메뉴 건너뛰기




Volumn 4, Issue 6, 2016, Pages

Dendritic cells in the immune system-history, lineages, tissues, tolerance, and immunity

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE IMMUNITY; ANIMAL; DENDRITIC CELL; HUMAN; INNATE IMMUNITY; PHYSIOLOGY;

EID: 85011688981     PISSN: None     EISSN: 21650497     Source Type: Journal    
DOI: 10.1128/microbiolspec.MCHD-0046-2016     Document Type: Article
Times cited : (30)

References (369)
  • 4
    • 0004257938 scopus 로고    scopus 로고
    • Lippincott Williams & Wilkins, Philadelphia, PA
    • Paul WE (ed). 2013. Fundamental Immunology, 7th ed. Lippincott Williams & Wilkins, Philadelphia, PA.
    • (2013) Fundamental Immunology, 7th ed
    • Paul, W.E.1
  • 5
    • 1642551748 scopus 로고    scopus 로고
    • Evolution of the immune system
    • Paul WE (ed), Lippincott Williams & Wilkins, Philadelphia, PA
    • Flajnik MF, Du Pasquier L. 2013. Evolution of the immune system, p 67-128. In Paul WE (ed), Fundamental Immunology, 7th ed. Lippincott Williams & Wilkins, Philadelphia, PA.
    • (2013) Fundamental Immunology, 7th ed , pp. 67-128
    • Flajnik, M.F.1    Du Pasquier, L.2
  • 6
    • 84866419166 scopus 로고    scopus 로고
    • Why must T cells be cross-reactive?
    • Sewell AK. 2012. Why must T cells be cross-reactive? Nat Rev Immunol 12:669-677.
    • (2012) Nat Rev Immunol , vol.12 , pp. 669-677
    • Sewell, A.K.1
  • 7
    • 0015619335 scopus 로고
    • Identification of a novel cell type in peripheral lymphoid organs of mice I. Morphology, quantitation, tissue distribution
    • Steinman RM, Cohn ZA. 1973. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137:1142-1162.
    • (1973) J Exp Med , vol.137 , pp. 1142-1162
    • Steinman, R.M.1    Cohn, Z.A.2
  • 8
    • 0016345568 scopus 로고
    • Restriction of in vitro T cellmediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system
    • Zinkernagel RM, Doherty PC. 1974. Restriction of in vitro T cellmediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248:701-702.
    • (1974) Nature , vol.248 , pp. 701-702
    • Zinkernagel, R.M.1    Doherty, P.C.2
  • 9
    • 0000810758 scopus 로고
    • Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice
    • Steinman RM, Witmer MD. 1978. Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc Natl Acad Sci U S A 75:5132-5136.
    • (1978) Proc Natl Acad Sci U S A , vol.75 , pp. 5132-5136
    • Steinman, R.M.1    Witmer, M.D.2
  • 10
    • 0018864111 scopus 로고
    • Conditions for measuring DNA synthesis in PHA stimulated human lymphocytes in 20 microliters hanging drops with various cell concentrations and periods of culture
    • Farrant J, Clark JC, Lee H, Knight SC, O'Brien J. 1980. Conditions for measuring DNA synthesis in PHA stimulated human lymphocytes in 20 microliters hanging drops with various cell concentrations and periods of culture. J Immunol Methods 33:301-312.
    • (1980) J Immunol Methods , vol.33 , pp. 301-312
    • Farrant, J.1    Lee, H.2    Knight, S.C.3    O'Brien, J.4
  • 11
    • 0040638117 scopus 로고
    • Dendritic cells are critical accessory cells for thymus-dependent antibody responses in mouse and in man
    • Inaba K, Steinman RM, Van Voorhis WC, Muramatsu S. 1983. Dendritic cells are critical accessory cells for thymus-dependent antibody responses in mouse and in man. Proc Natl Acad Sci U S A 80:6041-6045.
    • (1983) Proc Natl Acad Sci U S A , vol.80 , pp. 6041-6045
    • Inaba, K.1    Van Voorhis, W.C.2    Muramatsu, S.3
  • 12
    • 0020549639 scopus 로고
    • Dendritic cells initiate a two-stage mechanism for T lymphocyte proliferation
    • Austyn JM, Steinman RM, Weinstein DE, Granelli-Piperno A, Palladino MA. 1983. Dendritic cells initiate a two-stage mechanism for T lymphocyte proliferation. J Exp Med 157:1101-1115.
    • (1983) J Exp Med , vol.157 , pp. 1101-1115
    • Austyn, J.M.1    Weinstein, D.E.2    Granelli-Piperno, A.3    Palladino, M.A.4
  • 14
    • 0018141667 scopus 로고
    • Electron microscopy of cellular immunity reactions in B-cell deprived rabbits Thymus derived antigen reactive cells, their micro-environment and progeny in the lymph node
    • Veldman JE, Molenaar I, Keuning FJ. 1978. Electron microscopy of cellular immunity reactions in B-cell deprived rabbits. Thymus derived antigen reactive cells, their micro-environment and progeny in the lymph node. Virchows Arch B Cell Pathol 28:217-228.
    • (1978) Virchows Arch B Cell Pathol , vol.28 , pp. 217-228
    • Veldman, J.E.1    Keuning, F.J.2
  • 15
    • 0016280505 scopus 로고
    • On the interdigitating cells in the thymusdependent area of the rat spleen: a relation between the mononuclear phagocyte system and T-lymphocytes
    • Veerman AJ. 1974. On the interdigitating cells in the thymusdependent area of the rat spleen: a relation between the mononuclear phagocyte system and T-lymphocytes. Cell Tissue Res 148:247-257.
    • (1974) Cell Tissue Res , vol.148 , pp. 247-257
    • Veerman, A.J.1
  • 16
    • 0019346739 scopus 로고
    • Antigen-presenting cells, including Langerhans cells, veiled cells and interdigitating cells
    • Balfour BM, Drexhage HA, Kamperdijk EW, Hoefsmit EC. 1981. Antigen-presenting cells, including Langerhans cells, veiled cells and interdigitating cells. Ciba Found Symp 84:281-301.
    • (1981) Ciba Found Symp , vol.84 , pp. 281-301
    • Balfour, B.M.1    Kamperdijk, E.W.2    Hoefsmit, E.C.3
  • 17
    • 0025309427 scopus 로고
    • The distinct leukocyte integrins of mouse spleen dendritic cells as identified with new hamster monoclonal antibodies
    • Metlay JP, Witmer-Pack MD, Agger R, Crowley MT, Lawless D, Steinman RM. 1990. The distinct leukocyte integrins of mouse spleen dendritic cells as identified with new hamster monoclonal antibodies. J Exp Med 171:1753-1771.
    • (1990) J Exp Med , vol.171 , pp. 1753-1771
    • Metlay, J.P.1    Agger, R.2    Crowley, M.T.3    Lawless, D.4    Steinman, R.M.5
  • 18
    • 0016756272 scopus 로고
    • Continuous cultures of fused cells secreting antibody of predefined specificity
    • Köhler G, Milstein C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495-497.
    • (1975) Nature , vol.256 , pp. 495-497
    • Köhler, G.1    Milstein, C.2
  • 19
    • 0024561128 scopus 로고
    • The cell surface of mouse dendritic cells: FACS analyses of dendritic cells from different tissues including thymus
    • Crowley M, Inaba K, Witmer-Pack M, Steinman RM. 1989. The cell surface of mouse dendritic cells: FACS analyses of dendritic cells from different tissues including thymus. Cell Immunol 118:108-125.
    • (1989) Cell Immunol , vol.118 , pp. 108-125
    • Crowley, M.1    Witmer-Pack, M.2    Steinman, R.M.3
  • 21
    • 0025574626 scopus 로고
    • Thymic dendritic cells and B cells: isolation and function
    • Inaba K, Hosono M, Inaba M. 1990. Thymic dendritic cells and B cells: isolation and function. Int Rev Immunol 6:117-126.
    • (1990) Int Rev Immunol , vol.6 , pp. 117-126
    • Inaba, K.1    Inaba, M.2
  • 22
    • 0022384804 scopus 로고
    • A comparison of murine epidermal Langerhans cells with spleen dendritic cells
    • Schuler G, Romani N, Steinman RM. 1985. A comparison of murine epidermal Langerhans cells with spleen dendritic cells. J Invest Dermatol 85(Suppl):99s-106s.
    • (1985) J Invest Dermatol , vol.85 , pp. 99s-106s
    • Schuler, G.1    Steinman, R.M.2
  • 23
    • 0021917676 scopus 로고
    • Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro
    • Schuler G, Steinman RM. 1985. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med 161:526-546.
    • (1985) J Exp Med , vol.161 , pp. 526-546
    • Schuler, G.1    Steinman, R.M.2
  • 24
    • 0027305137 scopus 로고
    • Phagocytosis of antigens by Langerhans cells in vitro
    • Reis e Sousa C, Stahl PD, Austyn JM. 1993. Phagocytosis of antigens by Langerhans cells in vitro. J Exp Med 178:509-519.
    • (1993) J Exp Med , vol.178 , pp. 509-519
    • Reis e Sousa, C.1    Austyn, J.M.2
  • 25
    • 0019415855 scopus 로고
    • Demonstration and characterization of Iapositive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain
    • Hart DN, Fabre JW. 1981. Demonstration and characterization of Iapositive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain. J Exp Med 154:347-361.
    • (1981) J Exp Med , vol.154 , pp. 347-361
    • Hart, D.N.1    Fabre, J.W.2
  • 27
    • 0028220655 scopus 로고
    • Isolation and characterization of dendritic cells from mouse heart and kidney
    • Austyn JM, Hankins DF, Larsen CP, Morris PJ, Rao AS, Roake JA. 1994. Isolation and characterization of dendritic cells from mouse heart and kidney. J Immunol 152:2401-2410.
    • (1994) J Immunol , vol.152 , pp. 2401-2410
    • Austyn, J.M.1    Larsen, C.P.2    Morris, P.J.3    Rao, A.S.4    Roake, J.A.5
  • 28
    • 0030938632 scopus 로고    scopus 로고
    • Dendritic cells in the T-cell areas of lymphoid organs
    • Steinman RM, Pack M, Inaba K. 1997. Dendritic cells in the T-cell areas of lymphoid organs. Immunol Rev 156:25-37.
    • (1997) Immunol Rev , vol.156 , pp. 25-37
    • Steinman, R.M.1    Inaba, K.2
  • 29
    • 77349118455 scopus 로고    scopus 로고
    • Subsets of migrating intestinal dendritic cells
    • Milling S, Yrlid U, Cerovic V, MacPherson G. 2010. Subsets of migrating intestinal dendritic cells. Immunol Rev 234:259-267.
    • (2010) Immunol Rev , vol.234 , pp. 259-267
    • Milling, S.1    Cerovic, V.2    MacPherson, G.3
  • 30
    • 0019385399 scopus 로고
    • The rat mixed lymphocyte reaction: roles of a dendritic cell in intestinal lymph and T-cell subsets defined by monoclonal antibodies
    • Mason DW, Pugh CW, Webb M. 1981. The rat mixed lymphocyte reaction: roles of a dendritic cell in intestinal lymph and T-cell subsets defined by monoclonal antibodies. Immunology 44:75-87.
    • (1981) Immunology , vol.44 , pp. 75-87
    • Mason, D.W.1    Webb, M.2
  • 31
    • 0018898249 scopus 로고
    • Large mononuclear (veiled) cells like 'Ia-like' membrane antigens in human afferent lymph
    • Spry CJ, Pflug AJ, Janossy G, Humphrey JH. 1980. Large mononuclear (veiled) cells like 'Ia-like' membrane antigens in human afferent lymph. Clin Exp Immunol 39:750-755.
    • (1980) Clin Exp Immunol , vol.39 , pp. 750-755
    • Spry, C.J.1    Janossy, G.2    Humphrey, J.H.3
  • 32
    • 0018608567 scopus 로고
    • A study of cells present in peripheral lymph of pigs with special reference to a type of cell resembling the Langerhans cell
    • Drexhage HA, Mullink H, de Groot J, Clarke J, Balfour BM. 1979. A study of cells present in peripheral lymph of pigs with special reference to a type of cell resembling the Langerhans cell. Cell Tissue Res 202:407-430.
    • (1979) Cell Tissue Res , vol.202 , pp. 407-430
    • Drexhage, H.A.1    de Groot, J.2    Clarke, J.3    Balfour, B.M.4
  • 33
    • 0018897069 scopus 로고
    • Langerhans cells as macrophages in skin and lymphoid organs
    • Thorbecke GJ, Silberberg-Sinakin I, Flotte TJ. 1980. Langerhans cells as macrophages in skin and lymphoid organs. J Invest Dermatol 75:32-43.
    • (1980) J Invest Dermatol , vol.75 , pp. 32-43
    • Thorbecke, G.J.1    Flotte, T.J.2
  • 35
    • 0025130986 scopus 로고
    • Migration and maturation of Langerhans cells in skin transplants and explants
    • Larsen CP, Steinman RM, Witmer-Pack M, Hankins DF, Morris PJ, Austyn JM. 1990. Migration and maturation of Langerhans cells in skin transplants and explants. J Exp Med 172:1483-1493.
    • (1990) J Exp Med , vol.172 , pp. 1483-1493
    • Larsen, C.P.1    Witmer-Pack, M.2    Hankins, D.F.3    Morris, P.J.4    Austyn, J.M.5
  • 36
    • 0036151201 scopus 로고    scopus 로고
    • A close-up view of migrating Langerhans cells in the skin
    • Stoitzner P, Pfaller K, Stössel H, Romani N. 2002. A close-up view of migrating Langerhans cells in the skin. J Invest Dermatol 118:117-125.
    • (2002) J Invest Dermatol , vol.118 , pp. 117-125
    • Stoitzner, P.1    Stössel, H.2    Romani, N.3
  • 37
    • 0028048051 scopus 로고
    • Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature
    • O'Doherty U, Peng M, Gezelter S, Swiggard WJ, Betjes M, Bhardwaj N, Steinman RM. 1994. Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 82:487-493.
    • (1994) Immunology , vol.82 , pp. 487-493
    • O'Doherty, U.1    Gezelter, S.2    Swiggard, W.J.3    Betjes, M.4    Bhardwaj, N.5    Steinman, R.M.6
  • 38
    • 0023831653 scopus 로고
    • Migration patterns of dendritic cells in the mouse Traffic from the blood, and T celldependent and-independent entry to lymphoid tissues
    • Kupiec-Weglinski JW, Austyn JM, Morris PJ. 1988. Migration patterns of dendritic cells in the mouse. Traffic from the blood, and T celldependent and-independent entry to lymphoid tissues. J Exp Med 167:632-645.
