-
1
-
-
84870876967
-
Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria
-
Basu, R., D.B. O'Quinn, D.J. Silberger, T.R. Schoeb, L. Fouser, W. Ouyang, R.D. Hatton, and C.T. Weaver. 2012. Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria. Immunity. 37:1061-1075. http://dx.doi.org/10.1016/j.immuni.2012.08.024
-
(2012)
Immunity
, vol.37
, pp. 1061-1075
-
-
Basu, R.1
O'Quinn, D.B.2
Silberger, D.J.3
Schoeb, T.R.4
Fouser, L.5
Ouyang, W.6
Hatton, R.D.7
Weaver, C.T.8
-
2
-
-
84937707458
-
+ group 1 and group 3 innate lymphoid cells in the intestinal lamina propria
-
+ group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity. 43:146-160. http://dx.doi.org/10.1016/j.immuni.2015.06.019
-
(2015)
Immunity
, vol.43
, pp. 146-160
-
-
Bernink, J.H.1
Krabbendam, L.2
Germar, K.3
de Jong, E.4
Gronke, K.5
Kofoed-Nielsen, M.6
Munneke, J.M.7
Hazenberg, M.D.8
Villaudy, J.9
Buskens, C.J.10
-
3
-
-
57449109064
-
Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome
-
Birnberg, T., L. Bar-On, A. Sapoznikov, M.L. Caton, L. Cervantes-Barragán, D. Makia, R. Krauthgamer, O. Brenner, B. Ludewig, D. Brockschnieder, et al. 2008. Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome. Immunity. 29:986-997. http://dx.doi.org/10.1016/j.immuni.2008.10.012
-
(2008)
Immunity
, vol.29
, pp. 986-997
-
-
Birnberg, T.1
Bar-On, L.2
Sapoznikov, A.3
Caton, M.L.4
Cervantes-Barragán, L.5
Makia, D.6
Krauthgamer, R.7
Brenner, O.8
Ludewig, B.9
Brockschnieder, D.10
-
4
-
-
70049098070
-
Origin of the lamina propria dendritic cell network
-
Bogunovic, M., F. Ginhoux, J. Helft, L. Shang, D. Hashimoto, M. Greter, K. Liu, C. Jakubzick, M.A. Ingersoll, M. Leboeuf, et al. 2009. Origin of the lamina propria dendritic cell network. Immunity. 31:513-525. http://dx.doi.org/10.1016/j.immuni.2009.08.010
-
(2009)
Immunity
, vol.31
, pp. 513-525
-
-
Bogunovic, M.1
Ginhoux, F.2
Helft, J.3
Shang, L.4
Hashimoto, D.5
Greter, M.6
Liu, K.7
Jakubzick, C.8
Ingersoll, M.A.9
Leboeuf, M.10
-
5
-
-
33845532053
-
Microbial translocation is a cause of systemic immune activation in chronic HIV infection
-
Brenchley, J.M., D.A. Price, T.W. Schacker, T.E. Asher, G. Silvestri, S. Rao, Z. Kazzaz, E. Bornstein, O. Lambotte, D. Altmann, et al. 2006. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med. 12:1365-1371. http://dx.doi.org/10.1038/nm1511
-
(2006)
Nat. Med
, vol.12
, pp. 1365-1371
-
-
Brenchley, J.M.1
Price, D.A.2
Schacker, T.W.3
Asher, T.E.4
Silvestri, G.5
Rao, S.6
Kazzaz, Z.7
Bornstein, E.8
Lambotte, O.9
Altmann, D.10
-
6
-
-
84925500413
-
Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile
-
Buffie, C.G., V. Bucci, R.R. Stein, P.T. McKenney, L. Ling, A. Gobourne, D. No, H. Liu, M. Kinnebrew, A. Viale, et al. 2015. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 517:205-208. http://dx.doi.org/10.1038/nature13828
-
(2015)
Nature
, vol.517
, pp. 205-208
-
-
Buffie, C.G.1
Bucci, V.2
Stein, R.R.3
McKenney, P.T.4
Ling, L.5
Gobourne, A.6
No, D.7
Liu, H.8
Kinnebrew, M.9
Viale, A.10
-
7
-
-
84927662069
-
Microbiota-mediated inflammation and antimicrobial defense in the intestine
-
Caballero, S., and E.G. Pamer. 2015. Microbiota-mediated inflammation and antimicrobial defense in the intestine. Annu. Rev. Immunol. 33:227-256. http://dx.doi.org/10.1146/annurev-immunol-032713-120238
