메뉴 건너뛰기




Volumn 16, Issue 4, 2015, Pages 343-353

Control of adaptive immunity by the innate immune system

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE IMMUNITY; CELL POPULATION; CYTOKINE PRODUCTION; DENDRITIC CELL; EFFECTOR CELL; HUMAN; IMMUNOGENICITY; INNATE IMMUNITY; LYMPHOCYTE; MICROBIAL VIABILITY; NONHUMAN; PATHOGENICITY; PATTERN RECOGNITION; PRIORITY JOURNAL; REVIEW; ANIMAL; BACTERIUM; FUNGUS; GENE EXPRESSION REGULATION; GENETICS; HELMINTH; IMMUNOLOGY; INTESTINE; LUNG; LYMPHOCYTE SUBPOPULATION; MICROBIOLOGY; PARASITOLOGY; SKIN; VIROLOGY; VIRUS;

EID: 84925441813     PISSN: 15292908     EISSN: 15292916     Source Type: Journal    
DOI: 10.1038/ni.3123     Document Type: Review
Times cited : (1467)

References (138)
  • 1
    • 0024955886 scopus 로고
    • Approaching the asymptote? Evolution and revolution in immunology
    • Janeway, C.A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1-13 (1989).
    • (1989) Cold Spring Harb. Symp. Quant. Biol. , vol.54 , pp. 1-13
    • Janeway, C.A.1
  • 2
    • 77951260924 scopus 로고    scopus 로고
    • The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors
    • Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373-384 (2010).
    • (2010) Nat. Immunol. , vol.11 , pp. 373-384
    • Kawai, T.1    Akira, S.2
  • 3
    • 84896958063 scopus 로고    scopus 로고
    • Innate immune sensing and signaling of cytosolic nucleic acids
    • Wu, J. & Chen, Z.J. Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol. 32, 461-488 (2014).
    • (2014) Annu. Rev. Immunol. , vol.32 , pp. 461-488
    • Wu, J.1    Chen, Z.J.2
  • 6
    • 84879338344 scopus 로고    scopus 로고
    • Compartmentalized and systemic control of tissue immunity by commensals
    • Belkaid, Y. & Naik, S. Compartmentalized and systemic control of tissue immunity by commensals. Nat. Immunol. 14, 646-653 (2013).
    • (2013) Nat. Immunol. , vol.14 , pp. 646-653
    • Belkaid, Y.1    Naik, S.2
  • 7
    • 84879369738 scopus 로고    scopus 로고
    • Commensal bacteria at the interface of host metabolism and the immune system
    • Brestoff, J.R. & Artis, D. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 14, 676-684 (2013).
    • (2013) Nat. Immunol. , vol.14 , pp. 676-684
    • Brestoff, J.R.1    Artis, D.2
  • 9
    • 68849085894 scopus 로고    scopus 로고
    • A cell biological view of Toll-like receptor function: Regulation through compartmentalization
    • Barton, G.M. & Kagan, J.C. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat. Rev. Immunol. 9, 535-542 (2009).
    • (2009) Nat. Rev. Immunol. , vol.9 , pp. 535-542
    • Barton, G.M.1    Kagan, J.C.2
  • 11
    • 84881027832 scopus 로고    scopus 로고
    • Innate immune detection of microbial nucleic acids
    • Gürtler, C. & Bowie, A.G. Innate immune detection of microbial nucleic acids. Trends Microbiol. 21, 413-420 (2013).
    • (2013) Trends Microbiol. , vol.21 , pp. 413-420
    • Gürtler, C.1    Bowie, A.G.2
  • 12
    • 82955178645 scopus 로고    scopus 로고
    • Cytosolic surveillance and antiviral immunity
    • Rathinam, V.A. & Fitzgerald, K.A. Cytosolic surveillance and antiviral immunity. Curr. Opin. Virol. 1, 455-462 (2011).
    • (2011) Curr. Opin. Virol. , vol.1 , pp. 455-462
    • Rathinam, V.A.1    Fitzgerald, K.A.2
  • 13
    • 84871218439 scopus 로고    scopus 로고
    • STING and the innate immune response to nucleic acids in the cytosol
    • Burdette, D.L. & Vance, R.E. STING and the innate immune response to nucleic acids in the cytosol. Nat. Immunol. 14, 19-26 (2013).
    • (2013) Nat. Immunol. , vol.14 , pp. 19-26
    • Burdette, D.L.1    Vance, R.E.2
  • 15
    • 84869504451 scopus 로고    scopus 로고
    • Inflammasomes and their roles in health and disease
    • Lamkanfi, M. & Dixit, V.M. Inflammasomes and their roles in health and disease. Annu. Rev. Cell Dev. Biol. 28, 137-161 (2012).
    • (2012) Annu. Rev. Cell Dev. Biol. , vol.28 , pp. 137-161
    • Lamkanfi, M.1    Dixit, V.M.2
  • 16
    • 84857546470 scopus 로고    scopus 로고
    • Beyond pattern recognition: Five immune checkpoints for scaling the microbial threat
    • Blander, J.M. & Sander, L.E. Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nat. Rev. Immunol. 12, 215-225 (2012).
    • (2012) Nat. Rev. Immunol. , vol.12 , pp. 215-225
    • Blander, J.M.1    Sander, L.E.2
  • 17
    • 67651091732 scopus 로고    scopus 로고
    • Patterns of pathogenesis: Discrimination of pathogenic and nonpathogenic microbes by the innate immune system
    • Vance, R.E., Isberg, R.R. & Portnoy, D.A. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6, 10-21 (2009).
    • (2009) Cell Host Microbe , vol.6 , pp. 10-21
    • Vance, R.E.1    Isberg, R.R.2    Portnoy, D.A.3
  • 18
    • 84875422919 scopus 로고    scopus 로고
    • Effector-triggered versus pattern-triggered immunity: How animals sense pathogens
    • Stuart, L.M., Paquette, N. & Boyer, L. Effector-triggered versus pattern-triggered immunity: how animals sense pathogens. Nat. Rev. Immunol. 13, 199-206 (2013).