    • (1988) J Exp Med , vol.167 , pp. 632-645
    • Kupiec-Weglinski, J.W.1    Morris, P.J.2
  • 39
    • 0023838007 scopus 로고
    • Migration patterns of dendritic cells in the mouse Homing to T celldependent areas of spleen, and binding within marginal zone
    • Austyn JM, Kupiec-Weglinski JW, Hankins DF, Morris PJ. 1988. Migration patterns of dendritic cells in the mouse. Homing to T celldependent areas of spleen, and binding within marginal zone. J Exp Med 167:646-651.
    • (1988) J Exp Med , vol.167 , pp. 646-651
    • Austyn, J.M.1    Hankins, D.F.2    Morris, P.J.3
  • 40
    • 0025064312 scopus 로고
    • Migration of dendritic leukocytes from cardiac allografts into host spleens A novel pathway for initiation of rejection
    • Larsen CP, Morris PJ, Austyn JM. 1990. Migration of dendritic leukocytes from cardiac allografts into host spleens. A novel pathway for initiation of rejection. J Exp Med 171:307-314.
    • (1990) J Exp Med , vol.171 , pp. 307-314
    • Larsen, C.P.1    Austyn, J.M.2
  • 41
    • 0030745046 scopus 로고    scopus 로고
    • Interleukin 1 beta and the stimulation of Langerhans cell migration: comparisons with tumour necrosis factor alpha
    • CumberbatchM, Dearman RJ, Kimber I. 1997. Interleukin 1 beta and the stimulation of Langerhans cell migration: comparisons with tumour necrosis factor alpha. Arch Dermatol Res 289:277-284.
    • (1997) Arch Dermatol Res , vol.289 , pp. 277-284
    • Cumberbatch, M.1    Kimber, I.2
  • 42
    • 0026443631 scopus 로고
    • Stimulation of Langerhans cell migration by tumor necrosis factor alpha (TNF-alpha)
    • Kimber I, Cumberbatch M. 1992. Stimulation of Langerhans cell migration by tumor necrosis factor alpha (TNF-alpha). J Invest Dermatol 99:48S-50S.
    • (1992) J Invest Dermatol , vol.99 , pp. 48S-50S
    • Kimber, I.1    Cumberbatch, M.2
  • 43
    • 0029038921 scopus 로고
    • Dendritic cell loss from nonlymphoid tissues after systemic administration of lipopolysaccharide, tumor necrosis factor, and interleukin 1
    • Roake JA, Rao AS, Morris PJ, Larsen CP, Hankins DF, Austyn JM. 1995. Dendritic cell loss from nonlymphoid tissues after systemic administration of lipopolysaccharide, tumor necrosis factor, and interleukin 1. J Exp Med 181:2237-2247.
    • (1995) J Exp Med , vol.181 , pp. 2237-2247
    • Roake, J.A.1    Morris, P.J.2    Larsen, C.P.3    Hankins, D.F.4    Austyn, J.M.5
  • 44
    • 0022474243 scopus 로고
    • Differentiation of dendritic cells in cultures of rat bone marrow cells
    • Bowers WE, Berkowitz MR. 1986. Differentiation of dendritic cells in cultures of rat bone marrow cells. J Exp Med 163:872-883.
    • (1986) J Exp Med , vol.163 , pp. 872-883
    • Bowers, W.E.1    Berkowitz, M.R.2
  • 45
    • 0026481133 scopus 로고
    • Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor
    • Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, Muramatsu S, Steinman RM. 1992. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176:1693-1702.
    • (1992) J Exp Med , vol.176 , pp. 1693-1702
    • Inaba, K.1    Romani, N.2    Aya, H.3    Deguchi, M.4    Ikehara, S.5    Muramatsu, S.6    Steinman, R.M.7
  • 46
    • 0026446156 scopus 로고
    • GM-CSF and TNF-α cooperate in the generation of dendritic Langerhans cells
    • Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J. 1992. GM-CSF and TNF-α cooperate in the generation of dendritic Langerhans cells. Nature 360:258-261.
    • (1992) Nature , vol.360 , pp. 258-261
    • Caux, C.1    Schmitt, D.2    Banchereau, J.3
  • 48
    • 0030701850 scopus 로고    scopus 로고
    • Generation of monocyte-derived dendritic cells from precursors in rhesus macaque blood
    • O'Doherty U, Ignatius R, Bhardwaj N, Pope M. 1997. Generation of monocyte-derived dendritic cells from precursors in rhesus macaque blood. J Immunol Methods 207:185-194.
    • (1997) J Immunol Methods , vol.207 , pp. 185-194
    • O'Doherty, U.1    Bhardwaj, N.2    Pope, M.3
  • 49
    • 0028289244 scopus 로고
    • Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor a
    • Sallusto F, Lanzavecchia A. 1994. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor a. J Exp Med 179:1109-1118.
    • (1994) J Exp Med , vol.179 , pp. 1109-1118
    • Sallusto, F.1    Lanzavecchia, A.2
  • 50
    • 0030603987 scopus 로고    scopus 로고
    • Generation of mature dendritic cells from human blood An improved method with special regard to clinical applicability
    • Romani N, Reider D, Heuer M, Ebner S, Kämpgen E, Eibl B, Niederwieser D, Schuler G. 1996. Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods 196:137-151.
    • (1996) J Immunol Methods , vol.196 , pp. 137-151
    • Romani, N.1    Heuer, M.2    Ebner, S.3    Kämpgen, E.4    Eibl, B.5    Niederwieser, D.6    Schuler, G.7
  • 51
    • 0023608127 scopus 로고
    • Veiled accessory cells deduced from monocytes
    • Peters JH, Ruhl S, Friedrichs D. 1987. Veiled accessory cells deduced from monocytes. Immunobiology 176:154-166.
    • (1987) Immunobiology , vol.176 , pp. 154-166
    • Peters, J.H.1    Friedrichs, D.2
  • 52
    • 84858780815 scopus 로고    scopus 로고
    • Cancer immunotherapy via dendritic cells
    • Palucka K, Banchereau J. 2012. Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12:265-277.
    • (2012) Nat Rev Cancer , vol.12 , pp. 265-277
    • Palucka, K.1    Banchereau, J.2
  • 53
    • 84987819652 scopus 로고    scopus 로고
    • Dendritic cell vaccines: a review of recent developments and their potential pediatric application
    • Elster JD, Krishnadas DK, Lucas KG. 2016. Dendritic cell vaccines: a review of recent developments and their potential pediatric application. Hum Vaccin Immunother 12:2232-2239.
    • (2016) Hum Vaccin Immunother , vol.12 , pp. 2232-2239
    • Elster, J.D.1    Lucas, K.G.2
  • 55
    • 0030949479 scopus 로고    scopus 로고
    • The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand
    • Grouard G, Rissoan MC, Filgueira L, Durand I, Banchereau J, Liu YJ. 1997. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J Exp Med 185:1101-1111.
    • (1997) J Exp Med , vol.185 , pp. 1101-1111
    • Grouard, G.1    Filgueira, L.2    Durand, I.3    Banchereau, J.4    Liu, Y.J.5
  • 56
    • 0034614894 scopus 로고    scopus 로고
    • A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes
    • Huang FP, Platt N, Wykes M, Major JR, Powell TJ, Jenkins CD, MacPherson GG. 2000. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J Exp Med 191:435-444.
    • (2000) J Exp Med , vol.191 , pp. 435-444
    • Huang, F.P.1    Wykes, M.2    Major, J.R.3    Powell, T.J.4    Jenkins, C.D.5    MacPherson, G.G.6
  • 57
    • 0019231837 scopus 로고
    • The maintenance and regulation of the humoral immune response: persisting antigen and the role of follicular antigen-binding dendritic cells as accessory cells
    • Tew JG, Phipps RP, Mandel TE. 1980. The maintenance and regulation of the humoral immune response: persisting antigen and the role of follicular antigen-binding dendritic cells as accessory cells. Immunol Rev 53:175-201.
    • (1980) Immunol Rev , vol.53 , pp. 175-201
    • Tew, J.G.1    Mandel, T.E.2
  • 58
    • 84894410471 scopus 로고    scopus 로고
    • Follicular dendritic cells: origin, phenotype, and function in health and disease
    • Aguzzi A, Kranich J, Krautler NJ. 2014. Follicular dendritic cells: origin, phenotype, and function in health and disease. Trends Immunol 35:105-113.
    • (2014) Trends Immunol , vol.35 , pp. 105-113
    • Aguzzi, A.1    Krautler, N.J.2
  • 59
    • 0017894873 scopus 로고
    • Anatomy of germinal centers in mouse spleen, with special reference to "follicular dendritic cells
    • Chen LL, Adams JC, Steinman RM. 1978. Anatomy of germinal centers in mouse spleen, with special reference to "follicular dendritic cells." J Cell Biol 77:148-164.
    • (1978) J Cell Biol , vol.77 , pp. 148-164
    • Chen, L.L.1    Steinman, R.M.2
  • 60
    • 84903387500 scopus 로고    scopus 로고
    • Follicular dendritic cells: dynamic antigen libraries
    • Heesters BA, Myers RC, Carroll MC. 2014. Follicular dendritic cells: dynamic antigen libraries. Nat Rev Immunol 14:495-504.
    • (2014) Nat Rev Immunol , vol.14 , pp. 495-504
    • Heesters, B.A.1    Carroll, M.C.2
  • 61
    • 84927607970 scopus 로고    scopus 로고
    • The varieties of immunological experience: of pathogens, stress, and dendritic cells
    • Pulendran B. 2015. The varieties of immunological experience: of pathogens, stress, and dendritic cells. Annu Rev Immunol 33:563-606.
    • (2015) Annu Rev Immunol , vol.33 , pp. 563-606
    • Pulendran, B.1
  • 62
    • 84875528275 scopus 로고    scopus 로고
    • The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting
    • Merad M, Sathe P, Helft J, Miller J, Mortha A. 2013. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31:563-604.
    • (2013) Annu Rev Immunol , vol.31 , pp. 563-604
    • Merad, M.1    Helft, J.2    Miller, J.3    Mortha, A.4
  • 65
    • 79953059788 scopus 로고    scopus 로고
    • Plasmacytoid dendritic cells: recent progress and open questions
    • Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V. 2011. Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev Immunol 29:163-183.
    • (2011) Annu Rev Immunol , vol.29 , pp. 163-183
    • Reizis, B.1    Ghosh, H.S.2    Lewis, K.L.3    Sisirak, V.4
  • 66
    • 77952239111 scopus 로고    scopus 로고
    • Ontogeny and homeostasis of Langerhans cells
    • Ginhoux F, Merad M. 2010. Ontogeny and homeostasis of Langerhans cells. Immunol Cell Biol 88:387-392.
    • (2010) Immunol Cell Biol , vol.88 , pp. 387-392
    • Ginhoux, F.1    Merad, M.2
  • 68
  • 70
    • 0030761480 scopus 로고    scopus 로고
    • flt3 ligand in cooperation with transforming growth factor-β1 potentiates in vitro development of Langerhans-type dendritic cells and allows single-cell dendritic cell cluster formation under serumfree conditions
    • Strobl H, Bello-Fernandez C, Riedl E, Pickl WF, Majdic O, Lyman SD, Knapp W. 1997. flt3 ligand in cooperation with transforming growth factor-β1 potentiates in vitro development of Langerhans-type dendritic cells and allows single-cell dendritic cell cluster formation under serumfree conditions. Blood 90:1425-1434.
    • (1997) Blood , vol.90 , pp. 1425-1434
    • Strobl, H.1    Riedl, E.2    Pickl, W.F.3    Majdic, O.4    Lyman, S.D.5    Knapp, W.6
  • 71
    • 84958087387 scopus 로고    scopus 로고
    • Generation of mouse and human dendritic cells in vitro
    • Guo X, Zhou Y, Wu T, Zhu X, Lai W, Wu L. 2016. Generation of mouse and human dendritic cells in vitro. J Immunol Methods 432:24-29.
    • (2016) J Immunol Methods , vol.432 , pp. 24-29
    • Guo, X.1    Wu, T.2    Zhu, X.3    Lai, W.4    Wu, L.5
  • 73
    • 84934291436 scopus 로고    scopus 로고
    • Fate mapping of dendritic cells
    • Poltorak MP, Schraml BU. 2015. Fate mapping of dendritic cells. Front Immunol 6:199. doi:10.3389/fimmu.2015.00199.
    • (2015) Front Immunol , vol.6 , pp. 199
    • Poltorak, M.P.1    Schraml, B.U.2
  • 74
    • 77349093593 scopus 로고    scopus 로고
    • Defining dendritic cells by conditional and constitutive cell ablation
    • Bar-On L, Jung S. 2010. Defining dendritic cells by conditional and constitutive cell ablation. Immunol Rev 234:76-89.
    • (2010) Immunol Rev , vol.234 , pp. 76-89
    • Bar-On, L.1    Jung, S.2
  • 75
    • 85058248273 scopus 로고    scopus 로고
    • DC ablation in mice: promises, pitfalls, and challenges
    • Bennett CL, Clausen BE. 2007. DC ablation in mice: promises, pitfalls, and challenges. Trends Immunol 28:525-531.
    • (2007) Trends Immunol , vol.28 , pp. 525-531
    • Bennett, C.L.1    Clausen, B.E.2
  • 76
    • 80052083555 scopus 로고    scopus 로고
    • Human dendritic cell deficiency: the missing ID?
    • Collin M, Bigley V, Haniffa M, Hambleton S. 2011. Human dendritic cell deficiency: the missing ID? Nat Rev Immunol 11:575-583.
    • (2011) Nat Rev Immunol , vol.11 , pp. 575-583
    • Collin, M.1    Haniffa, M.2    Hambleton, S.3
  • 78
    • 84904394558 scopus 로고    scopus 로고
    • Lymphoid tissue and plasmacytoid dendritic cells and macrophages do not share a common macrophagedendritic cell-restricted progenitor
    • Sathe P, Metcalf D, Vremec D, Naik SH, Langdon WY, Huntington ND, Wu L, Shortman K. 2014. Lymphoid tissue and plasmacytoid dendritic cells and macrophages do not share a common macrophagedendritic cell-restricted progenitor. Immunity 41:104-115.
