메뉴 건너뛰기




Volumn 24, Issue 2, 2014, Pages 90-99

Molecular architecture of the mammalian circadian clock

Author keywords

Circadian; Peripheral clock; Post transcription; Transcription

Indexed keywords

RNA POLYMERASE II;

EID: 84892976423     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2013.07.002     Document Type: Review
Times cited : (1024)

References (115)
  • 1
    • 4544362674 scopus 로고    scopus 로고
    • Mammalian circadian biology: elucidating genome-wide levels of temporal organization
    • Lowrey P., Takahashi J. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 2004, 5:407-441.
    • (2004) Annu. Rev. Genomics Hum. Genet. , vol.5 , pp. 407-441
    • Lowrey, P.1    Takahashi, J.2
  • 2
    • 62449268975 scopus 로고    scopus 로고
    • Circadian oscillation of nucleotide excision repair in mammalian brain
    • Kang T.H., et al. Circadian oscillation of nucleotide excision repair in mammalian brain. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:2864-2867.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 2864-2867
    • Kang, T.H.1
  • 3
    • 77950422142 scopus 로고    scopus 로고
    • Circadian control of XPA and excision repair of cisplatin-DNA damage by cryptochrome and HERC2 ubiquitin ligase
    • Kang T-H., et al. Circadian control of XPA and excision repair of cisplatin-DNA damage by cryptochrome and HERC2 ubiquitin ligase. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:4890-4895.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 4890-4895
    • Kang, T.-H.1
  • 4
    • 33749031807 scopus 로고    scopus 로고
    • Molecular components of the mammalian circadian clock
    • Special issue 2
    • Ko C., Takahashi J. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 2006, 15(Special issue 2):7.
    • (2006) Hum. Mol. Genet. , vol.15 , pp. 7
    • Ko, C.1    Takahashi, J.2
  • 5
    • 79959875504 scopus 로고    scopus 로고
    • Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators
    • Mohawk J., Takahashi J. Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci. 2011, 34:349-358.
    • (2011) Trends Neurosci. , vol.34 , pp. 349-358
    • Mohawk, J.1    Takahashi, J.2
  • 6
    • 77957960061 scopus 로고    scopus 로고
    • Temperature as a universal resetting cue for mammalian circadian oscillators
    • Buhr E., et al. Temperature as a universal resetting cue for mammalian circadian oscillators. Science 2010, 330:379-385.
    • (2010) Science , vol.330 , pp. 379-385
    • Buhr, E.1
  • 7
    • 77951889295 scopus 로고    scopus 로고
    • The mammalian circadian timing system: organization and coordination of central and peripheral clocks
    • Dibner C., et al. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 2010, 72:517-549.
    • (2010) Annu. Rev. Physiol. , vol.72 , pp. 517-549
    • Dibner, C.1
  • 8
    • 11144353910 scopus 로고    scopus 로고
    • PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues
    • Yoo S-H., et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:5339-5346.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 5339-5346
    • Yoo, S.-H.1
  • 9
    • 34247516815 scopus 로고    scopus 로고
    • Intercellular coupling confers robustness against mutations in the SCN circadian clock network
    • Liu A., et al. Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 2007, 129:605-616.
    • (2007) Cell , vol.129 , pp. 605-616
    • Liu, A.1
  • 10
    • 0025021084 scopus 로고
    • Transplanted suprachiasmatic nucleus determines circadian period
    • Ralph M., et al. Transplanted suprachiasmatic nucleus determines circadian period. Science 1990, 247:975-978.
    • (1990) Science , vol.247 , pp. 975-978
    • Ralph, M.1
  • 11
    • 48249145719 scopus 로고    scopus 로고
    • Nuclear receptors, metabolism, and the circadian clock
    • Yang X., et al. Nuclear receptors, metabolism, and the circadian clock. Cold Spring Harb. Symp. Quant. Biol. 2007, 72:387-394.
    • (2007) Cold Spring Harb. Symp. Quant. Biol. , vol.72 , pp. 387-394
    • Yang, X.1
  • 12
    • 0037125939 scopus 로고    scopus 로고
    • Rhythms of mammalian body temperature can sustain peripheral circadian clocks
    • Brown S., et al. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr. Biol. 2002, 12:1574-1583.
    • (2002) Curr. Biol. , vol.12 , pp. 1574-1583
    • Brown, S.1
  • 13
    • 84858321758 scopus 로고    scopus 로고
    • Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators
    • Saini C., et al. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators. Genes Dev. 2012, 26:567-580.
