3342-3347
-
-
Miller, B.1
-
29
-
-
18444414586
-
Coordinated transcription of key pathways in the mouse by the circadian clock
-
Panda S., et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002, 109:307-320.
-
(2002)
Cell
, vol.109
, pp. 307-320
-
-
Panda, S.1
-
30
-
-
0037007625
-
Extensive and divergent circadian gene expression in liver and heart
-
Storch K-F., et al. Extensive and divergent circadian gene expression in liver and heart. Nature 2002, 417:78-83.
-
(2002)
Nature
, vol.417
, pp. 78-83
-
-
Storch, K.-F.1
-
31
-
-
33745329809
-
The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification
-
Gachon F., et al. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab. 2006, 4:25-36.
-
(2006)
Cell Metab.
, vol.4
, pp. 25-36
-
-
Gachon, F.1
-
32
-
-
0037178787
-
The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator
-
Preitner N., et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002, 110:251-260.
-
(2002)
Cell
, vol.110
, pp. 251-260
-
-
Preitner, N.1
-
33
-
-
4344619671
-
Expression of the gene for Dec2, a basic helix-loop-helix transcription factor, is regulated by a molecular clock system
-
Hamaguchi H., et al. Expression of the gene for Dec2, a basic helix-loop-helix transcription factor, is regulated by a molecular clock system. Biochem. J. 2004, 382:43-50.
-
(2004)
Biochem. J.
, vol.382
, pp. 43-50
-
-
Hamaguchi, H.1
-
34
-
-
33744515807
-
Circadian orchestration of the hepatic proteome
-
Reddy A., et al. Circadian orchestration of the hepatic proteome. Curr. Biol. 2006, 16:1107-1115.
-
(2006)
Curr. Biol.
, vol.16
, pp. 1107-1115
-
-
Reddy, A.1
-
35
-
-
84871581540
-
Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression
-
Kojima S., et al. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev. 2012, 26:2724-2736.
-
(2012)
Genes Dev.
, vol.26
, pp. 2724-2736
-
-
Kojima, S.1
-
36
-
-
84862496485
-
Regulation of alternative splicing by the circadian clock and food related cues
-
McGlincy N., et al. Regulation of alternative splicing by the circadian clock and food related cues. Genome Biol. 2012, 13:R54.
-
(2012)
Genome Biol.
, vol.13
-
-
McGlincy, N.1
-
37
-
-
79952529158
-
A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
-
Feng D., et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 2011, 331:1315-1319.
-
(2011)
Science
, vol.331
, pp. 1315-1319
-
-
Feng, D.1
-
38
-
-
79952255290
-
Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism
-
Hatanaka F., et al. Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism. Mol. Cell. Biol. 2010, 30:5636-5648.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 5636-5648
-
-
Hatanaka, F.1
-
39
-
-
84867667011
-
Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
-
Koike N., et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 2012, 338:349-354.
-
(2012)
Science
, vol.338
, pp. 349-354
-
-
Koike, N.1
-
40
-
-
84870288931
-
Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles
-
Le Martelot G., et al. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol. 2012, 10:e1001442.
-
(2012)
PLoS Biol.
, vol.10
-
-
Le Martelot, G.1
-
41
-
-
84881506759
-
Nascent-Seq reveals novel features of mouse circadian transcriptional regulation
-
Menet J., et al. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife 2012, 1:e00011.
-
(2012)
eLife
, vol.1
-
-
Menet, J.1
-
42
-
-
79952261359
-
Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver
-
Rey G., et al. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 2011, 9:e1000595.
-
(2011)
PLoS Biol.
, vol.9
-
-
Rey, G.1
-
43
-
-
84870553909
-
Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome
-
Vollmers C., et al. Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome. Cell Metab. 2012, 16:833-845.
-
(2012)
Cell Metab.
, vol.16
, pp. 833-845
-
-
Vollmers, C.1
-
44
-
-
84858172824
-
(Re)inventing the circadian feedback loop
-
Brown S., et al. (Re)inventing the circadian feedback loop. Dev. Cell 2012, 22:477-487.
