-
1
-
-
84979586915
-
The genetics and mechanisms of T cell acute lymphoblastic leukaemia
-
Belver L, Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer. 2016;16(8): 494-507.
-
(2016)
Nat Rev Cancer
, vol.16
, Issue.8
, pp. 494-507
-
-
Belver, L.1
Ferrando, A.2
-
2
-
-
0035898387
-
Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development
-
Lind EF, Prockop SE, Porritt HE, Petrie HT. Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J Exp Med. 2001;194(2):127-134.
-
(2001)
J Exp Med.
, vol.194
, Issue.2
, pp. 127-134
-
-
Lind, E.F.1
Prockop, S.E.2
Porritt, H.E.3
Petrie, H.T.4
-
3
-
-
0027209141
-
Inhibition of murine B and T lymphopoiesis in vivo by an anti-interleukin 7 monoclonal antibody
-
Grabstein KH, Waldschmidt TJ, Finkelman FD, et al. Inhibition of murine B and T lymphopoiesis in vivo by an anti-interleukin 7 monoclonal antibody. J Exp Med. 1993;178(1):257-264.
-
(1993)
J Exp Med.
, vol.178
, Issue.1
, pp. 257-264
-
-
Grabstein, K.H.1
Waldschmidt, T.J.2
Finkelman, F.D.3
-
4
-
-
0027443753
-
Expression and function of the interleukin 7 receptor in murine lymphocytes
-
Sudo T, Nishikawa S, Ohno N, et al. Expression and function of the interleukin 7 receptor in murine lymphocytes. Proc Natl Acad Sci USA. 1993;90(19):9125-9129.
-
(1993)
Proc Natl Acad Sci USA
, vol.90
, Issue.19
, pp. 9125-9129
-
-
Sudo, T.1
Nishikawa, S.2
Ohno, N.3
-
5
-
-
0028804041
-
Intrathymically expressed c-kit ligand (stem cell factor) is a major factor driving expansion of very immature thymocytes in vivo
-
Rodewald HR, Kretzschmar K, Swat W, Takeda S. Intrathymically expressed c-kit ligand (stem cell factor) is a major factor driving expansion of very immature thymocytes in vivo. Immunity. 1995;3(3):313-319.
-
(1995)
Immunity.
, vol.3
, Issue.3
, pp. 313-319
-
-
Rodewald, H.R.1
Kretzschmar, K.2
Swat, W.3
Takeda, S.4
-
6
-
-
0033136717
-
Deficient T cell fate specification in mice with an induced inactivation of notch1
-
Radtke F, Wilson A, Stark G, et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity. 1999;10(5): 547-558.
-
(1999)
Immunity.
, vol.10
, Issue.5
, pp. 547-558
-
-
Radtke, F.1
Wilson, A.2
Stark, G.3
-
7
-
-
58149151302
-
Delta-like 4 is the essential, nonredundant ligand for notch1 during thymic T cell lineage commitment
-
Koch U, Fiorini E, Benedito R, et al. Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J Exp Med. 2008;205(11):2515-2523.
-
(2008)
J Exp Med.
, vol.205
, Issue.11
, pp. 2515-2523
-
-
Koch, U.1
Fiorini, E.2
Benedito, R.3
-
8
-
-
84904966072
-
Developmental gene networks: A triathlon on the course to T cell identity
-
Yui MA, Rothenberg EV. Developmental gene networks: a triathlon on the course to T cell identity. Nat Rev Immunol. 2014;14(8):529-545.
-
(2014)
Nat Rev Immunol.
, vol.14
, Issue.8
, pp. 529-545
-
-
Yui, M.A.1
Rothenberg, E.V.2
-
9
-
-
0035477668
-
Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus
-
Wilson A, MacDonald HR, Radtke F. Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J Exp Med. 2001; 194(7):1003-1012.
-
(2001)
J Exp Med.
, vol.194
, Issue.7
, pp. 1003-1012
-
-
Wilson, A.1
MacDonald, H.R.2
Radtke, F.3
-
10
-
-
84899561969
-
An overview of the intrathymic intricacies of T cell development
-
Shah DK, Zúñiga-Pflücker JC. An overview of the intrathymic intricacies of T cell development. J Immunol. 2014;192(9):4017-4023.
-
(2014)
J Immunol.
, vol.192
, Issue.9
, pp. 4017-4023
-
-
Shah, D.K.1
Zúñiga-Pflücker, J.C.2
-
11
-
-
21844440323
-
Unique features of the pre-T-cell receptor alpha-chain: Not just a surrogate
-
von Boehmer H. Unique features of the pre-T-cell receptor alpha-chain: not just a surrogate. Nat Rev Immunol. 2005;5(7):571-577.
-
(2005)
Nat Rev Immunol.
, vol.5
, Issue.7
, pp. 571-577
-
-
Von Boehmer, H.1
-
12
-
-
33645067911
-
Regulation of T-cell progenitor survival and cell-cycle entry by the pre-T-cell receptor
-
Aifantis I, Mandal M, Sawai K, Ferrando A, Vilimas T. Regulation of T-cell progenitor survival and cell-cycle entry by the pre-T-cell receptor. Immunol Rev. 2006;209:159-169.
-
(2006)
Immunol Rev.
, vol.209
, pp. 159-169
-
-
Aifantis, I.1
Mandal, M.2
Sawai, K.3
Ferrando, A.4
Vilimas, T.5
-
13
-
-
24944444760
-
Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism
-
Ciofani M, Zúñiga-Pflücker JC. Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nat Immunol. 2005;6(9):881-888.
-
(2005)
Nat Immunol.
, vol.6
, Issue.9
, pp. 881-888
-
-
Ciofani, M.1
Zúñiga-Pflücker, J.C.2
-
14
-
-
84867179824
-
The molecular basis of T cell acute lymphoblastic leukemia
-
Van Vlierberghe P, Ferrando A. The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest. 2012;122(10):3398-3406.
-
(2012)
J Clin Invest.
, vol.122
, Issue.10
, pp. 3398-3406
-
-
Van Vlierberghe, P.1
Ferrando, A.2
-
16
-
-
33747623018
-
Notch signalling: A simple pathway becomes complex
-
Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006; 7(9):678-689.
-
(2006)
Nat Rev Mol Cell Biol.
, vol.7
, Issue.9
, pp. 678-689
-
-
Bray, S.J.1
-
17
-
-
0033867521
-
A ligand-induced extracellular cleavage regulates γ-secretase-like proteolytic activation of notch1
-
Mumm JS, Schroeter EH, Saxena MT, et al. A ligand-induced extracellular cleavage regulates γ-secretase-like proteolytic activation of Notch1. Mol Cell. 2000;5(2):197-206.
-
(2000)
Mol Cell.
, vol.5
, Issue.2
, pp. 197-206
-
-
Mumm, J.S.1
Schroeter, E.H.2
Saxena, M.T.3
-
18
-
-
71449113533
-
Metalloprotease ADAM10 is required for notch1 site 2 cleavage
-
van Tetering G, van Diest P, Verlaan I, van der Wall E, Kopan R, Vooijs M. Metalloprotease ADAM10 is required for Notch1 site 2 cleavage. J Biol Chem. 2009;284(45):31018-31027.
-
(2009)
J Biol Chem.
, vol.284
, Issue.45
, pp. 31018-31027
-
-
Van Tetering, G.1
Van Diest, P.2
Verlaan, I.3
Van Der Wall, E.4
Kopan, R.5
Vooijs, M.6
-
19
-
-
33644699262
-
Paradigms of notch signaling in mammals
-
Dumortier A, Wilson A, MacDonald HR, Radtke F. Paradigms of notch signaling in mammals. Int J Hematol. 2005;82(4):277-284.
-
(2005)
Int J Hematol.
, vol.82
, Issue.4
, pp. 277-284
-
-
Dumortier, A.1
Wilson, A.2
MacDonald, H.R.3
Radtke, F.4
-
20
-
-
84896082963
-
From fly wings to targeted cancer therapies: A centennial for notch signaling
-
Ntziachristos P, Lim JS, Sage J, Aifantis I. From fly wings to targeted cancer therapies: a centennial for notch signaling. Cancer Cell. 2014;25(3):318-334.
-
(2014)
Cancer Cell.
, vol.25
, Issue.3
, pp. 318-334
-
-
Ntziachristos, P.1
Lim, J.S.2
Sage, J.3
Aifantis, I.4
-
21
-
-
0033535504
-
A presenilin-1-dependent gamma-secretase-like protease mediates release of notch intracellular domain
-
De Strooper B, Annaert W, Cupers P, et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature. 1999;398(6727):518-522.
-
(1999)
Nature
, vol.398
, Issue.6727
, pp. 518-522
-
-
De Strooper, B.1
Annaert, W.2
Cupers, P.3
-
22
-
-
0032574993
-
Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain
-
Schroeter EH, Kisslinger JA, Kopan R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature. 1998; 393(6683):382-386.
-
(1998)
Nature
, vol.393
, Issue.6683
, pp. 382-386
-
-
Schroeter, E.H.1
Kisslinger, J.A.2
Kopan, R.3
-
23
-
-
0033535508
-
Presenilin is required for activity and nuclear access of notch in drosophila
-
Struhl G, Greenwald I. Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature. 1999;398(6727):522-525.
-
(1999)
Nature
, vol.398
, Issue.6727
, pp. 522-525
-
-
Struhl, G.1
Greenwald, I.2
-
24
-
-
0030063909
-
Truncated mammalian notch1 activates CBF1/RBPJk-repressed genes by a mechanism resembling that of Epstein-Barr virus EBNA2
-
Hsieh JJ, Henkel T, Salmon P, Robey E, Peterson MG, Hayward SD. Truncated mammalian Notch1 activates CBF1/RBPJk-repressed genes by a mechanism resembling that of Epstein-Barr virus EBNA2. Mol Cell Biol. 1996;16(3):952-959.
