메뉴 건너뛰기




Volumn 81, Issue 1, 2017, Pages

Phosphoribosyl diphosphate (PRPP): Biosynthesis, enzymology, utilization, and metabolic significance

Author keywords

Amino acid metabolism; Diphosphoryl transfer; Nucleotide metabolism; Phosphoribosyl pyrophosphate; Protein structure function

Indexed keywords

ALPHA PHOSPHATE; AMINOGLYCOSIDE ANTIBIOTIC AGENT; BACTERIAL PROTEIN; BETA PHOSPHATE; CARBAMOYL PHOSPHATE SYNTHASE; COCARBOXYLASE; DNA BINDING PROTEIN; DNAR PROTEIN; GAMMA PHOSPHATE; GUANOSINE TRIPHOSPHATE; HISTIDINE; NICOTINAMIDE ADENINE DINUCLEOTIDE; PENTOSE PHOSPHATE; PHOSPHATE; PHOSPHORIBOSYL BISPHOSPHATE PHOSPHOKINASE; PHOSPHORIBOSYL DIPHOSPHATE; PHOSPHORIBOSYL DIPHOSPHATE SYNTHASE; PHOSPHORIBOSYLTRANSFERASE; PHOSPHOTRANSFERASE; PTERIN DERIVATIVE; PURINE NUCLEOTIDE; PURR PROTEIN; PYRIMIDINE NUCLEOTIDE; PYRR PROTEIN; RIBOFLAVIN DERIVATIVE; RNA BINDING PROTEIN; SYNTHETASE; THIAMINE PYROPHOSPHOKINASE; TRYPTOPHAN; UNCLASSIFIED DRUG; UNINDEXED DRUG; LIPOATE-PROTEIN LIGASE; PEPTIDE SYNTHASE; PHOSPHORIBOSYL PYROPHOSPHATE; PROTOZOAL PROTEIN; RIBOSE PHOSPHATE; RIBOSE-5-PHOSPHATE; RIBOSEPHOSPHATE PYROPHOSPHOKINASE;

EID: 85011589309     PISSN: 10922172     EISSN: 10985557     Source Type: Journal    
DOI: 10.1128/MMBR.00040-16     Document Type: Review
Times cited : (151)

References (422)
  • 1
    • 0002374339 scopus 로고
    • Metabolism of 5-phosphoribosyl 1-pyrophosphate (PRPP) in Escherichia coli and Salmonella typhimurium
    • In Munch-Petersen A (ed), Academic Press, Inc., London, United Kingdom
    • Jensen KF. 1983. Metabolism of 5-phosphoribosyl 1-pyrophosphate (PRPP) in Escherichia coli and Salmonella typhimurium, p 1-25. In Munch-Petersen A (ed), Metabolism of nucleotides, nucleosides and nucleobases in microorganisms. Academic Press, Inc., London, United Kingdom.
    • (1983) Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms , pp. 1-25
    • Jensen, K.F.1
  • 2
    • 0023967996 scopus 로고
    • Mutation in the phosphoribosylpyrophosphate synthetase gene (prs) that results in simultaneous requirements for purine and pyrimidine nucleosides, nicotinamide nucleotide, histidine, and tryptophan in Escherichia coli
    • Hove-Jensen B. 1988. Mutation in the phosphoribosylpyrophosphate synthetase gene (prs) that results in simultaneous requirements for purine and pyrimidine nucleosides, nicotinamide nucleotide, histidine, and tryptophan in Escherichia coli. J Bacteriol 170:1148-1152.
    • (1988) J Bacteriol , vol.170 , pp. 1148-1152
    • Hove-Jensen, B.1
  • 3
    • 0024368029 scopus 로고
    • Phosphoribosylpyrophosphate (PRPP)-less mutants of Escherichia coli
    • Hove-Jensen B. 1989. Phosphoribosylpyrophosphate (PRPP)-less mutants of Escherichia coli. Mol Microbiol 3:1487-1492. https://doi.org/ 10.1111/j.1365-2958.1989.tb00134.x.
    • (1989) Mol Microbiol , vol.3 , pp. 1487-1492
    • Hove-Jensen, B.1
  • 4
    • 0036005602 scopus 로고    scopus 로고
    • Elucidation of methanogenic coenzyme biosyntheses: From spectroscopy to genomics
    • Graham DE, White RH. 2002. Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics. Nat Prod Rep 19: 133-147. https://doi.org/10.1039/b103714p.
    • (2002) Nat Prod Rep , vol.19 , pp. 133-147
    • Graham, D.E.1    White, R.H.2
  • 5
    • 43549101762 scopus 로고    scopus 로고
    • Biosynthesis of D-arabinose in mycobacteria: A novel bacterial pathway with implications for antimycobacterial therapy
    • Wolucka BA. 2008. Biosynthesis of D-arabinose in mycobacteria: a novel bacterial pathway with implications for antimycobacterial therapy. FEBS J 275:2691-2711. https://doi.org/10.1111/j.1742-4658.2008 .06395.x.
    • (2008) FEBS J , vol.275 , pp. 2691-2711
    • Wolucka, B.A.1
  • 6
    • 0001315144 scopus 로고
    • Enzymatic synthesis and properties of 5-phosphoribosylpyrophosphate
    • Kornberg A, Lieberman I, Simms ES. 1955. Enzymatic synthesis and properties of 5-phosphoribosylpyrophosphate. J Biol Chem 215: 389-402.
    • (1955) J Biol Chem , vol.215 , pp. 389-402
    • Kornberg, A.1    Lieberman, I.2    Simms, E.S.3
  • 7
    • 0001416141 scopus 로고
    • Pyrophosphorylation of ribose 5-phosphate in the enzymatic synthesis of 5-phosphorylribose 1-pyrophosphate
    • Khorana HG, Fernandes JF, Kornberg A. 1958. Pyrophosphorylation of ribose 5-phosphate in the enzymatic synthesis of 5-phosphorylribose 1-pyrophosphate. J Biol Chem 230:941-948.
    • (1958) J Biol Chem , vol.230 , pp. 941-948
    • Khorana, H.G.1    Fernandes, J.F.2    Kornberg, A.3
  • 8
    • 0028107937 scopus 로고
    • Phosphoribosylpyrophosphate synthetase (PRS): A new gene family in Saccharomyces cerevisiae
    • Carter AT, Narbad A, Pearson BM, Beck KF, Logghe M, Contreras R, Schweizer M. 1994. Phosphoribosylpyrophosphate synthetase (PRS): a new gene family in Saccharomyces cerevisiae. Yeast 10:1031-1044. https://doi.org/10.1002/yea.320100805.
    • (1994) Yeast , vol.10 , pp. 1031-1044
    • Carter, A.T.1    Narbad, A.2    Pearson, B.M.3    Beck, K.F.4    Logghe, M.5    Contreras, R.6    Schweizer, M.7
  • 9
    • 0030031280 scopus 로고    scopus 로고
    • Analysis of a 26 kb region on the left arm of yeast chromosome XV
    • Mannhaupt G, Vetter I, Schwarzlose C, Mitzel S, Feldmann H. 1996. Analysis of a 26 kb region on the left arm of yeast chromosome XV. Yeast 12:67-76. https://doi.org/10.1002/(SICI)1097-0061(199601) 12:167::AID-YEA884-3.0.CO;2-F.
    • (1996) Yeast , vol.12 , pp. 67-76
    • Mannhaupt, G.1    Vetter, I.2    Schwarzlose, C.3    Mitzel, S.4    Feldmann, H.5
  • 11
    • 0024501517 scopus 로고
    • Tissuedifferential expression of two distinct genes for phosphoribosyl pyrophosphate synthetase and existence of the testis-specific transcript
    • Taira M, Iizasa T, Yamada K, Shimada H, Tatibana M. 1989. Tissuedifferential expression of two distinct genes for phosphoribosyl pyrophosphate synthetase and existence of the testis-specific transcript. Biochim Biophys Acta 1007:203-208. https://doi.org/10.1016/0167-4781(89)90040-7.
    • (1989) Biochim Biophys Acta , vol.1007 , pp. 203-208
    • Taira, M.1    Iizasa, T.2    Yamada, K.3    Shimada, H.4    Tatibana, M.5
  • 12
    • 0025091896 scopus 로고
    • Cloning of two distinct copies of human phosphoribosylpyrophosphate synthetase cDNA
    • Roessler BJ, Bell G, Heidler S, Seino S, Becker M, Palella TD. 1990. Cloning of two distinct copies of human phosphoribosylpyrophosphate synthetase cDNA. Nucleic Acids Res 18:193. https://doi.org/ 10.1093/nar/18.1.193.
    • (1990) Nucleic Acids Res , vol.18 , pp. 193
    • Roessler, B.J.1    Bell, G.2    Heidler, S.3    Seino, S.4    Becker, M.5    Palella, T.D.6
  • 13
    • 0023645830 scopus 로고
    • Nucleotide and deduced amino acid sequences of two distinct cDNAs for rat phosphoribosylpyrophosphate synthetase
    • Taira M, Ishijima S, Kita K, Yamada K, Iizasa T, Tatibana M. 1987. Nucleotide and deduced amino acid sequences of two distinct cDNAs for rat phosphoribosylpyrophosphate synthetase. J Biol Chem 262: 14867-14870.
    • (1987) J Biol Chem , vol.262 , pp. 14867-14870
    • Taira, M.1    Ishijima, S.2    Kita, K.3    Yamada, K.4    Iizasa, T.5    Tatibana, M.6
  • 14
    • 0033058062 scopus 로고    scopus 로고
    • Cloning and sequencing of cDNAs specifying a novel class of phosphoribosyl diphosphate synthase in Arabidopsis thaliana
    • Krath BN, Eriksen TA, Poulsen TS, Hove-Jensen B. 1999. Cloning and sequencing of cDNAs specifying a novel class of phosphoribosyl diphosphate synthase in Arabidopsis thaliana. Biochim Biophys Acta 1430:403-408. https://doi.org/10.1016/S0167-4838(99)00022-9.
    • (1999) Biochim Biophys Acta , vol.1430 , pp. 403-408
    • Krath, B.N.1    Eriksen, T.A.2    Poulsen, T.S.3    Hove-Jensen, B.4
  • 15
    • 0033080414 scopus 로고    scopus 로고
    • Organellar and cytosolic localization of four phosphoribosyl diphosphate synthase isozymes in spinach
    • Krath BN, Hove-Jensen B. 1999. Organellar and cytosolic localization of four phosphoribosyl diphosphate synthase isozymes in spinach. Plant Physiol 119:497-506. https://doi.org/10.1104/pp.119.2.497.
    • (1999) Plant Physiol , vol.119 , pp. 497-506
    • Krath, B.N.1    Hove-Jensen, B.2
  • 18
    • 0035225155 scopus 로고    scopus 로고
    • Phosphoribosylpyrophosphate synthetase and the regulation of phosphoribosylpyrophosphate production in human cells
    • Becker MA. 2001. Phosphoribosylpyrophosphate synthetase and the regulation of phosphoribosylpyrophosphate production in human cells. Prog Nucleic Acid Res Mol Biol 69:115-148. https://doi.org/ 10.1016/S0079-6603(01)69046-9.