    • (2012) Genes Dev. , vol.26 , pp. 567-580
    • Saini, C.1
  • 14
    • 33750706567 scopus 로고    scopus 로고
    • Properties, entrainment, and physiological functions of mammalian peripheral oscillators
    • Stratmann M., Schibler U. Properties, entrainment, and physiological functions of mammalian peripheral oscillators. J. Biol. Rhythms 2006, 21:494-506.
    • (2006) J. Biol. Rhythms , vol.21 , pp. 494-506
    • Stratmann, M.1    Schibler, U.2
  • 15
    • 84860264490 scopus 로고    scopus 로고
    • Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β
    • Cho H., et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 2012, 485:123-127.
    • (2012) Nature , vol.485 , pp. 123-127
    • Cho, H.1
  • 16
    • 34247526990 scopus 로고    scopus 로고
    • CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock
    • DeBruyne J., et al. CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat. Neurosci. 2007, 10:543-545.
    • (2007) Nat. Neurosci. , vol.10 , pp. 543-545
    • DeBruyne, J.1
  • 17
    • 40149090376 scopus 로고    scopus 로고
    • Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms
    • Liu A., et al. Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet. 2008, 4:e1000023.
    • (2008) PLoS Genet. , vol.4
    • Liu, A.1
  • 18
    • 0034989269 scopus 로고    scopus 로고
    • Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock
    • Bae K., et al. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 2001, 30:525-536.
    • (2001) Neuron , vol.30 , pp. 525-536
    • Bae, K.1
  • 19
    • 79953211112 scopus 로고    scopus 로고
    • Stoichiometric relationship among clock proteins determines robustness of circadian rhythms
    • Lee Y., et al. Stoichiometric relationship among clock proteins determines robustness of circadian rhythms. J. Biol. Chem. 2011, 286:7033-7042.
    • (2011) J. Biol. Chem. , vol.286 , pp. 7033-7042
    • Lee, Y.1
  • 20
    • 33746191906 scopus 로고    scopus 로고
    • Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock
    • Kondratov R., et al. Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev. 2006, 20:1868-1873.
    • (2006) Genes Dev. , vol.20 , pp. 1868-1873
    • Kondratov, R.1
  • 21
    • 33751565112 scopus 로고    scopus 로고
    • Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice
    • McDearmon E., et al. Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science 2006, 314:1304-1308.
    • (2006) Science , vol.314 , pp. 1304-1308
    • McDearmon, E.1
  • 22
    • 33845409608 scopus 로고    scopus 로고
    • The mortality of MOP3 deficient mice with a systemic functional failure
    • Sun Y., et al. The mortality of MOP3 deficient mice with a systemic functional failure. J. Biomed. Sci. 2006, 13:845-851.
    • (2006) J. Biomed. Sci. , vol.13 , pp. 845-851
    • Sun, Y.1
  • 23
    • 80054742534 scopus 로고    scopus 로고
    • Tissue-intrinsic dysfunction of circadian clock confers transplant arteriosclerosis
    • Cheng B., et al. Tissue-intrinsic dysfunction of circadian clock confers transplant arteriosclerosis. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:17147-17152.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 17147-17152
    • Cheng, B.1
  • 24
    • 54449085416 scopus 로고    scopus 로고
    • Physiological significance of a peripheral tissue circadian clock
    • Lamia K., et al. Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:15172-15177.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 15172-15177
    • Lamia, K.1
  • 25
    • 77954848215 scopus 로고    scopus 로고
    • Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
    • Marcheva B., et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010, 466:627-631.
    • (2010) Nature , vol.466 , pp. 627-631
    • Marcheva, B.1
  • 26
    • 34547939468 scopus 로고    scopus 로고
    • Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information
    • Storch K-F., et al. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 2007, 130:730-741.
    • (2007) Cell , vol.130 , pp. 730-741
    • Storch, K.-F.1
  • 27
    • 33846944676 scopus 로고    scopus 로고
    • System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock
    • Kornmann B., et al. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol. 2007, 5:e34.
    • (2007) PLoS Biol. , vol.5
    • Kornmann, B.1
  • 28
    • 33847632469 scopus 로고    scopus 로고
    • Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation
    • Miller B., et al. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:3342-3347.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 3342-3347
    • Miller, B.1
  • 29
    • 18444414586 scopus 로고    scopus 로고
    • Coordinated transcription of key pathways in the mouse by the circadian clock
    • Panda S., et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002, 109:307-320.