-
(1996)
Mol Cell Biol.
, vol.16
, Issue.3
, pp. 952-959
-
-
Hsieh, J.J.1
Henkel, T.2
Salmon, P.3
Robey, E.4
Peterson, M.G.5
Hayward, S.D.6
-
25
-
-
0033662392
-
MAML1, a human homologue of drosophila mastermind, is a transcriptional co-activator for NOTCH receptors
-
Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S, Griffin JD. MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet. 2000;26(4):484-489.
-
(2000)
Nat Genet.
, vol.26
, Issue.4
, pp. 484-489
-
-
Wu, L.1
Aster, J.C.2
Blacklow, S.C.3
Lake, R.4
Artavanis-Tsakonas, S.5
Griffin, J.D.6
-
26
-
-
78649363017
-
Hes1 is a critical but context-dependent mediator of canonical notch signaling in lymphocyte development and transformation
-
Wendorff AA, Koch U, Wunderlich FT, et al. Hes1 is a critical but context-dependent mediator of canonical Notch signaling in lymphocyte development and transformation. Immunity. 2010;33(5):671-684.
-
(2010)
Immunity.
, vol.33
, Issue.5
, pp. 671-684
-
-
Wendorff, A.A.1
Koch, U.2
Wunderlich, F.T.3
-
27
-
-
77949395629
-
Characterization of notch1 antibodies that inhibit signaling of both normal and mutated notch1 receptors
-
Aste-Amézaga M, Zhang N, Lineberger JE, et al. Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PLoS One. 2010;5(2):e9094.
-
(2010)
PLoS One
, vol.5
, Issue.2
, pp. e9094
-
-
Aste-Amézaga, M.1
Zhang, N.2
Lineberger, J.E.3
-
28
-
-
84893722687
-
Therapeutic antibody targeting of notch1 in T-acute lymphoblastic leukemia xenografts
-
Agnusdei V, Minuzzo S, Frasson C, et al. Therapeutic antibody targeting of Notch1 in T-acute lymphoblastic leukemia xenografts. Leukemia. 2014;28(2):278-288.
-
(2014)
Leukemia
, vol.28
, Issue.2
, pp. 278-288
-
-
Agnusdei, V.1
Minuzzo, S.2
Frasson, C.3
-
29
-
-
0033944273
-
Aspartate mutations in presenilin and gamma-secretase inhibitors both impair notch1 proteolysis and nuclear translocation with relative preservation of notch1 signaling
-
Berezovska O, Jack C, McLean P, et al. Aspartate mutations in presenilin and gamma-secretase inhibitors both impair notch1 proteolysis and nuclear translocation with relative preservation of notch1 signaling. J Neurochem. 2000;75(2):583-593.
-
(2000)
J Neurochem.
, vol.75
, Issue.2
, pp. 583-593
-
-
Berezovska, O.1
Jack, C.2
McLean, P.3
-
30
-
-
33845306813
-
NOTCH1 directly regulates c-MYC and activates a feedforward-loop transcriptional network promoting leukemic cell growth
-
Palomero T, Lim WK, Odom DT, et al. NOTCH1 directly regulates c-MYC and activates a feedforward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA. 2006;103(48):18261-18266.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, Issue.48
, pp. 18261-18266
-
-
Palomero, T.1
Lim, W.K.2
Odom, D.T.3
-
31
-
-
0025856717
-
TAN-1, the human homolog of the drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms
-
Ellisen LW, Bird J, West DC, et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991;66(4): 649-661.
-
(1991)
Cell.
, vol.66
, Issue.4
, pp. 649-661
-
-
Ellisen, L.W.1
Bird, J.2
West, D.C.3
-
32
-
-
33745203104
-
CUTLL1, a novel human T-cell lymphoma cell line with t(7;9) rearrangement, aberrant NOTCH1 activation and high sensitivity to gamma-secretase inhibitors
-
Palomero T, Barnes KC, Real PJ, et al. CUTLL1, a novel human T-cell lymphoma cell line with t(7;9) rearrangement, aberrant NOTCH1 activation and high sensitivity to gamma-secretase inhibitors. Leukemia. 2006;20(7):1279-1287.
-
(2006)
Leukemia
, vol.20
, Issue.7
, pp. 1279-1287
-
-
Palomero, T.1
Barnes, K.C.2
Real, P.J.3
-
33
-
-
0036725051
-
New genes involved in cancer identified by retroviral tagging
-
Suzuki T, Shen H, Akagi K, et al. New genes involved in cancer identified by retroviral tagging. Nat Genet. 2002;32(1):166-174.
-
(2002)
Nat Genet.
, vol.32
, Issue.1
, pp. 166-174
-
-
Suzuki, T.1
Shen, H.2
Akagi, K.3
-
34
-
-
5044225888
-
Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia
-
Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004; 306(5694):269-271.
-
(2004)
Science
, vol.306
, Issue.5694
, pp. 269-271
-
-
Weng, A.P.1
Ferrando, A.A.2
Lee, W.3
-
35
-
-
34247189534
-
Structural basis for autoinhibition of notch
-
Gordon WR, Vardar-Ulu D, Histen G, Sanchez-Irizarry C, Aster JC, Blacklow SC. Structural basis for autoinhibition of Notch. Nat Struct Mol Biol. 2007;14(4):295-300.
-
(2007)
Nat Struct Mol Biol.
, vol.14
, Issue.4
, pp. 295-300
-
-
Gordon, W.R.1
Vardar-Ulu, D.2
Histen, G.3
Sanchez-Irizarry, C.4
Aster, J.C.5
Blacklow, S.C.6
-
36
-
-
66149151737
-
Structure of the notch1-negative regulatory region: Implications for normal activation and pathogenic signaling in T-ALL
-
Gordon WR, Roy M, Vardar-Ulu D, et al. Structure of the Notch1-negative regulatory region: implications for normal activation and pathogenic signaling in T-ALL. Blood. 2009; 113(18):4381-4390.
-
(2009)
Blood
, vol.113
, Issue.18
, pp. 4381-4390
-
-
Gordon, W.R.1
Roy, M.2
Vardar-Ulu, D.3
-
37
-
-
0035929669
-
The notch intracellular domain is ubiquitinated and negatively regulated by the mammalian sel-10 homolog
-
Oberg C, Li J, Pauley A, Wolf E, Gurney M, Lendahl U. The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J Biol Chem. 2001; 276(38):35847-35853.
-
(2001)
J Biol Chem.
, vol.276
, Issue.38
, pp. 35847-35853
-
-
Oberg, C.1
Li, J.2
Pauley, A.3
Wolf, E.4
Gurney, M.5
Lendahl, U.6
-
38
-
-
0035860804
-
Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated notch1 receptor
-
Gupta-Rossi N, Le Bail O, Gonen H, et al. Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor. J Biol Chem. 2001;276(37): 34371-34378.
-
(2001)
J Biol Chem.
, vol.276
, Issue.37
, pp. 34371-34378
-
-
Gupta-Rossi, N.1
Le Bail, O.2
Gonen, H.3
-
39
-
-
0034791336
-
SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation
-
Wu G, Lyapina S, Das I, et al. SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation. Mol Cell Biol. 2001;21(21):7403-7415.
-
(2001)
Mol Cell Biol.
, vol.21
, Issue.21
, pp. 7403-7415
-
-
Wu, G.1
Lyapina, S.2
Das, I.3
-
40
-
-
34547820257
-
The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia
-
Thompson BJ, Buonamici S, Sulis ML, et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med. 2007; 204(8):1825-1835.
-
(2007)
J Exp Med.
, vol.204
, Issue.8
, pp. 1825-1835
-
-
Thompson, B.J.1
Buonamici, S.2
Sulis, M.L.3
-
41
-
-
34547780475
-
FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors
-
O'Neil J, Grim J, Strack P, et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J Exp Med. 2007;204(8):1813-1824.
-
(2007)
J Exp Med.
, vol.204
, Issue.8
, pp. 1813-1824
-
-
O'Neil, J.1
Grim, J.2
Strack, P.3
-
42
-
-
35148842479
-
FBXW7/hCDC4 is a general tumor suppressor in human cancer
-
Akhoondi S, Sun D, von der Lehr N, et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 2007;67(19): 9006-9012.
-
(2007)
Cancer Res.
, vol.67
, Issue.19
, pp. 9006-9012
-
-
Akhoondi, S.1
Sun, D.2
Von Der Lehr, N.3
-
43
-
-
51349169034
-
Leukemia-associated NOTCH1 alleles are weak tumor initiators but accelerate K-ras-initiated leukemia
-
Chiang MY, Xu L, Shestova O, et al. Leukemia-associated NOTCH1 alleles are weak tumor initiators but accelerate K-ras-initiated leukemia. J Clin Invest. 2008;118(9):3181-3194.
-
(2008)
J Clin Invest.
, vol.118
, Issue.9
, pp. 3181-3194
-
-
Chiang, M.Y.1
Xu, L.2
Shestova, O.3
-
44
-
-
78650307928
-
NOTCH1 and/or FBXW7 mutations predict for initial good prednisone response but not for improved outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on DCOG or COALL protocols
-
Zuurbier L, Homminga I, Calvert V, et al. NOTCH1 and/or FBXW7 mutations predict for initial good prednisone response but not for improved outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on DCOG or COALL protocols. Leukemia. 2010; 24(12):2014-2022.
-
(2010)
Leukemia
, vol.24
, Issue.12
, pp. 2014-2022
-
-
Zuurbier, L.1
Homminga, I.2
Calvert, V.3
-
45
-
-
84863975116
-
Clinical impact of NOTCH1 and/or FBXW7 mutations, FLASH deletion, and TCR status in pediatric T-cell lymphoblastic lymphoma
-
Callens C, Baleydier F, Lengline E, et al. Clinical impact of NOTCH1 and/or FBXW7 mutations, FLASH deletion, and TCR status in pediatric T-cell lymphoblastic lymphoma. J Clin Oncol. 2012;30(16):1966-1973.