    • (2001) Prog Nucleic Acid Res Mol Biol , vol.69 , pp. 115-148
    • Becker, M.A.1
  • 24
    • 0024297354 scopus 로고
    • Multiple sequence alignment with hierarchical clustering
    • Corpet F. 1988. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881-10890. https://doi.org/10.1093/nar/ 16.22.10881.
    • (1988) Nucleic Acids Res , vol.16 , pp. 10881-10890
    • Corpet, F.1
  • 25
    • 0023829903 scopus 로고
    • DNA Strider: A C program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers
    • Marck C. 1988. DNA Strider: a C program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res 16:1829-1836. https://doi.org/10.1093/nar/16.5.1829.
    • (1988) Nucleic Acids Res , vol.16 , pp. 1829-1836
    • Marck, C.1
  • 26
    • 0036469060 scopus 로고    scopus 로고
    • Unraveling hot spots in binding interfaces: Progress and challenges
    • DeLano WL. 2002. Unraveling hot spots in binding interfaces: progress and challenges. Curr Opin Struct Biol 12:14-20. https://doi.org/ 10.1016/S0959-440X(02)00283-X.
    • (2002) Curr Opin Struct Biol , vol.12 , pp. 14-20
    • DeLano, W.L.1
  • 27
    • 0025970011 scopus 로고
    • PrsB is an allele of the Salmonella typhimurium prsA gene: Characterization of a mutant phosphoribosylpyrophosphate synthetase
    • Post DA, Switzer RL. 1991. prsB is an allele of the Salmonella typhimurium prsA gene: characterization of a mutant phosphoribosylpyrophosphate synthetase. J Bacteriol 173:1978-1986.
    • (1991) J Bacteriol , vol.173 , pp. 1978-1986
    • Post, D.A.1    Switzer, R.L.2
  • 28
    • 0020447640 scopus 로고
    • Phosphoribosylpyrophosphate synthetase of Escherichia coli. Identification of a mutant enzyme
    • Hove-Jensen B, Nygaard P. 1982. Phosphoribosylpyrophosphate synthetase of Escherichia coli. Identification of a mutant enzyme. Eur J Biochem 126:327-332.
    • (1982) Eur J Biochem , vol.126 , pp. 327-332
    • Hove-Jensen, B.1    Nygaard, P.2
  • 29
    • 0012933553 scopus 로고
    • Biosynthesis of the purines. VIII. Enzymatic synthesis and utilization of alpha-5-phosphoribosylpyrophosphate
    • Remy CN, Remy WT, Buchanan JM. 1955. Biosynthesis of the purines. VIII. Enzymatic synthesis and utilization of alpha-5-phosphoribosylpyrophosphate. J Biol Chem 217:885-895.
    • (1955) J Biol Chem , vol.217 , pp. 885-895
    • Remy, C.N.1    Remy, W.T.2    Buchanan, J.M.3
  • 30
    • 0034661012 scopus 로고    scopus 로고
    • The formation of a 1-5 phosphodiester linkage in the spontaneous breakdown of 5-phosphoribosyl-alpha-1-pyrophosphate
    • Dennis AL, Puskas M, Stasaitis S, Sandwick RK. 2000. The formation of a 1-5 phosphodiester linkage in the spontaneous breakdown of 5-phosphoribosyl-alpha-1-pyrophosphate. J Inorg Biochem 81:73-80. https://doi.org/10.1016/S0162-0134(00)00117-3.
    • (2000) J Inorg Biochem , vol.81 , pp. 73-80
    • Dennis, A.L.1    Puskas, M.2    Stasaitis, S.3    Sandwick, R.K.4
  • 31
    • 0037439735 scopus 로고    scopus 로고
    • The catalytic effect of Mg2- and imidazole on the decomposition of 5-phosphoribosyl-alpha- 1-pyrophosphate in aqueous solution
    • Meola M, Yamen B, Weaver K, Sandwick RK. 2003. The catalytic effect of Mg2- and imidazole on the decomposition of 5-phosphoribosyl-alpha- 1-pyrophosphate in aqueous solution. J Inorg Biochem 93:235-242. https://doi.org/10.1016/S0162-0134(02)00578-0.
    • (2003) J Inorg Biochem , vol.93 , pp. 235-242
    • Meola, M.1    Yamen, B.2    Weaver, K.3    Sandwick, R.K.4
  • 32
    • 0025144613 scopus 로고
    • The route of non-enzymic and enzymic breakdown of 5-phosphoribosyl 1-pyrophosphate to ribose 1-phosphate
    • Trembacz H, Jezewska MM. 1990. The route of non-enzymic and enzymic breakdown of 5-phosphoribosyl 1-pyrophosphate to ribose 1-phosphate. Biochem J 271:621-625. https://doi.org/10.1042/ bj2710621.
    • (1990) Biochem J , vol.271 , pp. 621-625
    • Trembacz, H.1    Jezewska, M.M.2
  • 33
    • 0020479167 scopus 로고
    • 31P nuclear magnetic resonance study of phosphoribosyldiphosphate and its interaction with magnesium ions
    • Smithers GW, O'Sullivan WJ. 1982. 31P nuclear magnetic resonance study of phosphoribosyldiphosphate and its interaction with magnesium ions. J Biol Chem 257:6164-6170.
    • (1982) J Biol Chem , vol.257 , pp. 6164-6170
    • Smithers, G.W.1    O'Sullivan, W.J.2
  • 34
    • 0029113318 scopus 로고
    • Standard free energy change for the hydrolysis of the alpha, beta-phosphoanhydride bridge in ATP
    • Frey PA, Arabshahi A. 1995. Standard free energy change for the hydrolysis of the alpha, beta-phosphoanhydride bridge in ATP. Biochemistry 34:11307-11310. https://doi.org/10.1021/bi00036a001.
    • (1995) Biochemistry , vol.34 , pp. 11307-11310
    • Frey, P.A.1    Arabshahi, A.2
  • 35
    • 0014670219 scopus 로고
    • Regulation and mechanism of phosphoribosylpyrophosphate synthetase. I. Purification and properties of the enzyme from Salmonella typhimurium
    • Switzer RL. 1969. Regulation and mechanism of phosphoribosylpyrophosphate synthetase. I. Purification and properties of the enzyme from Salmonella typhimurium. J Biol Chem 244:2854-2863.
    • (1969) J Biol Chem , vol.244 , pp. 2854-2863
    • Switzer, R.L.1
  • 36
    • 0018630182 scopus 로고
    • Thin-layer chromatographic methods to isolate 32P-labeled 5-phosphoribosyl-alpha-1- pyrophosphate (PRPP): Determination of cellular PRPP pools and assay of PRPP synthetase activity
    • Jensen KF, Houlberg U, Nygaard P. 1979. Thin-layer chromatographic methods to isolate 32P-labeled 5-phosphoribosyl-alpha-1- pyrophosphate (PRPP): determination of cellular PRPP pools and assay of PRPP synthetase activity. Anal Biochem 98:254-263. https://doi.org/ 10.1016/0003-2697(79)90138-6.
    • (1979) Anal Biochem , vol.98 , pp. 254-263
    • Jensen, K.F.1    Houlberg, U.2    Nygaard, P.3
  • 37
    • 0018535138 scopus 로고
    • Chromatographic methods for the determination of alpha- and beta-5-phospho-D-ribose-alpha-1- pyrophosphate pools in bacteria
    • Michelsen O, Villadsen IS. 1979. Chromatographic methods for the determination of alpha- and beta-5-phospho-D-ribose-alpha-1- pyrophosphate pools in bacteria. Anal Biochem 98:264-272. https:// doi.org/10.1016/0003-2697(79)90139-8.
    • (1979) Anal Biochem , vol.98 , pp. 264-272
    • Michelsen, O.1    Villadsen, I.S.2
  • 38
    • 0017734870 scopus 로고
    • Regulation of PRPP and nucleoside triand tetraphosphate pools in Escherichia coli under conditions of nitrogen starvation
    • Villadsen IS, Michelsen O. 1977. Regulation of PRPP and nucleoside triand tetraphosphate pools in Escherichia coli under conditions of nitrogen starvation. J Bacteriol 130:136-143.
    • (1977) J Bacteriol , vol.130 , pp. 136-143
    • Villadsen, I.S.1    Michelsen, O.2
  • 39
    • 0015260263 scopus 로고
    • Quantitative extraction and estimation of intracellular nucleoside triphosphates of Escherichia coli
    • Bagnara AS, Finch LR. 1972. Quantitative extraction and estimation of intracellular nucleoside triphosphates of Escherichia coli. Anal Biochem 45:24-34. https://doi.org/10.1016/0003-2697(72)90004-8.
    • (1972) Anal Biochem , vol.45 , pp. 24-34
    • Bagnara, A.S.1    Finch, L.R.2
  • 40
    • 0015817197 scopus 로고
    • A sensitive method for estimating 5-phosphoribosyl 1-pyrophosphate in Escherichia coli
    • Bagnara AS, Mitchell A, Sin IL, Finch LR. 1973. A sensitive method for estimating 5-phosphoribosyl 1-pyrophosphate in Escherichia coli. Anal Biochem 54:535-544. https://doi.org/10.1016/0003-2697(73)90385-0.
    • (1973) Anal Biochem , vol.54 , pp. 535-544
    • Bagnara, A.S.1    Mitchell, A.2    Sin, I.L.3    Finch, L.R.4
  • 41
    • 0030182909 scopus 로고    scopus 로고
    • Carbocyclic analogues of D-ribose-5-phosphate: Synthesis and behavior with 5-phosphoribosyl alpha-1-pyrophosphate synthetases
    • Parry RJ, Burns MR, Skae PN, Hoyt JC, Pal B. 1996. Carbocyclic analogues of D-ribose-5-phosphate: synthesis and behavior with 5-phosphoribosyl alpha-1-pyrophosphate synthetases. Bioorg Med Chem 4:1077-1088. https://doi.org/10.1016/0968-0896(96)00090-9.
    • (1996) Bioorg Med Chem , vol.4 , pp. 1077-1088
    • Parry, R.J.1    Burns, M.R.2    Skae, P.N.3    Hoyt, J.C.4    Pal, B.5
  • 42
    • 0030905197 scopus 로고    scopus 로고
    • Synthesis of (-) - (1 S)-1-pyrophosphoryl-(2R, 3R)-2, 3-dihydroxy-(4S ) - 4 - (phosphoryloxymethyl)cyclopentane, a stable, optically-active carbocyclic analog of 5-phosphoribosyl-1-pyrophosphate (PRPP)
    • Parry RJ, Burns MR, Jiralerspong S, Alemany L. 1997. Synthesis of (-) - ( 1 S)-1-pyrophosphoryl-(2R, 3R)-2, 3-dihydroxy-(4S ) - 4 - (phosphoryloxymethyl)cyclopentane, a stable, optically-active carbocyclic analog of 5-phosphoribosyl-1-pyrophosphate (PRPP). Tetrahedron 53:7077-7088. https://doi.org/10.1016/S0040-4020(97)00387-6.
    • (1997) Tetrahedron , vol.53 , pp. 7077-7088
    • Parry, R.J.1    Burns, M.R.2    Jiralerspong, S.3    Alemany, L.4
  • 43
    • 0024419463 scopus 로고
    • Primary structure of the tms and prs genes of Bacillus subtilis
    • Nilsson D, Hove-Jensen B, Arnvig K. 1989. Primary structure of the tms and prs genes of Bacillus subtilis. Mol Gen Genet 218:565-571. https:// doi.org/10.1007/BF00332425.