    • (2014) Immunity , vol.41 , pp. 104-115
    • Sathe, P.1    Vremec, D.2    Naik, S.H.3    Langdon, W.Y.4    Huntington, N.D.5    Wu, L.6    Shortman, K.7
  • 81
    • 85011703842 scopus 로고    scopus 로고
    • Dendritic cells
    • Paul WE (ed), Lippincott Williams & Wilkins, Philadelphia, PA
    • Liu K, Nussenzweig MC. 2013. Dendritic cells, p 381-384. In Paul WE (ed), Fundamental Immunology, 7th ed. Lippincott Williams & Wilkins, Philadelphia, PA.
    • (2013) Fundamental Immunology, 7th ed , pp. 381-384
    • Liu, K.1    Nussenzweig, M.C.2
  • 83
    • 77349086110 scopus 로고    scopus 로고
    • Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets
    • Crozat K, Guiton R, Guilliams M, Henri S, Baranek T, Schwartz-Cornil I, Malissen B, Dalod M. 2010. Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets. Immunol Rev 234:177-198.
    • (2010) Immunol Rev , vol.234 , pp. 177-198
    • Crozat, K.1    Guilliams, M.2    Henri, S.3    Baranek, T.4    Schwartz-Cornil, I.5    Malissen, B.6    Dalod, M.7
  • 85
    • 0036063457 scopus 로고    scopus 로고
    • The development of primary and secondary lymphoid tissues in the nurse shark Ginglymostoma cirratum: B-cell zones precede dendritic cell immigration and T-cell zone formation during ontogeny of the spleen
    • Rumfelt LL, McKinney EC, Taylor E, Flajnik MF. 2002. The development of primary and secondary lymphoid tissues in the nurse shark Ginglymostoma cirratum: B-cell zones precede dendritic cell immigration and T-cell zone formation during ontogeny of the spleen. Scand J Immunol 56:130-148.
    • (2002) Scand J Immunol , vol.56 , pp. 130-148
    • Rumfelt, L.L.1    Taylor, E.2    Flajnik, M.F.3
  • 86
    • 0021951630 scopus 로고
    • Ultrastructural changes in the spleen of the natterjack, Bufo calamita, after antigenic stimulation
    • García Barrutia MS, Villena A, Gomariz RP, Razquin B, Zapata A. 1985. Ultrastructural changes in the spleen of the natterjack, Bufo calamita, after antigenic stimulation. Cell Tissue Res 239:435-441.
    • (1985) Cell Tissue Res , vol.239 , pp. 435-441
    • García Barrutia, M.S.1    Gomariz, R.P.2    Razquin, B.3    Zapata, A.4
  • 88
    • 84875537655 scopus 로고    scopus 로고
    • Molecular control of steady-state dendritic cell maturation and immune homeostasis
    • Hammer GE, Ma A. 2013. Molecular control of steady-state dendritic cell maturation and immune homeostasis. Annu Rev Immunol 31:743-791.
    • (2013) Annu Rev Immunol , vol.31 , pp. 743-791
    • Hammer, G.E.1    Ma, A.2
  • 90
    • 84867911430 scopus 로고    scopus 로고
    • Dendritic cells sequester antigenic epitopes for prolonged periods in the absence of antigen-encoding genetic information
    • Li C, Buckwalter MR, Basu S, Garg M, Chang J, Srivastava PK. 2012. Dendritic cells sequester antigenic epitopes for prolonged periods in the absence of antigen-encoding genetic information. Proc Natl Acad Sci U S A 109:17543-17548.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 17543-17548
    • Li, C.1    Basu, S.2    Garg, M.3    Chang, J.4    Srivastava, P.K.5
  • 91
    • 42649091089 scopus 로고    scopus 로고
    • Migration of dendritic cell subsets and their precursors
    • Randolph GJ, Ochando J, Partida-Sánchez S. 2008. Migration of dendritic cell subsets and their precursors. Annu Rev Immunol 26:293-316.
    • (2008) Annu Rev Immunol , vol.26 , pp. 293-316
    • Randolph, G.J.1    Partida-Sánchez, S.2
  • 92
    • 33645995745 scopus 로고    scopus 로고
    • The multiple personalities of the chemokine receptor CCR7 in dendritic cells
    • Sánchez-Sánchez N, Riol-Blanco L, Rodríguez-Fernández JL. 2006. The multiple personalities of the chemokine receptor CCR7 in dendritic cells. J Immunol 176:5153-5159.
    • (2006) J Immunol , vol.176 , pp. 5153-5159
    • Sánchez-Sánchez, N.1    Rodríguez-Fernández, J.L.2
  • 94
    • 45549107134 scopus 로고    scopus 로고
    • Revival of CD8+ Treg-mediated suppression
    • Smith TRF, Kumar V. 2008. Revival of CD8+ Treg-mediated suppression. Trends Immunol 29:337-342.
    • (2008) Trends Immunol , vol.29 , pp. 337-342
    • Smith, T.R.F.1    Kumar, V.2
  • 95
    • 0034547923 scopus 로고    scopus 로고
    • BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood
    • Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, Buck DW, Schmitz J. 2000. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 165:6037-6046.
    • (2000) J Immunol , vol.165 , pp. 6037-6046
    • Dzionek, A.1    Schmidt, P.2    Cremer, S.3    Zysk, M.4    Miltenyi, S.5    Buck, D.W.6    Schmitz, J.7
  • 96
    • 33746859068 scopus 로고    scopus 로고
    • Thrombin-cofactor interactions: structural insights into regulatory mechanisms
    • Adams TE, Huntington JA. 2006. Thrombin-cofactor interactions: structural insights into regulatory mechanisms. Arterioscler Thromb Vasc Biol 26:1738-1745.
    • (2006) Arterioscler Thromb Vasc Biol , vol.26 , pp. 1738-1745
    • Adams, T.E.1    Huntington, J.A.2
  • 97
    • 84925874356 scopus 로고    scopus 로고
    • Myeloid dendritic cells: development, functions, and role in atherosclerotic inflammation
    • Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV. 2015. Myeloid dendritic cells: development, functions, and role in atherosclerotic inflammation. Immunobiology 220:833-844.
    • (2015) Immunobiology , vol.220 , pp. 833-844
    • Chistiakov, D.A.1    Orekhov, A.N.2    Bobryshev, Y.V.3
  • 99
  • 100
    • 0026453281 scopus 로고
    • Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis
    • Savill J, Hogg N, Ren Y, Haslett C. 1992. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest 90:1513-1522.
    • (1992) J Clin Invest , vol.90 , pp. 1513-1522
    • Savill, J.1    Ren, Y.2    Haslett, C.3
  • 101
    • 0035902476 scopus 로고    scopus 로고
    • A role for CD36 in the regulation of dendritic cell function
    • Urban BC, Willcox N, Roberts DJ. 2001. A role for CD36 in the regulation of dendritic cell function. Proc Natl Acad Sci U S A 98:8750-8755.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , pp. 8750-8755
    • Urban, B.C.1    Roberts, D.J.2
  • 102
    • 84929702667 scopus 로고    scopus 로고
    • Structure of the complex of F-actin and DNGR-1, a C-type lectin receptor involved in dendritic cell cross-presentation of dead cell-associated antigens
    • Hanc P, Fujii T, Iborra S, Yamada Y, Huotari J, Schulz O, Ahrens S, Kjær S, Way M, Sancho D, Namba K, Reis e Sousa C. 2015. Structure of the complex of F-actin and DNGR-1, a C-type lectin receptor involved in dendritic cell cross-presentation of dead cell-associated antigens. Immunity 42:839-849.
    • (2015) Immunity , vol.42 , pp. 839-849
    • Hanc, P.1    Iborra, S.2    Yamada, Y.3    Huotari, J.4    Schulz, O.5    Ahrens, S.6    Kjær, S.7    Way, M.8    Sancho, D.9    Namba, K.10    Reis e Sousa, C.11
  • 103
    • 84931275201 scopus 로고    scopus 로고
    • pH-dependent recognition of apoptotic and necrotic cells by the human dendritic cell receptor DEC205
    • Cao L, Shi X, Chang H, Zhang Q, He Y. 2015. pH-dependent recognition of apoptotic and necrotic cells by the human dendritic cell receptor DEC205. Proc Natl Acad Sci U S A 112:7237-7242.
    • (2015) Proc Natl Acad Sci U S A , vol.112 , pp. 7237-7242
    • Cao, L.1    Chang, H.2    Zhang, Q.3    He, Y.4
  • 108
    • 84893657950 scopus 로고    scopus 로고
    • The function of Fcγ receptors in dendritic cells and macrophages
    • Guilliams M, Bruhns P, Saeys Y, Hammad H, Lambrecht BN. 2014. The function of Fcγ receptors in dendritic cells and macrophages. Nat Rev Immunol 14:94-108.
    • (2014) Nat Rev Immunol , vol.14 , pp. 94-108
    • Guilliams, M.1    Saeys, Y.2    Hammad, H.3    Lambrecht, B.N.4
  • 109
    • 84890933681 scopus 로고    scopus 로고
    • CD103-CD11b+ dendritic cells regulate the sensitivity of CD4 T-cell responses to bacterial flagellin
    • Atif SM, Uematsu S, Akira S, McSorley SJ. 2014. CD103-CD11b+ dendritic cells regulate the sensitivity of CD4 T-cell responses to bacterial flagellin. Mucosal Immunol 7:68-77.
    • (2014) Mucosal Immunol , vol.7 , pp. 68-77
    • Atif, S.M.1    Akira, S.2    McSorley, S.J.3
  • 110
    • 84925441813 scopus 로고    scopus 로고
    • Control of adaptive immunity by the innate immune system
    • Iwasaki A, Medzhitov R. 2015. Control of adaptive immunity by the innate immune system. Nat Immunol 16:343-353.
    • (2015) Nat Immunol , vol.16 , pp. 343-353
    • Iwasaki, A.1    Medzhitov, R.2
  • 111
    • 84964402750 scopus 로고    scopus 로고
    • Clec4A4 is a regulatory receptor for dendritic cells that impairs inflammation and T-cell immunity
    • Uto T, Fukaya T, Takagi H, Arimura K, Nakamura T, Kojima N, Malissen B, Sato K. 2016. Clec4A4 is a regulatory receptor for dendritic cells that impairs inflammation and T-cell immunity. Nat Commun 7:11273. doi:10.1038/ncomms11273.
    • (2016) Nat Commun , vol.7 , pp. 11273
    • Uto, T.1    Takagi, H.2    Arimura, K.3    Nakamura, T.4    Kojima, N.5    Malissen, B.6    Sato, K.7
  • 114
    • 84937967684 scopus 로고    scopus 로고
    • The multifaceted biology of plasmacytoid dendritic cells
    • Swiecki M, Colonna M. 2015. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol 15:471-485.
    • (2015) Nat Rev Immunol , vol.15 , pp. 471-485
    • Swiecki, M.1    Colonna, M.2
  • 115
    • 79960835493 scopus 로고    scopus 로고
    • Plasmacytoid dendritic cells: one-trick ponies or workhorses of the immune system?
    • Reizis B, Colonna M, Trinchieri G, Barrat F, Gilliet M. 2011. Plasmacytoid dendritic cells: one-trick ponies or workhorses of the immune system? Nat Rev Immunol 11:558-565.
    • (2011) Nat Rev Immunol , vol.11 , pp. 558-565
    • Reizis, B.1    Trinchieri, G.2    Barrat, F.3    Gilliet, M.4
  • 116
    • 3142749595 scopus 로고    scopus 로고
    • Plasmacytoid dendritic cells activate lymphoid-specific genetic programs irrespective of their cellular origin
    • Shigematsu H, Reizis B, Iwasaki H, Mizuno S, Hu D, Traver D, Leder P, Sakaguchi N, Akashi K. 2004. Plasmacytoid dendritic cells activate lymphoid-specific genetic programs irrespective of their cellular origin. Immunity 21:43-53.
    • (2004) Immunity , vol.21 , pp. 43-53
    • Shigematsu, H.1    Iwasaki, H.2    Mizuno, S.3    Hu, D.4    Traver, D.5    Leder, P.6    Sakaguchi, N.7    Akashi, K.8
  • 119
    • 33745026450 scopus 로고    scopus 로고
    • Plasmacytoid dendritic cell-specific receptor ILT7-FceRIγ inhibits Toll-like receptor-induced interferon production
    • Cao W, Rosen DB, Ito T, Bover L, Bao M, Watanabe G, Yao Z, Zhang L, Lanier LL, Liu YJ. 2006. Plasmacytoid dendritic cell-specific receptor ILT7-FceRIγ inhibits Toll-like receptor-induced interferon production. J Exp Med 203:1399-1405.
    • (2006) J Exp Med , vol.203 , pp. 1399-1405
    • Cao, W.1    Ito, T.2    Bover, L.3    Bao, M.4    Watanabe, G.5    Yao, Z.6    Zhang, L.7    Lanier, L.L.8    Liu, Y.J.9
  • 120
    • 84859417315 scopus 로고    scopus 로고
    • Type I IFN drives a distinctive dendritic cell maturation phenotype that allows continued class II MHC synthesis and antigen processing
    • Simmons DP, Wearsch PA, Canaday DH, Meyerson HJ, Liu YC, Wang Y, Boom WH, Harding CV. 2012. Type I IFN drives a distinctive dendritic cell maturation phenotype that allows continued class II MHC synthesis and antigen processing. J Immunol 188:3116-3126.
    • (2012) J Immunol , vol.188 , pp. 3116-3126
    • Simmons, D.P.1    Canaday, D.H.2    Meyerson, H.J.3    Liu, Y.C.4    Wang, Y.5    Boom, W.H.6    Harding, C.V.7
  • 121
    • 77958528420 scopus 로고    scopus 로고
    • Mechanisms regulating dendritic cell specification and development
    • Watowich SS, Liu YJ. 2010. Mechanisms regulating dendritic cell specification and development. Immunol Rev 238:76-92.
    • (2010) Immunol Rev , vol.238 , pp. 76-92
    • Watowich, S.S.1    Liu, Y.J.2
  • 122
    • 84883779888 scopus 로고    scopus 로고
    • Tolerogenic and activatory plasmacytoid dendritic cells in autoimmunity
    • Guéry L, Hugues S. 2013. Tolerogenic and activatory plasmacytoid dendritic cells in autoimmunity. Front Immunol 4:59. doi:10.3389/fimmu.2013.00059.
    • (2013) Front Immunol , vol.4 , pp. 59
    • Guéry, L.1    Hugues, S.2
  • 126
    • 0034028817 scopus 로고    scopus 로고
    • Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion
    • Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR. 2000. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106-4114.