-
(2012)
J Clin Oncol.
, vol.30
, Issue.16
, pp. 1966-1973
-
-
Callens, C.1
Baleydier, F.2
Lengline, E.3
-
46
-
-
84862907593
-
The genetic basis of early T-cell precursor acute lymphoblastic leukaemia
-
Zhang J, Ding L, Holmfeldt L, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012; 481(7380):157-163.
-
(2012)
Nature
, vol.481
, Issue.7380
, pp. 157-163
-
-
Zhang, J.1
Ding, L.2
Holmfeldt, L.3
-
47
-
-
22144461424
-
Requirement for notch1 signals at sequential early stages of intrathymic T cell development
-
Tan JB, Visan I, Yuan JS, Guidos CJ. Requirement for Notch1 signals at sequential early stages of intrathymic T cell development. Nat Immunol. 2005;6(7):671-679.
-
(2005)
Nat Immunol.
, vol.6
, Issue.7
, pp. 671-679
-
-
Tan, J.B.1
Visan, I.2
Yuan, J.S.3
Guidos, C.J.4
-
48
-
-
80051640151
-
Notch1 inhibition targets the leukemia-initiating cells in a tal1/Lmo2 mouse model of T-ALL
-
Tatarek J, Cullion K, Ashworth T, Gerstein R, Aster JC, Kelliher MA. Notch1 inhibition targets the leukemia-initiating cells in a Tal1/Lmo2 mouse model of T-ALL. Blood. 2011;118(6): 1579-1590.
-
(2011)
Blood
, vol.118
, Issue.6
, pp. 1579-1590
-
-
Tatarek, J.1
Cullion, K.2
Ashworth, T.3
Gerstein, R.4
Aster, J.C.5
Kelliher, M.A.6
-
50
-
-
84944076036
-
Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia
-
Herranz D, Ambesi-Impiombato A, Sudderth J, et al. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nat Med. 2015; 21(10):1182-1189.
-
(2015)
Nat Med.
, vol.21
, Issue.10
, pp. 1182-1189
-
-
Herranz, D.1
Ambesi-Impiombato, A.2
Sudderth, J.3
-
51
-
-
0033135269
-
The bHLH gene hes1 is essential for expansion of early T cell precursors
-
Tomita K, Hattori M, Nakamura E, Nakanishi S, Minato N, Kageyama R. The bHLH gene Hes1 is essential for expansion of early T cell precursors. Genes Dev. 1999;13(9):1203-1210.
-
(1999)
Genes Dev.
, vol.13
, Issue.9
, pp. 1203-1210
-
-
Tomita, K.1
Hattori, M.2
Nakamura, E.3
Nakanishi, S.4
Minato, N.5
Kageyama, R.6
-
52
-
-
84964696506
-
Therapeutic targeting of HES1 transcriptional programs in T-ALL
-
Schnell SA, Ambesi-Impiombato A, Sanchez-Martin M, et al. Therapeutic targeting of HES1 transcriptional programs in T-ALL. Blood. 2015; 125(18):2806-2814.
-
(2015)
Blood
, vol.125
, Issue.18
, pp. 2806-2814
-
-
Schnell, S.A.1
Ambesi-Impiombato, A.2
Sanchez-Martin, M.3
-
53
-
-
67650588402
-
Pre-TCR signaling inactivates notch1 transcription by antagonizing E2A
-
Yashiro-Ohtani Y, He Y, Ohtani T, et al. Pre-TCR signaling inactivates Notch1 transcription by antagonizing E2A. Genes Dev. 2009;23(14): 1665-1676.
-
(2009)
Genes Dev.
, vol.23
, Issue.14
, pp. 1665-1676
-
-
Yashiro-Ohtani, Y.1
He, Y.2
Ohtani, T.3
-
54
-
-
65549171117
-
CSL-MAML-dependent notch1 signaling controls T lineage-specific IL-7Ralpha gene expression in early human thymopoiesis and leukemia
-
González-García S, García-Peydró M, Martín-Gayo E, et al. CSL-MAML-dependent Notch1 signaling controls T lineage-specific IL-7Ralpha gene expression in early human thymopoiesis and leukemia. J Exp Med. 2009;206(4):779-791.
-
(2009)
J Exp Med.
, vol.206
, Issue.4
, pp. 779-791
-
-
González-García, S.1
García-Peydró, M.2
Martín-Gayo, E.3
-
55
-
-
0036467663
-
Direct induction of T lymphocyte-specific gene expression by the mammalian notch signaling pathway
-
Reizis B, Leder P. Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes Dev. 2002;16(3):295-300.
-
(2002)
Genes Dev.
, vol.16
, Issue.3
, pp. 295-300
-
-
Reizis, B.1
Leder, P.2
-
56
-
-
80054834757
-
Highlevel IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by notch signaling
-
Medyouf H, Gusscott S, Wang H, et al. Highlevel IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by Notch signaling. J Exp Med. 2011;208(9): 1809-1822.
-
(2011)
J Exp Med.
, vol.208
, Issue.9
, pp. 1809-1822
-
-
Medyouf, H.1
Gusscott, S.2
Wang, H.3
-
57
-
-
84905401266
-
Genome-wide mapping and characterization of notch-regulated long noncoding RNAs in acute leukemia
-
Trimarchi T, Bilal E, Ntziachristos P, et al. Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell. 2014;158(3):593-606.
-
(2014)
Cell.
, vol.158
, Issue.3
, pp. 593-606
-
-
Trimarchi, T.1
Bilal, E.2
Ntziachristos, P.3
-
58
-
-
84919683992
-
SCL, LMO1 and notch1 reprogram thymocytes into self-renewing cells
-
Gerby B, Tremblay CS, Tremblay M, et al. SCL, LMO1 and Notch1 reprogram thymocytes into self-renewing cells. PLoS Genet. 2014;10(12): e1004768.
-
(2014)
PLoS Genet.
, vol.10
, Issue.12
, pp. e1004768
-
-
Gerby, B.1
Tremblay, C.S.2
Tremblay, M.3
-
59
-
-
36349001239
-
NOTCH1 pathway activation is an early hallmark of SCL T leukemogenesis
-
Göthert JR, Brake RL, Smeets M, Dührsen U, Begley CG, Izon DJ. NOTCH1 pathway activation is an early hallmark of SCL T leukemogenesis. Blood. 2007;110(10): 3753-3762.
-
(2007)
Blood
, vol.110
, Issue.10
, pp. 3753-3762
-
-
Göthert, J.R.1
Brake, R.L.2
Smeets, M.3
Dührsen, U.4
Begley, C.G.5
Izon, D.J.6
-
60
-
-
0034724389
-
Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion
-
Coller HA, Grandori C, Tamayo P, et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci USA. 2000;97(7): 3260-3265.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, Issue.7
, pp. 3260-3265
-
-
Coller, H.A.1
Grandori, C.2
Tamayo, P.3
-
61
-
-
0034326247
-
Identification of c-myc responsive genes using rat cDNA microarray
-
Guo QM, Malek RL, Kim S, et al. Identification of c-myc responsive genes using rat cDNA microarray. Cancer Res. 2000;60(21): 5922-5928.
-
(2000)
Cancer Res.
, vol.60
, Issue.21
, pp. 5922-5928
-
-
Guo, Q.M.1
Malek, R.L.2
Kim, S.3
-
62
-
-
0035932985
-
Analysis of gene expression during myc oncogene-induced lymphomagenesis in the bursa of fabricius
-
Neiman PE, Ruddell A, Jasoni C, et al. Analysis of gene expression during myc oncogene-induced lymphomagenesis in the bursa of Fabricius. Proc Natl Acad Sci USA. 2001;98(11): 6378-6383.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, Issue.11
, pp. 6378-6383
-
-
Neiman, P.E.1
Ruddell, A.2
Jasoni, C.3
-
63
-
-
33748171960
-
The c-myc target gene network
-
Dang CV, O'Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Semin Cancer Biol. 2006;16(4):253-264.
-
(2006)
Semin Cancer Biol.
, vol.16
, Issue.4
, pp. 253-264
-
-
Dang, C.V.1
O'Donnell, K.A.2
Zeller, K.I.3
Nguyen, T.4
Osthus, R.C.5
Li, F.6
-
65
-
-
17744400301
-
N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis
-
Boon K, Caron HN, van Asperen R, et al. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J. 2001;20(6):1383-1393.
-
(2001)
EMBO J.
, vol.20
, Issue.6
, pp. 1383-1393
-
-
Boon, K.1
Caron, H.N.2
Van Asperen, R.3
-
66
-
-
77949920493
-
MYC as a regulator of ribosome biogenesis and protein synthesis
-
van Riggelen J, Yetil A, Felsher DW. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer. 2010;10(4):301-309.
-
(2010)
Nat Rev Cancer.
, vol.10
, Issue.4
, pp. 301-309
-
-
Van Riggelen, J.1
Yetil, A.2
Felsher, D.W.3
-
67
-
-
0032539534
-
A unique glucose-dependent apoptotic pathway induced by c-myc
-
Shim H, Chun YS, Lewis BC, Dang CV. A unique glucose-dependent apoptotic pathway induced by c-Myc. Proc Natl Acad Sci USA. 1998;95(4): 1511-1516.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, Issue.4
, pp. 1511-1516
-
-
Shim, H.1
Chun, Y.S.2
Lewis, B.C.3
Dang, C.V.4
-
68
-
-
43549098260
-
The oncogene c-myc coordinates regulation of metabolic networks to enable rapid cell cycle entry
-
Morrish F, Neretti N, Sedivy JM, Hockenbery DM. The oncogene c-Myc coordinates regulation of metabolic networks to enable rapid cell cycle entry. Cell Cycle. 2008;7(8):1054-1066.