-
(2012)
Dev. Cell
, vol.22
, pp. 477-487
-
-
Brown, S.1
-
45
-
-
84255206549
-
Cryptochromes mediate rhythmic repression of the glucocorticoid receptor
-
Lamia K., et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 2011, 480:552-556.
-
(2011)
Nature
, vol.480
, pp. 552-556
-
-
Lamia, K.1
-
46
-
-
76749139528
-
The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors
-
Schmutz I., et al. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 2010, 24:345-357.
-
(2010)
Genes Dev.
, vol.24
, pp. 345-357
-
-
Schmutz, I.1
-
47
-
-
70449093653
-
Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism
-
Chen R., et al. Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol. Cell 2009, 36:417-430.
-
(2009)
Mol. Cell
, vol.36
, pp. 417-430
-
-
Chen, R.1
-
48
-
-
80053639356
-
The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1
-
Lee H-M., et al. The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:16451-16456.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 16451-16456
-
-
Lee, H.-M.1
-
49
-
-
18244365850
-
PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator
-
Brown S., et al. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 2005, 308:693-696.
-
(2005)
Science
, vol.308
, pp. 693-696
-
-
Brown, S.1
-
50
-
-
79959366611
-
A molecular mechanism for circadian clock negative feedback
-
Duong H., et al. A molecular mechanism for circadian clock negative feedback. Science 2011, 332:1436-1439.
-
(2011)
Science
, vol.332
, pp. 1436-1439
-
-
Duong, H.1
-
51
-
-
84868699286
-
Distinct roles of DBHS family members in the circadian transcriptional feedback loop
-
Kowalska E., et al. Distinct roles of DBHS family members in the circadian transcriptional feedback loop. Mol. Cell. Biol. 2012, 32:4585-4594.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 4585-4594
-
-
Kowalska, E.1
-
52
-
-
84864739194
-
Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex
-
Padmanabhan K., et al. Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex. Science 2012, 337:599-602.
-
(2012)
Science
, vol.337
, pp. 599-602
-
-
Padmanabhan, K.1
-
53
-
-
46649096915
-
Structure function analysis of mammalian cryptochromes
-
Tamanini F., et al. Structure function analysis of mammalian cryptochromes. Cold Spring Harb. Symp. Quant. Biol. 2007, 72:133-139.
-
(2007)
Cold Spring Harb. Symp. Quant. Biol.
, vol.72
, pp. 133-139
-
-
Tamanini, F.1
-
54
-
-
77953952168
-
Flexible phase adjustment of circadian albumin D site-binding protein (DBP) gene expression by CRYPTOCHROME1
-
Stratmann M., et al. Flexible phase adjustment of circadian albumin D site-binding protein (DBP) gene expression by CRYPTOCHROME1. Genes Dev. 2010, 24:1317-1328.
-
(2010)
Genes Dev.
, vol.24
, pp. 1317-1328
-
-
Stratmann, M.1
-
55
-
-
78651491409
-
Delay in feedback repression by cryptochrome 1 is required for circadian clock function
-
Ukai-Tadenuma M., et al. Delay in feedback repression by cryptochrome 1 is required for circadian clock function. Cell 2011, 144:268-281.
-
(2011)
Cell
, vol.144
, pp. 268-281
-
-
Ukai-Tadenuma, M.1
-
56
-
-
84864394571
-
Identification of a novel cryptochrome differentiating domain required for feedback repression in circadian clock function
-
Khan S., et al. Identification of a novel cryptochrome differentiating domain required for feedback repression in circadian clock function. J. Biol. Chem. 2012, 287:25917-25926.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 25917-25926
-
-
Khan, S.1
-
57
-
-
70350452140
-
Generation of a novel allelic series of cryptochrome mutants via mutagenesis reveals residues involved in protein-protein interaction and CRY2-specific repression
-
McCarthy E., et al. Generation of a novel allelic series of cryptochrome mutants via mutagenesis reveals residues involved in protein-protein interaction and CRY2-specific repression. Mol. Cell. Biol. 2009, 29:5465-5476.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 5465-5476
-
-
McCarthy, E.1
-
58
-
-
79960423858
-
Biochemical analysis of the canonical model for the mammalian circadian clock
-
Ye R., et al. Biochemical analysis of the canonical model for the mammalian circadian clock. J. Biol. Chem. 2011, 286:25891-25902.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 25891-25902
-
-
Ye, R.1
-
59
-
-
84863751285
-
Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex
-
Huang N., et al. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science 2012, 337:189-194.