    • (1989) Mol Gen Genet , vol.218 , pp. 565-571
    • Nilsson, D.1    Hove-Jensen, B.2    Arnvig, K.3
  • 44
    • 0022456388 scopus 로고
    • Nucleotide sequence and deduced amino acid sequence of Escherichia coli adenine phosphoribosyltransferase and comparison with other analogous enzymes
    • Hershey HV, Taylor MW. 1986. Nucleotide sequence and deduced amino acid sequence of Escherichia coli adenine phosphoribosyltransferase and comparison with other analogous enzymes. Gene 43: 287-293. https://doi.org/10.1016/0378-1119(86)90218-0.
    • (1986) Gene , vol.43 , pp. 287-293
    • Hershey, H.V.1    Taylor, M.W.2
  • 45
    • 0022837418 scopus 로고
    • Phosphoribosylpyrophosphate synthetase of Escherichia coli. Properties of the purified enzyme and primary structure of the prs gene
    • Hove-Jensen B, Harlow KW, King CJ, Switzer RL. 1986. Phosphoribosylpyrophosphate synthetase of Escherichia coli. Properties of the purified enzyme and primary structure of the prs gene. J Biol Chem 261:6765-6771.
    • (1986) J Biol Chem , vol.261 , pp. 6765-6771
    • Hove-Jensen, B.1    Harlow, K.W.2    King, C.J.3    Switzer, R.L.4
  • 46
    • 0035947663 scopus 로고    scopus 로고
    • Class II recombinant phosphoribosyl diphosphate synthase from spinach. Phosphate independence and diphosphoryl donor specificity
    • Krath BN, Hove-Jensen B. 2001. Class II recombinant phosphoribosyl diphosphate synthase from spinach. Phosphate independence and diphosphoryl donor specificity. J Biol Chem 276:17851-17856. https:// doi.org/10.1074/jbc.M010172200.
    • (2001) J Biol Chem , vol.276 , pp. 17851-17856
    • Krath, B.N.1    Hove-Jensen, B.2
  • 47
    • 0034769657 scopus 로고    scopus 로고
    • Implications of secondary structure prediction and amino acid sequence comparison of class i and class II phosphoribosyl diphosphate synthases on catalysis, regulation, and quaternary structure
    • Krath BN, Hove-Jensen B. 2001. Implications of secondary structure prediction and amino acid sequence comparison of class I and class II phosphoribosyl diphosphate synthases on catalysis, regulation, and quaternary structure. Protein Sci 10:2317-2324. https://doi.org/ 10.1110/ps.1180.
    • (2001) Protein Sci , vol.10 , pp. 2317-2324
    • Krath, B.N.1    Hove-Jensen, B.2
  • 48
    • 28444484987 scopus 로고    scopus 로고
    • Novel class III phosphoribosyl diphosphate synthase: Structure and properties of the tetrameric, phosphate-activated, nonallosterically inhibited enzyme from Methanocaldococcus jannaschii
    • Kadziola A, Jepsen CH, Johansson E, McGuire J, Larsen S, Hove-Jensen B. 2005. Novel class III phosphoribosyl diphosphate synthase: structure and properties of the tetrameric, phosphate-activated, nonallosterically inhibited enzyme from Methanocaldococcus jannaschii. J Mol Biol 354:815-828. https://doi.org/10.1016/j.jmb.2005.10.001.
    • (2005) J Mol Biol , vol.354 , pp. 815-828
    • Kadziola, A.1    Jepsen, C.H.2    Johansson, E.3    McGuire, J.4    Larsen, S.5    Hove-Jensen, B.6
  • 49
    • 0034117444 scopus 로고    scopus 로고
    • Structural basis for the function of Bacillus subtilis phosphoribosylpyrophosphate synthetase
    • Eriksen TA, Kadziola A, Bentsen AK, Harlow KW, Larsen S. 2000. Structural basis for the function of Bacillus subtilis phosphoribosylpyrophosphate synthetase. Nat Struct Biol 7:303-308. https://doi.org/ 10.1038/74069.
    • (2000) Nat Struct Biol , vol.7 , pp. 303-308
    • Eriksen, T.A.1    Kadziola, A.2    Bentsen, A.K.3    Harlow, K.W.4    Larsen, S.5
  • 50
    • 0036145659 scopus 로고    scopus 로고
    • Binding of cations in Bacillus subtilis phosphoribosyldiphosphate synthetase and their role in catalysis
    • Eriksen TA, Kadziola A, Larsen S. 2002. Binding of cations in Bacillus subtilis phosphoribosyldiphosphate synthetase and their role in catalysis. Protein Sci 11:271-279. https://doi.org/10.1110/ps.28502.
    • (2002) Protein Sci , vol.11 , pp. 271-279
    • Eriksen, T.A.1    Kadziola, A.2    Larsen, S.3
  • 51
    • 33846291842 scopus 로고    scopus 로고
    • Crystal structure of human phosphoribosylpyrophosphate synthetase 1 reveals a novel allosteric site
    • Li S, Lu Y, Peng B, Ding J. 2007. Crystal structure of human phosphoribosylpyrophosphate synthetase 1 reveals a novel allosteric site. Biochem J 401:39-47. https://doi.org/10.1042/BJ20061066.
    • (2007) Biochem J , vol.401 , pp. 39-47
    • Li, S.1    Lu, Y.2    Peng, B.3    Ding, J.4
  • 52
  • 55
    • 9644295846 scopus 로고    scopus 로고
    • Surface exposed amino acid differences between mesophilic and thermophilic phosphoribosyl diphosphate synthase
    • Hove-Jensen B, McGuire JN. 2004. Surface exposed amino acid differences between mesophilic and thermophilic phosphoribosyl diphosphate synthase. Eur J Biochem 271:4526-4533. https://doi.org/ 10.1111/j.1432-1033.2004.04412.x.
    • (2004) Eur J Biochem , vol.271 , pp. 4526-4533
    • Hove-Jensen, B.1    McGuire, J.N.2
  • 56
    • 0015239409 scopus 로고
    • Regulation and mechanism of phosphoribosylpyrophosphate synthetase. 3. Kinetic studies of the reaction mechanism
    • Switzer RL. 1971. Regulation and mechanism of phosphoribosylpyrophosphate synthetase. 3. Kinetic studies of the reaction mechanism. J Biol Chem 246:2447-2458.
    • (1971) J Biol Chem , vol.246 , pp. 2447-2458
    • Switzer, R.L.1
  • 57
    • 0030978481 scopus 로고    scopus 로고
    • Binding of divalent magnesium by Escherichia coli phosphoribosyl diphosphate synthetase
    • Willemoës M, Hove-Jensen B. 1997. Binding of divalent magnesium by Escherichia coli phosphoribosyl diphosphate synthetase. Biochemistry 36:5078-5083. https://doi.org/10.1021/bi962610a.
    • (1997) Biochemistry , vol.36 , pp. 5078-5083
    • Willemoës, M.1    Hove-Jensen, B.2
  • 58
    • 0019332199 scopus 로고
    • Structure of the divalent cation.nucleotide complex at the active site of phosphoribosylpyrophosphate synthetase
    • Gibson KJ, Switzer RL. 1980. Structure of the divalent cation.nucleotide complex at the active site of phosphoribosylpyrophosphate synthetase. J Biol Chem 255:694-696.
    • (1980) J Biol Chem , vol.255 , pp. 694-696
    • Gibson, K.J.1    Switzer, R.L.2
  • 59
    • 0015993014 scopus 로고
    • Purification and properties of phosphoribosyl pyrophosphate synthetase from rat liver
    • Roth DG, Shelton E, Deuel TF. 1974. Purification and properties of phosphoribosyl pyrophosphate synthetase from rat liver. J Biol Chem 249:291-296.
    • (1974) J Biol Chem , vol.249 , pp. 291-296
    • Roth, D.G.1    Shelton, E.2    Deuel, T.F.3
  • 60
    • 33644850367 scopus 로고
    • 5-Phosphoribosyl pyrophosphate synthetase from Ehrlich ascites-tumour cells: Effect of magnesium and ATP concentration on the enzymic activity
    • Murray AW, Wong PC. 1967. 5-Phosphoribosyl pyrophosphate synthetase from Ehrlich ascites-tumour cells: effect of magnesium and ATP concentration on the enzymic activity. Biochem Biophys Res Commun 29:582-587. https://doi.org/10.1016/0006-291X(67)90525-6.
    • (1967) Biochem Biophys Res Commun , vol.29 , pp. 582-587
    • Murray, A.W.1    Wong, P.C.2
  • 61
    • 0030037647 scopus 로고    scopus 로고
    • Effects of mutagenesis of aspartic acid residues in the putative phosphoribosyl diphosphate binding site of Escherichia coli phosphoribosyl diphosphate synthetase on metal ion specificity and ribose 5-phosphate binding
    • Willemoës M, Nilsson D, Hove-Jensen B. 1996. Effects of mutagenesis of aspartic acid residues in the putative phosphoribosyl diphosphate binding site of Escherichia coli phosphoribosyl diphosphate synthetase on metal ion specificity and ribose 5-phosphate binding. Biochemistry 35:8181-8186. https://doi.org/10.1021/bi9528560.
    • (1996) Biochemistry , vol.35 , pp. 8181-8186
    • Willemoës, M.1    Nilsson, D.2    Hove-Jensen, B.3
  • 62
    • 0025255839 scopus 로고
    • Chemical modification of Salmonella typhimurium phosphoribosylpyrophosphate synthetase with 5=-(pfluorosulfonylbenzoyl) adenosine. Identification of an active site histidine
    • Harlow KW, Switzer RL. 1990. Chemical modification of Salmonella typhimurium phosphoribosylpyrophosphate synthetase with 5=-(pfluorosulfonylbenzoyl) adenosine. Identification of an active site histidine. J Biol Chem 265:5487-5493.
    • (1990) J Biol Chem , vol.265 , pp. 5487-5493
    • Harlow, K.W.1    Switzer, R.L.2
  • 63
    • 0029132172 scopus 로고
    • Inactivation of Escherichia coli phosphoribosylpyrophosphate synthetase by the 2=, 3=-dialdehyde derivative of ATP. Identification of active site lysines
    • Hilden I, Hove-Jensen B, Harlow KW. 1995. Inactivation of Escherichia coli phosphoribosylpyrophosphate synthetase by the 2=, 3=-dialdehyde derivative of ATP. Identification of active site lysines. J Biol Chem 270:20730-20736.
    • (1995) J Biol Chem , vol.270 , pp. 20730-20736
    • Hilden, I.1    Hove-Jensen, B.2    Harlow, K.W.3
  • 64
    • 0016590905 scopus 로고
    • Inactivation of Salmonella phosphoribosylpyrophosphate synthetase by oxidation of a specific sulfhydryl group with potassium permanganate
    • Roberts MF, Switzer RL, Schubert KR. 1975. Inactivation of Salmonella phosphoribosylpyrophosphate synthetase by oxidation of a specific sulfhydryl group with potassium permanganate. J Biol Chem 250: 5364-5369.