    • (2002) Cell , vol.109 , pp. 307-320
    • Panda, S.1
  • 30
    • 0037007625 scopus 로고    scopus 로고
    • Extensive and divergent circadian gene expression in liver and heart
    • Storch K-F., et al. Extensive and divergent circadian gene expression in liver and heart. Nature 2002, 417:78-83.
    • (2002) Nature , vol.417 , pp. 78-83
    • Storch, K.-F.1
  • 31
    • 33745329809 scopus 로고    scopus 로고
    • The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification
    • Gachon F., et al. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab. 2006, 4:25-36.
    • (2006) Cell Metab. , vol.4 , pp. 25-36
    • Gachon, F.1
  • 32
    • 0037178787 scopus 로고    scopus 로고
    • The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator
    • Preitner N., et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002, 110:251-260.
    • (2002) Cell , vol.110 , pp. 251-260
    • Preitner, N.1
  • 33
    • 4344619671 scopus 로고    scopus 로고
    • Expression of the gene for Dec2, a basic helix-loop-helix transcription factor, is regulated by a molecular clock system
    • Hamaguchi H., et al. Expression of the gene for Dec2, a basic helix-loop-helix transcription factor, is regulated by a molecular clock system. Biochem. J. 2004, 382:43-50.
    • (2004) Biochem. J. , vol.382 , pp. 43-50
    • Hamaguchi, H.1
  • 34
    • 33744515807 scopus 로고    scopus 로고
    • Circadian orchestration of the hepatic proteome
    • Reddy A., et al. Circadian orchestration of the hepatic proteome. Curr. Biol. 2006, 16:1107-1115.
    • (2006) Curr. Biol. , vol.16 , pp. 1107-1115
    • Reddy, A.1
  • 35
    • 84871581540 scopus 로고    scopus 로고
    • Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression
    • Kojima S., et al. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev. 2012, 26:2724-2736.
    • (2012) Genes Dev. , vol.26 , pp. 2724-2736
    • Kojima, S.1
  • 36
    • 84862496485 scopus 로고    scopus 로고
    • Regulation of alternative splicing by the circadian clock and food related cues
    • McGlincy N., et al. Regulation of alternative splicing by the circadian clock and food related cues. Genome Biol. 2012, 13:R54.
    • (2012) Genome Biol. , vol.13
    • McGlincy, N.1
  • 37
    • 79952529158 scopus 로고    scopus 로고
    • A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
    • Feng D., et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 2011, 331:1315-1319.
    • (2011) Science , vol.331 , pp. 1315-1319
    • Feng, D.1
  • 38
    • 79952255290 scopus 로고    scopus 로고
    • Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism
    • Hatanaka F., et al. Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism. Mol. Cell. Biol. 2010, 30:5636-5648.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 5636-5648
    • Hatanaka, F.1
  • 39
    • 84867667011 scopus 로고    scopus 로고
    • Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
    • Koike N., et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 2012, 338:349-354.
    • (2012) Science , vol.338 , pp. 349-354
    • Koike, N.1
  • 40
    • 84870288931 scopus 로고    scopus 로고
    • Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles
    • Le Martelot G., et al. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol. 2012, 10:e1001442.
    • (2012) PLoS Biol. , vol.10
    • Le Martelot, G.1
  • 41
    • 84881506759 scopus 로고    scopus 로고
    • Nascent-Seq reveals novel features of mouse circadian transcriptional regulation
    • Menet J., et al. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife 2012, 1:e00011.
    • (2012) eLife , vol.1
    • Menet, J.1
  • 42
    • 79952261359 scopus 로고    scopus 로고
    • Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver
    • Rey G., et al. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 2011, 9:e1000595.
    • (2011) PLoS Biol. , vol.9
    • Rey, G.1
  • 43
    • 84870553909 scopus 로고    scopus 로고
    • Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome
    • Vollmers C., et al. Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome. Cell Metab. 2012, 16:833-845.
    • (2012) Cell Metab. , vol.16 , pp. 833-845
    • Vollmers, C.1
  • 44
    • 84858172824 scopus 로고    scopus 로고
    • (Re)inventing the circadian feedback loop
    • Brown S., et al. (Re)inventing the circadian feedback loop. Dev. Cell 2012, 22:477-487.
    • (2012) Dev. Cell , vol.22 , pp. 477-487
    • Brown, S.1
  • 45
    • 84255206549 scopus 로고    scopus 로고
    • Cryptochromes mediate rhythmic repression of the glucocorticoid receptor
    • Lamia K., et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 2011, 480:552-556.