-
(2015)
Annu. Rev. Immunol
, vol.33
, pp. 227-256
-
-
Caballero, S.1
Pamer, E.G.2
-
8
-
-
34447275920
-
Notch-RBP-J signaling controls the homeostasis of CD8-dendritic cells in the spleen
-
Caton, M.L., M.R. Smith-Raska, and B. Reizis. 2007. Notch-RBP-J signaling controls the homeostasis of CD8-dendritic cells in the spleen. J. Exp. Med. 204:1653-1664. http://dx.doi.org/10.1084/jem.20062648
-
(2007)
J. Exp. Med
, vol.204
, pp. 1653-1664
-
-
Caton, M.L.1
Smith-Raska, M.R.2
Reizis, B.3
-
9
-
-
84866015194
-
Fecal lipocalin 2, a sensitive and broadly dynamic non-invasive biomarker for intestinal inflammation
-
Chassaing, B., G. Srinivasan, M.A. Delgado, A.N. Young, A.T. Gewirtz, and M. Vijay-Kumar. 2012. Fecal lipocalin 2, a sensitive and broadly dynamic non-invasive biomarker for intestinal inflammation. PLoS One. 7:e44328. http://dx.doi.org/10.1371/journal.pone.0044328
-
(2012)
PLoS One
, vol.7
-
-
Chassaing, B.1
Srinivasan, G.2
Delgado, M.A.3
Young, A.N.4
Gewirtz, A.T.5
Vijay-Kumar, M.6
-
10
-
-
33845910419
-
Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement
-
Chieppa, M., M. Rescigno, A.Y. Huang, and R.N. Germain. 2006. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203:2841-2852. http://dx.doi.org/10.1084/jem.20061884
-
(2006)
J. Exp. Med
, vol.203
, pp. 2841-2852
-
-
Chieppa, M.1
Rescigno, M.2
Huang, A.Y.3
Germain, R.N.4
-
11
-
-
79952675131
-
Follicular helper CD4 T cells (TFH)
-
Crotty, S. 2011. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29:621-663. http://dx.doi.org/10.1146/annurev-immunol-031210-101400
-
(2011)
Annu. Rev. Immunol
, vol.29
, pp. 621-663
-
-
Crotty, S.1
-
12
-
-
58149296036
-
Interleukin-17 in host defence against bacterial, mycobacterial and fungal pathogens
-
Curtis, M.M., and S.S. Way. 2009. Interleukin-17 in host defence against bacterial, mycobacterial and fungal pathogens. Immunology. 126:177-185. http://dx.doi.org/10.1111/j.1365-2567.2008.03017.x
-
(2009)
Immunology
, vol.126
, pp. 177-185
-
-
Curtis, M.M.1
Way, S.S.2
-
13
-
-
69549103141
-
Feedback control of regulatory T cell homeostasis by dendritic cells in vivo
-
Darrasse-Jèze, G., S. Deroubaix, H. Mouquet, G.D. Victora, T. Eisenreich, K.H. Yao, R.F. Masilamani, M.L. Dustin, A. Rudensky, K. Liu, and M.C. Nussenzweig. 2009. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J. Exp. Med. 206:1853-1862. http://dx.doi.org/10.1084/jem.20090746
-
(2009)
J. Exp. Med
, vol.206
, pp. 1853-1862
-
-
Darrasse-Jèze, G.1
Deroubaix, S.2
Mouquet, H.3
Victora, G.D.4
Eisenreich, T.5
Yao, K.H.6
Masilamani, R.F.7
Dustin, M.L.8
Rudensky, A.9
Liu, K.10
Nussenzweig, M.C.11
-
14
-
-
33746061683
-
Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB
-
DeSantis, T.Z., P. Hugenholtz, N. Larsen, M. Rojas, E.L. Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu, and G.L. Andersen. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72:5069-5072. http://dx.doi.org/10.1128/AEM.03006-05
-
(2006)
Appl. Environ. Microbiol
, vol.72
, pp. 5069-5072
-
-
DeSantis, T.Z.1
Hugenholtz, P.2
Larsen, N.3
Rojas, M.4
Brodie, E.L.5
Keller, K.6
Huber, T.7
Dalevi, D.8
Hu, P.9
Andersen, G.L.10
-
15
-
-
79957576718
-
NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis
-
