-
1
-
-
84974635271
-
Revised estimates for the number of human and bacteria cells in the body
-
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. BioRxiv 2016;doi:10.1101/036103.
-
(2016)
BioRxiv
-
-
Sender, R.1
Fuchs, S.2
Milo, R.3
-
2
-
-
84861980130
-
Interactions between the microbiota and the immune system
-
Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science 2012;336:1268–1273.
-
(2012)
Science
, vol.336
, pp. 1268-1273
-
-
Hooper, L.V.1
Littman, D.R.2
Macpherson, A.J.3
-
3
-
-
84902657697
-
Inflammatory bowel disease as a model for translating the microbiome
-
Huttenhower C, Kostic AD, Xavier RJ. Inflammatory bowel disease as a model for translating the microbiome. Immunity 2014;40:843–854.
-
(2014)
Immunity
, vol.40
, pp. 843-854
-
-
Huttenhower, C.1
Kostic, A.D.2
Xavier, R.J.3
-
4
-
-
79959201412
-
Human nutrition, the gut microbiome and the immune system
-
Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature 2011;474:327–336.
-
(2011)
Nature
, vol.474
, pp. 327-336
-
-
Kau, A.L.1
Ahern, P.P.2
Griffin, N.W.3
Goodman, A.L.4
Gordon, J.I.5
-
6
-
-
84960341158
-
Lymphoid tissue-resident commensal bacteria promote IL-10 family cytokines to establish mutualism
-
Fung TC, et al. Lymphoid tissue-resident commensal bacteria promote IL-10 family cytokines to establish mutualism. Immunity 2016;44:634–646.
-
(2016)
Immunity
, vol.44
, pp. 634-646
-
-
Fung, T.C.1
-
7
-
-
84919634599
-
Metabolic control of regulatory T cell development and function
-
Zeng H, Chi H. Metabolic control of regulatory T cell development and function. Trends Immunol 2015;36:3–12.
-
(2015)
Trends Immunol
, vol.36
, pp. 3-12
-
-
Zeng, H.1
Chi, H.2
-
8
-
-
84939570686
-
The bilateral responsiveness between intestinal microbes and IgA
-
Macpherson AJ, Koller Y, McCoy KD. The bilateral responsiveness between intestinal microbes and IgA. Trends Immunol 2015;36:460–470.
-
(2015)
Trends Immunol
, vol.36
, pp. 460-470
-
-
Macpherson, A.J.1
Koller, Y.2
McCoy, K.D.3
-
9
-
-
79955030498
-
Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22
-
Sonnenberg GF, Fouser LA, Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol 2011;12:383–390.
-
(2011)
Nat Immunol
, vol.12
, pp. 383-390
-
-
Sonnenberg, G.F.1
Fouser, L.A.2
Artis, D.3
-
10
-
-
57449090428
-
Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease
-
Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 2008;29:947–957.
-
(2008)
Immunity
, vol.29
, pp. 947-957
-
-
Zenewicz, L.A.1
Yancopoulos, G.D.2
Valenzuela, D.M.3
Murphy, A.J.4
Stevens, S.5
Flavell, R.A.6
-
11
-
-
84865401664
-
Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease
-
Hanash AM, et al. Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity 2012;37:339–350.
-
(2012)
Immunity
, vol.37
, pp. 339-350
-
-
Hanash, A.M.1
-
12
-
-
84951283991
-
Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration
-
Lindemans CA, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 2015;528:560–564.
-
(2015)
Nature
, vol.528
, pp. 560-564
-
-
Lindemans, C.A.1
-
13
-
-
67650474246
-
STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing
-
Pickert G, et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med 2009;206:1465–1472.
-
(2009)
J Exp Med
, vol.206
, pp. 1465-1472
-
-
Pickert, G.1
-
14
-
-
38849141814
-
IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis
-
Sugimoto K, et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 2008;118:534–544.
-
(2008)
J Clin Invest
, vol.118
, pp. 534-544
-
-
Sugimoto, K.1
-
15
-
-
84951332865
-
Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage
-
Aparicio-Domingo P, et al. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage. J Exp Med 2015;212:1783–1791.