-
(2008)
Cell Cycle.
, vol.7
, Issue.8
, pp. 1054-1066
-
-
Morrish, F.1
Neretti, N.2
Sedivy, J.M.3
Hockenbery, D.M.4
-
69
-
-
64749116346
-
C-myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
-
Gao P, Tchernyshyov I, Chang TC, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458(7239): 762-765.
-
(2009)
Nature
, vol.458
, Issue.7239
, pp. 762-765
-
-
Gao, P.1
Tchernyshyov, I.2
Chang, T.C.3
-
71
-
-
0038492517
-
A global transcriptional regulatory role for c-myc in burkitt's lymphoma cells
-
Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B. A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc Natl Acad Sci USA. 2003;100(14):8164-8169.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, Issue.14
, pp. 8164-8169
-
-
Li, Z.1
Van Calcar, S.2
Qu, C.3
Cavenee, W.K.4
Zhang, M.Q.5
Ren, B.6
-
72
-
-
84867010006
-
C-myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells
-
Nie Z, Hu G, Wei G, et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell. 2012;151(1):68-79.
-
(2012)
Cell.
, vol.151
, Issue.1
, pp. 68-79
-
-
Nie, Z.1
Hu, G.2
Wei, G.3
-
73
-
-
34547232986
-
Non-transcriptional control of DNA replication by c-myc
-
Dominguez-Sola D, Ying CY, Grandori C, et al. Non-transcriptional control of DNA replication by c-Myc. Nature. 2007;448(7152):445-451.
-
(2007)
Nature
, vol.448
, Issue.7152
, pp. 445-451
-
-
Dominguez-Sola, D.1
Ying, C.Y.2
Grandori, C.3
-
74
-
-
0000538165
-
Human c-myc onc gene is located on the region of chromosome 8 that is translocated in burkitt lymphoma cells
-
Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA. 1982;79(24):7824-7827.
-
(1982)
Proc Natl Acad Sci USA
, vol.79
, Issue.24
, pp. 7824-7827
-
-
Dalla-Favera, R.1
Bregni, M.2
Erikson, J.3
Patterson, D.4
Gallo, R.C.5
Croce, C.M.6
-
75
-
-
84943257841
-
MYC, metabolism, and cancer
-
Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. MYC, metabolism, and cancer. Cancer Discov. 2015;5(10):1024-1039.
-
(2015)
Cancer Discov.
, vol.5
, Issue.10
, pp. 1024-1039
-
-
Stine, Z.E.1
Walton, Z.E.2
Altman, B.J.3
Hsieh, A.L.4
Dang, C.V.5
-
76
-
-
84859171807
-
MYC on the path to cancer
-
Dang CV. MYC on the path to cancer. Cell. 2012; 149(1):22-35.
-
(2012)
Cell.
, vol.149
, Issue.1
, pp. 22-35
-
-
Dang, C.V.1
-
77
-
-
84887147170
-
MYC activation is a hallmark of cancer initiation and maintenance
-
Gabay M, Li Y, Felsher DW. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med. 2014;4(6): a014241.
-
(2014)
Cold Spring Harb Perspect Med.
, vol.4
, Issue.6
, pp. a014241
-
-
Gabay, M.1
Li, Y.2
Felsher, D.W.3
-
78
-
-
0032483439
-
Identification of c-MYC as a target of the APC pathway
-
He TC, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281(5382):1509-1512.
-
(1998)
Science
, vol.281
, Issue.5382
, pp. 1509-1512
-
-
He, T.C.1
Sparks, A.B.2
Rago, C.3
-
79
-
-
0028225705
-
Functional divergence of the MAP kinase pathway. ERK1 and ERK2 activate specific transcription factors
-
Chuang CF, Ng SY. Functional divergence of the MAP kinase pathway. ERK1 and ERK2 activate specific transcription factors. FEBS Lett. 1994; 346(2-3):229-234.
-
(1994)
FEBS Lett.
, vol.346
, Issue.2-3
, pp. 229-234
-
-
Chuang, C.F.1
Ng, S.Y.2
-
80
-
-
0034306997
-
Multiple ras-dependent phosphorylation pathways regulate myc protein stability
-
Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 2000;14(19):2501-2514.
-
(2000)
Genes Dev.
, vol.14
, Issue.19
, pp. 2501-2514
-
-
Sears, R.1
Nuckolls, F.2
Haura, E.3
Taya, Y.4
Tamai, K.5
Nevins, J.R.6
-
81
-
-
8644219660
-
C-myc controls the balance between hematopoietic stem cell self-renewal and differentiation
-
Wilson A, Murphy MJ, Oskarsson T, et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 2004;18(22):2747-2763.
-
(2004)
Genes Dev.
, vol.18
, Issue.22
, pp. 2747-2763
-
-
Wilson, A.1
Murphy, M.J.2
Oskarsson, T.3
-
82
-
-
76949085686
-
Regulation of hematopoietic stem cell differentiation by a single ubiquitin ligase-substrate complex
-
Reavie L, Della Gatta G, Crusio K, et al. Regulation of hematopoietic stem cell differentiation by a single ubiquitin ligase-substrate complex. Nat Immunol. 2010;11(3): 207-215.
-
(2010)
Nat Immunol.
, vol.11
, Issue.3
, pp. 207-215
-
-
Reavie, L.1
Della Gatta, G.2
Crusio, K.3
-
83
-
-
42149132696
-
Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL
-
Matsuoka S, Oike Y, Onoyama I, et al. Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev. 2008;22(8):986-991.
-
(2008)
Genes Dev.
, vol.22
, Issue.8
, pp. 986-991
-
-
Matsuoka, S.1
Oike, Y.2
Onoyama, I.3
-
84
-
-
2942558501
-
Roles for c-myc in self-renewal of hematopoietic stem cells
-
Satoh Y, Matsumura I, Tanaka H, et al. Roles for c-Myc in self-renewal of hematopoietic stem cells. J Biol Chem. 2004;279(24):24986-24993.
-
(2004)
J Biol Chem.
, vol.279
, Issue.24
, pp. 24986-24993
-
-
Satoh, Y.1
Matsumura, I.2
Tanaka, H.3
-
85
-
-
79952830167
-
Myc roles in hematopoiesis and leukemia
-
Delgado MD, León J. Myc roles in hematopoiesis and leukemia. Genes Cancer. 2010;1(6): 605-616.
-
(2010)
Genes Cancer
, vol.1
, Issue.6
, pp. 605-616
-
-
Delgado, M.D.1
León, J.2
-
86
-
-
33750615714
-
C-myc mediates pre-TCR-induced proliferation but not developmental progression
-
Dose M, Khan I, Guo Z, et al. c-Myc mediates pre-TCR-induced proliferation but not developmental progression. Blood. 2006;108(8): 2669-2677.
-
(2006)
Blood
, vol.108
, Issue.8
, pp. 2669-2677
-
-
Dose, M.1
Khan, I.2
Guo, Z.3
-
87
-
-
0035320527
-
Defining the specific physiological requirements for c-myc in T cell development
-
Douglas NC, Jacobs H, Bothwell AL, Hayday AC. Defining the specific physiological requirements for c-Myc in T cell development. Nat Immunol. 2001;2(4):307-315.
-
(2001)
Nat Immunol.
, vol.2
, Issue.4
, pp. 307-315
-
-
Douglas, N.C.1
Jacobs, H.2
Bothwell, A.L.3
Hayday, A.C.4
-
88
-
-
77953939928
-
C-myc controls the development of CD8alphaalpha TCRalphabeta intestinal intraepithelial lymphocytes from thymic precursors by regulating IL-15-dependent survival
-
Jiang W, Ferrero I, Laurenti E, Trumpp A, MacDonald HR. c-Myc controls the development of CD8alphaalpha TCRalphabeta intestinal intraepithelial lymphocytes from thymic precursors by regulating IL-15-dependent survival. Blood. 2010;115(22):4431-4438.
-
(2010)
Blood
, vol.115
, Issue.22
, pp. 4431-4438
-
-
Jiang, W.1
Ferrero, I.2
Laurenti, E.3
Trumpp, A.4
MacDonald, H.R.5
-
89
-
-
65249162405
-
Selective requirement for c-myc at an early stage of V(alpha)14i NKT cell development
-
Mycko MP, Ferrero I, Wilson A, et al. Selective requirement for c-Myc at an early stage of V(alpha)14i NKT cell development. J Immunol. 2009;182(8):4641-4648.
-
(2009)
J Immunol.
, vol.182
, Issue.8
, pp. 4641-4648
-
-
Mycko, M.P.1
Ferrero, I.2
Wilson, A.3
-
90
-
-
84867709361
-
The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry
-
Dominguez-Sola D, Victora GD, Ying CY, et al. The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry. Nat Immunol. 2012;13(11):1083-1091.
-
(2012)
Nat Immunol.
, vol.13
, Issue.11
, pp. 1083-1091
-
-
Dominguez-Sola, D.1
Victora, G.D.2
Ying, C.Y.3
-
91
-
-
84867730760
-
The cell-cycle regulator c-myc is essential for the formation and maintenance of germinal centers
-
Calado DP, Sasaki Y, Godinho SA, et al. The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers. Nat Immunol. 2012;13(11):1092-1100.
-
(2012)
Nat Immunol.
, vol.13
, Issue.11
, pp. 1092-1100
-
-
Calado, D.P.1
Sasaki, Y.2
Godinho, S.A.3
-
92
-
-
42249101428
-
Dynamic regulation of c-myc proto-oncogene expression during lymphocyte development revealed by a GFP-c-myc knock-in mouse
-
Huang CY, Bredemeyer AL, Walker LM, Bassing CH, Sleckman BP. Dynamic regulation of c-Myc proto-oncogene expression during lymphocyte development revealed by a GFP-c-Myc knock-in mouse. Eur J Immunol. 2008;38(2):342-349.