Elinav, E., T. Strowig, A.L. Kau, J. Henao-Mejia, C.A. Thaiss, C.J. Booth, D.R. Peaper, J. Bertin, S.C. Eisenbarth, J.I. Gordon, and R.A. Flavell. 2011. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 145:745-757. http://dx.doi.org/10.1016/j.cell.2011.04.022
-
(2011)
Cell
, vol.145
, pp. 745-757
-
-
Elinav, E.1
Strowig, T.2
Kau, A.L.3
Henao-Mejia, J.4
Thaiss, C.A.5
Booth, C.J.6
Peaper, D.R.7
Bertin, J.8
Eisenbarth, S.C.9
Gordon, J.I.10
Flavell, R.A.11
-
16
-
-
84862862332
-
Epithelial antimicrobial defence of the skin and intestine
-
Gallo, R.L., and L.V. Hooper. 2012. Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol. 12:503-516. http://dx.doi.org/10.1038/nri3228
-
(2012)
Nat. Rev. Immunol
, vol.12
, pp. 503-516
-
-
Gallo, R.L.1
Hooper, L.V.2
-
17
-
-
84931406064
-
+ conventional DC clonogenic progenitor
-
+ conventional DC clonogenic progenitor. Nat. Immunol. 16:708-717. http://dx.doi.org/10.1038/ni.3197
-
(2015)
Nat. Immunol
, vol.16
, pp. 708-717
-
-
Grajales-Reyes, G.E.1
Iwata, A.2
Albring, J.3
Wu, X.4
Tussiwand, R.5
Kc, W.6
Kretzer, N.M.7
Briseño, C.G.8
Durai, V.9
Bagadia, P.10
-
18
-
-
0036198723
-
A conditional null allele of the major histocompatibility IA-beta chain gene
-
Hashimoto, K., S.K. Joshi, and P.A. Koni. 2002. A conditional null allele of the major histocompatibility IA-beta chain gene. Genesis. 32:152-153. http://dx.doi.org/10.1002/gene.10056
-
(2002)
Genesis
, vol.32
, pp. 152-153
-
-
Hashimoto, K.1
Joshi, S.K.2
Koni, P.A.3
-
19
-
-
56449097442
-
+ dendritic cells in cytotoxic T cell immunity
-
+ dendritic cells in cytotoxic T cell immunity. Science. 322:1097-1100. http://dx.doi.org/10.1126/science.1164206
-
(2008)
Science
, vol.322
, pp. 1097-1100
-
-
Hildner, K.1
Edelson, B.T.2
Purtha, W.E.3
Diamond, M.4
Matsushita, H.5
Kohyama, M.6
Calderon, B.7
Schraml, B.U.8
Unanue, E.R.9
Diamond, M.S.10
-
20
-
-
71749100858
-
Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection
-
Hohl, T.M., A. Rivera, L. Lipuma, A. Gallegos, C. Shi, M. Mack, and E.G. Pamer. 2009. Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection. Cell Host Microbe. 6:470-481. http://dx.doi.org/10.1016/j.chom.2009.10.007
-
(2009)
Cell Host Microbe
, vol.6
, pp. 470-481
-
-
Hohl, T.M.1
Rivera, A.2
Lipuma, L.3
Gallegos, A.4
Shi, C.5
Mack, M.6
Pamer, E.G.7
-
21
-
-
70350343544
-
Induction of intestinal Th17 cells by segmented filamentous bacteria
-
Ivanov, I.I., K. Atarashi, N. Manel, E.L. Brodie, T. Shima, U. Karaoz, D. Wei, K.C. Goldfarb, C.A. Santee, S.V. Lynch, et al. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 139:485-498. http://dx.doi.org/10.1016/j.cell.2009.09.033
-
(2009)
Cell
, vol.139
, pp. 485-498
-
-
Ivanov, I.I.1
Atarashi, K.2
Manel, N.3
Brodie, E.L.4
Shima, T.5
Karaoz, U.6
Wei, D.7
Goldfarb, K.C.8
Santee, C.A.9
Lynch, S.V.10
-
22
-
-
0033523608
-
Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice
-
Johansen, F.E., M. Pekna, I.N. Norderhaug, B. Haneberg, M.A. Hietala, P. Krajci, C. Betsholtz, and P. Brandtzaeg. 1999. Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J. Exp. Med. 190:915-922. http://dx.doi.org/10.1084/jem.190.7.915
-
(1999)
J. Exp. Med
, vol.190
, pp. 915-922
-
-
Johansen, F.E.1
Pekna, M.2
Norderhaug, I.N.3
Haneberg, B.4
Hietala, M.A.5
Krajci, P.6
Betsholtz, C.7
Brandtzaeg, P.8
-
23
-
-
18644375874
-