    • (2011) Nature , vol.480 , pp. 552-556
    • Lamia, K.1
  • 46
    • 76749139528 scopus 로고    scopus 로고
    • The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors
    • Schmutz I., et al. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 2010, 24:345-357.
    • (2010) Genes Dev. , vol.24 , pp. 345-357
    • Schmutz, I.1
  • 47
    • 70449093653 scopus 로고    scopus 로고
    • Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism
    • Chen R., et al. Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol. Cell 2009, 36:417-430.
    • (2009) Mol. Cell , vol.36 , pp. 417-430
    • Chen, R.1
  • 48
    • 80053639356 scopus 로고    scopus 로고
    • The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1
    • Lee H-M., et al. The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:16451-16456.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 16451-16456
    • Lee, H.-M.1
  • 49
    • 18244365850 scopus 로고    scopus 로고
    • PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator
    • Brown S., et al. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 2005, 308:693-696.
    • (2005) Science , vol.308 , pp. 693-696
    • Brown, S.1
  • 50
    • 79959366611 scopus 로고    scopus 로고
    • A molecular mechanism for circadian clock negative feedback
    • Duong H., et al. A molecular mechanism for circadian clock negative feedback. Science 2011, 332:1436-1439.
    • (2011) Science , vol.332 , pp. 1436-1439
    • Duong, H.1
  • 51
    • 84868699286 scopus 로고    scopus 로고
    • Distinct roles of DBHS family members in the circadian transcriptional feedback loop
    • Kowalska E., et al. Distinct roles of DBHS family members in the circadian transcriptional feedback loop. Mol. Cell. Biol. 2012, 32:4585-4594.
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 4585-4594
    • Kowalska, E.1
  • 52
    • 84864739194 scopus 로고    scopus 로고
    • Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex
    • Padmanabhan K., et al. Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex. Science 2012, 337:599-602.
    • (2012) Science , vol.337 , pp. 599-602
    • Padmanabhan, K.1
  • 53
    • 46649096915 scopus 로고    scopus 로고
    • Structure function analysis of mammalian cryptochromes
    • Tamanini F., et al. Structure function analysis of mammalian cryptochromes. Cold Spring Harb. Symp. Quant. Biol. 2007, 72:133-139.
    • (2007) Cold Spring Harb. Symp. Quant. Biol. , vol.72 , pp. 133-139
    • Tamanini, F.1
  • 54
    • 77953952168 scopus 로고    scopus 로고
    • Flexible phase adjustment of circadian albumin D site-binding protein (DBP) gene expression by CRYPTOCHROME1
    • Stratmann M., et al. Flexible phase adjustment of circadian albumin D site-binding protein (DBP) gene expression by CRYPTOCHROME1. Genes Dev. 2010, 24:1317-1328.
    • (2010) Genes Dev. , vol.24 , pp. 1317-1328
    • Stratmann, M.1
  • 55
    • 78651491409 scopus 로고    scopus 로고
    • Delay in feedback repression by cryptochrome 1 is required for circadian clock function
    • Ukai-Tadenuma M., et al. Delay in feedback repression by cryptochrome 1 is required for circadian clock function. Cell 2011, 144:268-281.
    • (2011) Cell , vol.144 , pp. 268-281
    • Ukai-Tadenuma, M.1
  • 56
    • 84864394571 scopus 로고    scopus 로고
    • Identification of a novel cryptochrome differentiating domain required for feedback repression in circadian clock function
    • Khan S., et al. Identification of a novel cryptochrome differentiating domain required for feedback repression in circadian clock function. J. Biol. Chem. 2012, 287:25917-25926.
    • (2012) J. Biol. Chem. , vol.287 , pp. 25917-25926
    • Khan, S.1
  • 57
    • 70350452140 scopus 로고    scopus 로고
    • Generation of a novel allelic series of cryptochrome mutants via mutagenesis reveals residues involved in protein-protein interaction and CRY2-specific repression
    • McCarthy E., et al. Generation of a novel allelic series of cryptochrome mutants via mutagenesis reveals residues involved in protein-protein interaction and CRY2-specific repression. Mol. Cell. Biol. 2009, 29:5465-5476.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 5465-5476
    • McCarthy, E.1
  • 58
    • 79960423858 scopus 로고    scopus 로고
    • Biochemical analysis of the canonical model for the mammalian circadian clock
    • Ye R., et al. Biochemical analysis of the canonical model for the mammalian circadian clock. J. Biol. Chem. 2011, 286:25891-25902.