    • (2013) Nat. Rev. Immunol. , vol.13 , pp. 199-206
    • Stuart, L.M.1    Paquette, N.2    Boyer, L.3
  • 19
    • 79959242498 scopus 로고    scopus 로고
    • Detection of prokaryotic mRNA signifies microbial viability and promotes immunity
    • Sander, L.E. et al. Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature 474, 385-389 (2011).
    • (2011) Nature , vol.474 , pp. 385-389
    • Sander, L.E.1
  • 20
    • 84899155461 scopus 로고    scopus 로고
    • Stress, inflammation, and defense of homeostasis
    • Chovatiya, R. & Medzhitov, R. Stress, inflammation, and defense of homeostasis. Mol. Cell 54, 281-288 (2014).
    • (2014) Mol. Cell , vol.54 , pp. 281-288
    • Chovatiya, R.1    Medzhitov, R.2
  • 21
  • 22
    • 32944470765 scopus 로고    scopus 로고
    • Cryopyrin activates the inflammasome in response to toxins and ATP
    • Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228-232 (2006).
    • (2006) Nature , vol.440 , pp. 228-232
    • Mariathasan, S.1
  • 23
    • 77951295418 scopus 로고    scopus 로고
    • Influenza virus activates inflammasomes via its intracellular M2 ion channel
    • Ichinohe, T., Pang, I.K. & Iwasaki, A. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat. Immunol. 11, 404-410 (2010).
    • (2010) Nat. Immunol. , vol.11 , pp. 404-410
    • Ichinohe, T.1    Pang, I.K.2    Iwasaki, A.3
  • 24
    • 0035859020 scopus 로고    scopus 로고
    • Plant pathogens and integrated defence responses to infection
    • Dangl, J.L. & Jones, J.D. Plant pathogens and integrated defence responses to infection. Nature 411, 826-833 (2001).
    • (2001) Nature , vol.411 , pp. 826-833
    • Dangl, J.L.1    Jones, J.D.2
  • 25
    • 47949099098 scopus 로고    scopus 로고
    • Origin and physiological roles of inflammation
    • Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428-435 (2008).
    • (2008) Nature , vol.454 , pp. 428-435
    • Medzhitov, R.1
  • 26
    • 84880923555 scopus 로고    scopus 로고
    • Type 2 immunity and wound healing: Evolutionary refinement of adaptive immunity by helminths
    • Gause, W.C., Wynn, T.A. & Allen, J.E. Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths. Nat. Rev. Immunol. 13, 607-614 (2013).
    • (2013) Nat. Rev. Immunol. , vol.13 , pp. 607-614
    • Gause, W.C.1    Wynn, T.A.2    Allen, J.E.3
  • 27
    • 79957583362 scopus 로고    scopus 로고
    • Evolution of Th2 immunity: A rapid repair response to tissue destructive pathogens
    • Allen, J.E. & Wynn, T.A. Evolution of Th2 immunity: a rapid repair response to tissue destructive pathogens. PLoS Pathog. 7, e1002003 (2011).
    • (2011) PLoS Pathog. , vol.7 , pp. e1002003
    • Allen, J.E.1    Wynn, T.A.2
  • 28
    • 85027948313 scopus 로고    scopus 로고
    • Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus
    • Monticelli, L.A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045-1054 (2011).
    • (2011) Nat. Immunol. , vol.12 , pp. 1045-1054
    • Monticelli, L.A.1
  • 29
    • 84876800337 scopus 로고    scopus 로고
    • Macrophage biology in development, homeostasis and disease
    • Wynn, T.A., Chawla, A. & Pollard, J.W. Macrophage biology in development, homeostasis and disease. Nature 496, 445-455 (2013).
    • (2013) Nature , vol.496 , pp. 445-455
    • Wynn, T.A.1    Chawla, A.2    Pollard, J.W.3
  • 30
    • 84876274371 scopus 로고    scopus 로고
    • Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration
    • Heredia, J.E. et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153, 376-388 (2013).
    • (2013) Cell , vol.153 , pp. 376-388
    • Heredia, J.E.1
  • 31
    • 84890050252 scopus 로고    scopus 로고
    • A special population of regulatory T cells potentiates muscle repair
    • Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282-1295 (2013).
    • (2013) Cell , vol.155 , pp. 1282-1295
    • Burzyn, D.1
  • 32
    • 0022616253 scopus 로고
    • Selective rejection of H-2- deficient lymphoma variants suggests alternative immune defence strategy
    • Kärre, K., Ljunggren, H.G., Piontek, G. & Kiessling, R. Selective rejection of H-2- deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 675-678 (1986).
    • (1986) Nature , vol.319 , pp. 675-678
    • Kärre, K.1    Ljunggren, H.G.2    Piontek, G.3    Kiessling, R.4
  • 33
    • 33744521309 scopus 로고    scopus 로고
    • Missing self recognition and self tolerance of natural killer (NK) cells
    • Raulet, D.H. Missing self recognition and self tolerance of natural killer (NK) cells. Semin. Immunol. 18, 145-150 (2006).
    • (2006) Semin. Immunol. , vol.18 , pp. 145-150
    • Raulet, D.H.1
  • 35
    • 0029012969 scopus 로고
    • A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP
    • Doody, G.M. et al. A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 269, 242-244 (1995).
    • (1995) Science , vol.269 , pp. 242-244
    • Doody, G.M.1
  • 36
    • 77952300688 scopus 로고    scopus 로고
    • Properdin: Emerging roles of a pattern-recognition molecule
    • Kemper, C., Atkinson, J.P. & Hourcade, D.E. Properdin: emerging roles of a pattern-recognition molecule. Annu. Rev. Immunol. 28, 131-155 (2010).