-
(2015)
J Exp Med
, vol.212
, pp. 1783-1791
-
-
Aparicio-Domingo, P.1
-
16
-
-
73949103213
-
Interleukin (IL)-23 mediates Toxoplasma gondii-induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17
-
Munoz M, et al. Interleukin (IL)-23 mediates Toxoplasma gondii-induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17. J Exp Med 2009;206:3047–3059.
-
(2009)
J Exp Med
, vol.206
, pp. 3047-3059
-
-
Munoz, M.1
-
17
-
-
84952869199
-
+ ILC3s in models of intestinal inflammation
-
+ ILC3s in models of intestinal inflammation. J Exp Med 2015;212:1869–1882.
-
(2015)
J Exp Med
, vol.212
, pp. 1869-1882
-
-
Song, C.1
-
18
-
-
33750505009
-
Interleukin-23 drives innate and T cell–mediated intestinal inflammation
-
Hue S, et al. Interleukin-23 drives innate and T cell–mediated intestinal inflammation. J Exp Med 2006;203:2473–2483.
-
(2006)
J Exp Med
, vol.203
, pp. 2473-2483
-
-
Hue, S.1
-
19
-
-
84907000772
-
Commensal bacteria protect against food allergen sensitization
-
Stefka AT, et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci 2014;111:13145–13150.
-
(2014)
Proc Natl Acad Sci
, vol.111
, pp. 13145-13150
-
-
Stefka, A.T.1
-
20
-
-
77953495368
-
Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A
-
Sonnenberg GF, Nair MG, Kirn TJ, Zaph C, Fouser LA, Artis D. Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A. J Exp Med 2010;207:1293–1305.
-
(2010)
J Exp Med
, vol.207
, pp. 1293-1305
-
-
Sonnenberg, G.F.1
Nair, M.G.2
Kirn, T.J.3
Zaph, C.4
Fouser, L.A.5
Artis, D.6
-
21
-
-
79958277385
-
IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease
-
Geremia A, et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med 2011;208:1127–1133.
-
(2011)
J Exp Med
, vol.208
, pp. 1127-1133
-
-
Geremia, A.1
-
22
-
-
84939222276
-
Maintaining intestinal health: the genetics and immunology of very early onset inflammatory bowel disease
-
Kelsen JR, Baldassano RN, Artis D, Sonnenberg GF. Maintaining intestinal health: the genetics and immunology of very early onset inflammatory bowel disease. Cell Mol Gastroenterol Hepatol 2015;1:462–476.
-
(2015)
Cell Mol Gastroenterol Hepatol
, vol.1
, pp. 462-476
-
-
Kelsen, J.R.1
Baldassano, R.N.2
Artis, D.3
Sonnenberg, G.F.4
-
23
-
-
79959271087
-
Intestinal homeostasis and its breakdown in inflammatory bowel disease
-
Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 2011;474:298–306.
-
(2011)
Nature
, vol.474
, pp. 298-306
-
-
Maloy, K.J.1
Powrie, F.2
-
24
-
-
84861989207
-
Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria
-
Sonnenberg GF, et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 2012;336:1321–1325.
-
(2012)
Science
, vol.336
, pp. 1321-1325
-
-
Sonnenberg, G.F.1
-
25
-
-
84877839153
-
IL-22 deficiency alters colonic microbiota to be transmissible and colitogenic
-
Zenewicz LA, et al. IL-22 deficiency alters colonic microbiota to be transmissible and colitogenic. J Immunol 2013;190:5306–5312.
-
(2013)
J Immunol
, vol.190
, pp. 5306-5312
-
-
Zenewicz, L.A.1
-
26
-
-
40049083827
-
Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens
-
Zheng Y, et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 2008;14:282–289.
-
(2008)
Nat Med
, vol.14
, pp. 282-289
-
-
Zheng, Y.1
-
27
-
-
78751706261
-
CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut
-
Sonnenberg GF, Monticelli LA, Elloso MM, Fouser LA, Artis D. CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 2011;34:122–134.