-
(2012)
Science
, vol.337
, pp. 189-194
-
-
Huang, N.1
-
60
-
-
84892990758
-
Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA
-
Wang Z., et al. Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA. Cell Res. 2012, 2012:1-12.
-
(2012)
Cell Res.
, vol.2012
, pp. 1-12
-
-
Wang, Z.1
-
61
-
-
77951921902
-
Mammalian Per-Arnt-Sim proteins in environmental adaptation
-
McIntosh B., et al. Mammalian Per-Arnt-Sim proteins in environmental adaptation. Annu. Rev. Physiol. 2010, 72:625-645.
-
(2010)
Annu. Rev. Physiol.
, vol.72
, pp. 625-645
-
-
McIntosh, B.1
-
62
-
-
77951220423
-
Coactivator recruitment: a new role for PAS domains in transcriptional regulation by the bHLH-PAS family
-
Partch C., Gardner K. Coactivator recruitment: a new role for PAS domains in transcriptional regulation by the bHLH-PAS family. J. Cell. Physiol. 2010, 223:553-557.
-
(2010)
J. Cell. Physiol.
, vol.223
, pp. 553-557
-
-
Partch, C.1
Gardner, K.2
-
63
-
-
33745590694
-
The BMAL1 C terminus regulates the circadian transcription feedback loop
-
Kiyohara Y., et al. The BMAL1 C terminus regulates the circadian transcription feedback loop. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10074-10079.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 10074-10079
-
-
Kiyohara, Y.1
-
64
-
-
65949083763
-
Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2
-
Hennig S., et al. Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2. PLoS Biol. 2009, 7:e94.
-
(2009)
PLoS Biol.
, vol.7
-
-
Hennig, S.1
-
65
-
-
84857704420
-
Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function
-
Kucera N., et al. Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:3311-3316.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 3311-3316
-
-
Kucera, N.1
-
66
-
-
33847382431
-
CIPC is a mammalian circadian clock protein without invertebrate homologues
-
Zhao W-N., et al. CIPC is a mammalian circadian clock protein without invertebrate homologues. Nat. Cell Biol. 2007, 9:268-275.
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 268-275
-
-
Zhao, W.-N.1
-
67
-
-
79959337934
-
Quantitative analyses of cryptochrome-mBMAL1 interactions: mechanistic insights into the transcriptional regulation of the mammalian circadian clock
-
Czarna A., et al. Quantitative analyses of cryptochrome-mBMAL1 interactions: mechanistic insights into the transcriptional regulation of the mammalian circadian clock. J. Biol. Chem. 2011, 286:22414-22425.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 22414-22425
-
-
Czarna, A.1
-
68
-
-
78649886477
-
The histone methyltransferase MLL1 permits the oscillation of circadian gene expression
-
Katada S., Sassone-Corsi P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat. Struct. Mol. Biol. 2010, 17:1414-1421.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 1414-1421
-
-
Katada, S.1
Sassone-Corsi, P.2
-
69
-
-
0033825665
-
Transactivation mechanisms of mouse clock transcription factors, mClock and mArnt3
-
Takahata S., et al. Transactivation mechanisms of mouse clock transcription factors, mClock and mArnt3. Genes Cells 2000, 5:739-747.
-
(2000)
Genes Cells
, vol.5
, pp. 739-747
-
-
Takahata, S.1
-
70
-
-
33644559348
-
Functional evolution of the photolyase/cryptochrome protein family: importance of the C terminus of mammalian CRY1 for circadian core oscillator performance
-
Chaves I., et al. Functional evolution of the photolyase/cryptochrome protein family: importance of the C terminus of mammalian CRY1 for circadian core oscillator performance. Mol. Cell. Biol. 2006, 26:1743-1753.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 1743-1753
-
-
Chaves, I.1
-
71
-
-
77956463069
-
Identification of two amino acids in the C-terminal domain of mouse CRY2 essential for PER2 interaction
-
Ozber N., et al. Identification of two amino acids in the C-terminal domain of mouse CRY2 essential for PER2 interaction. BMC Mol. Biol. 2010, 11:69.