    • (2000) Mol Cell Biol , vol.20 , pp. 4106-4114
    • Jung, S.1    Graemmel, P.2    Sunshine, M.J.3    Kreutzberg, G.W.4    Sher, A.5    Littman, D.R.6
  • 127
    • 0019784850 scopus 로고
    • F4/80, a monoclonal antibody directed specifically against the mouse macrophage
    • Austyn JM, Gordon S. 1981. F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol 11:805-815.
    • (1981) Eur J Immunol , vol.11 , pp. 805-815
    • Austyn, J.M.1    Gordon, S.2
  • 128
    • 79960762809 scopus 로고    scopus 로고
    • F4/80: the macrophage-specific adhesion-GPCR and its role in immunoregulation
    • Lin HH, Stacey M, Stein-Streilein J, Gordon S. 2010. F4/80: the macrophage-specific adhesion-GPCR and its role in immunoregulation. Adv Exp Med Biol 706:149-156.
    • (2010) Adv Exp Med Biol , vol.706 , pp. 149-156
    • Lin, H.H.1    Stein-Streilein, J.2    Gordon, S.3
  • 130
    • 0037963473 scopus 로고    scopus 로고
    • Blood monocytes consist of two principal subsets with distinct migratory properties
    • Geissmann F, Jung S, Littman DR. 2003. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71-82.
    • (2003) Immunity , vol.19 , pp. 71-82
    • Geissmann, F.1    Littman, D.R.2
  • 131
    • 76249095169 scopus 로고    scopus 로고
    • Development of monocytes, macrophages, and dendritic cells
    • Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. 2010. Development of monocytes, macrophages, and dendritic cells. Science 327:656-661.
    • (2010) Science , vol.327 , pp. 656-661
    • Geissmann, F.1    Jung, S.2    Sieweke, M.H.3    Merad, M.4    Ley, K.5
  • 132
    • 84931561466 scopus 로고    scopus 로고
    • Dendritic cells and monocyte-derived cells: two complementary and integrated functional systems
    • Schlitzer A, McGovern N, Ginhoux F. 2015. Dendritic cells and monocyte-derived cells: two complementary and integrated functional systems. Semin Cell Dev Biol 41:9-22.
    • (2015) Semin Cell Dev Biol , vol.41 , pp. 9-22
    • Schlitzer, A.1    Ginhoux, F.2
  • 134
    • 84961828733 scopus 로고    scopus 로고
    • Monocyte-mediated defense against bacteria, fungi, and parasites
    • Lauvau G, Loke P, Hohl TM. 2015. Monocyte-mediated defense against bacteria, fungi, and parasites. Semin Immunol 27:397-409.
    • (2015) Semin Immunol , vol.27 , pp. 397-409
    • Lauvau, G.1    Hohl, T.M.2
  • 135
    • 71749100858 scopus 로고    scopus 로고
    • Inflammatorymonocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection
    • Hohl TM, Rivera A, Lipuma L, Gallegos A, Shi C, Mack M, Pamer EG. 2009. Inflammatorymonocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection. Cell Host Microbe 6:470-481.
    • (2009) Cell Host Microbe , vol.6 , pp. 470-481
    • Hohl, T.M.1    Lipuma, L.2    Gallegos, A.3    Shi, C.4    Mack, M.5    Pamer, E.G.6
  • 137
    • 84866489404 scopus 로고    scopus 로고
    • + T and innate NK lymphocytes independent of cognate antigen during microbial pathogen invasion
    • + T and innate NK lymphocytes independent of cognate antigen during microbial pathogen invasion. Immunity 37:549-562.
    • (2012) Immunity , vol.37 , pp. 549-562
    • Soudja, S.M.1    Marie, J.C.2    Lauvau, G.3
  • 139
    • 0032538522 scopus 로고    scopus 로고
    • Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking
    • Randolph GJ, Beaulieu S, Lebecque S, Steinman RM, Muller WA. 1998. Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282:480-483.
    • (1998) Science , vol.282 , pp. 480-483
    • Randolph, G.J.1    Lebecque, S.2    Steinman, R.M.3    Muller, W.A.4
  • 140
    • 0037135659 scopus 로고    scopus 로고
    • +) subset of human monocytes preferentially becomes migratory dendritic cells in amodel tissue setting
    • +) subset of human monocytes preferentially becomes migratory dendritic cells in amodel tissue setting. J Exp Med 196:517-527.
    • (2002) J Exp Med , vol.196 , pp. 517-527
    • Randolph, G.J.1    Liebman, R.M.2    Schäkel, K.3
  • 141
    • 0033403066 scopus 로고    scopus 로고
    • Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo
    • Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA. 1999. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11:753-761.
    • (1999) Immunity , vol.11 , pp. 753-761
    • Randolph, G.J.1    Robbiani, D.F.2    Steinman, R.M.3    Muller, W.A.4
  • 142
    • 0031036944 scopus 로고    scopus 로고
    • A novel migration pathway for rat dendritic cells from the blood: hepatic sinusoids-lymph translocation
    • Kudo S, Matsuno K, Ezaki T, Ogawa M. 1997. A novel migration pathway for rat dendritic cells from the blood: hepatic sinusoids-lymph translocation. J Exp Med 185:777-784.
    • (1997) J Exp Med , vol.185 , pp. 777-784
    • Kudo, S.1    Ezaki, T.2    Ogawa, M.3
  • 143
    • 0029911692 scopus 로고    scopus 로고
    • A life stage of particle-laden rat dendritic cells in vivo: their terminal division, active phagocytosis, and translocation from the liver to the draining lymph
    • Matsuno K, Ezaki T, Kudo S, Uehara Y. 1996. A life stage of particle-laden rat dendritic cells in vivo: their terminal division, active phagocytosis, and translocation from the liver to the draining lymph. J Exp Med 183:1865-1878.
    • (1996) J Exp Med , vol.183 , pp. 1865-1878
    • Matsuno, K.1    Kudo, S.2    Uehara, Y.3
  • 145
    • 84892875254 scopus 로고    scopus 로고
    • Monocytederived dendritic cells: targets as potent antigen-presenting cells for the design of vaccines against infectious diseases
    • Qu C, Brinck-Jensen N-S, Zang M, Chen K. 2014. Monocytederived dendritic cells: targets as potent antigen-presenting cells for the design of vaccines against infectious diseases. Int J Infect Dis 19:1-5.
    • (2014) Int J Infect Dis , vol.19 , pp. 1-5
    • Qu, C.1    Zang, M.2    Chen, K.3
  • 147
    • 73949120263 scopus 로고    scopus 로고
    • External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers
    • Kubo A, Nagao K, Yokouchi M, Sasaki H, Amagai M. 2009. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J Exp Med 206:2937-2946.
    • (2009) J Exp Med , vol.206 , pp. 2937-2946
    • Kubo, A.1    Yokouchi, M.2    Sasaki, H.3    Amagai, M.4
  • 149
    • 84861462335 scopus 로고    scopus 로고
    • Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells
    • Seneschal J, Clark RA, Gehad A, Baecher-Allan CM, Kupper TS. 2012. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity 36:873-884.
    • (2012) Immunity , vol.36 , pp. 873-884
    • Seneschal, J.1    Gehad, A.2    Baecher-Allan, C.M.3    Kupper, T.S.4
  • 153
    • 84901358607 scopus 로고    scopus 로고
    • Monocytes and macrophages: developmental pathways and tissue homeostasis
    • Ginhoux F, Jung S. 2014. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14:392-404.
    • (2014) Nat Rev Immunol , vol.14 , pp. 392-404
    • Ginhoux, F.1    Jung, S.2
  • 154
    • 84940984138 scopus 로고    scopus 로고
    • Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells
    • Sheng J, Ruedl C, Karjalainen K. 2015. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 43:382-393.
    • (2015) Immunity , vol.43 , pp. 382-393
    • Sheng, J.1    Karjalainen, K.2
  • 156
    • 84959376253 scopus 로고    scopus 로고
    • Maternal T-cell engraftment interferes with human leukocyte antigen typing in severe combined immunodeficiency
    • Liu C, Duffy B, Bednarski JJ, Calhoun C, Lay L, Rundblad B, Payton JE, Mohanakumar T. 2016. Maternal T-cell engraftment interferes with human leukocyte antigen typing in severe combined immunodeficiency. Am J Clin Pathol 145:251-257.
    • (2016) Am J Clin Pathol , vol.145 , pp. 251-257
    • Liu, C.1    Bednarski, J.J.2    Calhoun, C.3    Lay, L.4    Rundblad, B.5    Payton, J.E.6    Mohanakumar, T.7
  • 157
    • 0030862399 scopus 로고    scopus 로고
    • Human severe combined immunodeficiency: genetic, phenotypic, and functional diversity in one hundred eight infants
    • Buckley RH, Schiff RI, Schiff SE, Markert ML, Williams LW, Harville TO, Roberts JL, Puck JM. 1997. Human severe combined immunodeficiency: genetic, phenotypic, and functional diversity in one hundred eight infants. J Pediatr 130:378-387.
    • (1997) J Pediatr , vol.130 , pp. 378-387
    • Buckley, R.H.1    Schiff, S.E.2    Markert, M.L.3    Williams, L.W.4    Harville, T.O.5    Roberts, J.L.6    Puck, J.M.7
  • 158
    • 66349102333 scopus 로고    scopus 로고
    • Cell migration from baby to mother
    • Dawe GS, Tan XW, Xiao ZC. 2007. Cell migration from baby to mother. Cell Adhes Migr 1:19-27.
    • (2007) Cell Adhes Migr , vol.1 , pp. 19-27
    • Dawe, G.S.1    Xiao, Z.C.2
  • 159
    • 79551517869 scopus 로고    scopus 로고
    • Maternal T cells limit engraftment after in utero hematopoietic cell transplantation in mice
    • Nijagal A, Wegorzewska M, Jarvis E, Le T, Tang Q, MacKenzie TC. 2011. Maternal T cells limit engraftment after in utero hematopoietic cell transplantation in mice. J Clin Invest 121:582-592.
    • (2011) J Clin Invest , vol.121 , pp. 582-592
    • Nijagal, A.1    Jarvis, E.2    Le, T.3    Tang, Q.4    MacKenzie, T.C.5
  • 160
    • 84901368457 scopus 로고    scopus 로고
    • The origins and functions of dendritic cells and macrophages in the skin
    • Malissen B, Tamoutounour S, Henri S. 2014. The origins and functions of dendritic cells and macrophages in the skin. Nat Rev Immunol 14:417-428.
    • (2014) Nat Rev Immunol , vol.14 , pp. 417-428
    • Malissen, B.1    Henri, S.2
  • 161
    • 84879493422 scopus 로고    scopus 로고
    • A crucial role for retinoic acid in the development of Notchdependent murine splenic CD8-CD4-and CD4+ dendritic cells
    • Beijer MR, Molenaar R, Goverse G, Mebius RE, Kraal G, den Haan JM. 2013. A crucial role for retinoic acid in the development of Notchdependent murine splenic CD8-CD4-and CD4+ dendritic cells. Eur J Immunol 43:1608-1616.
    • (2013) Eur J Immunol , vol.43 , pp. 1608-1616
    • Beijer, M.R.1    Goverse, G.2    Mebius, R.E.3    Kraal, G.4    den Haan, J.M.5
  • 162
    • 0035871705 scopus 로고    scopus 로고
    • +, and double-negative Peyer's patch dendritic cells
    • +, and double-negative Peyer's patch dendritic cells. J Immunol 166:4884-4890.
    • (2001) J Immunol , vol.166 , pp. 4884-4890
    • Iwasaki, A.1    Kelsall, B.L.2
  • 163
    • 84898470940 scopus 로고    scopus 로고
    • A population of Langerin-positive dendritic cells in murine Peyer's patches involved in sampling β-glucan microparticles
    • De Jesus M, Ostroff GR, Levitz SM, Bartling TR, Mantis NJ. 2014. A population of Langerin-positive dendritic cells in murine Peyer's patches involved in sampling β-glucan microparticles. PLoS One 9:e91002. doi:10.1371/journal.pone.0091002.
    • (2014) PLoS One , vol.9
    • De Jesus, M.1    Levitz, S.M.2    Bartling, T.R.3    Mantis, N.J.4
  • 164
    • 84901410158 scopus 로고    scopus 로고
    • Intestinal macrophages and dendritic cells: what's the difference?
    • Cerovic V, Bain CC, Mowat AM, Milling SW. 2014. Intestinal macrophages and dendritic cells: what's the difference? Trends Immunol 35:270-277.
    • (2014) Trends Immunol , vol.35 , pp. 270-277
    • Cerovic, V.1    Mowat, A.M.2    Milling, S.W.3
  • 165
    • 84911928449 scopus 로고    scopus 로고
    • Dialogue between skin microbiota and immunity
    • Belkaid Y, Segre JA. 2014. Dialogue between skin microbiota and immunity. Science 346:954-959.
    • (2014) Science , vol.346 , pp. 954-959
    • Belkaid, Y.1    Segre, J.A.2
  • 166
    • 84879338344 scopus 로고    scopus 로고
    • Compartmentalized and systemic control of tissue immunity by commensals
    • Belkaid Y, Naik S. 2013. Compartmentalized and systemic control of tissue immunity by commensals. Nat Immunol 14:646-653.
    • (2013) Nat Immunol , vol.14 , pp. 646-653
    • Belkaid, Y.1    Naik, S.2
  • 167
    • 84878597238 scopus 로고    scopus 로고
    • Effector and memory T cell responses to commensal bacteria
    • Belkaid Y, Bouladoux N, Hand TW. 2013. Effector and memory T cell responses to commensal bacteria. Trends Immunol 34:299-306.
    • (2013) Trends Immunol , vol.34 , pp. 299-306
    • Belkaid, Y.1    Hand, T.W.2
  • 168
    • 84975495674 scopus 로고    scopus 로고
    • Emerging roles for antigen presentation in establishing host-microbiome symbiosis
    • Bessman NJ, Sonnenberg GF. 2016. Emerging roles for antigen presentation in establishing host-microbiome symbiosis. Immunol Rev 272:139-150.
    • (2016) Immunol Rev , vol.272 , pp. 139-150
    • Bessman, N.J.1    Sonnenberg, G.F.2
  • 170
    • 84907758643 scopus 로고    scopus 로고
    • Homeostatic inflammation in innate immunity
    • Miyake K, Kaisho T. 2014. Homeostatic inflammation in innate immunity. Curr Opin Immunol 30:85-90.