    • (1975) J Biol Chem , vol.250 , pp. 5364-5369
    • Roberts, M.F.1    Switzer, R.L.2    Schubert, K.R.3
  • 65
    • 0025021578 scopus 로고
    • Sulfhydryl chemistry of Salmonella typhimurium phosphoribosylpyrophosphate synthetase: Identification of two classes of cysteinyl residues
    • Harlow KW, Switzer RL. 1990. Sulfhydryl chemistry of Salmonella typhimurium phosphoribosylpyrophosphate synthetase: identification of two classes of cysteinyl residues. Arch Biochem Biophys 276:466-472. https://doi.org/10.1016/0003-9861(90)90746-L.
    • (1990) Arch Biochem Biophys , vol.276 , pp. 466-472
    • Harlow, K.W.1    Switzer, R.L.2
  • 66
    • 0017863402 scopus 로고
    • Studies of the stereochemistry and of the role of metal ions in the mechanism of phosphoribosylpyrophosphate synthetase from Salmonella typhimurium
    • Li TM, Mildvan AS, Switzer RL. 1978. Studies of the stereochemistry and of the role of metal ions in the mechanism of phosphoribosylpyrophosphate synthetase from Salmonella typhimurium. J Biol Chem 253: 3918-3923.
    • (1978) J Biol Chem , vol.253 , pp. 3918-3923
    • Li, T.M.1    Mildvan, A.S.2    Switzer, R.L.3
  • 67
    • 0018418559 scopus 로고
    • Kinetic and magnetic resonance studies of the interaction of the Cr-ATP complex with phosphoribosylpyrophosphate synthetase from Salmonella typhimurium
    • Li TM, Switzer RL, Mildvan AS. 1979. Kinetic and magnetic resonance studies of the interaction of the Cr-ATP complex with phosphoribosylpyrophosphate synthetase from Salmonella typhimurium. Arch Biochem Biophys 193:1-13. https://doi.org/10.1016/0003-9861(79) 90001-8.
    • (1979) Arch Biochem Biophys , vol.193 , pp. 1-13
    • Li, T.M.1    Switzer, R.L.2    Mildvan, A.S.3
  • 68
    • 0019987594 scopus 로고
    • Binding of the substrates and the allosteric inhibitor adenosine 5=-diphosphate to phosphoribosylpyrophosphate synthetase from Salmonella typhimurium
    • Gibson KJ, Schubert KR, Switzer RL. 1982. Binding of the substrates and the allosteric inhibitor adenosine 5=-diphosphate to phosphoribosylpyrophosphate synthetase from Salmonella typhimurium. J Biol Chem 257:2391-2396.
    • (1982) J Biol Chem , vol.257 , pp. 2391-2396
    • Gibson, K.J.1    Schubert, K.R.2    Switzer, R.L.3
  • 69
    • 0015919054 scopus 로고
    • Regulation and mechanism of phosphoribosylpyrophosphate synthetase. V. Inhibition by end products and regulation by adenosine diphosphate
    • Switzer RL, Sogin DC. 1973. Regulation and mechanism of phosphoribosylpyrophosphate synthetase. V. Inhibition by end products and regulation by adenosine diphosphate. J Biol Chem 248:1063-1073.
    • (1973) J Biol Chem , vol.248 , pp. 1063-1073
    • Switzer, R.L.1    Sogin, D.C.2
  • 70
    • 0025118565 scopus 로고
    • Purification and properties of phosphoribosyl-diphosphate synthetase from Bacillus subtilis
    • Arnvig K, Hove-Jensen B, Switzer RL. 1990. Purification and properties of phosphoribosyl-diphosphate synthetase from Bacillus subtilis. Eur J Biochem 192:195-200. https://doi.org/10.1111/j.1432-1033.1990 .tb19214.x.
    • (1990) Eur J Biochem , vol.192 , pp. 195-200
    • Arnvig, K.1    Hove-Jensen, B.2    Switzer, R.L.3
  • 71
    • 0025941553 scopus 로고
    • Expression of rat phosphoribosylpyrophosphate synthetase subunits i and II in Escherichia coli. Isolation and characterization of the recombinant isoforms
    • Ishijima S, Kita K, Ahmad I, Ishizuka T, Taira M, Tatibana M. 1991. Expression of rat phosphoribosylpyrophosphate synthetase subunits I and II in Escherichia coli. Isolation and characterization of the recombinant isoforms. J Biol Chem 266:15693-15697.
    • (1991) J Biol Chem , vol.266 , pp. 15693-15697
    • Ishijima, S.1    Kita, K.2    Ahmad, I.3    Ishizuka, T.4    Taira, M.5    Tatibana, M.6
  • 72
    • 0028785416 scopus 로고
    • The genetic and functional basis of purine nucleotide feedback-resistant phosphoribosylpyrophosphate synthetase superactivity
    • Becker MA, Smith PR, Taylor W, Mustafi R, Switzer RL. 1995. The genetic and functional basis of purine nucleotide feedback-resistant phosphoribosylpyrophosphate synthetase superactivity. J Clin Invest 96: 2133-2141. https://doi.org/10.1172/JCI118267.
    • (1995) J Clin Invest , vol.96 , pp. 2133-2141
    • Becker, M.A.1    Smith, P.R.2    Taylor, W.3    Mustafi, R.4    Switzer, R.L.5
  • 73
    • 0027223549 scopus 로고
    • Overexpression, purification, and characterization of recombinant human 5-phosphoribosyl-1- pyrophosphate synthetase isozymes i and II
    • Nosal JM, Switzer RL, Becker MA. 1993. Overexpression, purification, and characterization of recombinant human 5-phosphoribosyl-1- pyrophosphate synthetase isozymes I and II. J Biol Chem 268: 10168-10175.
    • (1993) J Biol Chem , vol.268 , pp. 10168-10175
    • Nosal, J.M.1    Switzer, R.L.2    Becker, M.A.3
  • 74
    • 0016714468 scopus 로고
    • Studies of the quaternary structure and the chemical properties of phosphoribosylpyrophosphate synthetase from Salmonella typhimurium
    • Schubert KR, Switzer RL, Shelton E. 1975. Studies of the quaternary structure and the chemical properties of phosphoribosylpyrophosphate synthetase from Salmonella typhimurium. J Biol Chem 250: 7492-7500.
    • (1975) J Biol Chem , vol.250 , pp. 7492-7500
    • Schubert, K.R.1    Switzer, R.L.2    Shelton, E.3
  • 75
    • 0034634620 scopus 로고    scopus 로고
    • Steady state kinetic model for the binding of substrates and allosteric effectors to Escherichia coli phosphoribosyl-diphosphate synthase
    • Willemoës M, Hove-Jensen B, Larsen S. 2000. Steady state kinetic model for the binding of substrates and allosteric effectors to Escherichia coli phosphoribosyl-diphosphate synthase. J Biol Chem 275:35408-35412. https://doi.org/10.1074/jbc.M006346200.
    • (2000) J Biol Chem , vol.275 , pp. 35408-35412
    • Willemoës, M.1    Hove-Jensen, B.2    Larsen, S.3
  • 76
    • 0028920248 scopus 로고
    • Inhibition of human 5-phosphoribosyl-1-pyrophosphate synthetase by 4-amino-8-(beta-Dribofuranosylamino)- pyrimido[5, 4-d]pyrimidine-5=-monophosphate: Evidence for interaction at the ADP allosteric site
    • Fry DW, Becker MA, Switzer RL. 1995. Inhibition of human 5-phosphoribosyl-1-pyrophosphate synthetase by 4-amino-8-(beta-Dribofuranosylamino)- pyrimido[5, 4-d]pyrimidine-5=-monophosphate: evidence for interaction at the ADP allosteric site. Mol Pharmacol 47:810-815.
    • (1995) Mol Pharmacol , vol.47 , pp. 810-815
    • Fry, D.W.1    Becker, M.A.2    Switzer, R.L.3
  • 77
    • 78649731694 scopus 로고    scopus 로고
    • Mycobacterium tuberculosis phosphoribosylpyrophosphate synthetase: Biochemical features of a crucial enzyme for mycobacterial cell wall biosynthesis
    • Lucarelli AP, Buroni S, Pasca MR, Rizzi M, Cavagnino A, Valentini G, Riccardi G, Chiarelli LR. 2010. Mycobacterium tuberculosis phosphoribosylpyrophosphate synthetase: biochemical features of a crucial enzyme for mycobacterial cell wall biosynthesis. PLoS One 5:e15494. https:// doi.org/10.1371/journal.pone.0015494.
    • (2010) PLoS One , vol.5
    • Lucarelli, A.P.1    Buroni, S.2    Pasca, M.R.3    Rizzi, M.4    Cavagnino, A.5    Valentini, G.6    Riccardi, G.7    Chiarelli, L.R.8
  • 78
    • 84862697944 scopus 로고    scopus 로고
    • Wild-type phosphoribosylpyrophosphate synthase (PRS) from Mycobacterium tuberculosis: A bacterial class II PRS?
    • Breda A, Martinelli LK, Bizarro CV, Rosado LA, Borges CB, Santos DS, Basso LA. 2012. Wild-type phosphoribosylpyrophosphate synthase (PRS) from Mycobacterium tuberculosis: a bacterial class II PRS? PLoS One 7:e39245. https://doi.org/10.1371/journal.pone.0039245.
    • (2012) PLoS One , vol.7
    • Breda, A.1    Martinelli, L.K.2    Bizarro, C.V.3    Rosado, L.A.4    Borges, C.B.5    Santos, D.S.6    Basso, L.A.7
  • 79
    • 79952543554 scopus 로고    scopus 로고
    • Biochemical characterization of the Mycobacterium tuberculosis phosphoribosyl-1-pyrophosphate synthetase
    • Alderwick LJ, Lloyd GS, Lloyd AJ, Lovering AL, Eggeling L, Besra GS. 2011. Biochemical characterization of the Mycobacterium tuberculosis phosphoribosyl-1-pyrophosphate synthetase. Glycobiology 21: 410-425. https://doi.org/10.1093/glycob/cwq173.
    • (2011) Glycobiology , vol.21 , pp. 410-425
    • Alderwick, L.J.1    Lloyd, G.S.2    Lloyd, A.J.3    Lovering, A.L.4    Eggeling, L.5    Besra, G.S.6
  • 81
    • 0030934983 scopus 로고    scopus 로고
    • PRS1 is a key member of the gene family encoding phosphoribosylpyrophosphate synthetase in Saccharomyces cerevisiae
    • Carter AT, Beiche F, Hove-Jensen B, Narbad A, Barker PJ, Schweizer LM, Schweizer M. 1997. PRS1 is a key member of the gene family encoding phosphoribosylpyrophosphate synthetase in Saccharomyces cerevisiae. Mol Gen Genet 254:148-156. https://doi.org/10.1007/ s004380050402.
    • (1997) Mol Gen Genet , vol.254 , pp. 148-156
    • Carter, A.T.1    Beiche, F.2    Hove-Jensen, B.3    Narbad, A.4    Barker, P.J.5    Schweizer, L.M.6    Schweizer, M.7
  • 82
    • 4644362058 scopus 로고    scopus 로고
    • Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae: Combinatorial expression of the five PRS genes in Escherichia coli
    • Hove-Jensen B. 2004. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae: combinatorial expression of the five PRS genes in Escherichia coli. J Biol Chem 279:40345-40350. https://doi.org/10.1074/jbc.M405480200.