    • (2011) J. Biol. Chem. , vol.286 , pp. 25891-25902
    • Ye, R.1
  • 59
    • 84863751285 scopus 로고    scopus 로고
    • Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex
    • Huang N., et al. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science 2012, 337:189-194.
    • (2012) Science , vol.337 , pp. 189-194
    • Huang, N.1
  • 60
    • 84892990758 scopus 로고    scopus 로고
    • Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA
    • Wang Z., et al. Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA. Cell Res. 2012, 2012:1-12.
    • (2012) Cell Res. , vol.2012 , pp. 1-12
    • Wang, Z.1
  • 61
    • 77951921902 scopus 로고    scopus 로고
    • Mammalian Per-Arnt-Sim proteins in environmental adaptation
    • McIntosh B., et al. Mammalian Per-Arnt-Sim proteins in environmental adaptation. Annu. Rev. Physiol. 2010, 72:625-645.
    • (2010) Annu. Rev. Physiol. , vol.72 , pp. 625-645
    • McIntosh, B.1
  • 62
    • 77951220423 scopus 로고    scopus 로고
    • Coactivator recruitment: a new role for PAS domains in transcriptional regulation by the bHLH-PAS family
    • Partch C., Gardner K. Coactivator recruitment: a new role for PAS domains in transcriptional regulation by the bHLH-PAS family. J. Cell. Physiol. 2010, 223:553-557.
    • (2010) J. Cell. Physiol. , vol.223 , pp. 553-557
    • Partch, C.1    Gardner, K.2
  • 63
    • 33745590694 scopus 로고    scopus 로고
    • The BMAL1 C terminus regulates the circadian transcription feedback loop
    • Kiyohara Y., et al. The BMAL1 C terminus regulates the circadian transcription feedback loop. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10074-10079.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 10074-10079
    • Kiyohara, Y.1
  • 64
    • 65949083763 scopus 로고    scopus 로고
    • Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2
    • Hennig S., et al. Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2. PLoS Biol. 2009, 7:e94.
    • (2009) PLoS Biol. , vol.7
    • Hennig, S.1
  • 65
    • 84857704420 scopus 로고    scopus 로고
    • Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function
    • Kucera N., et al. Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:3311-3316.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 3311-3316
    • Kucera, N.1
  • 66
    • 33847382431 scopus 로고    scopus 로고
    • CIPC is a mammalian circadian clock protein without invertebrate homologues
    • Zhao W-N., et al. CIPC is a mammalian circadian clock protein without invertebrate homologues. Nat. Cell Biol. 2007, 9:268-275.
    • (2007) Nat. Cell Biol. , vol.9 , pp. 268-275
    • Zhao, W.-N.1
  • 67
    • 79959337934 scopus 로고    scopus 로고
    • Quantitative analyses of cryptochrome-mBMAL1 interactions: mechanistic insights into the transcriptional regulation of the mammalian circadian clock
    • Czarna A., et al. Quantitative analyses of cryptochrome-mBMAL1 interactions: mechanistic insights into the transcriptional regulation of the mammalian circadian clock. J. Biol. Chem. 2011, 286:22414-22425.
    • (2011) J. Biol. Chem. , vol.286 , pp. 22414-22425
    • Czarna, A.1
  • 68
    • 78649886477 scopus 로고    scopus 로고
    • The histone methyltransferase MLL1 permits the oscillation of circadian gene expression
    • Katada S., Sassone-Corsi P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat. Struct. Mol. Biol. 2010, 17:1414-1421.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 1414-1421
    • Katada, S.1    Sassone-Corsi, P.2
  • 69
    • 0033825665 scopus 로고    scopus 로고
    • Transactivation mechanisms of mouse clock transcription factors, mClock and mArnt3
    • Takahata S., et al. Transactivation mechanisms of mouse clock transcription factors, mClock and mArnt3. Genes Cells 2000, 5:739-747.
    • (2000) Genes Cells , vol.5 , pp. 739-747
    • Takahata, S.1
  • 70
    • 33644559348 scopus 로고    scopus 로고
    • Functional evolution of the photolyase/cryptochrome protein family: importance of the C terminus of mammalian CRY1 for circadian core oscillator performance
    • Chaves I., et al. Functional evolution of the photolyase/cryptochrome protein family: importance of the C terminus of mammalian CRY1 for circadian core oscillator performance. Mol. Cell. Biol. 2006, 26:1743-1753.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 1743-1753
    • Chaves, I.1
  • 71
    • 77956463069 scopus 로고    scopus 로고
    • Identification of two amino acids in the C-terminal domain of mouse CRY2 essential for PER2 interaction
    • Ozber N., et al. Identification of two amino acids in the C-terminal domain of mouse CRY2 essential for PER2 interaction. BMC Mol. Biol. 2010, 11:69.