+ T cells by exogenous cellassociated antigens
-
+ T cells by exogenous cellassociated antigens. Immunity. 17:211-220. http://dx.doi.org/10.1016/S1074-7613(02)00365-5
-
(2002)
Immunity
, vol.17
, pp. 211-220
-
-
Jung, S.1
Unutmaz, D.2
Wong, P.3
Sano, G.4
De los Santos, K.5
Sparwasser, T.6
Wu, S.7
Vuthoori, S.8
Ko, K.9
Zavala, F.10
-
24
-
-
33645771221
-
In vivo ablation of CD11c-positive dendritic cells increases susceptibility to herpes simplex virus type 1 infection and diminishes NK and T-cell responses
-
Kassim, S.H., N.K. Rajasagi, X. Zhao, R. Chervenak, and S.R. Jennings. 2006. In vivo ablation of CD11c-positive dendritic cells increases susceptibility to herpes simplex virus type 1 infection and diminishes NK and T-cell responses. J. Virol. 80:3985-3993. http://dx.doi.org/10.1128/JVI.80.8.3985-3993.2006
-
(2006)
J. Virol
, vol.80
, pp. 3985-3993
-
-
Kassim, S.H.1
Rajasagi, N.K.2
Zhao, X.3
Chervenak, R.4
Jennings, S.R.5
-
25
-
-
84891798066
-
Gut TFH and IgA: key players for regulation of bacterial communities and immune homeostasis
-
Kato, L.M., S. Kawamoto, M. Maruya, and S. Fagarasan. 2014. Gut TFH and IgA: key players for regulation of bacterial communities and immune homeostasis. Immunol. Cell Biol. 92:49-56. http://dx.doi.org/10.1038/icb.2013.54
-
(2014)
Immunol. Cell Biol
, vol.92
, pp. 49-56
-
-
Kato, L.M.1
Kawamoto, S.2
Maruya, M.3
Fagarasan, S.4
-
26
-
-
84857444876
-
+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense
-
+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity. 36:276-287. http://dx.doi.org/10.1016/j.immuni.2011.12.011
-
(2012)
Immunity
, vol.36
, pp. 276-287
-
-
Kinnebrew, M.A.1
Buffie, C.G.2
Diehl, G.E.3
Zenewicz, L.A.4
Leiner, I.5
Hohl, T.M.6
Flavell, R.A.7
Littman, D.R.8
Pamer, E.G.9
-
27
-
-
33745182931
-
Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination
-
Klein, U., S. Casola, G. Cattoretti, Q. Shen, M. Lia, T. Mo, T. Ludwig, K. Rajewsky, and R. Dalla-Favera. 2006. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat. Immunol. 7:773-782. http://dx.doi.org/10.1038/ni1357
-
(2006)
Nat. Immunol
, vol.7
, pp. 773-782
-
-
Klein, U.1
Casola, S.2
Cattoretti, G.3
Shen, Q.4
Lia, M.5
Mo, T.6
Ludwig, T.7
Rajewsky, K.8
Dalla-Favera, R.9
-
28
-
-
84922937083
-
MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health
-
Kubinak, J.L., C. Petersen, W.Z. Stephens, R. Soto, E. Bake, R.M. O'Connell, and J.L. Round. 2015. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health. Cell Host Microbe. 17:153-163. http://dx.doi.org/10.1016/j.chom.2014.12.009
-
(2015)
Cell Host Microbe
, vol.17
, pp. 153-163
-
-
Kubinak, J.L.1
Petersen, C.2
Stephens, W.Z.3
Soto, R.4
Bake, E.5
O'Connell, R.M.6
Round, J.L.7
-
29
-
-
81955164775
-
Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine
-
Lewis, K.L., M.L. Caton, M. Bogunovic, M. Greter, L.T. Grajkowska, D. Ng, A. Klinakis, I.F. Charo, S. Jung, J.L. Gommerman, et al. 2011. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity. 35:780-791. http://dx.doi.org/10.1016/j.immuni.2011.08.013
-
(2011)
Immunity
, vol.35
, pp. 780-791
-
-
Lewis, K.L.1
Caton, M.L.2
Bogunovic, M.3
Greter, M.4
Grajkowska, L.T.5
Ng, D.6
Klinakis, A.7
Charo, I.F.8
Jung, S.9
Gommerman, J.L.10
-
30
-
-
16544371809
-
Visualizing dendritic cell networks in vivo
-