    • (2004) J Biol Chem , vol.279 , pp. 40345-40350
    • Hove-Jensen, B.1
  • 83
    • 0033617462 scopus 로고    scopus 로고
    • Genetic analysis and enzyme activity suggest the existence of more than one minimal functional unit capable of synthesizing phosphoribosyl pyrophosphate in Saccharomyces cerevisiae
    • Hernando Y, Carter AT, Parr A, Hove-Jensen B, Schweizer M. 1999. Genetic analysis and enzyme activity suggest the existence of more than one minimal functional unit capable of synthesizing phosphoribosyl pyrophosphate in Saccharomyces cerevisiae. J Biol Chem 274: 12480-12487. https://doi.org/10.1074/jbc.274.18.12480.
    • (1999) J Biol Chem , vol.274 , pp. 12480-12487
    • Hernando, Y.1    Carter, A.T.2    Parr, A.3    Hove-Jensen, B.4    Schweizer, M.5
  • 84
    • 84876075785 scopus 로고    scopus 로고
    • The contribution of the nonhomologous region of Prs1 to the maintenance of cell wall integrity and cell viability
    • Ugbogu EA, Wippler S, Euston M, Kouwenhoven EN, de Brouwer AP, Schweizer LM, Schweizer M. 2013. The contribution of the nonhomologous region of Prs1 to the maintenance of cell wall integrity and cell viability. FEMS Yeast Res 13:291-301. https://doi.org/10.1111/1567-1364.12033.
    • (2013) FEMS Yeast Res , vol.13 , pp. 291-301
    • Ugbogu, E.A.1    Wippler, S.2    Euston, M.3    Kouwenhoven, E.N.4    De Brouwer, A.P.5    Schweizer, L.M.6    Schweizer, M.7
  • 85
    • 6444227761 scopus 로고    scopus 로고
    • Impaired PRPP-synthesizing capacity compromises cell integrity signalling in Saccharomyces cerevisiae
    • Wang K, Vavassori S, Schweizer LM, Schweizer M. 2004. Impaired PRPP-synthesizing capacity compromises cell integrity signalling in Saccharomyces cerevisiae. Microbiology 150:3327-3339. https://doi.org/ 10.1099/mic.0.27373-0.
    • (2004) Microbiology , vol.150 , pp. 3327-3339
    • Wang, K.1    Vavassori, S.2    Schweizer, L.M.3    Schweizer, M.4
  • 86
    • 0035836765 scopus 로고    scopus 로고
    • A comprehensive two-hybrid analysis to explore the yeast protein interactome
    • Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. 2001. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98:4569-4574. https://doi.org/ 10.1073/pnas.061034498.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , pp. 4569-4574
    • Ito, T.1    Chiba, T.2    Ozawa, R.3    Yoshida, M.4    Hattori, M.5    Sakaki, Y.6
  • 90
    • 84861850132 scopus 로고    scopus 로고
    • Multiplex assay for condition-dependent changes in protein-protein interactions
    • Schlecht U, Miranda M, Suresh S, Davis RW, St Onge RP. 2012. Multiplex assay for condition-dependent changes in protein-protein interactions. Proc Natl Acad Sci U S A 109:9213-9218. https://doi.org/10.1073/ pnas.1204952109.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 9213-9218
    • Schlecht, U.1    Miranda, M.2    Suresh, S.3    Davis, R.W.4    St Onge, R.P.5
  • 93
    • 85011540541 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae phosphoribosyl diphosphate synthase may exist as pentaoligomer, abstr X-20
    • Los Angeles, CA. American Society for Microbiology, Washington, DC
    • Hove-Jensen B, Krath BN, Merritt H, Schweizer M. 2000. Saccharomyces cerevisiae phosphoribosyl diphosphate synthase may exist as pentaoligomer, abstr X-20. 100th Gen Meet Am Soc Microbiol, Los Angeles, CA. American Society for Microbiology, Washington, DC.
    • (2000) 100th Gen Meet Am Soc Microbiol
    • Hove-Jensen, B.1    Krath, B.N.2    Merritt, H.3    Schweizer, M.4
  • 94
    • 0032872353 scopus 로고    scopus 로고
    • The yeast PRS3 gene is required for cell integrity, cell cycle arrest upon nutrient deprivation, ion homeostasis and the proper organization of the actin cytoskeleton
    • Binley KM, Radcliffe PA, Trevethick J, Duffy KA, Sudbery PE. 1999. The yeast PRS3 gene is required for cell integrity, cell cycle arrest upon nutrient deprivation, ion homeostasis and the proper organization of the actin cytoskeleton. Yeast 15:1459-1469. https://doi.org/10.1002/ (SICI)1097-0061(199910)15:141459::AID-YEA472-3.0.CO;2-A.
    • (1999) Yeast , vol.15 , pp. 1459-1469
    • Binley, K.M.1    Radcliffe, P.A.2    Trevethick, J.3    Duffy, K.A.4    Sudbery, P.E.5
  • 95
    • 1642281603 scopus 로고    scopus 로고
    • A synthetic lethal screen identifies a role for the cortical actin patch/endocytosis complex in the response to nutrient deprivation in Saccharomyces cerevisiae
    • Care A, Vousden KA, Binley KM, Radcliffe P, Trevethick J, Mannazzu I, Sudbery PE. 2004. A synthetic lethal screen identifies a role for the cortical actin patch/endocytosis complex in the response to nutrient deprivation in Saccharomyces cerevisiae. Genetics 166:707-719. https:// doi.org/10.1534/genetics.166.2.707.
    • (2004) Genetics , vol.166 , pp. 707-719
    • Care, A.1    Vousden, K.A.2    Binley, K.M.3    Radcliffe, P.4    Trevethick, J.5    Mannazzu, I.6    Sudbery, P.E.7
  • 96
    • 0037135134 scopus 로고    scopus 로고
    • Systematic identification of pathways that couple cell growth and division in yeast
    • Jorgensen P, Nishikawa JL, Breitkreutz BJ, Tyers M. 2002. Systematic identification of pathways that couple cell growth and division in yeast. Science 297:395-400. https://doi.org/10.1126/science.1070850.
    • (2002) Science , vol.297 , pp. 395-400
    • Jorgensen, P.1    Nishikawa, J.L.2    Breitkreutz, B.J.3    Tyers, M.4
  • 97
    • 83455179434 scopus 로고    scopus 로고
    • Regulation of cell wall biogenesis in Saccharomyces cerevisiae: The cell wall integrity signaling pathway
    • Levin DE. 2011. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189: 1145-1175. https://doi.org/10.1534/genetics.111.128264.
    • (2011) Genetics , vol.189 , pp. 1145-1175
    • Levin, D.E.1
  • 98
    • 33747078423 scopus 로고    scopus 로고
    • Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/ cAMP signalling pathways
    • Kuranda K, Leberre V, Sokol S, Palamarczyk G, Francois J. 2006. Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/ cAMP signalling pathways. Mol Microbiol 61:1147-1166. https:// doi.org/10.1111/j.1365-2958.2006.05300.x.
    • (2006) Mol Microbiol , vol.61 , pp. 1147-1166
    • Kuranda, K.1    Leberre, V.2    Sokol, S.3    Palamarczyk, G.4    Francois, J.5
  • 99
    • 0034523501 scopus 로고    scopus 로고
    • The importance of the five phosphoribosyl-pyrophosphate synthetase (Prs) gene products of Saccharomyces cerevisiae in the maintenance of cell integrity and the subcellular localization of Prs1p
    • Schneiter R, Carter AT, Hernando Y, Zellnig G, Schweizer LM, Schweizer M. 2000. The importance of the five phosphoribosyl-pyrophosphate synthetase (Prs) gene products of Saccharomyces cerevisiae in the maintenance of cell integrity and the subcellular localization of Prs1p. Microbiology 146:3269-3278. https://doi.org/10.1099/00221287-146-12-3269.
    • (2000) Microbiology , vol.146 , pp. 3269-3278
    • Schneiter, R.1    Carter, A.T.2    Hernando, Y.3    Zellnig, G.4    Schweizer, L.M.5    Schweizer, M.6
  • 100
    • 0028237080 scopus 로고
    • The Saccharomyces cerevisiae mutation elm4-1 facilitates pseudohyphal differentiation and interacts with a deficiency in phosphoribosylpyrophosphate synthase activity to cause constitutive pseudohyphal growth
    • Blacketer MJ, Madaule P, Myers AM. 1994. The Saccharomyces cerevisiae mutation elm4-1 facilitates pseudohyphal differentiation and interacts with a deficiency in phosphoribosylpyrophosphate synthase activity to cause constitutive pseudohyphal growth. Mol Cell Biol 14:4671-4681. https://doi.org/10.1128/MCB.14.7.4671.
    • (1994) Mol Cell Biol , vol.14 , pp. 4671-4681
    • Blacketer, M.J.1    Madaule, P.2    Myers, A.M.3
  • 101
    • 27844605057 scopus 로고    scopus 로고
    • In Saccharomyces cerevisiae, impaired PRPP synthesis is accompanied by valproate and Li- sensitivity
    • Vavassori S, Wang K, Schweizer LM, Schweizer M. 2005. In Saccharomyces cerevisiae, impaired PRPP synthesis is accompanied by valproate and Li- sensitivity. Biochem Soc Trans 33:1154-1157. https://doi.org/ 10.1042/BST0331154.
    • (2005) Biochem Soc Trans , vol.33 , pp. 1154-1157
    • Vavassori, S.1    Wang, K.2    Schweizer, L.M.3    Schweizer, M.4
  • 102
    • 28844495951 scopus 로고    scopus 로고
    • Ramifications of impaired PRPP synthesis in Saccharomyces cerevisiae
    • Vavassori S, Wang K, Schweizer LM, Schweizer M. 2005. Ramifications of impaired PRPP synthesis in Saccharomyces cerevisiae. Biochem Soc Trans 33:1418-1420. https://doi.org/10.1042/BST0331418.
    • (2005) Biochem Soc Trans , vol.33 , pp. 1418-1420
    • Vavassori, S.1    Wang, K.2    Schweizer, L.M.3    Schweizer, M.4
  • 104
    • 70350179897 scopus 로고    scopus 로고
    • Valproic acid- and lithium-sensitivity in prs mutants of Saccharomyces cerevisiae
    • Kleineidam A, Vavassori S, Wang K, Schweizer LM, Griac P, Schweizer M. 2009. Valproic acid- and lithium-sensitivity in prs mutants of Saccharomyces cerevisiae. Biochem Soc Trans 37:1115-1120. https://doi.org/ 10.1042/BST0371115.
    • (2009) Biochem Soc Trans , vol.37 , pp. 1115-1120
    • Kleineidam, A.1    Vavassori, S.2    Wang, K.3    Schweizer, L.M.4    Griac, P.5    Schweizer, M.6
  • 106
    • 0031755842 scopus 로고    scopus 로고
    • PRS5, the fifth member of the phosphoribosyl pyrophosphate synthetase gene family in Saccharomyces cerevisiae, is essential for cell viability in the absence of either PRS1 or PRS3
    • Hernando Y, Parr A, Schweizer M. 1998. PRS5, the fifth member of the phosphoribosyl pyrophosphate synthetase gene family in Saccharomyces cerevisiae, is essential for cell viability in the absence of either PRS1 or PRS3. J Bacteriol 180:6404-6407.