-
(2010)
BMC Mol. Biol.
, vol.11
, pp. 69
-
-
Ozber, N.1
-
72
-
-
34248566788
-
SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
-
Busino L., et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 2007, 316:900-904.
-
(2007)
Science
, vol.316
, pp. 900-904
-
-
Busino, L.1
-
73
-
-
34249097203
-
Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression
-
Siepka S., et al. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 2007, 129:1011-1023.
-
(2007)
Cell
, vol.129
, pp. 1011-1023
-
-
Siepka, S.1
-
74
-
-
84878889999
-
Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function
-
Czarna A., et al. Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function. Cell 2013, 153:1394-1405.
-
(2013)
Cell
, vol.153
, pp. 1394-1405
-
-
Czarna, A.1
-
75
-
-
84875899177
-
SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket
-
Xing W., et al. SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 2013, 496:64-68.
-
(2013)
Nature
, vol.496
, pp. 64-68
-
-
Xing, W.1
-
76
-
-
70249104647
-
Defining mechanisms that regulate RNA polymerase II transcription in vivo
-
Fuda N., et al. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 2009, 461:186-192.
-
(2009)
Nature
, vol.461
, pp. 186-192
-
-
Fuda, N.1
-
77
-
-
0037426839
-
Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
-
Etchegaray J-P., et al. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 2003, 421:177-182.
-
(2003)
Nature
, vol.421
, pp. 177-182
-
-
Etchegaray, J.-P.1
-
78
-
-
80053355301
-
Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock
-
DiTacchio L., et al. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 2011, 333:1881-1885.
-
(2011)
Science
, vol.333
, pp. 1881-1885
-
-
DiTacchio, L.1
-
79
-
-
33646145721
-
Circadian regulator CLOCK is a histone acetyltransferase
-
Doi M., et al. Circadian regulator CLOCK is a histone acetyltransferase. Cell 2006, 125:497-508.
-
(2006)
Cell
, vol.125
, pp. 497-508
-
-
Doi, M.1
-
80
-
-
33746344698
-
The polycomb group protein EZH2 is required for mammalian circadian clock function
-
Etchegaray J-P., et al. The polycomb group protein EZH2 is required for mammalian circadian clock function. J. Biol. Chem. 2006, 281:21209-21215.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 21209-21215
-
-
Etchegaray, J.-P.1
-
81
-
-
78650717705
-
Jumonji domain protein JMJD5 functions in both the plant and human circadian systems
-
Jones M., et al. Jumonji domain protein JMJD5 functions in both the plant and human circadian systems. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:21623-21628.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 21623-21628
-
-
Jones, M.1
-
82
-
-
47549088250
-
+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008, 134:329-340.
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
-
83
-
-
84864857778
-
The circadian clock transcriptional complex: metabolic feedback intersects with epigenetic control
-
Masri S., et al. The circadian clock transcriptional complex: metabolic feedback intersects with epigenetic control. Ann. N. Y. Acad. Sci. 2012, 1264:103-109.
-
(2012)
Ann. N. Y. Acad. Sci.
, vol.1264
, pp. 103-109
-
-
Masri, S.1
-
84
-
-
53549123008
-
Nature, nurture, or chance: stochastic gene expression and its consequences
-
Raj A., van Oudenaarden A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 2008, 135:216-226.
-
(2008)
Cell
, vol.135
, pp. 216-226
-
-
Raj, A.1
van Oudenaarden, A.2
-
85
-
-
79955381895
-
Mammalian genes are transcribed with widely different bursting kinetics
-
Suter D., et al. Mammalian genes are transcribed with widely different bursting kinetics. Science 2011, 332:472-474.
-
(2011)
Science
, vol.332
, pp. 472-474
-
-
Suter, D.1
-
86
-
-
82555179165
-
Origins and consequences of transcriptional discontinuity
-
Suter D., et al. Origins and consequences of transcriptional discontinuity. Curr. Opin. Cell Biol. 2011, 23:657-662.