    • (2010) Annu. Rev. Immunol. , vol.28 , pp. 131-155
    • Kemper, C.1    Atkinson, J.P.2    Hourcade, D.E.3
  • 37
    • 0035321325 scopus 로고    scopus 로고
    • Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria
    • Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361-367 (2001).
    • (2001) Nat. Immunol. , vol.2 , pp. 361-367
    • Rescigno, M.1
  • 38
    • 75649093343 scopus 로고    scopus 로고
    • Toll-like receptor signalling in the intestinal epithelium: How bacterial recognition shapes intestinal function
    • Abreu, M.T. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat. Rev. Immunol. 10, 131-144 (2010).
    • (2010) Nat. Rev. Immunol. , vol.10 , pp. 131-144
    • Abreu, M.T.1
  • 39
    • 55149113944 scopus 로고    scopus 로고
    • Welcome to the neighborhood: Epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites
    • Saenz, S.A., Taylor, B.C. & Artis, D. Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol. Rev. 226, 172-190 (2008).
    • (2008) Immunol. Rev. , vol.226 , pp. 172-190
    • Saenz, S.A.1    Taylor, B.C.2    Artis, D.3
  • 40
    • 33746161021 scopus 로고    scopus 로고
    • + lamina propria cells
    • + lamina propria cells. Nat. Immunol. 7, 868-874 (2006).
    • (2006) Nat. Immunol. , vol.7 , pp. 868-874
    • Uematsu, S.1
  • 41
    • 79953315378 scopus 로고    scopus 로고
    • Differential requirements for NAIP5 in activation of the NLRC4 inflammasome
    • Lightfield, K.L. et al. Differential requirements for NAIP5 in activation of the NLRC4 inflammasome. Infect. Immun. 79, 1606-1614 (2011).
    • (2011) Infect. Immun. , vol.79 , pp. 1606-1614
    • Lightfield, K.L.1
  • 42
    • 80053349020 scopus 로고    scopus 로고
    • The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus
    • Zhao, Y. et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477, 596-600 (2011).
    • (2011) Nature , vol.477 , pp. 596-600
    • Zhao, Y.1
  • 43
    • 84879527408 scopus 로고    scopus 로고
    • Caspase-11 activation in response to bacterial secretion systems that access the host cytosol
    • Casson, C.N. et al. Caspase-11 activation in response to bacterial secretion systems that access the host cytosol. PLoS Pathog. 9, e1003400 (2013).
    • (2013) PLoS Pathog. , vol.9 , pp. e1003400
    • Casson, C.N.1
  • 44
    • 84880788557 scopus 로고    scopus 로고
    • Pattern recognition receptor function in neutrophils
    • Thomas, C.J. & Schroder, K. Pattern recognition receptor function in neutrophils. Trends Immunol. 34, 317-328 (2013).
    • (2013) Trends Immunol. , vol.34 , pp. 317-328
    • Thomas, C.J.1    Schroder, K.2
  • 45
    • 1542287347 scopus 로고    scopus 로고
    • Neutrophil extracellular traps kill bacteria
    • Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532-1535 (2004).
    • (2004) Science , vol.303 , pp. 1532-1535
    • Brinkmann, V.1
  • 47
    • 0033545342 scopus 로고    scopus 로고
    • Acute-phase proteins and other systemic responses to inflammation
    • Gabay, C. & Kushner, I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340, 448-454 (1999).
    • (1999) N. Engl. J. Med. , vol.340 , pp. 448-454
    • Gabay, C.1    Kushner, I.2
  • 48
    • 77955290497 scopus 로고    scopus 로고
    • Antiviral instruction of bone marrow leukocytes during respiratory viral infections
    • Hermesh, T., Moltedo, B., Moran, T.M. & Lopez, C.B. Antiviral instruction of bone marrow leukocytes during respiratory viral infections. Cell Host Microbe 7, 343-353 (2010).
    • (2010) Cell Host Microbe , vol.7 , pp. 343-353
    • Hermesh, T.1    Moltedo, B.2    Moran, T.M.3    Lopez, C.B.4
  • 49
    • 0035202483 scopus 로고    scopus 로고
    • Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology
    • Asselin-Paturel, C. et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat. Immunol. 2, 1144-1150 (2001).
    • (2001) Nat. Immunol. , vol.2 , pp. 1144-1150
    • Asselin-Paturel, C.1
  • 50
    • 17244374001 scopus 로고    scopus 로고
    • Type I interferon dependence of plasmacytoid dendritic cell activation and migration
    • Asselin-Paturel, C. et al. Type I interferon dependence of plasmacytoid dendritic cell activation and migration. J. Exp. Med. 201, 1157-1167 (2005).
    • (2005) J. Exp. Med. , vol.201 , pp. 1157-1167
    • Asselin-Paturel, C.1
  • 51
    • 0037128177 scopus 로고    scopus 로고
    • Virus-induced interferon alpha production by a dendritic cell subset in the absence of feedback signaling in vivo
    • Barchet, W. et al. Virus-induced interferon alpha production by a dendritic cell subset in the absence of feedback signaling in vivo. J. Exp. Med. 195, 507-516 (2002).
    • (2002) J. Exp. Med. , vol.195 , pp. 507-516
    • Barchet, W.1
  • 53
    • 0019500183 scopus 로고
    • Cutaneous basophil responses and immune resistance of guinea pigs to ticks: Passive transfer with peritoneal exudate cells or serum
    • Brown, S.J. & Askenase, P.W. Cutaneous basophil responses and immune resistance of guinea pigs to ticks: passive transfer with peritoneal exudate cells or serum. J. Immunol. 127, 2163-2167 (1981).
    • (1981) J. Immunol. , vol.127 , pp. 2163-2167
    • Brown, S.J.1    Askenase, P.W.2
  • 54
    • 77955291570 scopus 로고    scopus 로고
    • Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks
    • Wada, T. et al. Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks. J. Clin. Invest. 120, 2867-2875 (2010).