-
(2008)
Eur J Immunol.
, vol.38
, Issue.2
, pp. 342-349
-
-
Huang, C.Y.1
Bredemeyer, A.L.2
Walker, L.M.3
Bassing, C.H.4
Sleckman, B.P.5
-
93
-
-
33646339095
-
MYC levels govern hematopoietic tumor type and latency in transgenic mice
-
Smith DP, Bath ML, Metcalf D, Harris AW, Cory S. MYC levels govern hematopoietic tumor type and latency in transgenic mice. Blood. 2006; 108(2):653-661.
-
(2006)
Blood
, vol.108
, Issue.2
, pp. 653-661
-
-
Smith, D.P.1
Bath, M.L.2
Metcalf, D.3
Harris, A.W.4
Cory, S.5
-
94
-
-
19944369765
-
T-cell lymphomas mask slower developing B-lymphoid and myeloid tumours in transgenic mice with broad haemopoietic expression of MYC
-
Smith DP, Bath ML, Harris AW, Cory S. T-cell lymphomas mask slower developing B-lymphoid and myeloid tumours in transgenic mice with broad haemopoietic expression of MYC. Oncogene. 2005;24(22):3544-3553.
-
(2005)
Oncogene.
, vol.24
, Issue.22
, pp. 3544-3553
-
-
Smith, D.P.1
Bath, M.L.2
Harris, A.W.3
Cory, S.4
-
95
-
-
0347785481
-
Myc-induced T cell leukemia in transgenic zebrafish
-
Langenau DM, Traver D, Ferrando AA, et al. Myc-induced T cell leukemia in transgenic zebrafish. Science. 2003;299(5608):887-890.
-
(2003)
Science
, vol.299
, Issue.5608
, pp. 887-890
-
-
Langenau, D.M.1
Traver, D.2
Ferrando, A.A.3
-
96
-
-
79959248268
-
Posttranscriptional deregulation of MYC via PTEN constitutes a major alternative pathway of MYC activation in T-cell acute lymphoblastic leukemia
-
Bonnet M, Loosveld M, Montpellier B, et al. Posttranscriptional deregulation of MYC via PTEN constitutes a major alternative pathway of MYC activation in T-cell acute lymphoblastic leukemia. Blood. 2011;117(24):6650-6659.
-
(2011)
Blood
, vol.117
, Issue.24
, pp. 6650-6659
-
-
Bonnet, M.1
Loosveld, M.2
Montpellier, B.3
-
97
-
-
84921628643
-
A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia
-
Herranz D, Ambesi-Impiombato A, Palomero T, et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat Med. 2014;20(10):1130-1137.
-
(2014)
Nat Med.
, vol.20
, Issue.10
, pp. 1130-1137
-
-
Herranz, D.1
Ambesi-Impiombato, A.2
Palomero, T.3
-
98
-
-
84879364450
-
The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability
-
King B, Trimarchi T, Reavie L, et al. The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell. 2013; 153(7):1552-1566.
-
(2013)
Cell.
, vol.153
, Issue.7
, pp. 1552-1566
-
-
King, B.1
Trimarchi, T.2
Reavie, L.3
-
99
-
-
84896076685
-
C-myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells
-
Roderick JE, Tesell J, Shultz LD, et al. c-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells. Blood. 2014;123(7): 1040-1050.
-
(2014)
Blood
, vol.123
, Issue.7
, pp. 1040-1050
-
-
Roderick, J.E.1
Tesell, J.2
Shultz, L.D.3
-
100
-
-
37049182717
-
Deregulation of c-myc by translocation of the alpha-locus of the T-cell receptor in T-cell leukemias
-
Erikson J, Finger L, Sun L, et al. Deregulation of c-myc by translocation of the alpha-locus of the T-cell receptor in T-cell leukemias. Science. 1986;232(4752):884-886.
-
(1986)
Science
, vol.232
, Issue.4752
, pp. 884-886
-
-
Erikson, J.1
Finger, L.2
Sun, L.3
-
101
-
-
0022972786
-
A common mechanism of chromosomal translocation in T- and B-cell neoplasia
-
Finger LR, Harvey RC, Moore RC, Showe LC, Croce CM. A common mechanism of chromosomal translocation in T- and B-cell neoplasia. Science. 1986;234(4779):982-985.
-
(1986)
Science
, vol.234
, Issue.4779
, pp. 982-985
-
-
Finger, L.R.1
Harvey, R.C.2
Moore, R.C.3
Showe, L.C.4
Croce, C.M.5
-
102
-
-
0022873255
-
A t(8;14)(q24;q11) translocation in a T-cell leukemia (L1-ALL) with c-myc and TcR-alpha chain locus rearrangements
-
Mathieu-Mahul D, Sigaux F, Zhu C, et al. A t(8;14)(q24;q11) translocation in a T-cell leukemia (L1-ALL) with c-myc and TcR-alpha chain locus rearrangements. Int J Cancer. 1986; 38(6):835-840.
-
(1986)
Int J Cancer
, vol.38
, Issue.6
, pp. 835-840
-
-
Mathieu-Mahul, D.1
Sigaux, F.2
Zhu, C.3
-
103
-
-
84915747030
-
Genetic profile of T-cell acute lymphoblastic leukemias with MYC translocations
-
La Starza R, Borga C, Barba G, et al. Genetic profile of T-cell acute lymphoblastic leukemias with MYC translocations. Blood. 2014;124(24): 3577-3582.
-
(2014)
Blood
, vol.124
, Issue.24
, pp. 3577-3582
-
-
La Starza, R.1
Borga, C.2
Barba, G.3
-
104
-
-
33746546368
-
C-myc is an important direct target of notch1 in T-cell acute lymphoblastic leukemia/lymphoma
-
Weng AP, Millholland JM, Yashiro-Ohtani Y, et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 2006;20(15):2096-2109.
-
(2006)
Genes Dev.
, vol.20
, Issue.15
, pp. 2096-2109
-
-
Weng, A.P.1
Millholland, J.M.2
Yashiro-Ohtani, Y.3
-
105
-
-
33750317437
-
Notch1 contributes to mouse T-cell leukemia by directly inducing the expression of c-myc
-
Sharma VM, Calvo JA, Draheim KM, et al. Notch1 contributes to mouse T-cell leukemia by directly inducing the expression of c-myc. Mol Cell Biol. 2006;26(21):8022-8031.
-
(2006)
Mol Cell Biol.
, vol.26
, Issue.21
, pp. 8022-8031
-
-
Sharma, V.M.1
Calvo, J.A.2
Draheim, K.M.3
-
106
-
-
6944227551
-
A nucleolar isoform of the fbw7 ubiquitin ligase regulates c-myc and cell size
-
Welcker M, Orian A, Grim JE, Eisenman RN, Clurman BE. A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size. Curr Biol. 2004;14(20):1852-1857.
-
(2004)
Curr Biol.
, vol.14
, Issue.20
, pp. 1852-1857
-
-
Welcker, M.1
Orian, A.2
Grim, J.E.3
Eisenman, R.N.4
Clurman, B.E.5
-
107
-
-
2942614705
-
Phosphorylation-dependent degradation of c-myc is mediated by the F-box protein fbw7
-
Yada M, Hatakeyama S, Kamura T, et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 2004;23(10):2116-2125.
-
(2004)
EMBO J.
, vol.23
, Issue.10
, pp. 2116-2125
-
-
Yada, M.1
Hatakeyama, S.2
Kamura, T.3
-
108
-
-
2942650133
-
The fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-myc protein degradation
-
Welcker M, Orian A, Jin J, et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA. 2004; 101(24):9085-9090.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, Issue.24
, pp. 9085-9090
-
-
Welcker, M.1
Orian, A.2
Jin, J.3
-
109
-
-
34948908663
-
Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia
-
Palomero T, Sulis ML, Cortina M, et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med. 2007;13(10):1203-1210.
-
(2007)
Nat Med.
, vol.13
, Issue.10
, pp. 1203-1210
-
-
Palomero, T.1
Sulis, M.L.2
Cortina, M.3
-
110
-
-
0032475861
-
Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN
-
Stambolic V, Suzuki A, de la Pompa JL, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998;95(1):29-39.
-
(1998)
Cell.
, vol.95
, Issue.1
, pp. 29-39
-
-
Stambolic, V.1
Suzuki, A.2
De La Pompa, J.L.3
-
111
-
-
0029587224
-
Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B
-
Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378(6559):785-789.
-
(1995)
Nature
, vol.378
, Issue.6559
, pp. 785-789
-
-
Cross, D.A.1
Alessi, D.R.2
Cohen, P.3
Andjelkovich, M.4
Hemmings, B.A.5
-
112
-
-
0028115718
-
Site-specific modulation of c-myc cotransformation by residues phosphorylated in vivo
-
Pulverer BJ, Fisher C, Vousden K, Littlewood T, Evan G, Woodgett JR. Site-specific modulation of c-Myc cotransformation by residues phosphorylated in vivo. Oncogene. 1994;9(1): 59-70.
-
(1994)
Oncogene
, vol.9
, Issue.1
, pp. 59-70
-
-
Pulverer, B.J.1
Fisher, C.2
Vousden, K.3
Littlewood, T.4
Evan, G.5
Woodgett, J.R.6
-
113
-
-
0028023421
-
Hierarchical phosphorylation at N-terminal transformationsensitive sites in c-myc protein is regulated by mitogens and in mitosis
-
Lutterbach B, Hann SR. Hierarchical phosphorylation at N-terminal transformationsensitive sites in c-Myc protein is regulated by mitogens and in mitosis. Mol Cell Biol. 1994; 14(8):5510-5522.