-
(2011)
Curr. Opin. Cell Biol.
, vol.23
, pp. 657-662
-
-
Suter, D.1
-
87
-
-
78650242291
-
The three Rs of transcription: recruit, retain, and recycle
-
Motta-Mena L., et al. The three Rs of transcription: recruit, retain, and recycle. Mol. Cell 2010, 40:855-858.
-
(2010)
Mol. Cell
, vol.40
, pp. 855-858
-
-
Motta-Mena, L.1
-
88
-
-
65549118773
-
+ salvage pathway by CLOCK-SIRT1
-
+ salvage pathway by CLOCK-SIRT1. Science 2009, 324:654-657.
-
(2009)
Science
, vol.324
, pp. 654-657
-
-
Nakahata, Y.1
-
89
-
-
65549103855
-
+ biosynthesis
-
+ biosynthesis. Science 2009, 324:651-654.
-
(2009)
Science
, vol.324
, pp. 651-654
-
-
Ramsey, K.1
-
90
-
-
77956627087
-
Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding
-
Asher G., et al. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 2010, 142:943-953.
-
(2010)
Cell
, vol.142
, pp. 943-953
-
-
Asher, G.1
-
91
-
-
84863113475
-
Nutrient sensing and the circadian clock
-
Peek C., et al. Nutrient sensing and the circadian clock. Trends Endocrinol. Metab. 2012, 23:312-318.
-
(2012)
Trends Endocrinol. Metab.
, vol.23
, pp. 312-318
-
-
Peek, C.1
-
92
-
-
58749109143
-
Circadian gene expression is resilient to large fluctuations in overall transcription rates
-
Dibner C., et al. Circadian gene expression is resilient to large fluctuations in overall transcription rates. EMBO J. 2009, 28:123-134.
-
(2009)
EMBO J.
, vol.28
, pp. 123-134
-
-
Dibner, C.1
-
93
-
-
84867670963
-
Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally
-
Morf J., et al. Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science 2012, 338:379-383.
-
(2012)
Science
, vol.338
, pp. 379-383
-
-
Morf, J.1
-
94
-
-
0037316406
-
Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian-related mRNA
-
Baggs J., Green C. Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian-related mRNA. Curr. Biol. 2003, 13:189-198.
-
(2003)
Curr. Biol.
, vol.13
, pp. 189-198
-
-
Baggs, J.1
Green, C.2
-
95
-
-
34247373509
-
Immediate early response of the circadian polyA ribonuclease nocturnin to two extracellular stimuli
-
Garbarino-Pico E., et al. Immediate early response of the circadian polyA ribonuclease nocturnin to two extracellular stimuli. RNA 2007, 13:745-755.
-
(2007)
RNA
, vol.13
, pp. 745-755
-
-
Garbarino-Pico, E.1
-
96
-
-
80051986743
-
Nocturnin regulates circadian trafficking of dietary lipid in intestinal enterocytes
-
Douris N., et al. Nocturnin regulates circadian trafficking of dietary lipid in intestinal enterocytes. Curr. Biol. 2011, 21:1347-1355.
-
(2011)
Curr. Biol.
, vol.21
, pp. 1347-1355
-
-
Douris, N.1
-
97
-
-
34547434830
-
Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity
-
Green C., et al. Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:9888-9893.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 9888-9893
-
-
Green, C.1
-
98
-
-
66349107101
-
Harmonics of circadian gene transcription in mammals
-
Hughes M., et al. Harmonics of circadian gene transcription in mammals. PLoS Genet. 2009, 5:e1000442.
-
(2009)
PLoS Genet.
, vol.5
-
-
Hughes, M.1
-
99
-
-
84864584460
-
Brain-specific rescue of Clock reveals system-driven transcriptional rhythms in peripheral tissue
-
Hughes M., et al. Brain-specific rescue of Clock reveals system-driven transcriptional rhythms in peripheral tissue. PLoS Genet. 2012, 8:e1002835.
-
(2012)
PLoS Genet.