-
(2011)
Immunity
, vol.34
, pp. 122-134
-
-
Sonnenberg, G.F.1
Monticelli, L.A.2
Elloso, M.M.3
Fouser, L.A.4
Artis, D.5
-
28
-
-
84955195285
-
Complementarity and redundancy of IL-22-producing innate lymphoid cells
-
Rankin LC, et al. Complementarity and redundancy of IL-22-producing innate lymphoid cells. Nat Immunol 2016;17:179–186.
-
(2016)
Nat Immunol
, vol.17
, pp. 179-186
-
-
Rankin, L.C.1
-
29
-
-
84924529911
-
IL-23-mediated mononuclear phagocyte crosstalk protects mice from Citrobacter rodentium-induced colon immunopathology
-
Aychek T, et al. IL-23-mediated mononuclear phagocyte crosstalk protects mice from Citrobacter rodentium-induced colon immunopathology. Nat Commun 2015;6.
-
(2015)
Nat Commun
, vol.6
-
-
Aychek, T.1
-
30
-
-
84857444876
-
+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense
-
+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 2012;36:276–287.
-
(2012)
Immunity
, vol.36
, pp. 276-287
-
-
Kinnebrew Melissa, A.1
-
31
-
-
84874082076
-
CX(3)CR1(+) macrophages support IL-22 production by innate lymphoid cells during infection with Citrobacter rodentium
-
Manta C, et al. CX(3)CR1(+) macrophages support IL-22 production by innate lymphoid cells during infection with Citrobacter rodentium. Mucosal Immunol 2013;6:177–188.
-
(2013)
Mucosal Immunol
, vol.6
, pp. 177-188
-
-
Manta, C.1
-
32
-
-
84905118660
-
+ mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22
-
+ mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med 2014;211:1571–1583.
-
(2014)
J Exp Med
, vol.211
, pp. 1571-1583
-
-
Longman, R.S.1
-
33
-
-
80052966918
-
IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium
-
Ota N, et al. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat Immunol 2011;12:941–948.
-
(2011)
Nat Immunol
, vol.12
, pp. 941-948
-
-
Ota, N.1
-
34
-
-
79960500206
-
Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge
-
Tumanov AV, et al. Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge. Cell Host Microbe 2011;10:44–53.
-
(2011)
Cell Host Microbe
, vol.10
, pp. 44-53
-
-
Tumanov, A.V.1
-
35
-
-
84923107393
-
Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection
-
Munoz M, et al. Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection. Immunity 2015;42:321–331.
-
(2015)
Immunity
, vol.42
, pp. 321-331
-
-
Munoz, M.1
-
36
-
-
84956601825
-
The group 3 innate lymphoid cell defect in aryl hydrocarbon receptor deficient mice is associated with T cell hyperactivation during intestinal infection
-
Wagage S, Harms Pritchard G, Dawson L, Buza EL, Sonnenberg GF, Hunter CA. The group 3 innate lymphoid cell defect in aryl hydrocarbon receptor deficient mice is associated with T cell hyperactivation during intestinal infection. PLoS ONE 2015;10:e0128335.
-
(2015)
PLoS ONE
, vol.10
-
-
Wagage, S.1
Harms Pritchard, G.2
Dawson, L.3
Buza, E.L.4
Sonnenberg, G.F.5
Hunter, C.A.6
-
37
-
-
84930663466
-
Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4(+) T cells
-
Hepworth MR, et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4(+) T cells. Science 2015;348:1031–1035.
-
(2015)
Science
, vol.348
, pp. 1031-1035
-
-
Hepworth, M.R.1
-
38
-
-
84908121712
-
Interleukin-22 regulates the complement system to promote resistance against pathobionts after pathogen-induced intestinal damage
-
Hasegawa M, et al. Interleukin-22 regulates the complement system to promote resistance against pathobionts after pathogen-induced intestinal damage. Immunity 2014;41:620–632.
-
(2014)
Immunity
, vol.41
, pp. 620-632
-
-
Hasegawa, M.1
-
39
-
-
84944472849
-
Intestinal microbiota of mice influences resistance to Staphylococcus aureus pneumonia
-
Gauguet S, et al. Intestinal microbiota of mice influences resistance to Staphylococcus aureus pneumonia. Infect Immun 2015;83:4003–4014.