    • (2010) J. Clin. Invest. , vol.120 , pp. 2867-2875
    • Wada, T.1
  • 55
    • 84875528275 scopus 로고    scopus 로고
    • The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting
    • Merad, M., Sathe, P., Helft, J., Miller, J. & Mortha, A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31, 563-604 (2013).
    • (2013) Annu. Rev. Immunol. , vol.31 , pp. 563-604
    • Merad, M.1    Sathe, P.2    Helft, J.3    Miller, J.4    Mortha, A.5
  • 56
    • 84901358607 scopus 로고    scopus 로고
    • Monocytes and macrophages: Developmental pathways and tissue homeostasis
    • Ginhoux, F. & Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14, 392-404 (2014).
    • (2014) Nat. Rev. Immunol. , vol.14 , pp. 392-404
    • Ginhoux, F.1    Jung, S.2
  • 57
    • 76249095169 scopus 로고    scopus 로고
    • Development of monocytes, macrophages, and dendritic cells
    • Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656-661 (2010).
    • (2010) Science , vol.327 , pp. 656-661
    • Geissmann, F.1
  • 59
    • 84901415239 scopus 로고    scopus 로고
    • Complementary diversification of dendritic cells and innate lymphoid cells
    • Briseño, C.G., Murphy, T.L. & Murphy, K.M. Complementary diversification of dendritic cells and innate lymphoid cells. Curr. Opin. Immunol. 29, 69-78 (2014).
    • (2014) Curr. Opin. Immunol. , vol.29 , pp. 69-78
    • Briseño, C.G.1    Murphy, T.L.2    Murphy, K.M.3
  • 60
    • 84878191150 scopus 로고    scopus 로고
    • + dendritic cells in human and mouse control mucosal IL-17 cytokine responses
    • + dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38, 970-983 (2013).
    • (2013) Immunity , vol.38 , pp. 970-983
    • Schlitzer, A.1
  • 61
    • 84878167904 scopus 로고    scopus 로고
    • + dendritic cells drive mucosal T helper 17 cell differentiation
    • + dendritic cells drive mucosal T helper 17 cell differentiation. Immunity 38, 958-969 (2013).
    • (2013) Immunity , vol.38 , pp. 958-969
    • Persson, E.K.1
  • 62
    • 56449097442 scopus 로고    scopus 로고
    • + dendritic cells in cytotoxic T cell immunity
    • + dendritic cells in cytotoxic T cell immunity. Science 322, 1097-1100 (2008).
    • (2008) Science , vol.322 , pp. 1097-1100
    • Hildner, K.1
  • 63
    • 77349083495 scopus 로고    scopus 로고
    • + conventional dendritic cells
    • + conventional dendritic cells. J. Exp. Med. 207, 823-836 (2010).
    • (2010) J. Exp. Med. , vol.207 , pp. 823-836
    • Edelson, B.T.1
  • 65
    • 80054840252 scopus 로고    scopus 로고
    • + pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen
    • + pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. J. Exp. Med. 208, 1789-1797 (2011).
    • (2011) J. Exp. Med. , vol.208 , pp. 1789-1797
    • Desch, A.N.1
  • 66
    • 84907302142 scopus 로고    scopus 로고
    • Dendritic cell subsets require cis-activation for cytotoxic CD8 T-cell induction
    • Desch, A.N. et al. Dendritic cell subsets require cis-activation for cytotoxic CD8 T-cell induction. Nat. Commun. 5, 4674 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 4674
    • Desch, A.N.1
  • 67
    • 67249158956 scopus 로고    scopus 로고
    • Identification of a dendritic cell receptor that couples sensing of necrosis to immunity
    • Sancho, D. et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458, 899-903 (2009).
    • (2009) Nature , vol.458 , pp. 899-903
    • Sancho, D.1
  • 68
    • 84860007667 scopus 로고    scopus 로고
    • The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice
    • Zelenay, S. et al. The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J. Clin. Invest. 122, 1615-1627 (2012).
    • (2012) J. Clin. Invest. , vol.122 , pp. 1615-1627
    • Zelenay, S.1
  • 69
    • 80051906942 scopus 로고    scopus 로고
    • Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses
    • Igyártó, B.Z. et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35, 260-272 (2011).
    • (2011) Immunity , vol.35 , pp. 260-272
    • Igyártó, B.Z.1
  • 70
    • 84864293006 scopus 로고    scopus 로고
    • + nonlymphoid dendritic cells
    • + nonlymphoid dendritic cells. Immunity 37, 60-73 (2012).
    • (2012) Immunity , vol.37 , pp. 60-73
    • Haniffa, M.1
  • 71
    • 51349093240 scopus 로고    scopus 로고
    • + dermal dendritic cells
    • + dermal dendritic cells. Immunity 29, 497-510 (2008).
    • (2008) Immunity , vol.29 , pp. 497-510
    • Klechevsky, E.1
  • 72
    • 84861750928 scopus 로고    scopus 로고
    • Characterization of resident and migratory dendritic cells in human lymph nodes
    • Segura, E. et al. Characterization of resident and migratory dendritic cells in human lymph nodes. J. Exp. Med. 209, 653-660 (2012).
    • (2012) J. Exp. Med. , vol.209 , pp. 653-660
    • Segura, E.1
  • 73
    • 80051915459 scopus 로고    scopus 로고
    • + dendritic cells are the critical source of interleu-kin-12 that controls acute infection by Toxoplasma gondii tachyzoites
    • + dendritic cells are the critical source of interleu-kin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity 35, 249-259 (2011).
    • (2011) Immunity , vol.35 , pp. 249-259
    • Mashayekhi, M.1
  • 74
    • 80051914298 scopus 로고    scopus 로고
    • + dendritic cells are an obligate cellular entry point for productive infection by Listeria monocytogenes
    • + dendritic cells are an obligate cellular entry point for productive infection by Listeria monocytogenes. Immunity 35, 236-248 (2011).