Lindquist, R.L., G. Shakhar, D. Dudziak, H. Wardemann, T. Eisenreich, M.L. Dustin, and M.C. Nussenzweig. 2004. Visualizing dendritic cell networks in vivo. Nat. Immunol. 5:1243-1250. http://dx.doi.org/10.1038/ni1139
-
(2004)
Nat. Immunol
, vol.5
, pp. 1243-1250
-
-
Lindquist, R.L.1
Shakhar, G.2
Dudziak, D.3
Wardemann, H.4
Eisenreich, T.5
Dustin, M.L.6
Nussenzweig, M.C.7
-
31
-
-
1542618118
-
Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria
-
Macpherson, A.J., and T. Uhr. 2004. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science. 303:1662-1665. http://dx.doi.org/10.1126/science.1091334
-
(2004)
Science
, vol.303
, pp. 1662-1665
-
-
Macpherson, A.J.1
Uhr, T.2
-
32
-
-
33646560950
-
Transforming growth factor-β induces development of the TH17 lineage
-
Mangan, P.R., L.E. Harrington, D.B. O'Quinn, W.S. Helms, D.C. Bullard, C.O. Elson, R.D. Hatton, S.M. Wahl, T.R. Schoeb, and C.T. Weaver. 2006. Transforming growth factor-β induces development of the TH17 lineage. Nature. 441:231-234. http://dx.doi.org/10.1038/nature04754
-
(2006)
Nature
, vol.441
, pp. 231-234
-
-
Mangan, P.R.1
Harrington, L.E.2
O'Quinn, D.B.3
Helms, W.S.4
Bullard, D.C.5
Elson, C.O.6
Hatton, R.D.7
Wahl, S.M.8
Schoeb, T.R.9
Weaver, C.T.10
-
33
-
-
84874694349
-
Impaired selection of IgA and intestinal dysbiosis associated with PD-1-deficiency
-
Maruya, M., S. Kawamoto, L.M. Kato, and S. Fagarasan. 2013. Impaired selection of IgA and intestinal dysbiosis associated with PD-1-deficiency. Gut Microbes. 4:165-171. http://dx.doi.org/10.4161/gmic.23595
-
(2013)
Gut Microbes
, vol.4
, pp. 165-171
-
-
Maruya, M.1
Kawamoto, S.2
Kato, L.M.3
Fagarasan, S.4
-
34
-
-
84864296761
-
Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage
-
Meredith, M.M., K. Liu, G. Darrasse-Jeze, A.O. Kamphorst, H.A. Schreiber, P. Guermonprez, J. Idoyaga, C. Cheong, K.H. Yao, R.E. Niec, and M.C. Nussenzweig. 2012. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209:1153-1165. http://dx.doi.org/10.1084/jem.20112675
-
(2012)
J. Exp. Med
, vol.209
, pp. 1153-1165
-
-
Meredith, M.M.1
Liu, K.2
Darrasse-Jeze, G.3
Kamphorst, A.O.4
Schreiber, H.A.5
Guermonprez, P.6
Idoyaga, J.7
Cheong, C.8
Yao, K.H.9
Niec, R.E.10
Nussenzweig, M.C.11
-
35
-
-
12244297799
-
CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance
-
Niess, J.H., S. Brand, X. Gu, L. Landsman, S. Jung, B.A. McCormick, J.M. Vyas, M. Boes, H.L. Ploegh, J.G. Fox, et al. 2005. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science. 307:254-258. http://dx.doi.org/10.1126/science.1102901
-
(2005)
Science
, vol.307
, pp. 254-258
-
-
Niess, J.H.1
Brand, S.2
Gu, X.3
Landsman, L.4
Jung, S.5
McCormick, B.A.6
Vyas, J.M.7
Boes, M.8
Ploegh, H.L.9
Fox, J.G.10
-
36
-
-
0018966159
-
Dendritic cells are accessory cells for the development of antitrinitrophenyl cytotoxic T lymphocytes
-
Nussenzweig, M.C., R.M. Steinman, B. Gutchinov, and Z.A. Cohn. 1980. Dendritic cells are accessory cells for the development of antitrinitrophenyl cytotoxic T lymphocytes. J. Exp. Med. 152:1070-1084. http://dx.doi.org/10.1084/jem.152.4.1070
-
(1980)
J. Exp. Med
, vol.152
, pp. 1070-1084
-
-
Nussenzweig, M.C.1
Steinman, R.M.2
Gutchinov, B.3
Cohn, Z.A.4
-
37
-
-
63449108301
-