    • (1998) J Bacteriol , vol.180 , pp. 6404-6407
    • Hernando, Y.1    Parr, A.2    Schweizer, M.3
  • 108
    • 44449132255 scopus 로고    scopus 로고
    • Phosphoproteome analysis of fission yeast
    • Wilson-Grady JT, Villen J, Gygi SP. 2008. Phosphoproteome analysis of fission yeast. J Proteome Res 7:1088-1097. https://doi.org/10.1021/ pr7006335.
    • (2008) J Proteome Res , vol.7 , pp. 1088-1097
    • Wilson-Grady, J.T.1    Villen, J.2    Gygi, S.P.3
  • 109
    • 0035204487 scopus 로고    scopus 로고
    • Septum formation in Aspergillus nidulans
    • Harris SD. 2001. Septum formation in Aspergillus nidulans. Curr Opin Microbiol 4:736-739. https://doi.org/10.1016/S1369-5274(01)00276-4.
    • (2001) Curr Opin Microbiol , vol.4 , pp. 736-739
    • Harris, S.D.1
  • 110
    • 84871736260 scopus 로고    scopus 로고
    • Phosphoribosyl pyrophosphate synthetase, as a suppressor of the sepH mutation in Aspergillus nidulans, is required for the proper timing of septation
    • Zhong G, Wei W, Guan Q, Ma Z, Wei H, Xu X, Zhang S, Lu L. 2012. Phosphoribosyl pyrophosphate synthetase, as a suppressor of the sepH mutation in Aspergillus nidulans, is required for the proper timing of septation. Mol Microbiol 86:894-907. https://doi.org/10.1111/ mmi.12026.
    • (2012) Mol Microbiol , vol.86 , pp. 894-907
    • Zhong, G.1    Wei, W.2    Guan, Q.3    Ma, Z.4    Wei, H.5    Xu, X.6    Zhang, S.7    Lu, L.8
  • 112
    • 52649091290 scopus 로고    scopus 로고
    • Phosphoribosyl pyrophosphate synthetase activity affects growth and riboflavin production in Ashbya gossypii
    • Jiménez A, Santos MA, Revuelta JL. 2008. Phosphoribosyl pyrophosphate synthetase activity affects growth and riboflavin production in Ashbya gossypii. BMC Biotechnol 8:67. https://doi.org/10.1186/1472-6750-8-67.
    • (2008) BMC Biotechnol , vol.8 , pp. 67
    • Jiménez, A.1    Santos, M.A.2    Revuelta, J.L.3
  • 113
    • 0024391146 scopus 로고
    • Rat liver phosphoribosyl pyrophosphate synthetase: Existence of the purified enzyme as heterogeneous aggregates and identification of the catalytic subunit
    • Kita K, Otsuki T, Ishizuka T, Tatibana M. 1989. Rat liver phosphoribosyl pyrophosphate synthetase: existence of the purified enzyme as heterogeneous aggregates and identification of the catalytic subunit. J Biochem 105:736-741.
    • (1989) J Biochem , vol.105 , pp. 736-741
    • Kita, K.1    Otsuki, T.2    Ishizuka, T.3    Tatibana, M.4
  • 115
    • 0017701301 scopus 로고
    • Human erythrocyte phosphoribosylpyrophosphate synthetase. Subunit analysis and states of subunit association
    • Becker MA, Meyer LJ, Huisman WH, Lazar C, Adams WB. 1977. Human erythrocyte phosphoribosylpyrophosphate synthetase. Subunit analysis and states of subunit association. J Biol Chem 252:3911-3918.
    • (1977) J Biol Chem , vol.252 , pp. 3911-3918
    • Becker, M.A.1    Meyer, L.J.2    Huisman, W.H.3    Lazar, C.4    Adams, W.B.5
  • 116
    • 0015240245 scopus 로고
    • Human phosphoribosylpyrophosphate synthetase. Distribution, purification, and properties
    • Fox IH, Kelley WN. 1971. Human phosphoribosylpyrophosphate synthetase. Distribution, purification, and properties. J Biol Chem 246: 5739-5748.
    • (1971) J Biol Chem , vol.246 , pp. 5739-5748
    • Fox, I.H.1    Kelley, W.N.2
  • 117
    • 33646829608 scopus 로고    scopus 로고
    • Expression, purification, crystallization and preliminary X-ray diffraction analysis of human phosphoribosyl pyrophosphate synthetase 1 (PRS1)
    • Tang W, Li X, Zhu Z, Tong S, Li X, Zhang X, Teng M, Niu L. 2006. Expression, purification, crystallization and preliminary X-ray diffraction analysis of human phosphoribosyl pyrophosphate synthetase 1 (PRS1). Acta Crystallogr Sect F Struct Biol Cryst Commun 62:432-434. https:// doi.org/10.1107/S1744309106009067.
    • (2006) Acta Crystallogr Sect F Struct Biol Cryst Commun , vol.62 , pp. 432-434
    • Tang, W.1    Li, X.2    Zhu, Z.3    Tong, S.4    Li, X.5    Zhang, X.6    Teng, M.7    Niu, L.8
  • 118
    • 84924957138 scopus 로고    scopus 로고
    • Crystal and em structures of human phosphoribosyl pyrophosphate synthase i (PRS1) provide novel insights into the disease-associated mutations
    • Chen P, Liu Z, Wang X, Peng J, Sun Q, Li J, Wang M, Niu L, Zhang Z, Cai G, Teng M, Li X. 2015. Crystal and EM structures of human phosphoribosyl pyrophosphate synthase I (PRS1) provide novel insights into the disease-associated mutations. PLoS One 10:e0120304. https://doi.org/ 10.1371/journal.pone.0120304.
    • (2015) PLoS One , vol.10
    • Chen, P.1    Liu, Z.2    Wang, X.3    Peng, J.4    Sun, Q.5    Li, J.6    Wang, M.7    Niu, L.8    Zhang, Z.9    Cai, G.10    Teng, M.11    Li, X.12
  • 119
    • 84855909259 scopus 로고    scopus 로고
    • The PRPP synthetase spectrum: What does it demonstrate about nucleotide syndromes?
    • Duley JA, Christodoulou J, de Brouwer AP. 2011. The PRPP synthetase spectrum: what does it demonstrate about nucleotide syndromes? Nucleosides Nucleotides Nucleic Acids 30:1129-1139. https://doi.org/ 10.1080/15257770.2011.591747.
    • (2011) Nucleosides Nucleotides Nucleic Acids , vol.30 , pp. 1129-1139
    • Duley, J.A.1    Christodoulou, J.2    De Brouwer, A.P.3
  • 123
    • 0037666979 scopus 로고    scopus 로고
    • Phosphoribosylpyrophosphate synthetase overactivity as a cause of uric acid overproduction in a young woman
    • Garcia-Pavia P, Torres RJ, Rivero M, Ahmed M, Garcia-Puig J, Becker MA. 2003. Phosphoribosylpyrophosphate synthetase overactivity as a cause of uric acid overproduction in a young woman. Arthritis Rheum 48: 2036-2041. https://doi.org/10.1002/art.11058.
    • (2003) Arthritis Rheum , vol.48 , pp. 2036-2041
    • Garcia-Pavia, P.1    Torres, R.J.2    Rivero, M.3    Ahmed, M.4    Garcia-Puig, J.5    Becker, M.A.6
  • 124
    • 84881530448 scopus 로고    scopus 로고
    • A small disturbance, but a serious disease: The possible mechanism of D52H-mutant of human PRS1 that causes gout
    • Chen P, Li J, Ma J, Teng M, Li X. 2013. A small disturbance, but a serious disease: the possible mechanism of D52H-mutant of human PRS1 that causes gout. IUBMB Life 65:518-525. https://doi.org/10.1002/iub.1154.
    • (2013) IUBMB Life , vol.65 , pp. 518-525
    • Chen, P.1    Li, J.2    Ma, J.3    Teng, M.4    Li, X.5
  • 125
    • 84901353547 scopus 로고    scopus 로고
    • Protein and nucleotide biosynthesis are coupled by a single ratelimiting enzyme, PRPS2, to drive cancer
    • Cunningham JT, Moreno MV, Lodi A, Ronen SM, Ruggero D. 2014. Protein and nucleotide biosynthesis are coupled by a single ratelimiting enzyme, PRPS2, to drive cancer. Cell 157:1088-1103. https:// doi.org/10.1016/j.cell.2014.03.052.
    • (2014) Cell , vol.157 , pp. 1088-1103
    • Cunningham, J.T.1    Moreno, M.V.2    Lodi, A.3    Ronen, S.M.4    Ruggero, D.5
  • 126
    • 0030720912 scopus 로고    scopus 로고
    • Partial reconstitution of mammalian phosphoribosylpyrophosphate synthetase in Escherichia coli cells. Coexpression of catalytic subunits with the 39-kDa associated protein leads to formation of soluble multimeric complexes of various compositions
    • Ishijima S, Asai T, Kita K, Sonoda T, Tatibana M. 1997. Partial reconstitution of mammalian phosphoribosylpyrophosphate synthetase in Escherichia coli cells. Coexpression of catalytic subunits with the 39-kDa associated protein leads to formation of soluble multimeric complexes of various compositions. Biochim Biophys Acta 1342:28-36.
    • (1997) Biochim Biophys Acta , vol.1342 , pp. 28-36
    • Ishijima, S.1    Asai, T.2    Kita, K.3    Sonoda, T.4    Tatibana, M.5
  • 128
    • 84923058021 scopus 로고    scopus 로고
    • Cloning and characterization of DjPRPS gene in freshwater planarian Dugesia japonica
    • Shi C, Dong Z, Zhang H, Cheng F, Chen G, Liu D. 2015. Cloning and characterization of DjPRPS gene in freshwater planarian Dugesia japonica. Turk J Biochem 40:58-65. https://doi.org/10.5505/tjb.2015.61482.
    • (2015) Turk J Biochem , vol.40 , pp. 58-65
    • Shi, C.1    Dong, Z.2    Zhang, H.3    Cheng, F.4    Chen, G.5    Liu, D.6
  • 129
    • 58549106557 scopus 로고    scopus 로고
    • Sugarcane phosphoribosyl pyrophosphate synthetase: Molecular characterization of a phosphate-independent PRS
    • Sculaccio SA, Napolitano HB, Beltramini LM, Oliva G, Carrilho E, Thiemann OH. 2008. Sugarcane phosphoribosyl pyrophosphate synthetase: molecular characterization of a phosphate-independent PRS. Plant Mol Biol Rep 26:301-315. https://doi.org/10.1007/s11105-008-0043-6.
    • (2008) Plant Mol Biol Rep , vol.26 , pp. 301-315
    • Sculaccio, S.A.1    Napolitano, H.B.2    Beltramini, L.M.3    Oliva, G.4    Carrilho, E.5    Thiemann, O.H.6
  • 130
    • 0242581092 scopus 로고
    • Characterisation of phosphoribosylpyrophosphate synthetase from spinach leaves
    • Ashihara H. 1977. Characterisation of phosphoribosylpyrophosphate synthetase from spinach leaves. Z Pflanzenphysiol 81:379-392.