    • (2011) Immunity , vol.35 , pp. 236-248
    • Edelson, B.T.1
  • 75
    • 80054754519 scopus 로고    scopus 로고
    • low/- peripheral dendritic cells are GM-CSF-independent and are not required for Th cell priming after subcutaneous immunization
    • low/- peripheral dendritic cells are GM-CSF-independent and are not required for Th cell priming after subcutaneous immunization. PLoS ONE 6, e25660 (2011).
    • (2011) PLoS ONE , vol.6 , pp. e25660
    • Edelson, B.T.1
  • 76
    • 77952310536 scopus 로고    scopus 로고
    • + dermal dendritic cells play a critical role in Th effector cell differentiation after subcutaneous immunization
    • + dermal dendritic cells play a critical role in Th effector cell differentiation after subcutaneous immunization. J. Exp. Med. 207, 953-961 (2010).
    • (2010) J. Exp. Med. , vol.207 , pp. 953-961
    • King, I.L.1    Kroenke, M.A.2    Segal, B.M.3
  • 77
    • 84861162719 scopus 로고    scopus 로고
    • Th17 cells in immunity to Candida albicans
    • Hernández-Santos, N. & Gaffen, S.L. Th17 cells in immunity to Candida albicans. Cell Host Microbe 11, 425-435 (2012).
    • (2012) Cell Host Microbe , vol.11 , pp. 425-435
    • Hernández-Santos, N.1    Gaffen, S.L.2
  • 78
    • 51649093093 scopus 로고    scopus 로고
    • Cell mediated immunity to fungi: A reassessment
    • Romani, L. Cell mediated immunity to fungi: a reassessment. Med. Mycol. 46, 515-529 (2008).
    • (2008) Med. Mycol. , vol.46 , pp. 515-529
    • Romani, L.1
  • 79
    • 84861148620 scopus 로고    scopus 로고
    • Exciting developments in the immunology of fungal infections
    • Brown, G.D. & Netea, M.G. Exciting developments in the immunology of fungal infections. Cell Host Microbe 11, 422-424 (2012).
    • (2012) Cell Host Microbe , vol.11 , pp. 422-424
    • Brown, G.D.1    Netea, M.G.2
  • 80
    • 64349112788 scopus 로고    scopus 로고
    • Pattern recognition: Recent insights from Dectin-1
    • Reid, D.M., Gow, N.A. & Brown, G.D. Pattern recognition: recent insights from Dectin-1. Curr. Opin. Immunol. 21, 30-37 (2009).
    • (2009) Curr. Opin. Immunol. , vol.21 , pp. 30-37
    • Reid, D.M.1    Gow, N.A.2    Brown, G.D.3
  • 81
    • 69549108298 scopus 로고    scopus 로고
    • Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection
    • Robinson, M.J. et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J. Exp. Med. 206, 2037-2051 (2009).
    • (2009) J. Exp. Med. , vol.206 , pp. 2037-2051
    • Robinson, M.J.1
  • 83
    • 84885447087 scopus 로고    scopus 로고
    • Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism
    • Welty, N.E. et al. Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism. J. Exp. Med. 210, 2011-2024 (2013).
    • (2013) J. Exp. Med. , vol.210 , pp. 2011-2024
    • Welty, N.E.1
  • 84
    • 81955164775 scopus 로고    scopus 로고
    • Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine
    • Lewis, K.L. et al. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35, 780-791 (2011).
    • (2011) Immunity , vol.35 , pp. 780-791
    • Lewis, K.L.1
  • 85
    • 67649950931 scopus 로고    scopus 로고
    • Reciprocal regulation of IL-23 and IL-12 following co-activation of Dectin-1 and TLR signaling pathways
    • Dennehy, K.M., Willment, J.A., Williams, D.L. & Brown, G.D. Reciprocal regulation of IL-23 and IL-12 following co-activation of Dectin-1 and TLR signaling pathways. Eur. J. Immunol. 39, 1379-1386 (2009).
    • (2009) Eur. J. Immunol. , vol.39 , pp. 1379-1386
    • Dennehy, K.M.1    Willment, J.A.2    Williams, D.L.3    Brown, G.D.4
  • 86
    • 84885831956 scopus 로고    scopus 로고
    • + dermal dendritic cells drive T helper 2 cell-mediated immunity
    • + dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity 39, 733-743 (2013).
    • (2013) Immunity , vol.39 , pp. 733-743
    • Kumamoto, Y.1
  • 87
    • 84885778452 scopus 로고    scopus 로고
    • Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells
    • Gao, Y. et al. Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity 39, 722-732 (2013).
    • (2013) Immunity , vol.39 , pp. 722-732
    • Gao, Y.1
  • 88
    • 84883639187 scopus 로고    scopus 로고
    • A unique dermal dendritic cell subset that skews the immune response toward Th2
    • Murakami, R. et al. A unique dermal dendritic cell subset that skews the immune response toward Th2. PLoS ONE 8, e73270 (2013).
    • (2013) PLoS ONE , vol.8 , pp. e73270
    • Murakami, R.1
  • 89
    • 77953812779 scopus 로고    scopus 로고
    • The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling
    • Tang, H. et al. The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat. Immunol. 11, 608-617 (2010).
    • (2010) Nat. Immunol. , vol.11 , pp. 608-617
    • Tang, H.1
  • 90
    • 22544470027 scopus 로고    scopus 로고
    • B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae
    • Haas, K.M., Poe, J.C., Steeber, D.A. & Tedder, T.F. B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity 23, 7-18 (2005).