Constitutive ablation of dendritic cells breaks selftolerance of CD4 T cells and results in spontaneous fatal autoimmunity
-
Ohnmacht, C., A. Pullner, S.B. King, I. Drexler, S. Meier, T. Brocker, and D. Voehringer. 2009. Constitutive ablation of dendritic cells breaks selftolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J. Exp. Med. 206:549-559. http://dx.doi.org/10.1084/jem.20082394
-
(2009)
J. Exp. Med
, vol.206
, pp. 549-559
-
-
Ohnmacht, C.1
Pullner, A.2
King, S.B.3
Drexler, I.4
Meier, S.5
Brocker, T.6
Voehringer, D.7
-
38
-
-
84907300008
-
Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease
-
Palm, N.W., M.R. de Zoete, T.W. Cullen, N.A. Barry, J. Stefanowski, L. Hao, P.H. Degnan, J. Hu, I. Peter, W. Zhang, et al. 2014. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 158:1000-1010. http://dx.doi.org/10.1016/j.cell.2014.08.006
-
(2014)
Cell
, vol.158
, pp. 1000-1010
-
-
Palm, N.W.1
de Zoete, M.R.2
Cullen, T.W.3
Barry, N.A.4
Stefanowski, J.5
Hao, L.6
Degnan, P.H.7
Hu, J.8
Peter, I.9
Zhang, W.10
-
39
-
-
78650209225
-
T regulatory cells maintain intestinal homeostasis by suppressing γδ T cells
-
Park, S.G., R. Mathur, M. Long, N. Hosh, L. Hao, M.S. Hayden, and S. Ghosh. 2010. T regulatory cells maintain intestinal homeostasis by suppressing γδ T cells. Immunity. 33:791-803. http://dx.doi.org/10.1016/j.immuni.2010.10.014
-
(2010)
Immunity
, vol.33
, pp. 791-803
-
-
Park, S.G.1
Mathur, R.2
Long, M.3
Hosh, N.4
Hao, L.5
Hayden, M.S.6
Ghosh, S.7
-
40
-
-
84907982768
-
Distinct contributions of Aire and antigen-presenting-cell subsets to the generation of self-tolerance in the thymus
-
Perry, J.S., C.W. Lio, A.L. Kau, K. Nutsch, Z. Yang, J.I. Gordon, K.M. Murphy, and C.S. Hsieh. 2014. Distinct contributions of Aire and antigen-presenting-cell subsets to the generation of self-tolerance in the thymus. Immunity. 41:414-426. http://dx.doi.org/10.1016/j.immuni.2014.08.007
-
(2014)
Immunity
, vol.41
, pp. 414-426
-
-
Perry, J.S.1
Lio, C.W.2
Kau, A.L.3
Nutsch, K.4
Yang, Z.5
Gordon, J.I.6
Murphy, K.M.7
Hsieh, C.S.8
-
41
-
-
84878167904
-
+ dendritic cells drive mucosal T helper 17 cell differentiation
-
+ dendritic cells drive mucosal T helper 17 cell differentiation. Immunity. 38:958-969. http://dx.doi.org/10.1016/j.immuni.2013.03.009
-
(2013)
Immunity
, vol.38
, pp. 958-969
-
-
Persson, E.K.1
Uronen-Hansson, H.2
Semmrich, M.3
Rivollier, A.4
Hägerbrand, K.5
Marsal, J.6
Gudjonsson, S.7
Håkansson, U.8
Reizis, B.9
Kotarsky, K.10
Agace, W.W.11
-
42
-
-
0036854372
-
Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria
-
Salzman, N.H., H. de Jong, Y. Paterson, H.J. Harmsen, G.W. Welling, and N.A. Bos. 2002. Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology. 148:3651-3660. http://dx.doi.org/10.1099/00221287-148-11-3651
-
(2002)
Microbiology
, vol.148
, pp. 3651-3660
-
-
Salzman, N.H.1
de Jong, H.2
Paterson, Y.3
Harmsen, H.J.4
Welling, G.W.5
Bos, N.A.6
-
43
-
-
84865163472
-
Microbial translocation in HIV infection: causes, consequences and treatment opportunities
-
Sandler, N.G., and D.C. Douek. 2012. Microbial translocation in HIV infection: causes, consequences and treatment opportunities. Nat. Rev. Microbiol. 10:655-666. http://dx.doi.org/10.1038/nrmicro2848
-
(2012)
Nat. Rev. Microbiol
, vol.10
, pp. 655-666
-
-
Sandler, N.G.1
Douek, D.C.2
-
44
-
-