-
(2015)
Infect Immun
, vol.83
, pp. 4003-4014
-
-
Gauguet, S.1
-
40
-
-
57849117363
-
RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22–producing NKp46(+) cells
-
Sanos SL, et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22–producing NKp46(+) cells. Nat Immunol 2009;10:83–91.
-
(2009)
Nat Immunol
, vol.10
, pp. 83-91
-
-
Sanos, S.L.1
-
41
-
-
79952986650
-
+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota
-
+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol 2011;12:320–326.
-
(2011)
Nat Immunol
, vol.12
, pp. 320-326
-
-
Sawa, S.1
-
42
-
-
84912074927
-
The chemokine receptor CXCR6 controls the functional topography of interleukin-22 producing intestinal innate lymphoid cells
-
Satoh-Takayama N, et al. The chemokine receptor CXCR6 controls the functional topography of interleukin-22 producing intestinal innate lymphoid cells. Immunity 2014;41:776–788.
-
(2014)
Immunity
, vol.41
, pp. 776-788
-
-
Satoh-Takayama, N.1
-
43
-
-
59649099774
-
A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity
-
Cella M, et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 2009;457:722–725.
-
(2009)
Nature
, vol.457
, pp. 722-725
-
-
Cella, M.1
-
44
-
-
84922744283
-
An in vitro model of innate lymphoid cell function and differentiation
-
Allan DS, et al. An in vitro model of innate lymphoid cell function and differentiation. Mucosal Immunol 2015;8:340–351.
-
(2015)
Mucosal Immunol
, vol.8
, pp. 340-351
-
-
Allan, D.S.1
-
45
-
-
84931569282
-
Interferon-λ and interleukin-22 cooperate for the induction of interferon-stimulated genes and control of rotavirus infection
-
Hernández PP, et al. Interferon-λ and interleukin-22 cooperate for the induction of interferon-stimulated genes and control of rotavirus infection. Nat Immunol 2015;16:698–707.
-
(2015)
Nat Immunol
, vol.16
, pp. 698-707
-
-
Hernández, P.P.1
-
46
-
-
84961219182
-
Epithelial-intrinsic IKKalpha expression regulates group 3 innate lymphoid cell responses and antibacterial immunity
-
Giacomin PR, et al. Epithelial-intrinsic IKKalpha expression regulates group 3 innate lymphoid cell responses and antibacterial immunity. J Exp Med 2015;212:1513–1528.
-
(2015)
J Exp Med
, vol.212
, pp. 1513-1528
-
-
Giacomin, P.R.1
-
47
-
-
84928194546
-
Innate lymphoid cells control early colonization resistance against intestinal pathogens through ID2-dependent regulation of the microbiota
-
Guo X, Liang Y, Zhang Y, Lasorella A, Kee BL, Fu YX. Innate lymphoid cells control early colonization resistance against intestinal pathogens through ID2-dependent regulation of the microbiota. Immunity 2015;42:731–743.
-
(2015)
Immunity
, vol.42
, pp. 731-743
-
-
Guo, X.1
Liang, Y.2
Zhang, Y.3
Lasorella, A.4
Kee, B.L.5
Fu, Y.X.6
-
48
-
-
77952208123
-
Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis
-
Obata T, et al. Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis. Proc Natl Acad Sci USA 2010;107:7419–7424.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 7419-7424
-
-
Obata, T.1
-
49
-
-
84882668842
-
Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora
-
Qiu J, et al. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity 2013;39:386–399.
-
(2013)
Immunity
, vol.39
, pp. 386-399
-
-
Qiu, J.1
-
50
-
-
84943638660
-
An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses
-
Sano T, et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell 2015;163:381–393.
-
(2015)
Cell
, vol.163
, pp. 381-393
-
-
Sano, T.1
-
51
-
-
84943639694
-
Th17 cell induction by adhesion of microbes to intestinal epithelial cells
-
Atarashi K, et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 2015;163:367–380.
-
(2015)
Cell
, vol.163
, pp. 367-380
-
-
Atarashi, K.1
-
52
-
-
84866547629
-
Lymphotoxin regulates commensal responses to enable diet-induced obesity
-
Upadhyay V, et al. Lymphotoxin regulates commensal responses to enable diet-induced obesity. Nat Immunol 2012;13:947–953.