, vol.8
-
-
Hughes, M.1
-
100
-
-
61349184546
-
The structural basis of gas-responsive transcription by the human nuclear hormone receptor REV-ERBbeta
-
Pardee K., et al. The structural basis of gas-responsive transcription by the human nuclear hormone receptor REV-ERBbeta. PLoS Biol. 2009, 7:e43.
-
(2009)
PLoS Biol.
, vol.7
-
-
Pardee, K.1
-
101
-
-
77954385668
-
Structure of Rev-erbalpha bound to N-CoR reveals a unique mechanism of nuclear receptor-co-repressor interaction
-
Phelan C., et al. Structure of Rev-erbalpha bound to N-CoR reveals a unique mechanism of nuclear receptor-co-repressor interaction. Nat. Struct. Mol. Biol. 2010, 17:808-814.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 808-814
-
-
Phelan, C.1
-
102
-
-
84873738229
-
Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA
-
Wang Z., et al. Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA. Cell Res. 2012, 23:213-223.
-
(2012)
Cell Res.
, vol.23
, pp. 213-223
-
-
Wang, Z.1
-
103
-
-
48249105441
-
Novel insights from genetic and molecular characterization of the human clock
-
Ptácek L., et al. Novel insights from genetic and molecular characterization of the human clock. Cold Spring Harb. Symp. Quant. Biol. 2007, 72:273-277.
-
(2007)
Cold Spring Harb. Symp. Quant. Biol.
, vol.72
, pp. 273-277
-
-
Ptácek, L.1
-
104
-
-
78650432933
-
High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase
-
Hirota T., et al. High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase. PLoS Biol. 2010, 8:e1000559.
-
(2010)
PLoS Biol.
, vol.8
-
-
Hirota, T.1
-
105
-
-
70349452319
-
CKIepsilon/delta-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock
-
Isojima Y., et al. CKIepsilon/delta-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:15744-15749.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 15744-15749
-
-
Isojima, Y.1
-
106
-
-
84860291442
-
Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists
-
Solt L., et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 2012, 485:62-68.
-
(2012)
Nature
, vol.485
, pp. 62-68
-
-
Solt, L.1
-
107
-
-
84862909015
-
Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening
-
Chen Z., et al. Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:101-106.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 101-106
-
-
Chen, Z.1
-
108
-
-
79955561971
-
Serum factors in older individuals change cellular clock properties
-
Pagani L., et al. Serum factors in older individuals change cellular clock properties. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:7218-7223.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 7218-7223
-
-
Pagani, L.1
-
109
-
-
34248525919
-
The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period
-
Godinho S., et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 2007, 316:897-900.
-
(2007)
Science
, vol.316
, pp. 897-900
-
-
Godinho, S.1
-
110
-
-
34848913124
-
Beta-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics
-
Reischl S., et al. Beta-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics. J. Biol. Rhythms 2007, 22:375-386.
-
(2007)
J. Biol. Rhythms
, vol.22
, pp. 375-386
-
-
Reischl, S.1
-
111
-
-
22844432019
-
SCFbeta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein
-
Shirogane T., et al. SCFbeta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J. Biol. Chem. 2005, 280:26863-26872.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 26863-26872
-
-
Shirogane, T.1
-
112
-
-
33745918016
-
Posttranslational regulation of the mammalian circadian clock by cryptochrome and protein phosphatase 5
-
Partch C., et al. Posttranslational regulation of the mammalian circadian clock by cryptochrome and protein phosphatase 5. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10467-10472.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 10467-10472
-
-
Partch, C.1
-
113
-
-
0035136677
-
An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome
-
Toh K., et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 2001, 291:1040-1043.
-
(2001)
Science
, vol.291
, pp. 1040-1043
-
-
Toh, K.1
-
114
-
-
15844420887
-
Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome
-
Xu Y., et al. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 2005, 434:640-644.
-
(2005)
Nature
, vol.434
, pp. 640-644
-
-
Xu, Y.1
-
115
-
-
4143142003
-
A functional genomics strategy reveals Rora as a component of the mammalian circadian clock
-
Sato T., et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 2004, 43:527-537.
-
(2004)
Neuron
, vol.43
, pp. 527-537
-
-
Sato, T.1
|