84864297838
-
Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages
-
Satpathy, A.T., W. Kc, J.C. Albring, B.T. Edelson, N.M. Kretzer, D. Bhattacharya, T.L. Murphy, and K.M. Murphy. 2012. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 209:1135-1152. http://dx.doi.org/10.1084/jem.20120030
-
(2012)
J. Exp. Med
, vol.209
, pp. 1135-1152
-
-
Satpathy, A.T.1
Kc, W.2
Albring, J.C.3
Edelson, B.T.4
Kretzer, N.M.5
Bhattacharya, D.6
Murphy, T.L.7
Murphy, K.M.8
-
45
-
-
84883172356
-
Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens
-
Satpathy, A.T., C.G. Briseño, J.S. Lee, D. Ng, N.A. Manieri, W. Kc, X. Wu, S.R. Thomas, W.L. Lee, M. Turkoz, et al. 2013. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat. Immunol. 14:937-948. http://dx.doi.org/10.1038/ni.2679
-
(2013)
Nat. Immunol
, vol.14
, pp. 937-948
-
-
Satpathy, A.T.1
Briseño, C.G.2
Lee, J.S.3
Ng, D.4
Manieri, N.A.5
Kc, W.6
Wu, X.7
Thomas, S.R.8
Lee, W.L.9
Turkoz, M.10
-
46
-
-
84878191150
-
+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses
-
+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity. 38:970-983. http://dx.doi.org/10.1016/j.immuni.2013.04.011
-
(2013)
Immunity
, vol.38
, pp. 970-983
-
-
Schlitzer, A.1
McGovern, N.2
Teo, P.3
Zelante, T.4
Atarashi, K.5
Low, D.6
Ho, A.W.7
See, P.8
Shin, A.9
Wasan, P.S.10
-
47
-
-
72949107142
-
Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities
-
Schloss, P.D., S.L. Westcott, T. Ryabin, J.R. Hall, M. Hartmann, E.B. Hollister, R.A. Lesniewski, B.B. Oakley, D.H. Parks, C.J. Robinson, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537-7541. http://dx.doi.org/10.1128/AEM.01541-09
-
(2009)
Appl. Environ. Microbiol
, vol.75
, pp. 7537-7541
-
-
Schloss, P.D.1
Westcott, S.L.2
Ryabin, T.3
Hall, J.R.4
Hartmann, M.5
Hollister, E.B.6
Lesniewski, R.A.7
Oakley, B.B.8
Parks, D.H.9
Robinson, C.J.10
-
48
-
-
84885464048
-
Intestinal monocytes and macrophages are required for T cell polarization in response to Citrobacter rodentium
-
Schreiber, H.A., J. Loschko, R.A. Karssemeijer, A. Escolano, M.M. Meredith, D. Mucida, P. Guermonprez, and M.C. Nussenzweig. 2013. Intestinal monocytes and macrophages are required for T cell polarization in response to Citrobacter rodentium. J. Exp. Med. 210:2025-2039. http://dx.doi.org/10.1084/jem.20130903
-
(2013)
J. Exp. Med
, vol.210
, pp. 2025-2039
-
-
Schreiber, H.A.1
Loschko, J.2
Karssemeijer, R.A.3
Escolano, A.4
Meredith, M.M.5
Mucida, D.6
Guermonprez, P.7
Nussenzweig, M.C.8
-
49
-
-
0037625155
-
TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection
-
Serbina, N.V., T.P. Salazar-Mather, C.A. Biron, W.A. Kuziel, and E.G. Pamer. 2003. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity. 19:59-70. http://dx.doi.org/10.1016/S1074-7613(03)00171-7
-
(2003)
Immunity
, vol.19
, pp. 59-70
-
-
Serbina, N.V.1
Salazar-Mather, T.P.2
Biron, C.A.3
Kuziel, W.A.4
Pamer, E.G.5
-
52
-
-
34248577055
-
Elimination of antigen-presenting cells and autoreactive T cells by Fas contributes to prevention of autoimmunity
-
Stranges, P.B., J. Watson, C.J. Cooper, C.M. Choisy-Rossi, A.C. Stonebraker, R.A. Beighton, H. Hartig, J.P. Sundberg, S. Servick, G. Kaufmann, et al. 2007. Elimination of antigen-presenting cells and autoreactive T cells by Fas contributes to prevention of autoimmunity. Immunity. 26:629-641. http://dx.doi.org/10.1016/j.immuni.2007.03.016