    • (2010) BMC Mol. Biol. , vol.11 , pp. 69
    • Ozber, N.1
  • 72
    • 34248566788 scopus 로고    scopus 로고
    • SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
    • Busino L., et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 2007, 316:900-904.
    • (2007) Science , vol.316 , pp. 900-904
    • Busino, L.1
  • 73
    • 34249097203 scopus 로고    scopus 로고
    • Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression
    • Siepka S., et al. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 2007, 129:1011-1023.
    • (2007) Cell , vol.129 , pp. 1011-1023
    • Siepka, S.1
  • 74
    • 84878889999 scopus 로고    scopus 로고
    • Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function
    • Czarna A., et al. Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function. Cell 2013, 153:1394-1405.
    • (2013) Cell , vol.153 , pp. 1394-1405
    • Czarna, A.1
  • 75
    • 84875899177 scopus 로고    scopus 로고
    • SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket
    • Xing W., et al. SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 2013, 496:64-68.
    • (2013) Nature , vol.496 , pp. 64-68
    • Xing, W.1
  • 76
    • 70249104647 scopus 로고    scopus 로고
    • Defining mechanisms that regulate RNA polymerase II transcription in vivo
    • Fuda N., et al. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 2009, 461:186-192.
    • (2009) Nature , vol.461 , pp. 186-192
    • Fuda, N.1
  • 77
    • 0037426839 scopus 로고    scopus 로고
    • Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
    • Etchegaray J-P., et al. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 2003, 421:177-182.
    • (2003) Nature , vol.421 , pp. 177-182
    • Etchegaray, J.-P.1
  • 78
    • 80053355301 scopus 로고    scopus 로고
    • Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock
    • DiTacchio L., et al. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 2011, 333:1881-1885.
    • (2011) Science , vol.333 , pp. 1881-1885
    • DiTacchio, L.1
  • 79
    • 33646145721 scopus 로고    scopus 로고
    • Circadian regulator CLOCK is a histone acetyltransferase
    • Doi M., et al. Circadian regulator CLOCK is a histone acetyltransferase. Cell 2006, 125:497-508.
    • (2006) Cell , vol.125 , pp. 497-508
    • Doi, M.1
  • 80
    • 33746344698 scopus 로고    scopus 로고
    • The polycomb group protein EZH2 is required for mammalian circadian clock function
    • Etchegaray J-P., et al. The polycomb group protein EZH2 is required for mammalian circadian clock function. J. Biol. Chem. 2006, 281:21209-21215.
    • (2006) J. Biol. Chem. , vol.281 , pp. 21209-21215
    • Etchegaray, J.-P.1
  • 81
    • 78650717705 scopus 로고    scopus 로고
    • Jumonji domain protein JMJD5 functions in both the plant and human circadian systems
    • Jones M., et al. Jumonji domain protein JMJD5 functions in both the plant and human circadian systems. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:21623-21628.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 21623-21628
    • Jones, M.1
  • 82
    • 47549088250 scopus 로고    scopus 로고
    • +-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • +-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008, 134:329-340.
    • (2008) Cell , vol.134 , pp. 329-340
    • Nakahata, Y.1
  • 83
    • 84864857778 scopus 로고    scopus 로고
    • The circadian clock transcriptional complex: metabolic feedback intersects with epigenetic control
    • Masri S., et al. The circadian clock transcriptional complex: metabolic feedback intersects with epigenetic control. Ann. N. Y. Acad. Sci. 2012, 1264:103-109.
    • (2012) Ann. N. Y. Acad. Sci. , vol.1264 , pp. 103-109
    • Masri, S.1
  • 84
    • 53549123008 scopus 로고    scopus 로고
    • Nature, nurture, or chance: stochastic gene expression and its consequences
    • Raj A., van Oudenaarden A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 2008, 135:216-226.
    • (2008) Cell , vol.135 , pp. 216-226
    • Raj, A.1    van Oudenaarden, A.2
  • 85
    • 79955381895 scopus 로고    scopus 로고
    • Mammalian genes are transcribed with widely different bursting kinetics
    • Suter D., et al. Mammalian genes are transcribed with widely different bursting kinetics. Science 2011, 332:472-474.
    • (2011) Science , vol.332 , pp. 472-474
    • Suter, D.1
  • 86
    • 82555179165 scopus 로고    scopus 로고
    • Origins and consequences of transcriptional discontinuity
    • Suter D., et al. Origins and consequences of transcriptional discontinuity. Curr. Opin. Cell Biol. 2011, 23:657-662.