    • (2014) Curr Opin Immunol , vol.30 , pp. 85-90
    • Miyake, K.1    Kaisho, T.2
  • 171
    • 84886684533 scopus 로고    scopus 로고
    • The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells
    • Heath WR, Carbone FR. 2013. The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol 14:978-985.
    • (2013) Nat Immunol , vol.14 , pp. 978-985
    • Heath, W.R.1    Carbone, F.R.2
  • 172
    • 70349448402 scopus 로고    scopus 로고
    • Skin immune sentinels in health and disease
    • Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ. 2009. Skin immune sentinels in health and disease. Nat Rev Immunol 9:679-691.
    • (2009) Nat Rev Immunol , vol.9 , pp. 679-691
    • Nestle, F.O.1    Qin, J.Z.2    Nickoloff, B.J.3
  • 176
    • 84862908998 scopus 로고    scopus 로고
    • Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome
    • Ouchi T, Kubo A, Yokouchi M, Adachi T, Kobayashi T, Kitashima DY, Fujii H, Clausen BE, Koyasu S, Amagai M, Nagao K. 2011. Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome. J Exp Med 208:2607-2613.
    • (2011) J Exp Med , vol.208 , pp. 2607-2613
    • Ouchi, T.1    Yokouchi, M.2    Adachi, T.3    Kobayashi, T.4    Kitashima, D.Y.5    Fujii, H.6    Clausen, B.E.7    Koyasu, S.8    Amagai, M.9    Nagao, K.10
  • 178
    • 84856826706 scopus 로고    scopus 로고
    • CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization
    • Langlet C, Tamoutounour S, Henri S, Luche H, Ardouin L, Grégoire C, Malissen B, Guilliams M. 2012. CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization. J Immunol 188:1751-1760.
    • (2012) J Immunol , vol.188 , pp. 1751-1760
    • Langlet, C.1    Henri, S.2    Luche, H.3    Ardouin, L.4    Grégoire, C.5    Malissen, B.6    Guilliams, M.7
  • 180
    • 81855203183 scopus 로고    scopus 로고
    • Dendritic cells control lymphocyte entry to lymph nodes through high endothelial venules
    • Moussion C, Girard JP. 2011. Dendritic cells control lymphocyte entry to lymph nodes through high endothelial venules. Nature 479:542-546.
    • (2011) Nature , vol.479 , pp. 542-546
    • Moussion, C.1    Girard, J.P.2
  • 181
    • 0035158575 scopus 로고    scopus 로고
    • Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues
    • Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, Littman DR, Rollins BJ, Zweerink H, Rot A, von Andrian UH. 2001. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J Exp Med 194:1361-1373.
    • (2001) J Exp Med , vol.194 , pp. 1361-1373
    • Palframan, R.T.1    Cheng, G.2    Weninger, W.3    Luo, Y.4    Dorf, M.5    Littman, D.R.6    Rollins, B.J.7    Zweerink, H.8    Rot, A.9    von Andrian, U.H.10
  • 182
    • 70249085585 scopus 로고    scopus 로고
    • Stromal cell contributions to the homeostasis and functionality of the immune system
    • Mueller SN, Germain RN. 2009. Stromal cell contributions to the homeostasis and functionality of the immune system. Nat Rev Immunol 9:618-629.
    • (2009) Nat Rev Immunol , vol.9 , pp. 618-629
    • Mueller, S.N.1    Germain, R.N.2
  • 183
    • 84930211068 scopus 로고    scopus 로고
    • Spatiotemporal basis of innate and adaptive immunity in secondary lymphoid tissue
    • Qi H, Kastenmüller W, Germain RN. 2014. Spatiotemporal basis of innate and adaptive immunity in secondary lymphoid tissue. Annu Rev Cell Dev Biol 30:141-167.
    • (2014) Annu Rev Cell Dev Biol , vol.30 , pp. 141-167
    • Qi, H.1    Germain, R.N.2
  • 184
    • 84871424854 scopus 로고    scopus 로고
    • Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity
    • Malhotra D, Fletcher AL, Turley SJ. 2013. Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity. Immunol Rev 251:160-176.
    • (2013) Immunol Rev , vol.251 , pp. 160-176
    • Malhotra, D.1    Turley, S.J.2
  • 186
    • 0034693949 scopus 로고    scopus 로고
    • Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex
    • Gretz JE, Norbury CC, Anderson AO, Proudfoot AE, Shaw S. 2000. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J Exp Med 192:1425-1440.
    • (2000) J Exp Med , vol.192 , pp. 1425-1440
    • Gretz, J.E.1    Anderson, A.O.2    Proudfoot, A.E.3    Shaw, S.4
  • 188
    • 84963610867 scopus 로고    scopus 로고
    • Dendritic cells in remodeling of lymph nodes during immune responses
    • Acton SE, Reis e Sousa C. 2016. Dendritic cells in remodeling of lymph nodes during immune responses. Immunol Rev 271:221-229.
    • (2016) Immunol Rev , vol.271 , pp. 221-229
    • Acton, S.E.1    Reis e Sousa, C.2
  • 190
    • 12444297666 scopus 로고    scopus 로고
    • The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node
    • Sixt M, Kanazawa N, Selg M, Samson T, Roos G, Reinhardt DP, Pabst R, Lutz MB, Sorokin L. 2005. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22:19-29.
    • (2005) Immunity , vol.22 , pp. 19-29
    • Sixt, M.1    Selg, M.2    Samson, T.3    Roos, G.4    Reinhardt, D.P.5    Pabst, R.6    Lutz, M.B.7    Sorokin, L.8
  • 191
    • 58149280443 scopus 로고    scopus 로고
    • Lymph-migrating, tissue-derived dendritic cells are minor constituents within steady-state lymph nodes
    • Jakubzick C, BogunovicM, Bonito AJ, Kuan EL, MeradM, Randolph GJ. 2008. Lymph-migrating, tissue-derived dendritic cells are minor constituents within steady-state lymph nodes. J Exp Med 205:2839-2850.
    • (2008) J Exp Med , vol.205 , pp. 2839-2850
    • Jakubzick, C.1    Bonito, A.J.2    Kuan, E.L.3    Merad, M.4    Randolph, G.J.5
  • 192
    • 84865394054 scopus 로고    scopus 로고
    • Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes
    • Gerner MY, Kastenmuller W, Ifrim I, Kabat J, Germain RN. 2012. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 37:364-376.
    • (2012) Immunity , vol.37 , pp. 364-376
    • Gerner, M.Y.1    Ifrim, I.2    Kabat, J.3    Germain, R.N.4
  • 193
    • 84921269829 scopus 로고    scopus 로고
    • Strategically localized dendritic cells promote rapid T cell responses to lymph-borne particulate antigens
    • Gerner MY, Torabi-Parizi P, Germain RN. 2015. Strategically localized dendritic cells promote rapid T cell responses to lymph-borne particulate antigens. Immunity 42:172-185.
    • (2015) Immunity , vol.42 , pp. 172-185
    • Gerner, M.Y.1    Germain, R.N.2
  • 195
    • 4444329364 scopus 로고    scopus 로고
    • Visualizing the first 50 hr of the primary immune response to a soluble antigen
    • Catron DM, Itano AA, Pape KA, Mueller DL, Jenkins MK. 2004. Visualizing the first 50 hr of the primary immune response to a soluble antigen. Immunity 21:341-347.
    • (2004) Immunity , vol.21 , pp. 341-347
    • Catron, D.M.1    Pape, K.A.2    Mueller, D.L.3    Jenkins, M.K.4
  • 196
    • 0037769037 scopus 로고    scopus 로고
    • Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cellmediated immunity
    • Itano AA, McSorley SJ, Reinhardt RL, Ehst BD, Ingulli E, Rudensky AY, Jenkins MK. 2003. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cellmediated immunity. Immunity 19:47-57.
    • (2003) Immunity , vol.19 , pp. 47-57
    • Itano, A.A.1    Reinhardt, R.L.2    Ehst, B.D.3    Ingulli, E.4    Rudensky, A.Y.5    Jenkins, M.K.6
  • 197
    • 84929492824 scopus 로고    scopus 로고
    • Threedimensional gradients of cytokine signaling between T cells
    • Thurley K, Gerecht D, Friedmann E, Höfer T. 2015. Threedimensional gradients of cytokine signaling between T cells. PLoS Comput Biol 11:e1004206. doi:10.1371/journal.pcbi.1004206.
    • (2015) PLoS Comput Biol , vol.11
    • Thurley, K.1    Friedmann, E.2    Höfer, T.3
  • 201
    • 84921442345 scopus 로고    scopus 로고
    • CD40L induces functional tunneling nanotube networks exclusively in dendritic cells programmed by mediators of type 1 immunity
    • Zaccard CR, Watkins SC, Kalinski P, Fecek RJ, Yates AL, Salter RD, Ayyavoo V, Rinaldo CR, Mailliard RB. 2015. CD40L induces functional tunneling nanotube networks exclusively in dendritic cells programmed by mediators of type 1 immunity. J Immunol 194:1047-1056.
    • (2015) J Immunol , vol.194 , pp. 1047-1056
    • Zaccard, C.R.1    Kalinski, P.2    Fecek, R.J.3    Yates, A.L.4    Salter, R.D.5    Ayyavoo, V.6    Rinaldo, C.R.7    Mailliard, R.B.8
  • 202
    • 52949090785 scopus 로고    scopus 로고
    • Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence
    • Junt T, Scandella E, Ludewig B. 2008. Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nat Rev Immunol 8:764-775.
    • (2008) Nat Rev Immunol , vol.8 , pp. 764-775
    • Junt, T.1    Ludewig, B.2
  • 203
    • 84928685251 scopus 로고    scopus 로고
    • + macrophages are sufficient for priming of CTLs with specificities left out by cross-priming dendritic cells
    • + macrophages are sufficient for priming of CTLs with specificities left out by cross-priming dendritic cells. Proc Natl Acad Sci U S A 112:5461-5466.
    • (2015) Proc Natl Acad Sci U S A , vol.112 , pp. 5461-5466
    • Bernhard, C.A.1    Kochanek, S.2    Brocker, T.3
  • 204
    • 84902590323 scopus 로고    scopus 로고
    • Macrophages in intestinal homeostasis and inflammation
    • Bain CC, Mowat AM. 2014. Macrophages in intestinal homeostasis and inflammation. Immunol Rev 260:102-117.
    • (2014) Immunol Rev , vol.260 , pp. 102-117
    • Bain, C.C.1    Mowat, A.M.2
  • 205
    • 79956063855 scopus 로고    scopus 로고
    • Peyer's patches: the immune sensors of the intestine
    • Jung C, Hugot J-P, Barreau F. 2010. Peyer's patches: the immune sensors of the intestine. Int J Inflamm 2010:823710.
    • (2010) Int J Inflamm , vol.2010
    • Jung, C.1    Barreau, F.2
  • 207
    • 84921786777 scopus 로고    scopus 로고
    • Regional specialization within the intestinal immune system
    • Mowat AM, Agace WW. 2014. Regional specialization within the intestinal immune system. Nat Rev Immunol 14:667-685.
    • (2014) Nat Rev Immunol , vol.14 , pp. 667-685
    • Mowat, A.M.1    Agace, W.W.2
  • 208
    • 0020510488 scopus 로고
    • Characterization of nonlymphoid cells derived from rat peripheral lymph
    • Pugh CW, MacPherson GG, Steer HW. 1983. Characterization of nonlymphoid cells derived from rat peripheral lymph. J Exp Med 157:1758-1779.
    • (1983) J Exp Med , vol.157 , pp. 1758-1779
    • Pugh, C.W.1    Steer, H.W.2
  • 210
    • 84894107663 scopus 로고    scopus 로고
    • Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1+ macrophages to CD103+ dendritic cells
    • Mazzini E, Massimiliano L, Penna G, Rescigno M. 2014. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1+ macrophages to CD103+ dendritic cells. Immunity 40:248-261.
    • (2014) Immunity , vol.40 , pp. 248-261
    • Mazzini, E.1    Penna, G.2    Rescigno, M.3
  • 213
    • 33845910419 scopus 로고    scopus 로고
    • Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement
    • ChieppaM, Rescigno M, Huang AYC, Germain RN. 2006. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J Exp Med 203:2841-2852.
    • (2006) J Exp Med , vol.203 , pp. 2841-2852
    • Chieppa, M.1    Huang, A.Y.C.2    Germain, R.N.3
  • 215
    • 84894073083 scopus 로고    scopus 로고
    • Intestinal macrophages and DCs close the gap on tolerance
    • Shakhar G, Kolesnikov M. 2014. Intestinal macrophages and DCs close the gap on tolerance. Immunity 40:171-173.
    • (2014) Immunity , vol.40 , pp. 171-173
    • Shakhar, G.1    Kolesnikov, M.2
  • 219
    • 44349167059 scopus 로고    scopus 로고
    • Dendritic cells in intestinal immune regulation
    • Coombes JL, Powrie F. 2008. Dendritic cells in intestinal immune regulation. Nat Rev Immunol 8:435-446.
    • (2008) Nat Rev Immunol , vol.8 , pp. 435-446
    • Coombes, J.L.1    Powrie, F.2
  • 222
    • 77956175900 scopus 로고    scopus 로고
    • New insights into the development of lymphoid tissues
    • van de Pavert SA, Mebius RE. 2010. New insights into the development of lymphoid tissues. Nat Rev Immunol 10:664-674.
    • (2010) Nat Rev Immunol , vol.10 , pp. 664-674
    • van de Pavert, S.A.1    Mebius, R.E.2
  • 223
    • 84964403670 scopus 로고    scopus 로고
    • Development and maintenance of intestinal regulatory T cells
    • Tanoue T, Atarashi K, Honda K. 2016. Development and maintenance of intestinal regulatory T cells. Nat Rev Immunol 16:295-309.
    • (2016) Nat Rev Immunol , vol.16 , pp. 295-309
    • Tanoue, T.1    Honda, K.2
  • 224
    • 33645054315 scopus 로고    scopus 로고
    • Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells
    • Worbs T, Bode U, Yan S, Hoffmann MW, Hintzen G, Bernhardt G, Förster R, Pabst O. 2006. Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J Exp Med 203:519-527.
    • (2006) J Exp Med , vol.203 , pp. 519-527
    • Worbs, T.1    Yan, S.2    Hoffmann, M.W.3    Hintzen, G.4    Bernhardt, G.5    Förster, R.6    Pabst, O.7
  • 225
    • 33645068450 scopus 로고    scopus 로고
    • Mesenteric lymph nodes at the center of immune anatomy
    • Macpherson AJ, Smith K. 2006. Mesenteric lymph nodes at the center of immune anatomy. J Exp Med 203:497-500.