    • (1977) Z Pflanzenphysiol , vol.81 , pp. 379-392
    • Ashihara, H.1
  • 131
    • 0031397671 scopus 로고    scopus 로고
    • Purification and characterization of phosphoribosylpyrophosphate synthetase from rubber tree latex
    • Gallois R, Prevot JC, Clement A, Jacob JL. 1997. Purification and characterization of phosphoribosylpyrophosphate synthetase from rubber tree latex. Plant Physiol 115:847-852. https://doi.org/10.1104/ pp.115.2.847.
    • (1997) Plant Physiol , vol.115 , pp. 847-852
    • Gallois, R.1    Prevot, J.C.2    Clement, A.3    Jacob, J.L.4
  • 138
    • 80054850044 scopus 로고    scopus 로고
    • The structures of Thermoplasma volcanium phosphoribosyl pyrophosphate synthetase bound to ribose-5-phosphate and ATP analogs
    • Cherney MM, Cherney LT, Garen CR, James MN. 2011. The structures of Thermoplasma volcanium phosphoribosyl pyrophosphate synthetase bound to ribose-5-phosphate and ATP analogs. J Mol Biol 413: 844-856. https://doi.org/10.1016/j.jmb.2011.09.007.
    • (2011) J Mol Biol , vol.413 , pp. 844-856
    • Cherney, M.M.1    Cherney, L.T.2    Garen, C.R.3    James, M.N.4
  • 139
    • 84925490053 scopus 로고    scopus 로고
    • Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase: A bent dimer defining the adenine specificity of the substrate ATP
    • Andersen RW, Leggio LL, Hove-Jensen B, Kadziola A. 2015. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase: a bent dimer defining the adenine specificity of the substrate ATP. Extremophiles 19:407-415. https://doi.org/10.1007/ s00792-014-0726-x.
    • (2015) Extremophiles , vol.19 , pp. 407-415
    • Andersen, R.W.1    Leggio, L.L.2    Hove-Jensen, B.3    Kadziola, A.4
  • 140
    • 0030990854 scopus 로고    scopus 로고
    • Gene cloning and characterization of recombinant ribose phosphate pyrophosphokinase from a hyperthermophilic archaeon
    • Rashid N, Morikawa M, Imanaka T. 1997. Gene cloning and characterization of recombinant ribose phosphate pyrophosphokinase from a hyperthermophilic archaeon. J Biosci Bioeng 83:412-418.
    • (1997) J Biosci Bioeng , vol.83 , pp. 412-418
    • Rashid, N.1    Morikawa, M.2    Imanaka, T.3
  • 141
    • 0016650181 scopus 로고
    • Oxygen-18 studies of the mechanism of pyrophosphoryl group transfer catalyzed by phosphoribosylpyrophosphate synthetase
    • Miller GA, Jr, Rosenzweig S, Switzer RL. 1975. Oxygen-18 studies of the mechanism of pyrophosphoryl group transfer catalyzed by phosphoribosylpyrophosphate synthetase. Arch Biochem Biophys 171:732-736. https://doi.org/10.1016/0003-9861(75)90086-7.
    • (1975) Arch Biochem Biophys , vol.171 , pp. 732-736
    • Miller, G.A.1    Rosenzweig, S.2    Switzer, R.L.3
  • 142
    • 0015500785 scopus 로고
    • Human phosphoribosylpyrophosphate synthetase. Kinetic mechanism and end product inhibition
    • Fox IH, Kelley WN. 1972. Human phosphoribosylpyrophosphate synthetase. Kinetic mechanism and end product inhibition. J Biol Chem 247:2126-2131.
    • (1972) J Biol Chem , vol.247 , pp. 2126-2131
    • Fox, I.H.1    Kelley, W.N.2
  • 143
    • 0030800305 scopus 로고    scopus 로고
    • Kinetic and regulatory properties of rat liver phosphoribosylpyrophosphate synthetase complex are partly distinct from those of isolated recombinant component catalytic subunits
    • Sonoda T, Kita K, Ishijima S, Ishizuka T, Ahmad I, Tatibana M. 1997. Kinetic and regulatory properties of rat liver phosphoribosylpyrophosphate synthetase complex are partly distinct from those of isolated recombinant component catalytic subunits. J Biochem 122:635-640. https://doi.org/10.1093/oxfordjournals.jbchem.a021800.
    • (1997) J Biochem , vol.122 , pp. 635-640
    • Sonoda, T.1    Kita, K.2    Ishijima, S.3    Ishizuka, T.4    Ahmad, I.5    Tatibana, M.6
  • 144
    • 0015963967 scopus 로고
    • Stability and regulation of phosphoribosyl pyrophosphate synthetase from rat liver
    • Roth DG, Deuel TF. 1974. Stability and regulation of phosphoribosyl pyrophosphate synthetase from rat liver. J Biol Chem 249:297-301.
    • (1974) J Biol Chem , vol.249 , pp. 297-301
    • Roth, D.G.1    Deuel, T.F.2
  • 145
    • 0017758070 scopus 로고
    • Regulation of Salmonella phosphoribosylpyrophosphate synthetase activity in vivo. Deductions from pool measurements
    • Sadler WC, Switzer RL. 1977. Regulation of Salmonella phosphoribosylpyrophosphate synthetase activity in vivo. Deductions from pool measurements. J Biol Chem 252:8504-8511.
    • (1977) J Biol Chem , vol.252 , pp. 8504-8511
    • Sadler, W.C.1    Switzer, R.L.2
  • 146
    • 0015799563 scopus 로고
    • Relationships between intracellular contents of nucleotides and 5-phosphoribosyl 1-pyrophosphate in Escherichia coli
    • Bagnara AS, Finch LR. 1973. Relationships between intracellular contents of nucleotides and 5-phosphoribosyl 1-pyrophosphate in Escherichia coli. Eur J Biochem 36:422-427. https://doi.org/10.1111/j.1432-1033.1973.tb02927.x.
    • (1973) Eur J Biochem , vol.36 , pp. 422-427
    • Bagnara, A.S.1    Finch, L.R.2
  • 147
    • 78651189765 scopus 로고
    • On the nature of allosteric transitions: A plausible model
    • Monod J, Wyman J, Changeux JP. 1965. On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88-118. https://doi.org/ 10.1016/S0022-2836(65)80285-6.
    • (1965) J Mol Biol , vol.12 , pp. 88-118
    • Monod, J.1    Wyman, J.2    Changeux, J.P.3
  • 149
    • 84857920641 scopus 로고    scopus 로고
    • Wild-type and feedback-resistant phosphoribosyl pyrophosphate synthetases from Bacillus amyloliquefaciens: Purification, characterization, and application to increase purine nucleoside production
    • Zakataeva NP, Romanenkov DV, Skripnikova VS, Vitushkina MV, Livshits VA, Kivero AD, Novikova AE. 2012. Wild-type and feedback-resistant phosphoribosyl pyrophosphate synthetases from Bacillus amyloliquefaciens: purification, characterization, and application to increase purine nucleoside production. Appl Microbiol Biotechnol 93: 2023-2033. https://doi.org/10.1007/s00253-011-3687-3.
    • (2012) Appl Microbiol Biotechnol , vol.93 , pp. 2023-2033
    • Zakataeva, N.P.1    Romanenkov, D.V.2    Skripnikova, V.S.3    Vitushkina, M.V.4    Livshits, V.A.5    Kivero, A.D.6    Novikova, A.E.7
  • 150
    • 0030058173 scopus 로고    scopus 로고
    • Phosphoribosyl diphosphate synthetaseindependent NAD de novo synthesis in Escherichia coli: A new phenotype of phosphate regulon mutants
    • Hove-Jensen B. 1996. Phosphoribosyl diphosphate synthetaseindependent NAD de novo synthesis in Escherichia coli: a new phenotype of phosphate regulon mutants. J Bacteriol 178:714-722.
    • (1996) J Bacteriol , vol.178 , pp. 714-722
    • Hove-Jensen, B.1
  • 151
    • 0037407702 scopus 로고    scopus 로고
    • Escherichia coli phnN, encoding ribose 1, 5-bisphosphokinase activity (phosphoribosyl diphosphate forming): Dual role in phosphonate degradation and NAD biosynthesis pathways
    • Hove-Jensen B, Rosenkrantz TJ, Haldimann A, Wanner BL. 2003. Escherichia coli phnN, encoding ribose 1, 5-bisphosphokinase activity (phosphoribosyl diphosphate forming): dual role in phosphonate degradation and NAD biosynthesis pathways. J Bacteriol 185:2793-2801. https://doi.org/10.1128/JB.185.9.2793-2801.2003.
    • (2003) J Bacteriol , vol.185 , pp. 2793-2801
    • Hove-Jensen, B.1    Rosenkrantz, T.J.2    Haldimann, A.3    Wanner, B.L.4
  • 152
    • 0003338719 scopus 로고    scopus 로고
    • Phosphorus assimilation and control of the phosphate regulon
    • In Neidhardt FC, Curtis R, III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (ed), 2nd ed. ASM Press, Washington, DC
    • Wanner BL. 1996. Phosphorus assimilation and control of the phosphate regulon, p 1357-1381. In Neidhardt FC, Curtis R, III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (ed), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, DC.
    • (1996) Escherichia coli and Salmonella: Cellular and Molecular Biology , pp. 1357-1381
    • Wanner, B.L.1
  • 153
    • 79952596401 scopus 로고    scopus 로고
    • Physiological role of phnP-specified phosphoribosyl cyclic phosphodiesterase in catabolism of organophosphonic acids by the carbon-phosphorus lyase pathway
    • Hove-Jensen B, McSorley FR, Zechel DL. 2011. Physiological role of phnP-specified phosphoribosyl cyclic phosphodiesterase in catabolism of organophosphonic acids by the carbon-phosphorus lyase pathway. J Am Chem Soc 133:3617-3624. https://doi.org/10.1021/ja1102713.
    • (2011) J Am Chem Soc , vol.133 , pp. 3617-3624
    • Hove-Jensen, B.1    McSorley, F.R.2    Zechel, D.L.3
  • 154
    • 84896303396 scopus 로고    scopus 로고
    • Utilization of glyphosate as phosphate source: Biochemistry and genetics of bacterial carbonphosphorus lyase
    • Hove-Jensen B, Zechel DL, Jochimsen B. 2014. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbonphosphorus lyase. Microbiol Mol Biol Rev 78:176-197. https://doi.org/ 10.1128/MMBR.00040-13.
    • (2014) Microbiol Mol Biol Rev , vol.78 , pp. 176-197
    • Hove-Jensen, B.1    Zechel, D.L.2    Jochimsen, B.3
  • 156
    • 0014690235 scopus 로고
    • The biosynthesis of folic acid. IX. Purification and properties of the enzymes required for the formation of dihydropteroic acid
    • Richey DP, Brown GM. 1969. The biosynthesis of folic acid. IX. Purification and properties of the enzymes required for the formation of dihydropteroic acid. J Biol Chem 244:1582-1592.
    • (1969) J Biol Chem , vol.244 , pp. 1582-1592
    • Richey, D.P.1    Brown, G.M.2
  • 157
    • 0016611284 scopus 로고
    • Purification and properties of stringent factor
    • Block R, Haseltine AW. 1975. Purification and properties of stringent factor. J Biol Chem 250:1212-1217.