-
(1994)
Mol Cell Biol.
, vol.14
, Issue.8
, pp. 5510-5522
-
-
Lutterbach, B.1
Hann, S.R.2
-
114
-
-
0142027814
-
Structure and function of the feed-forward loop network motif
-
Mangan S, Alon U. Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci USA. 2003;100(21):11980-11985.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, Issue.21
, pp. 11980-11985
-
-
Mangan, S.1
Alon, U.2
-
115
-
-
58549099738
-
ChIP-on-chip significance analysis reveals large-scale binding and regulation by human transcription factor oncogenes
-
Margolin AA, Palomero T, Sumazin P, Califano A, Ferrando AA, Stolovitzky G. ChIP-on-chip significance analysis reveals large-scale binding and regulation by human transcription factor oncogenes. Proc Natl Acad Sci USA. 2009; 106(1):244-249.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, Issue.1
, pp. 244-249
-
-
Margolin, A.A.1
Palomero, T.2
Sumazin, P.3
Califano, A.4
Ferrando, A.A.5
Stolovitzky, G.6
-
116
-
-
84927124456
-
An oncogenic enhancer enemy (N-me) in T-ALL
-
Herranz D, Ferrando AA. An oncogenic enhancer enemy (N-Me) in T-ALL. Cell Cycle. 2015;14(2):167-168.
-
(2015)
Cell Cycle
, vol.14
, Issue.2
, pp. 167-168
-
-
Herranz, D.1
Ferrando, A.A.2
-
117
-
-
44349088690
-
Multi-genetic events collaboratively contribute to pten-null leukaemia stem-cell formation
-
Guo W, Lasky JL, Chang CJ, et al. Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature. 2008; 453(7194):529-533.
-
(2008)
Nature
, vol.453
, Issue.7194
, pp. 529-533
-
-
Guo, W.1
Lasky, J.L.2
Chang, C.J.3
-
118
-
-
84886376861
-
β-Catenin activation synergizes with Pten loss and Myc overexpression in notch-independent T-ALL
-
Kaveri D, Kastner P, Dembélé D, Nerlov C, Chan S, Kirstetter P. β-Catenin activation synergizes with Pten loss and Myc overexpression in Notch-independent T-ALL. Blood. 2013;122(5): 694-704.
-
(2013)
Blood
, vol.122
, Issue.5
, pp. 694-704
-
-
Kaveri, D.1
Kastner, P.2
Dembélé, D.3
Nerlov, C.4
Chan, S.5
Kirstetter, P.6
-
119
-
-
34247548755
-
Genome-wide association study of prostate cancer identifies a second risk locus at 8q24
-
Yeager M, Orr N, Hayes RB, et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet. 2007; 39(5):645-649.
-
(2007)
Nat Genet.
, vol.39
, Issue.5
, pp. 645-649
-
-
Yeager, M.1
Orr, N.2
Hayes, R.B.3
-
120
-
-
55049112064
-
Sequence variant on 8q24 confers susceptibility to urinary bladder cancer
-
Kiemeney LA, Thorlacius S, Sulem P, et al. Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat Genet. 2008; 40(11):1307-1312.
-
(2008)
Nat Genet.
, vol.40
, Issue.11
, pp. 1307-1312
-
-
Kiemeney, L.A.1
Thorlacius, S.2
Sulem, P.3
-
121
-
-
33745169697
-
A common variant associated with prostate cancer in European and African populations
-
Amundadottir LT, Sulem P, Gudmundsson J, et al. A common variant associated with prostate cancer in European and African populations. Nat Genet. 2006;38(6):652-658.
-
(2006)
Nat Genet.
, vol.38
, Issue.6
, pp. 652-658
-
-
Amundadottir, L.T.1
Sulem, P.2
Gudmundsson, J.3
-
122
-
-
34547092701
-
Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24
-
Zanke BW, Greenwood CM, Rangrej J, et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet. 2007;39(8): 989-994.
-
(2007)
Nat Genet.
, vol.39
, Issue.8
, pp. 989-994
-
-
Zanke, B.W.1
Greenwood, C.M.2
Rangrej, J.3
-
123
-
-
68149170044
-
The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced wnt signaling
-
Tuupanen S, Turunen M, Lehtonen R, et al. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat Genet. 2009;41(8):885-890.
-
(2009)
Nat Genet.
, vol.41
, Issue.8
, pp. 885-890
-
-
Tuupanen, S.1
Turunen, M.2
Lehtonen, R.3
-
124
-
-
77956295666
-
An 8q24 gene desert variant associated with prostate cancer risk confers differential in vivo activity to a MYC enhancer
-
Wasserman NF, Aneas I, Nobrega MA. An 8q24 gene desert variant associated with prostate cancer risk confers differential in vivo activity to a MYC enhancer. Genome Res. 2010;20(9): 1191-1197.
-
(2010)
Genome Res.
, vol.20
, Issue.9
, pp. 1191-1197
-
-
Wasserman, N.F.1
Aneas, I.2
Nobrega, M.A.3
-
125
-
-
77953098883
-
8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC
-
Ahmadiyeh N, Pomerantz MM, Grisanzio C, et al. 8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC. Proc Natl Acad Sci USA. 2010;107(21):9742-9746.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, Issue.21
, pp. 9742-9746
-
-
Ahmadiyeh, N.1
Pomerantz, M.M.2
Grisanzio, C.3
-
126
-
-
68149180901
-
The 8q24 cancer risk variant rs6983267 shows longrange interaction with MYC in colorectal cancer
-
Pomerantz MM, Ahmadiyeh N, Jia L, et al. The 8q24 cancer risk variant rs6983267 shows longrange interaction with MYC in colorectal cancer. Nat Genet. 2009;41(8):882-884.
-
(2009)
Nat Genet.
, vol.41
, Issue.8
, pp. 882-884
-
-
Pomerantz, M.M.1
Ahmadiyeh, N.2
Jia, L.3
-
127
-
-
77749323471
-
Upregulation of c-MYC in cis through a large chromatin loop linked to a cancer risk-associated single-nucleotide polymorphism in colorectal cancer cells
-
Wright JB, Brown SJ, Cole MD. Upregulation of c-MYC in cis through a large chromatin loop linked to a cancer risk-associated single-nucleotide polymorphism in colorectal cancer cells. Mol Cell Biol. 2010;30(6):1411-1420.
-
(2010)
Mol Cell Biol.
, vol.30
, Issue.6
, pp. 1411-1420
-
-
Wright, J.B.1
Brown, S.J.2
Cole, M.D.3
-
128
-
-
84870674626
-
Mice lacking a myc enhancer that includes human SNP rs6983267 are resistant to intestinal tumors
-
Sur IK, Hallikas O, Vähärautio A, et al. Mice lacking a Myc enhancer that includes human SNP rs6983267 are resistant to intestinal tumors. Science. 2012;338(6112):1360-1363.
-
(2012)
Science
, vol.338
, Issue.6112
, pp. 1360-1363
-
-
Sur, I.K.1
Hallikas, O.2
Vähärautio, A.3
-
129
-
-
84956634373
-
Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers
-
Zhang X, Choi PS, Francis JM, et al. Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nat Genet. 2016;48(2):176-182.
-
(2016)
Nat Genet.
, vol.48
, Issue.2
, pp. 176-182
-
-
Zhang, X.1
Choi, P.S.2
Francis, J.M.3
-
130
-
-
84890717859
-
Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated myc regulation
-
Shi J, Whyte WA, Zepeda-Mendoza CJ, et al. Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev. 2013;27(24):2648-2662.
-
(2013)
Genes Dev.
, vol.27
, Issue.24
, pp. 2648-2662
-
-
Shi, J.1
Whyte, W.A.2
Zepeda-Mendoza, C.J.3
-
131
-
-
69149083958
-
Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia
-
Radtke I, Mullighan CG, Ishii M, et al. Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia. Proc Natl Acad Sci USA. 2009;106(31):12944-12949.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, Issue.31
, pp. 12944-12949
-
-
Radtke, I.1
Mullighan, C.G.2
Ishii, M.3
-
132
-
-
84863399678
-
Highresolution genomic profiling of adult and pediatric core-binding factor acute myeloid leukemia reveals new recurrent genomic alterations
-
Kühn MW, Radtke I, Bullinger L, et al. Highresolution genomic profiling of adult and pediatric core-binding factor acute myeloid leukemia reveals new recurrent genomic alterations. Blood. 2012;119(10):e67-e75.
-
(2012)
Blood
, vol.119
, Issue.10
, pp. e67-e75
-
-
Kühn, M.W.1
Radtke, I.2
Bullinger, L.3
-
133
-
-
84891953718
-
Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma
-
Chapuy B, McKeown MR, Lin CY, et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell. 2013;24(6): 777-790.
-
(2013)
Cancer Cell.
, vol.24
, Issue.6
, pp. 777-790
-
-
Chapuy, B.1
McKeown, M.R.2
Lin, C.Y.3
-
134
-
-
84911909070
-
Long-range enhancer activity determines myc sensitivity to notch inhibitors in T cell leukemia
-
Yashiro-Ohtani Y, Wang H, Zang C, et al. Long-range enhancer activity determines Myc sensitivity to Notch inhibitors in T cell leukemia. Proc Natl Acad Sci USA. 2014;111(46): E4946-E4953.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, Issue.46
, pp. E4946-E4953
-
-
Yashiro-Ohtani, Y.1
Wang, H.2
Zang, C.3
-
135
-
-
84897129801
-
The tumor suppressor ikaros shapes the repertoire of notch target genes in T cells
-
Geimer Le Lay AS, Oravecz A, Mastio J, et al. The tumor suppressor Ikaros shapes the repertoire of notch target genes in T cells. Sci Signal. 2014;7(317):ra28.