    • (2005) Immunity , vol.23 , pp. 7-18
    • Haas, K.M.1    Poe, J.C.2    Steeber, D.A.3    Tedder, T.F.4
  • 91
    • 4444335352 scopus 로고    scopus 로고
    • B1b lymphocytes confer T cell-independent long-lasting immunity
    • Alugupalli, K.R. et al. B1b lymphocytes confer T cell-independent long-lasting immunity. Immunity 21, 379-390 (2004).
    • (2004) Immunity , vol.21 , pp. 379-390
    • Alugupalli, K.R.1
  • 92
    • 0034679710 scopus 로고    scopus 로고
    • B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection
    • Baumgarth, N. et al. B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J. Exp. Med. 192, 271-280 (2000).
    • (2000) J. Exp. Med. , vol.192 , pp. 271-280
    • Baumgarth, N.1
  • 93
    • 41149150143 scopus 로고    scopus 로고
    • Toll-like receptor expression and responsiveness of distinct murine splenic and mucosal B-cell subsets
    • Gururajan, M., Jacob, J. & Pulendran, B. Toll-like receptor expression and responsiveness of distinct murine splenic and mucosal B-cell subsets. PLoS ONE 2, e863 (2007).
    • (2007) PLoS ONE , vol.2 , pp. e863
    • Gururajan, M.1    Jacob, J.2    Pulendran, B.3
  • 94
    • 84860292969 scopus 로고    scopus 로고
    • BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-kappaB pathway
    • Pone, E.J. et al. BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-kappaB pathway. Nat. Commun. 3, 767 (2012).
    • (2012) Nat. Commun. , vol.3 , pp. 767
    • Pone, E.J.1
  • 95
    • 0030593030 scopus 로고    scopus 로고
    • C3d of complement as a molecular adjuvant: Bridging innate and acquired immunity
    • Dempsey, P.W., Allison, M.E., Akkaraju, S., Goodnow, C.C. & Fearon, D.T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271, 348-350 (1996).
    • (1996) Science , vol.271 , pp. 348-350
    • Dempsey, P.W.1    Allison, M.E.2    Akkaraju, S.3    Goodnow, C.C.4    Fearon, D.T.5
  • 96
    • 0030176019 scopus 로고    scopus 로고
    • Activation of B lymphocytes: Integrating signals from CD19, CD22 and Fc gamma RIIb1
    • Doody, G.M., Dempsey, P.W. & Fearon, D.T. Activation of B lymphocytes: integrating signals from CD19, CD22 and Fc gamma RIIb1. Curr. Opin. Immunol. 8, 378-382 (1996).
    • (1996) Curr. Opin. Immunol. , vol.8 , pp. 378-382
    • Doody, G.M.1    Dempsey, P.W.2    Fearon, D.T.3
  • 97
    • 84859416185 scopus 로고    scopus 로고
    • Multifarious roles of sialic acids in immunity
    • Varki, A. & Gagneux, P. Multifarious roles of sialic acids in immunity. Ann. NY Acad. Sci. 1253, 16-36 (2012).
    • (2012) Ann. NY Acad. Sci. , vol.1253 , pp. 16-36
    • Varki, A.1    Gagneux, P.2
  • 98
    • 79952745936 scopus 로고    scopus 로고
    • Selective utilization of Toll-like receptor and MyD88 signaling in B cells for enhancement of the antiviral germinal center response
    • Hou, B. et al. Selective utilization of Toll-like receptor and MyD88 signaling in B cells for enhancement of the antiviral germinal center response. Immunity 34, 375-384 (2011).
    • (2011) Immunity , vol.34 , pp. 375-384
    • Hou, B.1
  • 99
    • 80055080756 scopus 로고    scopus 로고
    • Toll-like receptor 7 controls the anti-retroviral germinal center response
    • Browne, E.P. Toll-like receptor 7 controls the anti-retroviral germinal center response. PLoS Pathog. 7, e1002293 (2011).
    • (2011) PLoS Pathog. , vol.7 , pp. e1002293
    • Browne, E.P.1
  • 100
    • 70249097764 scopus 로고    scopus 로고
    • B cell intrinsic MyD88 signals drive IFN-gamma production from T cells and control switching to IgG2c
    • Barr, T.A., Brown, S., Mastroeni, P. & Gray, D. B cell intrinsic MyD88 signals drive IFN-gamma production from T cells and control switching to IgG2c. J. Immunol. 183, 1005-1012 (2009).
    • (2009) J. Immunol. , vol.183 , pp. 1005-1012
    • Barr, T.A.1    Brown, S.2    Mastroeni, P.3    Gray, D.4
  • 101
    • 34247154497 scopus 로고    scopus 로고
    • MyD88 is required for the formation of long-term humoral immunity to virus infection
    • Guay, H.M., Andreyeva, T.A., Garcea, R.L., Welsh, R.M. & Szomolanyi-Tsuda, E. MyD88 is required for the formation of long-term humoral immunity to virus infection. J. Immunol. 178, 5124-5131 (2007).
    • (2007) J. Immunol. , vol.178 , pp. 5124-5131
    • Guay, H.M.1    Andreyeva, T.A.2    Garcea, R.L.3    Welsh, R.M.4    Szomolanyi-Tsuda, E.5
  • 102
    • 33846937311 scopus 로고    scopus 로고
    • TLR signaling fine-tunes anti-influenza B cell responses without regulating effector T cell responses
    • Heer, A.K. et al. TLR signaling fine-tunes anti-influenza B cell responses without regulating effector T cell responses. J. Immunol. 178, 2182-2191 (2007).
    • (2007) J. Immunol. , vol.178 , pp. 2182-2191
    • Heer, A.K.1
  • 103
    • 0037061453 scopus 로고    scopus 로고
    • Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors
    • Leadbetter, E.A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603-607 (2002).