    • (2006) J Exp Med , vol.203 , pp. 497-500
    • Macpherson, A.J.1    Smith, K.2
  • 229
    • 84963516373 scopus 로고    scopus 로고
    • Peyer's patches: organizing B-cell responses at the intestinal frontier
    • Reboldi A, Cyster JG. 2016. Peyer's patches: organizing B-cell responses at the intestinal frontier. Immunol Rev 271:230-245.
    • (2016) Immunol Rev , vol.271 , pp. 230-245
    • Reboldi, A.1    Cyster, J.G.2
  • 232
    • 84857635052 scopus 로고    scopus 로고
    • Peyer's patch dendritic cells sample antigens by extending dendrites through M cell-specific transcellular pores
    • Lelouard H, Fallet M, de Bovis B, Méresse S, Gorvel J-P. 2012. Peyer's patch dendritic cells sample antigens by extending dendrites through M cell-specific transcellular pores. Gastroenterology 142:592-601. e3. doi:10.1053/j.gastro.2011.11.039.
    • (2012) Gastroenterology , vol.142 , pp. 592.e3-601.e3
    • Lelouard, H.1    de Bovis, B.2    Méresse, S.3    Gorvel, J.-P.4
  • 233
    • 84941655059 scopus 로고    scopus 로고
    • Independence Day for IgA
    • Macpherson AJ, McCoy KD. 2015. Independence Day for IgA. Immunity 43:416-418.
    • (2015) Immunity , vol.43 , pp. 416-418
    • Macpherson, A.J.1    McCoy, K.D.2
  • 234
    • 84975221232 scopus 로고    scopus 로고
    • Dendritic cells in lung immunopathology
    • Cook PC, MacDonald AS. 2016. Dendritic cells in lung immunopathology. Semin Immunopathol 38:449-460.
    • (2016) Semin Immunopathol , vol.38 , pp. 449-460
    • Cook, P.C.1    MacDonald, A.S.2
  • 235
    • 84925283050 scopus 로고    scopus 로고
    • The development and function of lung-resident macrophages and dendritic cells
    • Kopf M, Schneider C, Nobs SP. 2015. The development and function of lung-resident macrophages and dendritic cells. Nat Immunol 16:36-44.
    • (2015) Nat Immunol , vol.16 , pp. 36-44
    • Kopf, M.1    Nobs, S.P.2
  • 236
    • 32044465280 scopus 로고    scopus 로고
    • 7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins
    • 7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J Immunol 176: 2161-2172.
    • (2006) J Immunol , vol.176 , pp. 2161-2172
    • Sung, S.-S.J.1    Rose, C.E.2    Gaskin, F.3    Ju, S.-T.4    Beaty, S.R.5
  • 237
    • 84862893004 scopus 로고    scopus 로고
    • Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung
    • Thornton EE, Looney MR, Bose O, Sen D, Sheppard D, Locksley R, Huang X, Krummel MF. 2012. Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung. J Exp Med 209:1183-1199.
    • (2012) J Exp Med , vol.209 , pp. 1183-1199
    • Thornton, E.E.1    Bose, O.2    Sen, D.3    Sheppard, D.4    Locksley, R.5    Huang, X.6    Krummel, M.F.7
  • 240
    • 17844406608 scopus 로고    scopus 로고
    • HLA-DR-and CD11c-positive dendritic cells penetrate beyond well-developed epithelial tight junctions in human nasal mucosa of allergic rhinitis
    • Takano K, Kojima T, Go M, Murata M, Ichimiya S, Himi T, Sawada N. 2005. HLA-DR-and CD11c-positive dendritic cells penetrate beyond well-developed epithelial tight junctions in human nasal mucosa of allergic rhinitis. J Histochem Cytochem 53:611-619.
    • (2005) J Histochem Cytochem , vol.53 , pp. 611-619
    • Takano, K.1    Go, M.2    Murata, M.3    Ichimiya, S.4    Himi, T.5    Sawada, N.6
  • 242
    • 84942824463 scopus 로고    scopus 로고
    • The nature of immune responses to urinary tract infections
    • Abraham SN, Miao Y. 2015. The nature of immune responses to urinary tract infections. Nat Rev Immunol 15:655-663.
    • (2015) Nat Rev Immunol , vol.15 , pp. 655-663
    • Abraham, S.N.1    Miao, Y.2
  • 243
    • 84964801506 scopus 로고    scopus 로고
    • Dendritic cells and their role in cardiovascular diseases: a view on human studies
    • Dieterlen MT, John K, Reichenspurner H, Mohr FW, Barten MJ. 2016. Dendritic cells and their role in cardiovascular diseases: a view on human studies. J Immunol Res 2016:5946807. doi:10.1155/2016/5946807.
    • (2016) J Immunol Res , vol.2016
    • Dieterlen, M.T.1    Reichenspurner, H.2    Mohr, F.W.3    Barten, M.J.4
  • 244
    • 84895797926 scopus 로고    scopus 로고
    • Dendritic cell subset distributions in the aorta in healthy and atherosclerotic mice
    • Busch M, Westhofen TC, Koch M, Lutz MB, Zernecke A. 2014. Dendritic cell subset distributions in the aorta in healthy and atherosclerotic mice. PLoS One 9:e88452. doi:10.1371/journal.pone.0088452.
    • (2014) PLoS One , vol.9
    • Busch, M.1    Koch, M.2    Lutz, M.B.3    Zernecke, A.4
  • 246
    • 84908249695 scopus 로고    scopus 로고
    • Dendritic cells and macrophages in the kidney: a spectrum of good and evil
    • Rogers NM, Ferenbach DA, Isenberg JS, Thomson AW, Hughes J. 2014. Dendritic cells and macrophages in the kidney: a spectrum of good and evil. Nat Rev Nephrol 10:625-643.
    • (2014) Nat Rev Nephrol , vol.10 , pp. 625-643
    • Rogers, N.M.1    Isenberg, J.S.2    Thomson, A.W.3    Hughes, J.4
  • 247
    • 84946554139 scopus 로고    scopus 로고
    • The debate about dendritic cells and macrophages in the kidney
    • Gottschalk C, Kurts C. 2015. The debate about dendritic cells and macrophages in the kidney. Front Immunol 6:435. doi:10.3389/fimmu.2015.00435.
    • (2015) Front Immunol , vol.6 , pp. 435
    • Gottschalk, C.1    Kurts, C.2
  • 248
    • 84908134654 scopus 로고    scopus 로고
    • A minor subset of Batf3-dependent antigen-presenting cells in islets of Langerhans is essential for the development of autoimmune diabetes
    • Ferris ST, Carrero JA, Mohan JF, Calderon B, Murphy KM, Unanue ER. 2014. A minor subset of Batf3-dependent antigen-presenting cells in islets of Langerhans is essential for the development of autoimmune diabetes. Immunity 41:657-669.
    • (2014) Immunity , vol.41 , pp. 657-669
    • Ferris, S.T.1    Mohan, J.F.2    Calderon, B.3    Murphy, K.M.4    Unanue, E.R.5
  • 250
    • 0025179677 scopus 로고
    • Donor dendritic leukocytes migrate from cardiac allografts into recipients' spleens
    • Larsen CP, Morris PJ, Austyn JM. 1990. Donor dendritic leukocytes migrate from cardiac allografts into recipients' spleens. Transplant Proc 22:1943-1944.
    • (1990) Transplant Proc , vol.22 , pp. 1943-1944
    • Larsen, C.P.1    Austyn, J.M.2
  • 251
    • 84958568177 scopus 로고    scopus 로고
    • Lymphatic system in cardiovascular medicine
    • Aspelund A, Robciuc MR, Karaman S, Makinen T, Alitalo K. 2016. Lymphatic system in cardiovascular medicine. Circ Res 118:515-530.
    • (2016) Circ Res , vol.118 , pp. 515-530
    • Aspelund, A.1    Karaman, S.2    Makinen, T.3    Alitalo, K.4
  • 253
    • 84895103273 scopus 로고    scopus 로고
    • Antigen-bearing dendritic cells from the sublingual mucosa recirculate to distant systemic lymphoid organs to prime mucosal CD8 T cells
    • Hervouet C, Luci C, Bekri S, Juhel T, Bihl F, Braud VM, Czerkinsky C, Anjuère F. 2014. Antigen-bearing dendritic cells from the sublingual mucosa recirculate to distant systemic lymphoid organs to prime mucosal CD8 T cells. Mucosal Immunol 7:280-291.
    • (2014) Mucosal Immunol , vol.7 , pp. 280-291
    • Hervouet, C.1    Bekri, S.2    Juhel, T.3    Bihl, F.4    Braud, V.M.5    Czerkinsky, C.6    Anjuère, F.7
  • 254
    • 84931389354 scopus 로고    scopus 로고
    • Human spleen microanatomy: why mice do not suffice
    • Steiniger BS. 2015. Human spleen microanatomy: why mice do not suffice. Immunology 145:334-346.
    • (2015) Immunology , vol.145 , pp. 334-346
    • Steiniger, B.S.1
  • 255
    • 84879033554 scopus 로고    scopus 로고
    • EBI2-mediated bridging channel positioning supports splenic dendritic cell homeostasis and particulate antigen capture
    • Yi T, Cyster JG. 2013. EBI2-mediated bridging channel positioning supports splenic dendritic cell homeostasis and particulate antigen capture. eLife 2:e00757. doi:10.7554/eLife.00757.
    • (2013) ELife , vol.2
    • Yi, T.1    Cyster, J.G.2
  • 256
    • 84876545322 scopus 로고    scopus 로고
    • The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells
    • Gatto D, Wood K, Caminschi I, Murphy-Durland D, Schofield P, Christ D, Karupiah G, Brink R. 2013. The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells. Nat Immunol 14:446-453.
    • (2013) Nat Immunol , vol.14 , pp. 446-453
    • Gatto, D.1    Caminschi, I.2    Murphy-Durland, D.3    Schofield, P.4    Christ, D.5    Karupiah, G.6    Brink, R.7
  • 257
    • 84944676154 scopus 로고    scopus 로고
    • Splenic dendritic cells survey red blood cells for missing self-CD47 to trigger adaptive immune responses
    • Yi T, Li J, Chen H, Wu J, An J, Xu Y, Hu Y, Lowell CA, Cyster JG. 2015. Splenic dendritic cells survey red blood cells for missing self-CD47 to trigger adaptive immune responses. Immunity 43:764-775.
    • (2015) Immunity , vol.43 , pp. 764-775
    • Yi, T.1    Chen, H.2    Wu, J.3    An, J.4    Xu, Y.5    Hu, Y.6    Lowell, C.A.7    Cyster, J.G.8
  • 258
    • 64249168015 scopus 로고    scopus 로고
    • + dendritic cells localized in the marginal zone is responsible for tolerance to cell-associated antigens
    • + dendritic cells localized in the marginal zone is responsible for tolerance to cell-associated antigens. J Immunol 182: 4127-4136.
    • (2009) J Immunol , vol.182 , pp. 4127-4136
    • Qiu, C.H.1    Kaise, H.2    Kitamura, H.3    Ohara, O.4    Tanaka, M.5
  • 259
    • 84937901340 scopus 로고    scopus 로고
    • Pituitary dendritic cells communicate immune pathogenic signals
    • Glennon E, Kaunzner UW, Gagnidze K, McEwen BS, Bulloch K. 2015. Pituitary dendritic cells communicate immune pathogenic signals. Brain Behav Immun 50:232-240.
    • (2015) Brain Behav Immun , vol.50 , pp. 232-240
    • Glennon, E.1    Gagnidze, K.2    McEwen, B.S.3    Bulloch, K.4
  • 261
    • 84942469639 scopus 로고    scopus 로고
    • A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules
    • Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K. 2015. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212:991-999.
    • (2015) J Exp Med , vol.212 , pp. 991-999
    • Aspelund, A.1    Proulx, S.T.2    Karlsen, T.V.3    Karaman, S.4    Detmar, M.5    Wiig, H.6    Alitalo, K.7
  • 262
    • 85011708247 scopus 로고    scopus 로고
    • Neurophysiologic reflex mechanisms in immunology
    • Paul WE (ed), Lippincott Williams & Wilkins, Philadelphia, PA
    • Chavan SS, Tracey KJ. 2013. Neurophysiologic reflex mechanisms in immunology, p 850-862. In Paul WE (ed), Fundamental Immunology, 7th ed. Lippincott Williams & Wilkins, Philadelphia, PA.
    • (2013) Fundamental Immunology, 7th ed , pp. 850-862
    • Chavan, S.S.1    Tracey, K.J.2
  • 263
    • 67650333217 scopus 로고    scopus 로고
    • Principles and clinical implications of the brain-gut-enteric microbiota axis
    • Rhee SH, Pothoulakis C, Mayer EA. 2009. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6:306-314.
    • (2009) Nat Rev Gastroenterol Hepatol , vol.6 , pp. 306-314
    • Rhee, S.H.1    Mayer, E.A.2
  • 264
    • 84932105591 scopus 로고    scopus 로고
    • Crosstalk between the nociceptive and immune systems in host defence and disease
    • McMahon SB, La Russa F, Bennett DLH. 2015. Crosstalk between the nociceptive and immune systems in host defence and disease. Nat Rev Neurosci 16:389-402.
    • (2015) Nat Rev Neurosci , vol.16 , pp. 389-402
    • McMahon, S.B.1    Bennett, D.L.H.2
  • 266
    • 84947780176 scopus 로고    scopus 로고
    • Dendritic cells and macrophages neurally hard-wired in the lymph node
    • Wülfing C, Günther HS. 2015. Dendritic cells and macrophages neurally hard-wired in the lymph node. Sci Rep 5:16866. doi:10.1038/srep16866.
    • (2015) Sci Rep , vol.5 , pp. 16866
    • Wülfing, C.1    Günther, H.S.2
  • 267
    • 84893115383 scopus 로고    scopus 로고
    • Innate immunity to Toxoplasma gondii infection
    • Yarovinsky F. 2014. Innate immunity to Toxoplasma gondii infection. Nat Rev Immunol 14:109-121.
    • (2014) Nat Rev Immunol , vol.14 , pp. 109-121
    • Yarovinsky, F.1
  • 268
    • 33845300155 scopus 로고    scopus 로고
    • Human TLR11 gene is repressed due to its probable interaction with profilin expressed in human
    • Balenga NA, Balenga NA. 2007. Human TLR11 gene is repressed due to its probable interaction with profilin expressed in human. Med Hypotheses 68:456.