-
(2014)
Sci Signal.
, vol.7
, Issue.317
, pp. ra28
-
-
Geimer Le Lay, A.S.1
Oravecz, A.2
Mastio, J.3
-
136
-
-
79951516547
-
Molecular pathogenesis and targeted therapies for NOTCH1-induced T-cell acute lymphoblastic leukemia
-
Paganin M, Ferrando A. Molecular pathogenesis and targeted therapies for NOTCH1-induced T-cell acute lymphoblastic leukemia. Blood Rev. 2011;25(2):83-90.
-
(2011)
Blood Rev.
, vol.25
, Issue.2
, pp. 83-90
-
-
Paganin, M.1
Ferrando, A.2
-
137
-
-
0041355557
-
Notch and presenilin: Regulated intramembrane proteolysis links development and degeneration
-
Selkoe D, Kopan R. Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci. 2003;26:565-597.
-
(2003)
Annu Rev Neurosci.
, vol.26
, pp. 565-597
-
-
Selkoe, D.1
Kopan, R.2
-
138
-
-
34347369749
-
Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia
-
Chan SM, Weng AP, Tibshirani R, Aster JC, Utz PJ. Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia. Blood. 2007;110(1):278-286.
-
(2007)
Blood
, vol.110
, Issue.1
, pp. 278-286
-
-
Chan, S.M.1
Weng, A.P.2
Tibshirani, R.3
Aster, J.C.4
Utz, P.J.5
-
139
-
-
67650389196
-
Targeting the notch1 and mTOR pathways in a mouse T-ALL model
-
Cullion K, Draheim KM, Hermance N, et al. Targeting the Notch1 and mTOR pathways in a mouse T-ALL model. Blood. 2009;113(24): 6172-6181.
-
(2009)
Blood
, vol.113
, Issue.24
, pp. 6172-6181
-
-
Cullion, K.1
Draheim, K.M.2
Hermance, N.3
-
140
-
-
61849100923
-
NOTCH is a key regulator of human T-cell acute leukemia initiating cell activity
-
Armstrong F, Brunet de la Grange P, Gerby B, et al. NOTCH is a key regulator of human T-cell acute leukemia initiating cell activity. Blood. 2009;113(8):1730-1740.
-
(2009)
Blood
, vol.113
, Issue.8
, pp. 1730-1740
-
-
Armstrong, F.1
Brunet De La Grange, P.2
Gerby, B.3
-
141
-
-
84863088013
-
NOTCH1 signaling promotes human T-cell acute lymphoblastic leukemia initiating cell regeneration in supportive niches
-
Ma W, Gutierrez A, Goff DJ, et al. NOTCH1 signaling promotes human T-cell acute lymphoblastic leukemia initiating cell regeneration in supportive niches. PLoS One. 2012;7(6):e39725.
-
(2012)
PLoS One
, vol.7
, Issue.6
, pp. e39725
-
-
Ma, W.1
Gutierrez, A.2
Goff, D.J.3
-
142
-
-
84864005158
-
Targeting the notch pathway: Twists and turns on the road to rational therapeutics
-
Aster JC, Blacklow SC. Targeting the Notch pathway: twists and turns on the road to rational therapeutics. J Clin Oncol. 2012;30(19): 2418-2420.
-
(2012)
J Clin Oncol.
, vol.30
, Issue.19
, pp. 2418-2420
-
-
Aster, J.C.1
Blacklow, S.C.2
-
143
-
-
84989350415
-
A phase 1 study of the novel gamma-secretase inhibitor PF-03084014 in patients with T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma
-
Papayannidis C, DeAngelo DJ, Stock W, et al. A Phase 1 study of the novel gamma-secretase inhibitor PF-03084014 in patients with T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Blood Cancer J. 2015; 5:e350.
-
(2015)
Blood Cancer J.
, vol.5
, pp. e350
-
-
Papayannidis, C.1
DeAngelo, D.J.2
Stock, W.3
-
144
-
-
34548592412
-
A phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias [abstract]
-
6585
-
Deangelo D, Stone R, Silverman L, et al. A phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias [abstract]. J Clin Oncol. 2006;24 (18S). Abstract 6585.
-
(2006)
J Clin Oncol.
, vol.24
, Issue.18 S
-
-
Deangelo, D.1
Stone, R.2
Silverman, L.3
-
145
-
-
38049181478
-
NOTCH1 mutation can be an early, prenatal genetic event in T-ALL
-
Eguchi-Ishimae M, Eguchi M, Kempski H, Greaves M. NOTCH1 mutation can be an early, prenatal genetic event in T-ALL. Blood. 2008; 111(1):376-378.
-
(2008)
Blood
, vol.111
, Issue.1
, pp. 376-378
-
-
Eguchi-Ishimae, M.1
Eguchi, M.2
Kempski, H.3
Greaves, M.4
-
146
-
-
0029942842
-
Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated notch alleles
-
Pear WS, Aster JC, Scott ML, et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med. 1996;183(5): 2283-2291.
-
(1996)
J Exp Med.
, vol.183
, Issue.5
, pp. 2283-2291
-
-
Pear, W.S.1
Aster, J.C.2
Scott, M.L.3
-
147
-
-
37249018491
-
Notch-1 mutations are secondary events in some patients with T-cell acute lymphoblastic leukemia
-
Mansour MR, Duke V, Foroni L, et al. Notch-1 mutations are secondary events in some patients with T-cell acute lymphoblastic leukemia. Clin Cancer Res. 2007;13(23): 6964-6969.
-
(2007)
Clin Cancer Res.
, vol.13
, Issue.23
, pp. 6964-6969
-
-
Mansour, M.R.1
Duke, V.2
Foroni, L.3
-
148
-
-
84928536653
-
Deep sequencing and SNP array analyses of pediatric T-cell acute lymphoblastic leukemia reveal NOTCH1 mutations in minor subclones and a high incidence of uniparental isodisomies affecting CDKN2A
-
Karrman K, Castor A, Behrendtz M, et al. Deep sequencing and SNP array analyses of pediatric T-cell acute lymphoblastic leukemia reveal NOTCH1 mutations in minor subclones and a high incidence of uniparental isodisomies affecting CDKN2A. J Hematol Oncol. 2015;8:42.
-
(2015)
J Hematol Oncol.
, vol.8
, pp. 42
-
-
Karrman, K.1
Castor, A.2
Behrendtz, M.3
-
149
-
-
77949527142
-
Acute T-cell leukemias remain dependent on notch signaling despite PTEN and INK4A/ARF loss
-
Medyouf H, Gao X, Armstrong F, et al. Acute T-cell leukemias remain dependent on Notch signaling despite PTEN and INK4A/ARF loss. Blood. 2010;115(6):1175-1184.
-
(2010)
Blood
, vol.115
, Issue.6
, pp. 1175-1184
-
-
Medyouf, H.1
Gao, X.2
Armstrong, F.3
-
150
-
-
84898059073
-
An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia
-
Knoechel B, Roderick JE, Williamson KE, et al. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet. 2014;46(4):364-370.
-
(2014)
Nat Genet.
, vol.46
, Issue.4
, pp. 364-370
-
-
Knoechel, B.1
Roderick, J.E.2
Williamson, K.E.3
-
151
-
-
85014951347
-
Complete hematologic response of early T-cell progenitor acute lymphoblastic leukemia to the γ-secretase inhibitor BMS-906024: Genetic and epigenetic findings in an outlier case
-
Knoechel B, Bhatt A, Pan L, et al. Complete hematologic response of early T-cell progenitor acute lymphoblastic leukemia to the γ-secretase inhibitor BMS-906024: genetic and epigenetic findings in an outlier case. Cold Spring Harb Mol Case Stud. 2015;1(1):a000539.
-
(2015)
Cold Spring Harb Mol Case Stud.
, vol.1
, Issue.1
, pp. a000539
-
-
Knoechel, B.1
Bhatt, A.2
Pan, L.3
-
152
-
-
66149129233
-
Inhibition of NOTCH signaling by gamma secretase inhibitor engages the RB pathway and elicits cell cycle exit in T-cell acute lymphoblastic leukemia cells
-
Rao SS, O'Neil J, Liberator CD, et al. Inhibition of NOTCH signaling by gamma secretase inhibitor engages the RB pathway and elicits cell cycle exit in T-cell acute lymphoblastic leukemia cells. Cancer Res. 2009;69(7):3060-3068.
-
(2009)
Cancer Res.
, vol.69
, Issue.7
, pp. 3060-3068
-
-
Rao, S.S.1
O'Neil, J.2
Liberator, C.D.3
-
153
-
-
58149336788
-
Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia
-
Real PJ, Tosello V, Palomero T, et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med. 2009;15(1):50-58.
-
(2009)
Nat Med.
, vol.15
, Issue.1
, pp. 50-58
-
-
Real, P.J.1
Tosello, V.2
Palomero, T.3
-
154
-
-
0033734887
-
Glucocorticoid mediated transcriptional repression of c-myc in apoptotic human leukemic CEM cells
-
Zhou F, Medh RD, Thompson EB. Glucocorticoid mediated transcriptional repression of c-myc in apoptotic human leukemic CEM cells. J Steroid Biochem Mol Biol. 2000; 73(5):195-202.
-
(2000)
J Steroid Biochem Mol Biol.
, vol.73
, Issue.5
, pp. 195-202
-
-
Zhou, F.1
Medh, R.D.2
Thompson, E.B.3
-
155
-
-
20544460148
-
Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells
-
van Es JH, van Gijn ME, Riccio O, et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature. 2005;435(7044):959-963.
-
(2005)
Nature
, vol.435
, Issue.7044
, pp. 959-963
-
-
Van Es, J.H.1
Van Gijn, M.E.2
Riccio, O.3
-
156
-
-
48749089743
-
Loss of intestinal crypt progenitor cells owing to inactivation of both notch1 and notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2
-
Riccio O, van Gijn ME, Bezdek AC, et al. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep. 2008;9(4): 377-383.