    • (2002) Nature , vol.416 , pp. 603-607
    • Leadbetter, E.A.1
  • 104
    • 84875547953 scopus 로고    scopus 로고
    • Signals via the adaptor MyD88 in B cells and DCs make distinct and synergistic contributions to immune activation and tissue damage in lupus
    • Teichmann, L.L., Schenten, D., Medzhitov, R., Kashgarian, M. & Shlomchik, M.J. Signals via the adaptor MyD88 in B cells and DCs make distinct and synergistic contributions to immune activation and tissue damage in lupus. Immunity 38, 528-540 (2013).
    • (2013) Immunity , vol.38 , pp. 528-540
    • Teichmann, L.L.1    Schenten, D.2    Medzhitov, R.3    Kashgarian, M.4    Shlomchik, M.J.5
  • 105
    • 27844541797 scopus 로고    scopus 로고
    • Control of B-cell responses by Toll-like receptors
    • Pasare, C. & Medzhitov, R. Control of B-cell responses by Toll-like receptors. Nature 438, 364-368 (2005).
    • (2005) Nature , vol.438 , pp. 364-368
    • Pasare, C.1    Medzhitov, R.2
  • 106
    • 70349310111 scopus 로고    scopus 로고
    • Alveolar macrophages and lung dendritic cells sense RNA and drive mucosal IgA responses
    • Bessa, J. et al. Alveolar macrophages and lung dendritic cells sense RNA and drive mucosal IgA responses. J. Immunol. 183, 3788-3799 (2009).
    • (2009) J. Immunol. , vol.183 , pp. 3788-3799
    • Bessa, J.1
  • 107
    • 79956314385 scopus 로고    scopus 로고
    • Host defense pathways: Role of redundancy and compensation in infectious disease phenotypes
    • Nish, S. & Medzhitov, R. Host defense pathways: role of redundancy and compensation in infectious disease phenotypes. Immunity 34, 629-636 (2011).
    • (2011) Immunity , vol.34 , pp. 629-636
    • Nish, S.1    Medzhitov, R.2
  • 108
    • 84907968021 scopus 로고    scopus 로고
    • Development, differentiation, and diversity of innate lymphoid cells
    • Diefenbach, A., Colonna, M. & Koyasu, S. Development, differentiation, and diversity of innate lymphoid cells. Immunity 41, 354-365 (2014).
    • (2014) Immunity , vol.41 , pp. 354-365
    • Diefenbach, A.1    Colonna, M.2    Koyasu, S.3
  • 109
    • 84907983938 scopus 로고    scopus 로고
    • Innate lymphoid cells in inflammation and immunity
    • McKenzie, A.N., Spits, H. & Eberl, G. Innate lymphoid cells in inflammation and immunity. Immunity 41, 366-374 (2014).
    • (2014) Immunity , vol.41 , pp. 366-374
    • McKenzie, A.N.1    Spits, H.2    Eberl, G.3
  • 110
    • 84921444124 scopus 로고    scopus 로고
    • Innate lymphoid cells: New insights into function and development
    • Cortez, V.S., Robinette, M.L. & Colonna, M. Innate lymphoid cells: new insights into function and development. Curr. Opin. Immunol. 32C, 71-77 (2015).
    • (2015) Curr. Opin. Immunol. , vol.32 C , pp. 71-77
    • Cortez, V.S.1    Robinette, M.L.2    Colonna, M.3
  • 111
  • 112
    • 84881628352 scopus 로고    scopus 로고
    • Tissue-resident memory T cells
    • Shin, H. & Iwasaki, A. Tissue-resident memory T cells. Immunol. Rev. 255, 165-181 (2013).
    • (2013) Immunol. Rev. , vol.255 , pp. 165-181
    • Shin, H.1    Iwasaki, A.2
  • 113
    • 84874031351 scopus 로고    scopus 로고
    • Guarding the perimeter: Protection of the mucosa by tissue-resident memory T cells
    • Cauley, L.S. & Lefrancois, L. Guarding the perimeter: protection of the mucosa by tissue-resident memory T cells. Mucosal Immunol. 6, 14-23 (2013).
    • (2013) Mucosal Immunol. , vol.6 , pp. 14-23
    • Cauley, L.S.1    Lefrancois, L.2
  • 114
    • 84918506186 scopus 로고    scopus 로고
    • Tissue-resident memory T cells
    • Schenkel, J.M. & Masopust, D. Tissue-resident memory T cells. Immunity 41, 886-897 (2014).
    • (2014) Immunity , vol.41 , pp. 886-897
    • Schenkel, J.M.1    Masopust, D.2
  • 115
    • 84867636023 scopus 로고    scopus 로고
    • Innate lymphoid cells: Balancing immunity, inflammation, and tissue repair in the intestine
    • Tait Wojno, E.D. & Artis, D. Innate lymphoid cells: balancing immunity, inflammation, and tissue repair in the intestine. Cell Host Microbe 12, 445-457 (2012).
    • (2012) Cell Host Microbe , vol.12 , pp. 445-457
    • Tait Wojno, E.D.1    Artis, D.2
  • 116
    • 55149112367 scopus 로고    scopus 로고
    • The interleukin-23 axis in intestinal inflammation
    • Ahern, P.P., Izcue, A., Maloy, K.J. & Powrie, F. The interleukin-23 axis in intestinal inflammation. Immunol. Rev. 226, 147-159 (2008).
    • (2008) Immunol. Rev. , vol.226 , pp. 147-159
    • Ahern, P.P.1    Izcue, A.2    Maloy, K.J.3    Powrie, F.4
  • 117
    • 17644372733 scopus 로고    scopus 로고
    • IPC: Professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors
    • Liu, Y.J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 23, 275-306 (2005).
    • (2005) Annu. Rev. Immunol. , vol.23 , pp. 275-306
    • Liu, Y.J.1
  • 118
    • 84885674640 scopus 로고    scopus 로고
    • The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch
    • Wilson, S.R. et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 155, 285-295 (2013).