    • (2011) Curr. Opin. Cell Biol. , vol.23 , pp. 657-662
    • Suter, D.1
  • 87
    • 78650242291 scopus 로고    scopus 로고
    • The three Rs of transcription: recruit, retain, and recycle
    • Motta-Mena L., et al. The three Rs of transcription: recruit, retain, and recycle. Mol. Cell 2010, 40:855-858.
    • (2010) Mol. Cell , vol.40 , pp. 855-858
    • Motta-Mena, L.1
  • 88
    • 65549118773 scopus 로고    scopus 로고
    • + salvage pathway by CLOCK-SIRT1
    • + salvage pathway by CLOCK-SIRT1. Science 2009, 324:654-657.
    • (2009) Science , vol.324 , pp. 654-657
    • Nakahata, Y.1
  • 89
    • 65549103855 scopus 로고    scopus 로고
    • + biosynthesis
    • + biosynthesis. Science 2009, 324:651-654.
    • (2009) Science , vol.324 , pp. 651-654
    • Ramsey, K.1
  • 90
    • 77956627087 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding
    • Asher G., et al. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 2010, 142:943-953.
    • (2010) Cell , vol.142 , pp. 943-953
    • Asher, G.1
  • 91
    • 84863113475 scopus 로고    scopus 로고
    • Nutrient sensing and the circadian clock
    • Peek C., et al. Nutrient sensing and the circadian clock. Trends Endocrinol. Metab. 2012, 23:312-318.
    • (2012) Trends Endocrinol. Metab. , vol.23 , pp. 312-318
    • Peek, C.1
  • 92
    • 58749109143 scopus 로고    scopus 로고
    • Circadian gene expression is resilient to large fluctuations in overall transcription rates
    • Dibner C., et al. Circadian gene expression is resilient to large fluctuations in overall transcription rates. EMBO J. 2009, 28:123-134.
    • (2009) EMBO J. , vol.28 , pp. 123-134
    • Dibner, C.1
  • 93
    • 84867670963 scopus 로고    scopus 로고
    • Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally
    • Morf J., et al. Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science 2012, 338:379-383.
    • (2012) Science , vol.338 , pp. 379-383
    • Morf, J.1
  • 94
    • 0037316406 scopus 로고    scopus 로고
    • Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian-related mRNA
    • Baggs J., Green C. Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian-related mRNA. Curr. Biol. 2003, 13:189-198.
    • (2003) Curr. Biol. , vol.13 , pp. 189-198
    • Baggs, J.1    Green, C.2
  • 95
    • 34247373509 scopus 로고    scopus 로고
    • Immediate early response of the circadian polyA ribonuclease nocturnin to two extracellular stimuli
    • Garbarino-Pico E., et al. Immediate early response of the circadian polyA ribonuclease nocturnin to two extracellular stimuli. RNA 2007, 13:745-755.
    • (2007) RNA , vol.13 , pp. 745-755
    • Garbarino-Pico, E.1
  • 96
    • 80051986743 scopus 로고    scopus 로고
    • Nocturnin regulates circadian trafficking of dietary lipid in intestinal enterocytes
    • Douris N., et al. Nocturnin regulates circadian trafficking of dietary lipid in intestinal enterocytes. Curr. Biol. 2011, 21:1347-1355.
    • (2011) Curr. Biol. , vol.21 , pp. 1347-1355
    • Douris, N.1
  • 97
    • 34547434830 scopus 로고    scopus 로고
    • Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity
    • Green C., et al. Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:9888-9893.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 9888-9893
    • Green, C.1
  • 98
    • 66349107101 scopus 로고    scopus 로고
    • Harmonics of circadian gene transcription in mammals
    • Hughes M., et al. Harmonics of circadian gene transcription in mammals. PLoS Genet. 2009, 5:e1000442.
    • (2009) PLoS Genet. , vol.5
    • Hughes, M.1
  • 99
    • 84864584460 scopus 로고    scopus 로고
    • Brain-specific rescue of Clock reveals system-driven transcriptional rhythms in peripheral tissue
    • Hughes M., et al. Brain-specific rescue of Clock reveals system-driven transcriptional rhythms in peripheral tissue. PLoS Genet. 2012, 8:e1002835.
    • (2012) PLoS Genet. , vol.8
    • Hughes, M.1
  • 100
    • 61349184546 scopus 로고    scopus 로고
    • The structural basis of gas-responsive transcription by the human nuclear hormone receptor REV-ERBbeta
    • Pardee K., et al. The structural basis of gas-responsive transcription by the human nuclear hormone receptor REV-ERBbeta. PLoS Biol. 2009, 7:e43.