    • (2007) Med Hypotheses , vol.68 , pp. 456
    • Balenga, N.A.1    Balenga, N.A.2
  • 270
    • 84938506526 scopus 로고    scopus 로고
    • Regulatory T-cell development in the human thymus
    • Caramalho í, Nunes-Cabaço H, Foxall RB, Sousa AE. 2015. Regulatory T-cell development in the human thymus. Front Immunol 6:395. doi:10.3389/fimmu.2015.00395.
    • (2015) Front Immunol , vol.6 , pp. 395
    • Caramalho, Í.1    Foxall, R.B.2    Sousa, A.E.3
  • 272
    • 84978634373 scopus 로고    scopus 로고
    • T cell receptor signalling in the control of regulatory T cell differentiation and function
    • Li MO, Rudensky AY. 2016. T cell receptor signalling in the control of regulatory T cell differentiation and function. Nat Rev Immunol 16:220-233.
    • (2016) Nat Rev Immunol , vol.16 , pp. 220-233
    • Li, M.O.1    Rudensky, A.Y.2
  • 274
    • 84901487911 scopus 로고    scopus 로고
    • Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see)
    • Klein L, Kyewski B, Allen PM, Hogquist KA. 2014. Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat Rev Immunol 14:377-391.
    • (2014) Nat Rev Immunol , vol.14 , pp. 377-391
    • Klein, L.1    Allen, P.M.2    Hogquist, K.A.3
  • 275
    • 84963626429 scopus 로고    scopus 로고
    • T-cell selection in the thymus: a spatial and temporal perspective
    • Kurd N, Robey EA. 2016. T-cell selection in the thymus: a spatial and temporal perspective. Immunol Rev 271:114-126.
    • (2016) Immunol Rev , vol.271 , pp. 114-126
    • Kurd, N.1    Robey, E.A.2
  • 276
    • 84946214324 scopus 로고    scopus 로고
    • Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance
    • Takaba H, Morishita Y, Tomofuji Y, Danks L, Nitta T, Komatsu N, Kodama T, Takayanagi H. 2015. Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance. Cell 163:975-987.
    • (2015) Cell , vol.163 , pp. 975-987
    • Takaba, H.1    Tomofuji, Y.2    Danks, L.3    Nitta, T.4    Komatsu, N.5    Kodama, T.6    Takayanagi, H.7
  • 279
    • 84963533918 scopus 로고    scopus 로고
    • Development of T-cell tolerance utilizes both cell-autonomous and cooperative presentation of self-antigen
    • Perry JS, Hsieh CS. 2016. Development of T-cell tolerance utilizes both cell-autonomous and cooperative presentation of self-antigen. Immunol Rev 271:141-155.
    • (2016) Immunol Rev , vol.271 , pp. 141-155
    • Perry, J.S.1    Hsieh, C.S.2
  • 280
    • 84907982768 scopus 로고    scopus 로고
    • Distinct contributions of Aire and antigenpresenting-cell subsets to the generation of self-tolerance in the thymus
    • Perry JS, Lio CW, Kau AL, Nutsch K, Yang Z, Gordon JI, Murphy KM, Hsieh CS. 2014. Distinct contributions of Aire and antigenpresenting-cell subsets to the generation of self-tolerance in the thymus. Immunity 41:414-426.
    • (2014) Immunity , vol.41 , pp. 414-426
    • Perry, J.S.1    Kau, A.L.2    Nutsch, K.3    Yang, Z.4    Gordon, J.I.5    Murphy, K.M.6    Hsieh, C.S.7
  • 281
    • 84963569487 scopus 로고    scopus 로고
    • Autoimmune regulator and selftolerance-molecular and clinical aspects
    • Abramson J, Husebye ES. 2016. Autoimmune regulator and selftolerance-molecular and clinical aspects. Immunol Rev 271:127-140.
    • (2016) Immunol Rev , vol.271 , pp. 127-140
    • Abramson, J.1    Husebye, E.S.2
  • 283
    • 58149388025 scopus 로고    scopus 로고
    • The impact of circulating dendritic cells on the development and differentiation of thymocytes
    • Proietto AI, van Dommelen S, Wu L. 2009. The impact of circulating dendritic cells on the development and differentiation of thymocytes. Immunol Cell Biol 87:39-45.
    • (2009) Immunol Cell Biol , vol.87 , pp. 39-45
    • Proietto, A.I.1    van Dommelen, S.2    Wu, L.3
  • 284
    • 84861212351 scopus 로고    scopus 로고
    • Detection of an autoreactive T-cell population within the polyclonal repertoire that undergoes distinct autoimmune regulator (Aire)-mediated selection
    • Taniguchi RT, DeVoss JJ, Moon JJ, Sidney J, Sette A, Jenkins MK, Anderson MS. 2012. Detection of an autoreactive T-cell population within the polyclonal repertoire that undergoes distinct autoimmune regulator (Aire)-mediated selection. Proc Natl Acad Sci U S A 109:7847-7852.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 7847-7852
    • Taniguchi, R.T.1    Moon, J.J.2    Sidney, J.3    Sette, A.4    Jenkins, M.K.5    Anderson, M.S.6
  • 286
    • 84949557845 scopus 로고    scopus 로고
    • The role of dendritic cells in central tolerance
    • Oh J, Shin JS. 2015. The role of dendritic cells in central tolerance. Immune Netw 15:111-120.
    • (2015) Immune Netw , vol.15 , pp. 111-120
    • Oh, J.1    Shin, J.S.2
  • 287
    • 84946573599 scopus 로고    scopus 로고
    • Role of dendritic cells in the induction of lymphocyte tolerance
    • Osorio F, Fuentes C, López MN, Salazar-Onfray F, González FE. 2015. Role of dendritic cells in the induction of lymphocyte tolerance. Front Immunol 6:535. doi:10.3389/fimmu.2015.00535.
    • (2015) Front Immunol , vol.6 , pp. 535
    • Osorio, F.1    López, M.N.2    Salazar-Onfray, F.3    González, F.E.4
  • 288
    • 84928581675 scopus 로고    scopus 로고
    • Immune tolerance Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance
    • Yang S, Fujikado N, Kolodin D, Benoist C, Mathis D. 2015. Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348:589-594.
    • (2015) Science , vol.348 , pp. 589-594
    • Yang, S.1    Kolodin, D.2    Benoist, C.3    Mathis, D.4
  • 291
    • 33748866909 scopus 로고    scopus 로고
    • Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus
    • Bonasio R, Scimone ML, Schaerli P, Grabie N, Lichtman AH, von Andrian UH. 2006. Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nat Immunol 7:1092-1100.
    • (2006) Nat Immunol , vol.7 , pp. 1092-1100
    • Bonasio, R.1    Schaerli, P.2    Grabie, N.3    Lichtman, A.H.4    von Andrian, U.H.5
  • 292
    • 70349230989 scopus 로고    scopus 로고
    • + conventional dendritic cells to central tolerance against blood-borne antigens in a CCR2-dependent manner
    • + conventional dendritic cells to central tolerance against blood-borne antigens in a CCR2-dependent manner. J Immunol 183: 3053-3063.
    • (2009) J Immunol , vol.183 , pp. 3053-3063
    • Baba, T.1    Mukaida, N.2
  • 293
    • 63449133991 scopus 로고    scopus 로고
    • Thymus-homing peripheral dendritic cells constitute two of the three major subsets of dendritic cells in the steady-state thymus
    • Li J, Park J, Foss D, Goldschneider I. 2009. Thymus-homing peripheral dendritic cells constitute two of the three major subsets of dendritic cells in the steady-state thymus. J Exp Med 206:607-622.
    • (2009) J Exp Med , vol.206 , pp. 607-622
    • Li, J.1    Foss, D.2    Goldschneider, I.3
  • 294
    • 0037378671 scopus 로고    scopus 로고
    • Two developmentally distinct populations of dendritic cells inhabit the adult mouse thymus: demonstration by differential importation of hematogenous precursors under steady state conditions
    • Donskoy E, Goldschneider I. 2003. Two developmentally distinct populations of dendritic cells inhabit the adult mouse thymus: demonstration by differential importation of hematogenous precursors under steady state conditions. J Immunol 170:3514-3521.
    • (2003) J Immunol , vol.170 , pp. 3514-3521
    • Donskoy, E.1    Goldschneider, I.2
  • 295
    • 79251572366 scopus 로고    scopus 로고
    • + conventional dendritic cells in presentation of blood-derived lysozyme by MHC class II proteins
    • + conventional dendritic cells in presentation of blood-derived lysozyme by MHC class II proteins. J Immunol 186:1421-1431.
    • (2011) J Immunol , vol.186 , pp. 1421-1431
    • Atibalentja, D.F.1    Unanue, E.R.2
  • 297
    • 84883679673 scopus 로고    scopus 로고
    • Peripherally induced Tregs-role in immune homeostasis and autoimmunity
    • Yadav M, Stephan S, Bluestone JA. 2013. Peripherally induced Tregs-role in immune homeostasis and autoimmunity. Front Immunol 4:232. doi:10.3389/fimmu.2013.00232.
    • (2013) Front Immunol , vol.4 , pp. 232
    • Yadav, M.1    Bluestone, J.A.2
  • 298
    • 58149373958 scopus 로고    scopus 로고
    • Peripheral T cells in the thymus: have they just lost their way or do they do something?
    • Bosco N, Kirberg J, Ceredig R, Agenès F. 2009. Peripheral T cells in the thymus: have they just lost their way or do they do something? Immunol Cell Biol 87:50-57.
    • (2009) Immunol Cell Biol , vol.87 , pp. 50-57
    • Bosco, N.1    Ceredig, R.2    Agenès, F.3
  • 299
    • 84859416933 scopus 로고    scopus 로고
    • Regulatory T cells: mechanisms of differentiation and function
    • Josefowicz SZ, Lu LF, Rudensky AY. 2012. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531-564.
    • (2012) Annu Rev Immunol , vol.30 , pp. 531-564
    • Josefowicz, S.Z.1    Rudensky, A.Y.2
  • 303
    • 84958910139 scopus 로고    scopus 로고
    • Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine
    • Kim KS, Hong SW, Han D, Yi J, Jung J, Yang BG, Lee JY, Lee M, Surh CD. 2016. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science 351:858-863.
    • (2016) Science , vol.351 , pp. 858-863
    • Kim, K.S.1    Han, D.2    Yi, J.3    Jung, J.4    Yang, B.G.5    Lee, J.Y.6    Lee, M.7    Surh, C.D.8
  • 306
    • 79551695261 scopus 로고    scopus 로고
    • Expression and function of the autoimmune regulator (Aire) gene in non-thymic tissue
    • Eldershaw SA, Sansom DM, Narendran P. 2011. Expression and function of the autoimmune regulator (Aire) gene in non-thymic tissue. Clin Exp Immunol 163:296-308.
    • (2011) Clin Exp Immunol , vol.163 , pp. 296-308
    • Eldershaw, S.A.1    Narendran, P.2
  • 309
    • 78650738468 scopus 로고    scopus 로고
    • Lymph node stroma broaden the peripheral tolerance paradigm
    • Fletcher AL, Malhotra D, Turley SJ. 2011. Lymph node stroma broaden the peripheral tolerance paradigm. Trends Immunol 32:12-18.
    • (2011) Trends Immunol , vol.32 , pp. 12-18
    • Fletcher, A.L.1    Turley, S.J.2
  • 312
    • 84949548477 scopus 로고    scopus 로고
    • Cross-dressing: an alternative mechanism for antigen presentation
    • Campana S, De Pasquale C, Carrega P, Ferlazzo G, Bonaccorsi I. 2015. Cross-dressing: an alternative mechanism for antigen presentation. Immunol Lett 168:349-354.
    • (2015) Immunol Lett , vol.168 , pp. 349-354
    • Campana, S.1    Carrega, P.2    Ferlazzo, G.3    Bonaccorsi, I.4
  • 314
    • 0037152162 scopus 로고    scopus 로고
    • Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node
    • Scheinecker C, McHugh R, Shevach EM, Germain RN. 2002. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J Exp Med 196:1079-1090.
    • (2002) J Exp Med , vol.196 , pp. 1079-1090
    • Scheinecker, C.1    Shevach, E.M.2    Germain, R.N.3
  • 315
    • 84949546369 scopus 로고    scopus 로고
    • Immune homeostasis enforced by co-localized effector and regulatory T cells
    • Liu Z, Gerner MY, Van Panhuys N, Levine AG, Rudensky AY, Germain RN. 2015. Immune homeostasis enforced by co-localized effector and regulatory T cells. Nature 528:225-230.
    • (2015) Nature , vol.528 , pp. 225-230
    • Liu, Z.1    Van Panhuys, N.2    Levine, A.G.3    Rudensky, A.Y.4    Germain, R.N.5
  • 317
    • 84861861151 scopus 로고    scopus 로고
    • + T-cell recognition results in impaired peripheral tolerance and fatal cytotoxic T-cell mediated autoimmunity
    • + T-cell recognition results in impaired peripheral tolerance and fatal cytotoxic T-cell mediated autoimmunity. Proc Natl Acad Sci U S A 109:9059-9064.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 9059-9064
    • Muth, S.1    Schild, H.2    Probst, H.C.3
  • 320
    • 33646882230 scopus 로고    scopus 로고
    • Conditional ablation of MHC-II suggests an indirect role for MHC-II in regulatory CD4 T cell maintenance
    • Shimoda M, Mmanywa F, Joshi SK, Li T, Miyake K, Pihkala J, Abbas JA, Koni PA. 2006. Conditional ablation of MHC-II suggests an indirect role for MHC-II in regulatory CD4 T cell maintenance. J Immunol 176:6503-6511.
    • (2006) J Immunol , vol.176 , pp. 6503-6511
    • Shimoda, M.1    Joshi, S.K.2    Li, T.3    Miyake, K.4    Pihkala, J.5    Abbas, J.A.6    Koni, P.A.7
  • 322
    • 77949900562 scopus 로고    scopus 로고
    • Dendritic cells support homeostatic expansion of Foxp3+ regulatory T cells in Foxp3 LuciDTR mice
    • Suffner J, Hochweller K, Kühnle MC, Li X, Kroczek RA, Garbi N, Hämmerling GJ. 2010. Dendritic cells support homeostatic expansion of Foxp3+ regulatory T cells in Foxp3. LuciDTR mice. J Immunol 184:1810-1820.