-
(2012)
Nat Immunol
, vol.13
, pp. 947-953
-
-
Upadhyay, V.1
-
53
-
-
84908311821
-
Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes
-
Wang X, et al. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature 2014;514:237–241.
-
(2014)
Nature
, vol.514
, pp. 237-241
-
-
Wang, X.1
-
54
-
-
84908075358
-
Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen
-
Pham TA, et al. Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host Microbe 2014;16:504–516.
-
(2014)
Cell Host Microbe
, vol.16
, pp. 504-516
-
-
Pham, T.A.1
-
55
-
-
84907208430
-
Innate lymphoid cells regulate intestinal epithelial cell glycosylation
-
Goto Y, et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 2014;345:1254009.
-
(2014)
Science
, vol.345
, pp. 1254009
-
-
Goto, Y.1
-
56
-
-
84908403149
-
Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness
-
Pickard JM, et al. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 2014;514:638–641.
-
(2014)
Nature
, vol.514
, pp. 638-641
-
-
Pickard, J.M.1
-
57
-
-
84947425582
-
Normalization of host intestinal mucus layers requires long-term microbial colonization
-
Johansson ME, et al. Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe 2015;18:582–592.
-
(2015)
Cell Host Microbe
, vol.18
, pp. 582-592
-
-
Johansson, M.E.1
-
58
-
-
84944234155
-
Quantitative imaging of gut microbiota spatial organization
-
Earle KA, et al. Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe 2015;18:478–488.
-
(2015)
Cell Host Microbe
, vol.18
, pp. 478-488
-
-
Earle, K.A.1
-
59
-
-
84886280379
-
Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals
-
Shan M, et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 2013;342:447–453.
-
(2013)
Science
, vol.342
, pp. 447-453
-
-
Shan, M.1
-
60
-
-
84902578841
-
The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system
-
Pelaseyed T, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev 2014;260:8–20.
-
(2014)
Immunol Rev
, vol.260
, pp. 8-20
-
-
Pelaseyed, T.1
-
61
-
-
0023190922
-
Intravascular and mucosal immunoglobulin A: two separate but related systems of immune defense?
-
Conley ME, Delacroix DL. Intravascular and mucosal immunoglobulin A: two separate but related systems of immune defense? Ann Intern Med 1987;106:892–899.
-
(1987)
Ann Intern Med
, vol.106
, pp. 892-899
-
-
Conley, M.E.1
Delacroix, D.L.2
-
62
-
-
84922032682
-
Lessons from mother: long-term impact of antibodies in breast milk on the gut microbiota and intestinal immune system of breastfed offspring
-
Rogier EW, et al. Lessons from mother: long-term impact of antibodies in breast milk on the gut microbiota and intestinal immune system of breastfed offspring. Gut Microbes 2014;5:663–668.
-
(2014)
Gut Microbes
, vol.5
, pp. 663-668
-
-
Rogier, E.W.1
-
64
-
-
84896884079
-
Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression
-
Rogier EW, et al. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proc Natl Acad Sci USA 2014;111:3074–3079.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 3074-3079
-
-
Rogier, E.W.1
-
65
-
-
84929094040
-
Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation
-
Moon C, Baldridge MT, Wallace MA, Burnham C-AD, Virgin HW, Stappenbeck TS. Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation. Nature 2015;521:90–93.
-
(2015)
Nature
, vol.521
, pp. 90-93
-
-
Moon, C.1
Baldridge, M.T.2
Wallace, M.A.3
Burnham, C.-A.D.4
Virgin, H.W.5
Stappenbeck, T.S.6
-
66
-
-
84907300008
-
Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease
-
Palm NW, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 2014;158:1000–1010.
-
(2014)
Cell
, vol.158
, pp. 1000-1010
-
-
Palm, N.W.1
-
67
-
-
0034705397
-
A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria
-
Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner H, Zinkernagel RM. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 2000;288:2222–2226.