    • (2009) PLoS Biol. , vol.7
    • Pardee, K.1
  • 101
    • 77954385668 scopus 로고    scopus 로고
    • Structure of Rev-erbalpha bound to N-CoR reveals a unique mechanism of nuclear receptor-co-repressor interaction
    • Phelan C., et al. Structure of Rev-erbalpha bound to N-CoR reveals a unique mechanism of nuclear receptor-co-repressor interaction. Nat. Struct. Mol. Biol. 2010, 17:808-814.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 808-814
    • Phelan, C.1
  • 102
    • 84873738229 scopus 로고    scopus 로고
    • Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA
    • Wang Z., et al. Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA. Cell Res. 2012, 23:213-223.
    • (2012) Cell Res. , vol.23 , pp. 213-223
    • Wang, Z.1
  • 103
    • 48249105441 scopus 로고    scopus 로고
    • Novel insights from genetic and molecular characterization of the human clock
    • Ptácek L., et al. Novel insights from genetic and molecular characterization of the human clock. Cold Spring Harb. Symp. Quant. Biol. 2007, 72:273-277.
    • (2007) Cold Spring Harb. Symp. Quant. Biol. , vol.72 , pp. 273-277
    • Ptácek, L.1
  • 104
    • 78650432933 scopus 로고    scopus 로고
    • High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase
    • Hirota T., et al. High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase. PLoS Biol. 2010, 8:e1000559.
    • (2010) PLoS Biol. , vol.8
    • Hirota, T.1
  • 105
    • 70349452319 scopus 로고    scopus 로고
    • CKIepsilon/delta-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock
    • Isojima Y., et al. CKIepsilon/delta-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:15744-15749.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 15744-15749
    • Isojima, Y.1
  • 106
    • 84860291442 scopus 로고    scopus 로고
    • Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists
    • Solt L., et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 2012, 485:62-68.
    • (2012) Nature , vol.485 , pp. 62-68
    • Solt, L.1
  • 107
    • 84862909015 scopus 로고    scopus 로고
    • Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening
    • Chen Z., et al. Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:101-106.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 101-106
    • Chen, Z.1
  • 108
    • 79955561971 scopus 로고    scopus 로고
    • Serum factors in older individuals change cellular clock properties
    • Pagani L., et al. Serum factors in older individuals change cellular clock properties. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:7218-7223.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 7218-7223
    • Pagani, L.1
  • 109
    • 34248525919 scopus 로고    scopus 로고
    • The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period
    • Godinho S., et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 2007, 316:897-900.
    • (2007) Science , vol.316 , pp. 897-900
    • Godinho, S.1
  • 110
    • 34848913124 scopus 로고    scopus 로고
    • Beta-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics
    • Reischl S., et al. Beta-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics. J. Biol. Rhythms 2007, 22:375-386.
    • (2007) J. Biol. Rhythms , vol.22 , pp. 375-386
    • Reischl, S.1
  • 111
    • 22844432019 scopus 로고    scopus 로고
    • SCFbeta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein
    • Shirogane T., et al. SCFbeta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J. Biol. Chem. 2005, 280:26863-26872.
    • (2005) J. Biol. Chem. , vol.280 , pp. 26863-26872
    • Shirogane, T.1
  • 112
    • 33745918016 scopus 로고    scopus 로고
    • Posttranslational regulation of the mammalian circadian clock by cryptochrome and protein phosphatase 5
    • Partch C., et al. Posttranslational regulation of the mammalian circadian clock by cryptochrome and protein phosphatase 5. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10467-10472.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 10467-10472
    • Partch, C.1
  • 113
    • 0035136677 scopus 로고    scopus 로고
    • An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome
    • Toh K., et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 2001, 291:1040-1043.
    • (2001) Science , vol.291 , pp. 1040-1043
    • Toh, K.1
  • 114
    • 15844420887 scopus 로고    scopus 로고
    • Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome
    • Xu Y., et al. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 2005, 434:640-644.
    • (2005) Nature , vol.434 , pp. 640-644
    • Xu, Y.1
  • 115
    • 4143142003 scopus 로고    scopus 로고
    • A functional genomics strategy reveals Rora as a component of the mammalian circadian clock
    • Sato T., et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 2004, 43:527-537.
    • (2004) Neuron , vol.43 , pp. 527-537
    • Sato, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.