-
(2008)
EMBO Rep.
, vol.9
, Issue.4
, pp. 377-383
-
-
Riccio, O.1
Van Gijn, M.E.2
Bezdek, A.C.3
-
157
-
-
8444247084
-
Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation
-
Milano J, McKay J, Dagenais C, et al. Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci. 2004;82(1):341-358.
-
(2004)
Toxicol Sci.
, vol.82
, Issue.1
, pp. 341-358
-
-
Milano, J.1
McKay, J.2
Dagenais, C.3
-
158
-
-
68749088356
-
NOTCH inhibition and glucocorticoid therapy in T-cell acute lymphoblastic leukemia
-
Real PJ, Ferrando AA. NOTCH inhibition and glucocorticoid therapy in T-cell acute lymphoblastic leukemia. Leukemia. 2009;23(8): 1374-1377.
-
(2009)
Leukemia
, vol.23
, Issue.8
, pp. 1374-1377
-
-
Real, P.J.1
Ferrando, A.A.2
-
159
-
-
77953368267
-
Evaluation of selective gamma-secretase inhibitor PF-03084014 for its antitumor efficacy and gastrointestinal safety to guide optimal clinical trial design
-
Wei P, Walls M, Qiu M, et al. Evaluation of selective gamma-secretase inhibitor PF-03084014 for its antitumor efficacy and gastrointestinal safety to guide optimal clinical trial design. Mol Cancer Ther. 2010;9(6): 1618-1628.
-
(2010)
Mol Cancer Ther.
, vol.9
, Issue.6
, pp. 1618-1628
-
-
Wei, P.1
Walls, M.2
Qiu, M.3
-
160
-
-
84863786154
-
Preclinical analysis of the γ-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia
-
Samon JB, Castillo-Martin M, Hadler M, et al. Preclinical analysis of the γ-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia. Mol Cancer Ther. 2012;11(7): 1565-1575.
-
(2012)
Mol Cancer Ther.
, vol.11
, Issue.7
, pp. 1565-1575
-
-
Samon, J.B.1
Castillo-Martin, M.2
Hadler, M.3
-
161
-
-
84868377211
-
Generation of anti-notch antibodies and their application in blocking notch signalling in neural stem cells
-
Falk R, Falk A, Dyson MR, et al. Generation of anti-Notch antibodies and their application in blocking Notch signalling in neural stem cells. Methods. 2012;58(1):69-78.
-
(2012)
Methods
, vol.58
, Issue.1
, pp. 69-78
-
-
Falk, R.1
Falk, A.2
Dyson, M.R.3
-
162
-
-
84870372659
-
Specific inhibition of notch1 signaling enhances the antitumor efficacy of chemotherapy in triple negative breast cancer through reduction of cancer stem cells
-
Qiu M, Peng Q, Jiang I, et al. Specific inhibition of Notch1 signaling enhances the antitumor efficacy of chemotherapy in triple negative breast cancer through reduction of cancer stem cells. Cancer Lett. 2013;328(2):261-270.
-
(2013)
Cancer Lett.
, vol.328
, Issue.2
, pp. 261-270
-
-
Qiu, M.1
Peng, Q.2
Jiang, I.3
-
163
-
-
50949118936
-
NOTCH1 extracellular juxtamembrane expansion mutations in T-ALL
-
Sulis ML, Williams O, Palomero T, et al. NOTCH1 extracellular juxtamembrane expansion mutations in T-ALL. Blood. 2008; 112(3):733-740.
-
(2008)
Blood
, vol.112
, Issue.3
, pp. 733-740
-
-
Sulis, M.L.1
Williams, O.2
Palomero, T.3
-
164
-
-
77951139188
-
Therapeutic antibody targeting of individual notch receptors
-
Wu Y, Cain-Hom C, Choy L, et al. Therapeutic antibody targeting of individual Notch receptors. Nature. 2010;464(7291):1052-1057.
-
(2010)
Nature
, vol.464
, Issue.7291
, pp. 1052-1057
-
-
Wu, Y.1
Cain-Hom, C.2
Choy, L.3
-
165
-
-
70449671729
-
Direct inhibition of the NOTCH transcription factor complex
-
Moellering RE, Cornejo M, Davis TN, et al. Direct inhibition of the NOTCH transcription factor complex. Nature. 2009;462(7270):182-188.
-
(2009)
Nature
, vol.462
, Issue.7270
, pp. 182-188
-
-
Moellering, R.E.1
Cornejo, M.2
Davis, T.N.3
-
166
-
-
0032493302
-
The notch1 receptor is cleaved constitutively by a furin-like convertase
-
Logeat F, Bessia C, Brou C, et al. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc Natl Acad Sci USA. 1998; 95(14):8108-8112.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, Issue.14
, pp. 8108-8112
-
-
Logeat, F.1
Bessia, C.2
Brou, C.3
-
167
-
-
33745045658
-
Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes
-
Malecki MJ, Sanchez-Irizarry C, Mitchell JL, et al. Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes. Mol Cell Biol. 2006;26(12):4642-4651.
-
(2006)
Mol Cell Biol.
, vol.26
, Issue.12
, pp. 4642-4651
-
-
Malecki, M.J.1
Sanchez-Irizarry, C.2
Mitchell, J.L.3
-
168
-
-
84876451754
-
Complementary genomic screens identify SERCA as a therapeutic target in NOTCH1 mutated cancer
-
Roti G, Carlton A, Ross KN, et al. Complementary genomic screens identify SERCA as a therapeutic target in NOTCH1 mutated cancer. Cancer Cell. 2013;23(3): 390-405.
-
(2013)
Cancer Cell.
, vol.23
, Issue.3
, pp. 390-405
-
-
Roti, G.1
Carlton, A.2
Ross, K.N.3
-
169
-
-
70249128376
-
Functional enhancers at the gene-poor 8q24 cancer-linked locus
-
Jia L, Landan G, Pomerantz M, et al. Functional enhancers at the gene-poor 8q24 cancer-linked locus. PLoS Genet. 2009;5(8):e1000597.
-
(2009)
PLoS Genet.
, vol.5
, Issue.8
, pp. e1000597
-
-
Jia, L.1
Landan, G.2
Pomerantz, M.3
-
170
-
-
84925283769
-
What are super-enhancers?
-
Pott S, Lieb JD. What are super-enhancers? Nat Genet. 2015;47(1):8-12.
-
(2015)
Nat Genet.
, vol.47
, Issue.1
, pp. 8-12
-
-
Pott, S.1
Lieb, J.D.2
-
171
-
-
84888015137
-
Super-enhancers in the control of cell identity and disease
-
Hnisz D, Abraham BJ, Lee TI, et al. Super-enhancers in the control of cell identity and disease. Cell. 2013;155(4):934-947.
-
(2013)
Cell.
, vol.155
, Issue.4
, pp. 934-947
-
-
Hnisz, D.1
Abraham, B.J.2
Lee, T.I.3
-
172
-
-
84876222028
-
Selective inhibition of tumor oncogenes by disruption of super-enhancers
-
Lovén J, Hoke HA, Lin CY, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013;153(2):320-334.
-
(2013)
Cell.
, vol.153
, Issue.2
, pp. 320-334
-
-
Lovén, J.1
Hoke, H.A.2
Lin, C.Y.3
-
173
-
-
80052955256
-
BET bromodomain inhibition as a therapeutic strategy to target c-myc
-
Delmore JE, Issa GC, Lemieux ME, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146(6):904-917.
-
(2011)
Cell.
, vol.146
, Issue.6
, pp. 904-917
-
-
Delmore, J.E.1
Issa, G.C.2
Lemieux, M.E.3
-
174
-
-
84902075847
-
Therapeutic targeting of c-myc in T-cell acute lymphoblastic leukemia, T-ALL
-
Loosveld M, Castellano R, Gon S, et al. Therapeutic targeting of c-Myc in T-cell acute lymphoblastic leukemia, T-ALL. Oncotarget. 2014;5(10):3168-3172.
-
(2014)
Oncotarget.
, vol.5
, Issue.10
, pp. 3168-3172
-
-
Loosveld, M.1
Castellano, R.2
Gon, S.3
-
175
-
-
84907221438
-
RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer
-
Wolfe AL, Singh K, Zhong Y, et al. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature. 2014; 513(7516):65-70.
-
(2014)
Nature
, vol.513
, Issue.7516
, pp. 65-70
-
-
Wolfe, A.L.1
Singh, K.2
Zhong, Y.3
-
176
-
-
84964596701
-
Strategically targeting MYC in cancer
-
Posternak V, Cole MD. Strategically targeting MYC in cancer. F1000 Res. 2016;5.
-
(2016)
F1000 Res.
, pp. 5
-
-
Posternak, V.1
Cole, M.D.2
-
177
-
-
0037133575
-
Small-molecule antagonists of myc/Max dimerization inhibit myc-induced transformation of chicken embryo fibroblasts
-
Berg T, Cohen SB, Desharnais J, et al. Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc Natl Acad Sci USA. 2002;99(6):3830-3835.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, Issue.6
, pp. 3830-3835
-
-
Berg, T.1
Cohen, S.B.2
Desharnais, J.3
-
178
-
-
0142057146
-
Low molecular weight inhibitors of myc-max interaction and function
-
Yin X, Giap C, Lazo JS, Prochownik EV. Low molecular weight inhibitors of Myc-Max interaction and function. Oncogene. 2003; 22(40):6151-6159.
-
(2003)
Oncogene.
, vol.22
, Issue.40
, pp. 6151-6159
-
-
Yin, X.1
Giap, C.2
Lazo, J.S.3
Prochownik, E.V.4
|