-
(2007)
Immunity
, vol.26
, pp. 629-641
-
-
Stranges, P.B.1
Watson, J.2
Cooper, C.J.3
Choisy-Rossi, C.M.4
Stonebraker, A.C.5
Beighton, R.A.6
Hartig, H.7
Sundberg, J.P.8
Servick, S.9
Kaufmann, G.10
-
53
-
-
22144476548
-
Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease
-
Swidsinski, A., J. Weber, V. Loening-Baucke, L.P. Hale, and H. Lochs. 2005. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin. Microbiol. 43:3380-3389. http://dx.doi.org/10.1128/JCM.43.7.3380-3389.2005
-
(2005)
J. Clin. Microbiol
, vol.43
, pp. 3380-3389
-
-
Swidsinski, A.1
Weber, J.2
Loening-Baucke, V.3
Hale, L.P.4
Lochs, H.5
-
54
-
-
84871307366
-
CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis
-
Tamoutounour, S., S. Henri, H. Lelouard, B. de Bovis, C. de Haar, C.J. van der Woude, A.M. Woltman, Y. Reyal, D. Bonnet, D. Sichien, et al. 2012. CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis. Eur. J. Immunol. 42:3150-3166. http://dx.doi.org/10.1002./eji.201242847
-
(2012)
Eur. J. Immunol
, vol.42
, pp. 3150-3166
-
-
Tamoutounour, S.1
Henri, S.2
Lelouard, H.3
de Bovis, B.4
de Haar, C.5
van der Woude, C.J.6
Woltman, A.M.7
Reyal, Y.8
Bonnet, D.9
Sichien, D.10
-
55
-
-
14044270784
-
IFN regulatory factor-4 and-8 govern dendritic cell subset development and their functional diversity
-
Tamura, T., P. Tailor, K. Yamaoka, H.J. Kong, H. Tsujimura, J.J. O'Shea, H. Singh, and K. Ozato. 2005. IFN regulatory factor-4 and-8 govern dendritic cell subset development and their functional diversity. J. Immunol. 174:2573-2581. http://dx.doi.org/10.4049/jimmunol.174.5.2573
-
(2005)
J. Immunol
, vol.174
, pp. 2573-2581
-
-
Tamura, T.1
Tailor, P.2
Yamaoka, K.3
Kong, H.J.4
Tsujimura, H.5
O'Shea, J.J.6
Singh, H.7
Ozato, K.8
-
56
-
-
78649895980
-
Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans
-
Ubeda, C., Y. Taur, R.R. Jenq, M.J. Equinda, T. Son, M. Samstein, A. Viale, N.D. Socci, M.R. van den Brink, M. Kamboj, and E.G. Pamer. 2010. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J. Clin. Invest. 120:4332-4341. http://dx.doi.org/10.1172/JCI43918
-
(2010)
J. Clin. Invest
, vol.120
, pp. 4332-4341
-
-
Ubeda, C.1
Taur, Y.2
Jenq, R.R.3
Equinda, M.J.4
Son, T.5
Samstein, M.6
Viale, A.7
Socci, N.D.8
van den Brink, M.R.9
Kamboj, M.10
Pamer, E.G.11
-
57
-
-
80054122238
-
The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine
-
Vaishnava, S., M. Yamamoto, K.M. Severson, K.A. Ruhn, X. Yu, O. Koren, R. Ley, E.K. Wakeland, and L.V. Hooper. 2011. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science. 334:255-258. http://dx.doi.org/10.1126/science.1209791
-
(2011)
Science
, vol.334
, pp. 255-258
-
-
Vaishnava, S.1
Yamamoto, M.2
Severson, K.M.3
Ruhn, K.A.4
Yu, X.5
Koren, O.6
Ley, R.7
Wakeland, E.K.8
Hooper, L.V.9
-
58
-
-
32044447002
-
Transepithelial pathogen uptake into the small intestinal lamina propria
-
Vallon-Eberhard, A., L. Landsman, N. Yogev, B. Verrier, and S. Jung. 2006. Transepithelial pathogen uptake into the small intestinal lamina propria. J. Immunol. 176:2465-2469. http://dx.doi.org/10.4049/jimmunol.176.4.2465
-
(2006)
J. Immunol
, vol.176
, pp. 2465-2469
-
-
Vallon-Eberhard, A.1
Landsman, L.2
Yogev, N.3
Verrier, B.4
Jung, S.5
|