    • (2013) Cell , vol.155 , pp. 285-295
    • Wilson, S.R.1
  • 119
    • 84918822382 scopus 로고    scopus 로고
    • Diversity of animal immune receptors and the origins of recognition complexity in the deuterostomes
    • Buckley, K.M. & Rast, J.P. Diversity of animal immune receptors and the origins of recognition complexity in the deuterostomes. Dev. Comp. Immunol. 49, 179-189 (2015).
    • (2015) Dev. Comp. Immunol. , vol.49 , pp. 179-189
    • Buckley, K.M.1    Rast, J.P.2
  • 120
    • 84869865357 scopus 로고    scopus 로고
    • Cytokine-induced cytokine production by conventional and innate lymphoid cells
    • Guo, L., Junttila, I.S. & Paul, W.E. Cytokine-induced cytokine production by conventional and innate lymphoid cells. Trends Immunol. 33, 598-606 (2012).
    • (2012) Trends Immunol. , vol.33 , pp. 598-606
    • Guo, L.1    Junttila, I.S.2    Paul, W.E.3
  • 122
    • 84890825282 scopus 로고    scopus 로고
    • A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis
    • Salimi, M. et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J. Exp. Med. 210, 2939-2950 (2013).
    • (2013) J. Exp. Med. , vol.210 , pp. 2939-2950
    • Salimi, M.1
  • 123
    • 69449106110 scopus 로고    scopus 로고
    • IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells
    • Guo, L. et al. IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells. Proc. Natl. Acad. Sci. USA 106, 13463-13468 (2009).
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 13463-13468
    • Guo, L.1
  • 124
    • 75749122181 scopus 로고    scopus 로고
    • + lymphoid cells
    • + lymphoid cells. Nature 463, 540-544 (2010).
    • (2010) Nature , vol.463 , pp. 540-544
    • Moro, K.1
  • 125
    • 84255178198 scopus 로고    scopus 로고
    • FH cell-like transition
    • FH cell-like transition. Immunity 35, 919-931 (2011).
    • (2011) Immunity , vol.35 , pp. 919-931
    • Nakayamada, S.1
  • 126
    • 62849090439 scopus 로고    scopus 로고
    • Cytokine-secreting follicular T cells shape the antibody repertoire
    • Reinhardt, R.L., Liang, H.E. & Locksley, R.M. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat. Immunol. 10, 385-393 (2009).
    • (2009) Nat. Immunol. , vol.10 , pp. 385-393
    • Reinhardt, R.L.1    Liang, H.E.2    Locksley, R.M.3
  • 127
    • 84891363464 scopus 로고    scopus 로고
    • The role of short-chain fatty acids in health and disease
    • Tan, J. et al. The role of short-chain fatty acids in health and disease. Adv. Immunol. 121, 91-119 (2014).
    • (2014) Adv. Immunol. , vol.121 , pp. 91-119
    • Tan, J.1
  • 128
    • 84892928571 scopus 로고    scopus 로고
    • Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity
    • Spencer, S.P. et al. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 343, 432-437 (2014).
    • (2014) Science , vol.343 , pp. 432-437
    • Spencer, S.P.1
  • 129
    • 84865297479 scopus 로고    scopus 로고
    • Dietary and commensal derived nutrients: Shaping mucosal and systemic immunity
    • Spencer, S.P. & Belkaid, Y. Dietary and commensal derived nutrients: shaping mucosal and systemic immunity. Curr. Opin. Immunol. 24, 379-384 (2012).
    • (2012) Curr. Opin. Immunol. , vol.24 , pp. 379-384
    • Spencer, S.P.1    Belkaid, Y.2
  • 130
    • 84907382483 scopus 로고    scopus 로고
    • AhR sensing of bacterial pigments regulates antibacterial defence
    • Moura-Alves, P. et al. AhR sensing of bacterial pigments regulates antibacterial defence. Nature 512, 387-392 (2014).
    • (2014) Nature , vol.512 , pp. 387-392
    • Moura-Alves, P.1
  • 132
    • 84907597269 scopus 로고    scopus 로고
    • Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4
    • Venkatesh, M. et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 41, 296-310 (2014).
    • (2014) Immunity , vol.41 , pp. 296-310
    • Venkatesh, M.1
  • 133
    • 33846636409 scopus 로고    scopus 로고
    • Differential antigen processing by dendritic cell subsets in vivo
    • Dudziak, D. et al. Differential antigen processing by dendritic cell subsets in vivo. Science 315, 107-111 (2007).
    • (2007) Science , vol.315 , pp. 107-111
    • Dudziak, D.1
  • 134
    • 76149133088 scopus 로고    scopus 로고
    • + dermal dendritic cells cross-present keratinocytederived antigens irrespective of the presence of Langerhans cells
    • + dermal dendritic cells cross-present keratinocytederived antigens irrespective of the presence of Langerhans cells. J. Exp. Med. 207, 189-206 (2010).
    • (2010) J. Exp. Med. , vol.207 , pp. 189-206
    • Henri, S.1
  • 136
    • 46949109891 scopus 로고    scopus 로고
    • - but not plasmacytoid dendritic cells
    • - but not plasmacytoid dendritic cells. J. Exp. Med. 205, 1621-1634 (2008).
    • (2008) J. Exp. Med. , vol.205 , pp. 1621-1634
    • GeurtsvanKessel, C.H.1
  • 137
    • 84895801911 scopus 로고    scopus 로고
    • Osteopontin expression by CD103- dendritic cells drives intestinal inflammation
    • Kourepini, E. et al. Osteopontin expression by CD103- dendritic cells drives intestinal inflammation. Proc. Natl. Acad. Sci. USA 111, E856-E865 (2014).
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. E856-E865
    • Kourepini, E.1
  • 138
    • 84874254531 scopus 로고    scopus 로고
    • + dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen
    • + dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 38, 322-335 (2013).
    • (2013) Immunity , vol.38 , pp. 322-335
    • Plantinga, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.