-
(2000)
Science
, vol.288
, pp. 2222-2226
-
-
Macpherson, A.J.1
Gatto, D.2
Sainsbury, E.3
Harriman, G.R.4
Hengartner, H.5
Zinkernagel, R.M.6
-
68
-
-
79955494239
-
+ plasmablasts in the human gut are antigen-specific
-
+ plasmablasts in the human gut are antigen-specific. J Clin Investig 2011;121:1946–1955.
-
(2011)
J Clin Investig
, vol.121
, pp. 1946-1955
-
-
Benckert, J.1
-
69
-
-
79952763661
-
Succession of microbial consortia in the developing infant gut microbiome
-
Koenig JE, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci 2011;108:4578–4585.
-
(2011)
Proc Natl Acad Sci
, vol.108
, pp. 4578-4585
-
-
Koenig, J.E.1
-
70
-
-
84937814800
-
Diversification of memory B cells drives the continuous adaptation of secretory antibodies to gut microbiota
-
Lindner C, et al. Diversification of memory B cells drives the continuous adaptation of secretory antibodies to gut microbiota. Nat Immunol 2015;16:880–888.
-
(2015)
Nat Immunol
, vol.16
, pp. 880-888
-
-
Lindner, C.1
-
71
-
-
1542618118
-
Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria
-
Macpherson AJ, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 2004;303:1662–1665.
-
(2004)
Science
, vol.303
, pp. 1662-1665
-
-
Macpherson, A.J.1
Uhr, T.2
-
72
-
-
84855796468
-
+ plasma cell phenotype in the gut
-
+ plasma cell phenotype in the gut. Nature 2012;481:199–203.
-
(2012)
Nature
, vol.481
, pp. 199-203
-
-
Fritz, J.H.1
-
73
-
-
34548176272
-
Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells
-
Tezuka H, et al. Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature 2007;448:929–933.
-
(2007)
Nature
, vol.448
, pp. 929-933
-
-
Tezuka, H.1
-
74
-
-
84940077757
-
MyD88 adaptor-dependent microbial sensing by regulatory T cells promotes mucosal tolerance and enforces commensalism
-
Wang S, et al. MyD88 adaptor-dependent microbial sensing by regulatory T cells promotes mucosal tolerance and enforces commensalism. Immunity 2015;43:289–303.
-
(2015)
Immunity
, vol.43
, pp. 289-303
-
-
Wang, S.1
-
75
-
-
84922937083
-
MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health
-
Kubinak Jason L, et al. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health. Cell Host Microbe 2015;17:153–163.
-
(2015)
Cell Host Microbe
, vol.17
, pp. 153-163
-
-
Kubinak Jason, L.1
-
76
-
-
84939501634
-
Interleukin (IL)-21 promotes intestinal IgA response to microbiota
-
Cao AT, Yao S, Gong B, Nurieva RI, Elson CO, Cong Y. Interleukin (IL)-21 promotes intestinal IgA response to microbiota. Mucosal Immunol 2015;8:1072–1082.
-
(2015)
Mucosal Immunol
, vol.8
, pp. 1072-1082
-
-
Cao, A.T.1
Yao, S.2
Gong, B.3
Nurieva, R.I.4
Elson, C.O.5
Cong, Y.6
-
77
-
-
84875473675
-
Plasticity of TH17 cells in Peyer's patches is responsible for the induction of T cell-dependent IgA responses
-
Hirota K, et al. Plasticity of TH17 cells in Peyer's patches is responsible for the induction of T cell-dependent IgA responses. Nat Immunol 2013;14:372–379.
-
(2013)
Nat Immunol
, vol.14
, pp. 372-379
-
-
Hirota, K.1
-
78
-
-
84898681828
-
Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis
-
Chu VT, et al. Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis. Immunity 2014;40:582–593.
-
(2014)
Immunity
, vol.40
, pp. 582-593
-
-
Chu, V.T.1
-
79
-
-
84941659588
-
Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A
-
Bunker J J, et al. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity 2015;43:541–553.
-
(2015)
Immunity
, vol.43
, pp. 541-553
-
-
Bunker J, J.1
-
80
-
-
84877726564
-
+ plasma cells mediate robust early-phase intestinal IgA responses in mice
-
+ plasma cells mediate robust early-phase intestinal IgA responses in mice. Nat Commun 2013;4:1772.