    • (2010) J Immunol , vol.184 , pp. 1810-1820
    • Suffner, J.1    Kühnle, M.C.2    Li, X.3    Kroczek, R.A.4    Garbi, N.5    Hämmerling, G.J.6
  • 323
    • 84898832770 scopus 로고    scopus 로고
    • E-cadherin-mediated cell coupling is required for apoptotic cell extrusion
    • Lubkov V, Bar-Sagi D. 2014. E-cadherin-mediated cell coupling is required for apoptotic cell extrusion. Curr Biol 24:868-874.
    • (2014) Curr Biol , vol.24 , pp. 868-874
    • Lubkov, V.1    Bar-Sagi, D.2
  • 325
    • 63449108301 scopus 로고    scopus 로고
    • Constitutive ablation of dendritic cells breaks selftolerance of CD4 T cells and results in spontaneous fatal autoimmunity
    • Ohnmacht C, Pullner A, King SBS, Drexler I, Meier S, Brocker T, Voehringer D. 2009. Constitutive ablation of dendritic cells breaks selftolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J Exp Med 206:549-559.
    • (2009) J Exp Med , vol.206 , pp. 549-559
    • Ohnmacht, C.1    King, S.B.S.2    Drexler, I.3    Meier, S.4    Brocker, T.5    Voehringer, D.6
  • 327
    • 84929996266 scopus 로고    scopus 로고
    • Innate lymphoid cells: a new paradigm in immunology
    • Eberl G, Colonna M, Di Santo JP, McKenzie ANJ. 2015. Innate lymphoid cells: a new paradigm in immunology. Science 348:aaa6566. doi:10.1126/science.aaa6566.
    • (2015) Science , vol.348
    • Eberl, G.1    Di Santo, J.P.2    McKenzie, A.N.J.3
  • 328
    • 84907983938 scopus 로고    scopus 로고
    • Innate lymphoid cells in inflammation and immunity
    • McKenzie AN, Spits H, Eberl G. 2014. Innate lymphoid cells in inflammation and immunity. Immunity 41:366-374.
    • (2014) Immunity , vol.41 , pp. 366-374
    • McKenzie, A.N.1    Eberl, G.2
  • 329
    • 84905098795 scopus 로고    scopus 로고
    • Human innate lymphoid cells
    • Hazenberg MD, Spits H. 2014. Human innate lymphoid cells. Blood 124:700-709.
    • (2014) Blood , vol.124 , pp. 700-709
    • Hazenberg, M.D.1    Spits, H.2
  • 330
    • 84963582710 scopus 로고    scopus 로고
    • Innate lymphoid cells in secondary lymphoid organs
    • Bar-Ephraïm YE, Mebius RE. 2016. Innate lymphoid cells in secondary lymphoid organs. Immunol Rev 271:185-199.
    • (2016) Immunol Rev , vol.271 , pp. 185-199
    • Bar-Ephraïm, Y.E.1    Mebius, R.E.2
  • 331
    • 84879996831 scopus 로고    scopus 로고
    • Plasmacytoid, conventional, and monocyte-derived dendritic cells undergo a profound and convergent genetic reprogramming during their maturation
    • Manh TP, Alexandre Y, Baranek T, Crozat K, Dalod M. 2013. Plasmacytoid, conventional, and monocyte-derived dendritic cells undergo a profound and convergent genetic reprogramming during their maturation. Eur J Immunol 43:1706-1715.
    • (2013) Eur J Immunol , vol.43 , pp. 1706-1715
    • Manh, T.P.1    Baranek, T.2    Crozat, K.3    Dalod, M.4
  • 335
    • 84969752983 scopus 로고    scopus 로고
    • The immunology of CD1-and MR1-restricted T cells
    • Mori L, Lepore M, De Libero G. 2016. The immunology of CD1-and MR1-restricted T cells. Annu Rev Immunol 34:479-510.
    • (2016) Annu Rev Immunol , vol.34 , pp. 479-510
    • Mori, L.1    De Libero, G.2
  • 336
    • 84930486302 scopus 로고    scopus 로고
    • Role of scavenger receptors in dendritic cell function
    • Wang D, Sun B, Feng M, Feng H, Gong W, Liu Q, Ge S. 2015. Role of scavenger receptors in dendritic cell function. Hum Immunol 76:442-446.
    • (2015) Hum Immunol , vol.76 , pp. 442-446
    • Wang, D.1    Feng, M.2    Feng, H.3    Gong, W.4    Liu, Q.5    Ge, S.6
  • 338
    • 84922602504 scopus 로고    scopus 로고
    • Necroptosis and its role in inflammation
    • Pasparakis M, Vandenabeele P. 2015. Necroptosis and its role in inflammation. Nature 517:311-320.
    • (2015) Nature , vol.517 , pp. 311-320
    • Pasparakis, M.1    Vandenabeele, P.2
  • 339
    • 84958103915 scopus 로고    scopus 로고
    • Ferroptosis: death by lipid peroxidation
    • Yang WS, Stockwell BR. 2016. Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26:165-176.
    • (2016) Trends Cell Biol , vol.26 , pp. 165-176
    • Yang, W.S.1    Stockwell, B.R.2
  • 340
    • 58449083290 scopus 로고    scopus 로고
    • Pyroptosis: host cell death and inflammation
    • Bergsbaken T, Fink SL, Cookson BT. 2009. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7:99-109.
    • (2009) Nat Rev Microbiol , vol.7 , pp. 99-109
    • Bergsbaken, T.1    Cookson, B.T.2
  • 342
    • 79953035119 scopus 로고    scopus 로고
    • Stromal cell-immune cell interactions
    • Roozendaal R, Mebius RE. 2011. Stromal cell-immune cell interactions. Annu Rev Immunol 29:23-43.
    • (2011) Annu Rev Immunol , vol.29 , pp. 23-43
    • Roozendaal, R.1    Mebius, R.E.2
  • 343
    • 78649510272 scopus 로고    scopus 로고
    • The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs
    • Turley SJ, Fletcher AL, Elpek KG. 2010. The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs. Nat Rev Immunol 10:813-825.
    • (2010) Nat Rev Immunol , vol.10 , pp. 813-825
    • Turley, S.J.1    Elpek, K.G.2
  • 344
    • 33645289121 scopus 로고    scopus 로고
    • CD69 acts downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid organs
    • Shiow LR, Rosen DB, Brdicková N, Xu Y, An J, Lanier LL, Cyster JG, Matloubian M. 2006. CD69 acts downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440: 540-544.
    • (2006) Nature , vol.440 , pp. 540-544
    • Shiow, L.R.1    Brdicková, N.2    Xu, Y.3    An, J.4    Lanier, L.L.5    Cyster, J.G.6    Matloubian, M.7
  • 345
  • 346
    • 84899913912 scopus 로고    scopus 로고
    • Monocyte-derived dendritic cells promote T follicular helper cell differentiation
    • Chakarov S, Fazilleau N. 2014. Monocyte-derived dendritic cells promote T follicular helper cell differentiation. EMBO Mol Med 6:590-603.
    • (2014) EMBO Mol Med , vol.6 , pp. 590-603
    • Chakarov, S.1    Fazilleau, N.2
  • 347
    • 26844538936 scopus 로고    scopus 로고
    • Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing
    • Johansson-Lindbom B, Svensson M, Pabst O, Palmqvist C, Marquez G, Förster R, Agace WW. 2005. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J Exp Med 202:1063-1073.
    • (2005) J Exp Med , vol.202 , pp. 1063-1073
    • Johansson-Lindbom, B.1    Pabst, O.2    Palmqvist, C.3    Marquez, G.4    Förster, R.5    Agace, W.W.6
  • 348
    • 84924548071 scopus 로고    scopus 로고
    • The 3 major types of innate and adaptive cell-mediated effector immunity
    • Annunziato F, Romagnani C, Romagnani S. 2015. The 3 major types of innate and adaptive cell-mediated effector immunity. J Allergy Clin Immunol 135:626-635.
    • (2015) J Allergy Clin Immunol , vol.135 , pp. 626-635
    • Annunziato, F.1    Romagnani, S.2
  • 349
    • 84930178921 scopus 로고    scopus 로고
    • T cell subsets and their signature cytokines in autoimmune and inflammatory diseases
    • Raphael I, Nalawade S, Eagar TN, Forsthuber TG. 2015. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74:5-17.
    • (2015) Cytokine , vol.74 , pp. 5-17
    • Raphael, I.1    Eagar, T.N.2    Forsthuber, T.G.3
  • 350
    • 84906763810 scopus 로고    scopus 로고
    • Roles for helper T cell lineage-specifying transcription factors in cellular specialization
    • Weinmann AS. 2014. Roles for helper T cell lineage-specifying transcription factors in cellular specialization. Adv Immunol 124:171-206.
    • (2014) Adv Immunol , vol.124 , pp. 171-206
    • Weinmann, A.S.1
  • 351
    • 77951692771 scopus 로고    scopus 로고
    • Plasticity in programming of effector and memory CD8 T-cell formation
    • Arens R, Schoenberger SP. 2010. Plasticity in programming of effector and memory CD8 T-cell formation. Immunol Rev 235:190-205.
    • (2010) Immunol Rev , vol.235 , pp. 190-205
    • Arens, R.1    Schoenberger, S.P.2
  • 352
    • 34249032702 scopus 로고    scopus 로고
    • CD8 single-cell gene coexpression reveals three different effector types present at distinct phases of the immune response
    • Peixoto A, Evaristo C, Munitic I, Monteiro M, Charbit A, Rocha B, Veiga-Fernandes H. 2007. CD8 single-cell gene coexpression reveals three different effector types present at distinct phases of the immune response. J Exp Med 204:1193-1205.
    • (2007) J Exp Med , vol.204 , pp. 1193-1205
    • Peixoto, A.1    Munitic, I.2    Monteiro, M.3    Charbit, A.4    Rocha, B.5    Veiga-Fernandes, H.6
  • 353
    • 33947584651 scopus 로고    scopus 로고
    • Cartography of gene expression in CD8 single cells: novel CCR7-subsets suggest differentiation independent of CD45RA expression
    • Monteiro M, Evaristo C, Legrand A, Nicoletti A, Rocha B. 2007. Cartography of gene expression in CD8 single cells: novel CCR7-subsets suggest differentiation independent of CD45RA expression. Blood 109: 2863-2870.
    • (2007) Blood , vol.109 , pp. 2863-2870
    • Monteiro, M.1    Legrand, A.2    Nicoletti, A.3    Rocha, B.4
  • 354
    • 84969822523 scopus 로고    scopus 로고
    • T cell fate at the single-cell level
    • Buchholz VR, Schumacher TN, Busch DH. 2016. T cell fate at the single-cell level. Annu Rev Immunol 34:65-92.
    • (2016) Annu Rev Immunol , vol.34 , pp. 65-92
    • Buchholz, V.R.1    Busch, D.H.2
  • 355
    • 84881628352 scopus 로고    scopus 로고
    • Tissue-resident memory T cells
    • Shin H, Iwasaki A. 2013. Tissue-resident memory T cells. Immunol Rev 255:165-181.
    • (2013) Immunol Rev , vol.255 , pp. 165-181
    • Shin, H.1    Iwasaki, A.2
  • 358
    • 38149001476 scopus 로고    scopus 로고
    • Dendritic cell-induced memory T cell activation in nonlymphoid tissues
    • Wakim LM, Waithman J, van Rooijen N, Heath WR, Carbone FR. 2008. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 319:198-202.
    • (2008) Science , vol.319 , pp. 198-202
    • Wakim, L.M.1    van Rooijen, N.2    Heath, W.R.3    Carbone, F.R.4
  • 359
    • 84876690850 scopus 로고    scopus 로고
    • An overview of the immunological defenses in fish skin
    • ángeles Esteban M. 2012. An overview of the immunological defenses in fish skin. ISRN Immunol 2012:1-29.
    • (2012) ISRN Immunol , vol.2012 , pp. 1-29
    • Ángeles Esteban, M.1
  • 362
    • 72849115174 scopus 로고    scopus 로고
    • Origin and evolution of the adaptive immune system: genetic events and selective pressures
    • Flajnik MF, Kasahara M. 2010. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 11:47-59.
    • (2010) Nat Rev Genet , vol.11 , pp. 47-59
    • Flajnik, M.F.1    Kasahara, M.2
  • 363
    • 84937521658 scopus 로고    scopus 로고
    • Evolution of vertebrate adaptive immunity: immune cells and tissues, and AID/APOBEC cytidine deaminases
    • Hirano M. 2015. Evolution of vertebrate adaptive immunity: immune cells and tissues, and AID/APOBEC cytidine deaminases. BioEssays 37:877-887.
    • (2015) BioEssays , vol.37 , pp. 877-887
    • Hirano, M.1
  • 364
    • 84903269288 scopus 로고    scopus 로고
    • Immunological memory within the innate immune system
    • Sun JC, Ugolini S, Vivier E. 2014. Immunological memory within the innate immune system. EMBO J 33:1295-1303.
    • (2014) EMBO J , vol.33 , pp. 1295-1303
    • Sun, J.C.1    Vivier, E.2
  • 365
    • 84935063959 scopus 로고    scopus 로고
    • Guardians of the gut-murine intestinal macrophages and dendritic cells
    • Gross M, Salame TM, Jung S. 2015. Guardians of the gut-murine intestinal macrophages and dendritic cells. Front Immunol 6:254. doi:10.3389/fimmu.2015.00254.
    • (2015) Front Immunol , vol.6 , pp. 254
    • Gross, M.1    Jung, S.2
  • 367
    • 34648816680 scopus 로고    scopus 로고
    • The 2R hypothesis: an update
    • Kasahara M. 2007. The 2R hypothesis: an update. Curr Opin Immunol 19:547-552.
    • (2007) Curr Opin Immunol , vol.19 , pp. 547-552
    • Kasahara, M.1
  • 368
    • 84923813876 scopus 로고    scopus 로고
    • Dynamics of B cells in germinal centres
    • De Silva NS, Klein U. 2015. Dynamics of B cells in germinal centres. Nat Rev Immunol 15:137-148.
    • (2015) Nat Rev Immunol , vol.15 , pp. 137-148
    • De Silva, N.S.1    Klein, U.2
  • 369
    • 1542644156 scopus 로고    scopus 로고
    • + T cell trafficking to inflamed skin: role for tissue microenvironment and dendritic cells in establishment of T cell-homing subsets
    • + T cell trafficking to inflamed skin: role for tissue microenvironment and dendritic cells in establishment of T cell-homing subsets. J Immunol 172:857-863.
    • (2004) J Immunol , vol.172 , pp. 857-863
    • Dudda, J.C.1    Martin, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.