-
(2013)
Nat Commun
, vol.4
, pp. 1772
-
-
Kunisawa, J.1
-
81
-
-
84898685253
-
Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses
-
Lécuyer E, et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 2014;40:608–620.
-
(2014)
Immunity
, vol.40
, pp. 608-620
-
-
Lécuyer, E.1
-
82
-
-
84941647683
-
BALB/c and C57BL/6 mice differ in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity
-
Fransen F, et al. BALB/c and C57BL/6 mice differ in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity. Immunity 2015;43:527–540.
-
(2015)
Immunity
, vol.43
, pp. 527-540
-
-
Fransen, F.1
-
83
-
-
84900549422
-
Proteobacteria-specific IgA regulates maturation of the intestinal microbiota
-
Mirpuri J, et al. Proteobacteria-specific IgA regulates maturation of the intestinal microbiota. Gut Microbes 2014;5:28–39.
-
(2014)
Gut Microbes
, vol.5
, pp. 28-39
-
-
Mirpuri, J.1
-
84
-
-
84991929179
-
Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy
-
Kau AL, et al. Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci Transl Med 2015;7:276ra224.
-
(2015)
Sci Transl Med
, vol.7
, pp. 276ra224
-
-
Kau, A.L.1
-
85
-
-
84959476433
-
Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition
-
Charbonneau MR, et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 2016;164:859–871.
-
(2016)
Cell
, vol.164
, pp. 859-871
-
-
Charbonneau, M.R.1
-
86
-
-
84936892270
-
Innate lymphoid cells in the initiation, regulation and resolution of inflammation
-
Sonnenberg GF, Artis D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat Med 2015;21:698–708.
-
(2015)
Nat Med
, vol.21
, pp. 698-708
-
-
Sonnenberg, G.F.1
Artis, D.2
-
87
-
-
0346496018
-
An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells
-
Eberl G, Marmon S, Sunshine MJ, Rennert PD, Choi Y, Littman DR. An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 2004;5:64–73.
-
(2004)
Nat Immunol
, vol.5
, pp. 64-73
-
-
Eberl, G.1
Marmon, S.2
Sunshine, M.J.3
Rennert, P.D.4
Choi, Y.5
Littman, D.R.6
-
88
-
-
33846904226
-
− cells in relation to B- and T-zone stroma in spleen
-
− cells in relation to B- and T-zone stroma in spleen. Blood 2007;109:1602–1610.
-
(2007)
Blood
, vol.109
, pp. 1602-1610
-
-
Kim, M.Y.1
-
89
-
-
77956175900
-
New insights into the development of lymphoid tissues
-
van de Pavert SA, Mebius RE. New insights into the development of lymphoid tissues. Nat Rev Immunol 2010;10:664–674.
-
(2010)
Nat Rev Immunol
, vol.10
, pp. 664-674
-
-
van de Pavert, S.A.1
Mebius, R.E.2
-
90
-
-
34548829378
-
Lymphotoxin a-dependent and -independent signals regulate stromal organizer cell homeostasis during lymph node organogenesis
-
White A, et al. Lymphotoxin a-dependent and -independent signals regulate stromal organizer cell homeostasis during lymph node organogenesis. Blood 2007;110:1950–1959.
-
(2007)
Blood
, vol.110
, pp. 1950-1959
-
-
White, A.1
-
91
-
-
56749146467
-
Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis
-
Bouskra D, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 2008;456:507–510.
-
(2008)
Nature
, vol.456
, pp. 507-510
-
-
Bouskra, D.1
-
92
-
-
84889247024
-
Nonredundant function of soluble LTalpha3 produced by innate lymphoid cells in intestinal homeostasis
-
Kruglov AA, et al. Nonredundant function of soluble LTalpha3 produced by innate lymphoid cells in intestinal homeostasis. Science 2013;342:1243–1246.
-
(2013)
Science
, vol.342
, pp. 1243-1246
-
-
Kruglov, A.A.1
-
93
-
-
84961733672
-
Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis
-
Mortha A, et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 2014;343:1449–1477.
-
(2014)
Science
, vol.343
, pp. 1449-1477
-
-
Mortha, A.1
-
94
-
-
84865411384
-
Cutting edge: lymphoid tissue inducer cells maintain memory CD4 T cells within secondary lymphoid tissue
-
Withers DR, et al. Cutting edge: lymphoid tissue inducer cells maintain memory CD4 T cells within secondary lymphoid tissue. J Immunol 2012;189:2094–2098.
-
(2012)
J Immunol
, vol.189
, pp. 2094-2098
-
-
Withers, D.R.1
-
95
-
-
84907228164
-
Activated group 3 innate lymphoid cells promote T-cell–mediated immune responses
-
von Burg N, et al. Activated group 3 innate lymphoid cells promote T-cell–mediated immune responses. Proc Natl Acad Sci USA 2014;111:12835–12840.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 12835-12840
-
-
von Burg, N.1
-
96
-
-
84898679249
-
Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation
-
Goto Y, et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity 2014;40:594–607.
-
(2014)
Immunity
, vol.40
, pp. 594-607
-
-
Goto, Y.1
-
97
-
-
84878737123
-
+ T-cell responses to intestinal commensal bacteria
-
+ T-cell responses to intestinal commensal bacteria. Nature 2013;498:113–117.
-
(2013)
Nature
, vol.498
, pp. 113-117
-
-
Hepworth, M.R.1
-
98
-
-
73349099737
-
A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota
-
Cong Y, Feng T, Fujihashi K, Schoeb TR, Elson CO. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci USA 2009;106:19256–19261.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 19256-19261
-
-
Cong, Y.1
Feng, T.2
Fujihashi, K.3
Schoeb, T.R.4
Elson, C.O.5
-
99
-
-
84958078627
-
+ innate lymphoid cells revealed by single-cell RNA sequencing
-
+ innate lymphoid cells revealed by single-cell RNA sequencing. Nat Immunol 2016;17:451–460.
-
(2016)
Nat Immunol
, vol.17
, pp. 451-460
-
-
Bjorklund, A.K.1
-
100
-
-
84954290481
-
Group 3 innate lymphoid cells: regulating host-commensal bacteria interactions in inflammation and cancer
-
Goc J, Hepworth MR, Sonnenberg GF. Group 3 innate lymphoid cells: regulating host-commensal bacteria interactions in inflammation and cancer. Int Immunol 2016;28:43–52.
-
(2016)
Int Immunol
, vol.28
, pp. 43-52
-
-
Goc, J.1
Hepworth, M.R.2
Sonnenberg, G.F.3
-
101
-
-
84958134391
-
Type 3 innate lymphoid cell depletion is mediated by TLRs in lymphoid tissues of simian immunodeficiency virus–infected macaques
-
Xu H, Wang X, Lackner AA, Veazey RS. Type 3 innate lymphoid cell depletion is mediated by TLRs in lymphoid tissues of simian immunodeficiency virus–infected macaques. FASEB J 2015;29:5072–5080.
-
(2015)
FASEB J
, vol.29
, pp. 5072-5080
-
-
Xu, H.1
Wang, X.2
Lackner, A.A.3
Veazey, R.S.4
-
102
-
-
84941702583
-
Plasmacytoid dendritic cells promote HIV-1–induced group 3 innate lymphoid cell depletion
-
Zhang Z, et al. Plasmacytoid dendritic cells promote HIV-1–induced group 3 innate lymphoid cell depletion. J Clin Investig 2015;125:3692–3703.
-
(2015)
J Clin Investig
, vol.125
, pp. 3692-3703
-
-
Zhang, Z.1
-
103
-
-
84945286826
-
MHC variation sculpts individualized microbial communities that control susceptibility to enteric infection
-
Kubinak JL, et al. MHC variation sculpts individualized microbial communities that control susceptibility to enteric infection. Nat Commun 2015;6.
-
(2015)
Nat Commun
, vol.6
-
-
Kubinak, J.L.1
-
104
-
-
84958087613
-
Transient inhibition of ROR-[gamma]t therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells
-
Withers DR, et al. Transient inhibition of ROR-[gamma]t therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nat Med 2016;22:319–323.
-
(2016)
Nat Med
, vol.22
, pp. 319-323
-
-
Withers, D.R.1
|