    • (1975) J Biol Chem , vol.250 , pp. 1212-1217
    • Block, R.1    Haseltine, A.W.2
  • 158
    • 0015888988 scopus 로고
    • Nonribosomal synthesis of guanosine 5=, 3=-polyphosphates by the ribosomal wash of stringent Escherichia coli
    • Sy J, Ogawa Y, Lipmann F. 1973. Nonribosomal synthesis of guanosine 5=, 3=-polyphosphates by the ribosomal wash of stringent Escherichia coli. Proc Natl Acad Sci U S A 70:2145-2148. https://doi.org/10.1073/ pnas.70.7.2145.
    • (1973) Proc Natl Acad Sci U S A , vol.70 , pp. 2145-2148
    • Sy, J.1    Ogawa, Y.2    Lipmann, F.3
  • 159
    • 84981834686 scopus 로고
    • Phosphorylation biologique de la thiamine
    • Leuthardt F, Nielsen H. 1952. Phosphorylation biologique de la thiamine. Helv Chim Acta 35:1196-1209. https://doi.org/10.1002/ hlca.19520350415.
    • (1952) Helv Chim Acta , vol.35 , pp. 1196-1209
    • Leuthardt, F.1    Nielsen, H.2
  • 160
    • 0016747976 scopus 로고
    • Purine nucleotide pyrophosphotransferase from Streptomyces morookaensis, capable of synthesizing pppApp and pppGpp
    • Oki T, Yoshimoto A, Sato S, Takamatsu A. 1975. Purine nucleotide pyrophosphotransferase from Streptomyces morookaensis, capable of synthesizing pppApp and pppGpp. Biochim Biophys Acta 410:262-272. https://doi.org/10.1016/0005-2744(75)90228-4.
    • (1975) Biochim Biophys Acta , vol.410 , pp. 262-272
    • Oki, T.1    Yoshimoto, A.2    Sato, S.3    Takamatsu, A.4
  • 161
    • 30744470374 scopus 로고    scopus 로고
    • The Nudix hydrolase superfamily
    • McLennan AG. 2006. The Nudix hydrolase superfamily. Cell Mol Life Sci 63:123-143. https://doi.org/10.1007/s00018-005-5386-7.
    • (2006) Cell Mol Life Sci , vol.63 , pp. 123-143
    • McLennan, A.G.1
  • 163
    • 0029835350 scopus 로고    scopus 로고
    • The MutT proteins or "nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes
    • Bessman MJ, Frick DN, O'Handley SF. 1996. The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes. J Biol Chem 271:25059-25062. https://doi.org/ 10.1074/jbc.271.41.25059.
    • (1996) J Biol Chem , vol.271 , pp. 25059-25062
    • Bessman, M.J.1    Frick, D.N.2    O'Handley, S.F.3
  • 164
    • 0034435395 scopus 로고    scopus 로고
    • Catalytic center assembly of HPPK as revealed by the crystal structure of a ternary complex at 1.25 Å resolution
    • Blaszczyk J, Shi G, Yan H, Ji X. 2000. Catalytic center assembly of HPPK as revealed by the crystal structure of a ternary complex at 1.25 Å resolution. Structure 8:1049-1058. https://doi.org/10.1016/S0969-2126(00)00502-5.
    • (2000) Structure , vol.8 , pp. 1049-1058
    • Blaszczyk, J.1    Shi, G.2    Yan, H.3    Ji, X.4
  • 165
    • 0032587194 scopus 로고    scopus 로고
    • 2.0 Å X-ray structure of the ternary complex of 7, 8-dihydro-6-hydroxymethylpterinpyrophosphokinase from Escherichia coli with ATP and a substrate analogue
    • Stammers DK, Achari A, Somers DO, Bryant PK, Rosemond J, Scott DL, Champness JN. 1999. 2.0 Å X-ray structure of the ternary complex of 7, 8-dihydro-6-hydroxymethylpterinpyrophosphokinase from Escherichia coli with ATP and a substrate analogue. FEBS Lett 456:49-53. https://doi.org/10.1016/S0014-5793(99)00860-1.
    • (1999) FEBS Lett , vol.456 , pp. 49-53
    • Stammers, D.K.1    Achari, A.2    Somers, D.O.3    Bryant, P.K.4    Rosemond, J.5    Scott, D.L.6    Champness, J.N.7
  • 166
    • 0033135167 scopus 로고    scopus 로고
    • Crystal structure of 6-hydroxymethyl-7, 8-dihydropterin pyrophosphokinase, a potential target for the development of novel antimicrobial agents
    • Xiao B, Shi G, Chen X, Yan H, Ji X. 1999. Crystal structure of 6-hydroxymethyl-7, 8-dihydropterin pyrophosphokinase, a potential target for the development of novel antimicrobial agents. Structure 7:489-496. https://doi.org/10.1016/S0969-2126(99)80065-3.
    • (1999) Structure , vol.7 , pp. 489-496
    • Xiao, B.1    Shi, G.2    Chen, X.3    Yan, H.4    Ji, X.5
  • 168
    • 0035996799 scopus 로고    scopus 로고
    • The folic acid biosynthesis pathway in bacteria: Evaluation of potential for antibacterial drug discovery
    • Bermingham A, Derrick JP. 2002. The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery. Bioessays 24:637-648. https://doi.org/10.1002/bies.10114.
    • (2002) Bioessays , vol.24 , pp. 637-648
    • Bermingham, A.1    Derrick, J.P.2
  • 169
    • 0035955664 scopus 로고    scopus 로고
    • Unusual conformational changes in 6-hydroxymethyl-7, 8-dihydropterin pyrophosphokinase as revealed by X-ray crystallography and NMR
    • Xiao B, Shi G, Gao J, Blaszczyk J, Liu Q, Ji X, Yan H. 2001. Unusual conformational changes in 6-hydroxymethyl-7, 8-dihydropterin pyrophosphokinase as revealed by X-ray crystallography and NMR. J Biol Chem 276:40274-40281. https://doi.org/10.1074/jbc.M103837200.
    • (2001) J Biol Chem , vol.276 , pp. 40274-40281
    • Xiao, B.1    Shi, G.2    Gao, J.3    Blaszczyk, J.4    Liu, Q.5    Ji, X.6    Yan, H.7
  • 170
    • 1542476995 scopus 로고    scopus 로고
    • Reaction trajectory of pyrophosphoryl transfer catalyzed by 6-hydroxymethyl-7, 8-dihydropterin pyrophosphokinase
    • Blaszczyk J, Shi G, Li Y, Yan H, Ji X. 2004. Reaction trajectory of pyrophosphoryl transfer catalyzed by 6-hydroxymethyl-7, 8-dihydropterin pyrophosphokinase. Structure 12:467-475. https://doi.org/10.1016/ j.str.2004.02.003.
    • (2004) Structure , vol.12 , pp. 467-475
    • Blaszczyk, J.1    Shi, G.2    Li, Y.3    Yan, H.4    Ji, X.5
  • 171
    • 84889667074 scopus 로고    scopus 로고
    • Thiamin diphosphate-dependent enzymes: From enzymology to metabolic regulation, drug design and disease models
    • Bunik VI, Tylicki A, Lukashev NV. 2013. Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models. FEBS J 280:6412-6442. https://doi.org/10.1111/febs .12512.
    • (2013) FEBS J , vol.280 , pp. 6412-6442
    • Bunik, V.I.1    Tylicki, A.2    Lukashev, N.V.3
  • 172
    • 33646594715 scopus 로고    scopus 로고
    • Pyrithiamine as a substrate for thiamine pyrophosphokinase
    • Liu JY, Timm DE, Hurley TD. 2006. Pyrithiamine as a substrate for thiamine pyrophosphokinase. J Biol Chem 281:6601-6607. https:// doi.org/10.1074/jbc.M510951200.
    • (2006) J Biol Chem , vol.281 , pp. 6601-6607
    • Liu, J.Y.1    Timm, D.E.2    Hurley, T.D.3
  • 174
    • 0034989930 scopus 로고    scopus 로고
    • The crystal structure of yeast thiamin pyrophosphokinase
    • Baker LJ, Dorocke JA, Harris RA, Timm DE. 2001. The crystal structure of yeast thiamin pyrophosphokinase. Structure 9:539-546. https:// doi.org/10.1016/S0969-2126(01)00615-3.
    • (2001) Structure , vol.9 , pp. 539-546
    • Baker, L.J.1    Dorocke, J.A.2    Harris, R.A.3    Timm, D.E.4
  • 175
    • 1842766260 scopus 로고    scopus 로고
    • Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response
    • Hogg T, Mechold U, Malke H, Cashel M, Hilgenfeld R. 2004. Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response. Cell 117:57-68. https://doi.org/10.1016/S0092-8674(04)00260-0.
    • (2004) Cell , vol.117 , pp. 57-68
    • Hogg, T.1    Mechold, U.2    Malke, H.3    Cashel, M.4    Hilgenfeld, R.5
  • 176
    • 0030930760 scopus 로고    scopus 로고
    • Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: Evidence for an induced fit mechanism
    • Sawaya MR, Prasad R, Wilson SH, Kraut J, Pelletier H. 1997. Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry 36:11205-11215. https://doi.org/10.1021/bi9703812.
    • (1997) Biochemistry , vol.36 , pp. 11205-11215
    • Sawaya, M.R.1    Prasad, R.2    Wilson, S.H.3    Kraut, J.4    Pelletier, H.5
  • 177
    • 0036094741 scopus 로고    scopus 로고
    • Intramolecular regulation of the opposing (p)ppGpp catalytic activities of RelSeq, the Rel/ Spo enzyme from Streptococcus equisimilis
    • Mechold U, Murphy H, Brown L, Cashel M. 2002. Intramolecular regulation of the opposing (p)ppGpp catalytic activities of RelSeq, the Rel/ Spo enzyme from Streptococcus equisimilis. J Bacteriol 184:2878-2888. https://doi.org/10.1128/JB.184.11.2878-2888.2002.
    • (2002) J Bacteriol , vol.184 , pp. 2878-2888
    • Mechold, U.1    Murphy, H.2    Brown, L.3    Cashel, M.4
  • 178
    • 36849001752 scopus 로고    scopus 로고
    • A charge reversal differentiates (p)ppGpp synthesis by monofunctional and bifunctional Rel proteins
    • Sajish M, Tiwari D, Rananaware D, Nandicoori VK, Prakash B. 2007. A charge reversal differentiates (p)ppGpp synthesis by monofunctional and bifunctional Rel proteins. J Biol Chem 282:34977-34983. https:// doi.org/10.1074/jbc.M704828200.
    • (2007) J Biol Chem , vol.282 , pp. 34977-34983
    • Sajish, M.1    Tiwari, D.2    Rananaware, D.3    Nandicoori, V.K.4    Prakash, B.5
  • 180
    • 0026513966 scopus 로고
    • MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis
    • Maki H, Sekiguchi M. 1992. MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 355:273-275. https://doi.org/10.1038/355273a0.
    • (1992) Nature , vol.355 , pp. 273-275
    • Maki, H.1    Sekiguchi, M.2
  • 181
    • 0013882288 scopus 로고
    • The unusual mutagenic specificity of an E. Coli mutator gene
    • Yanofsky C, Cox EC, Horn V. 1966. The unusual mutagenic specificity of an E. coli mutator gene. Proc Natl Acad Sci U S A 55:274-281. https:// doi.org/10.1073/pnas.55.2.274.
    • (1966) Proc Natl Acad Sci U S A , vol.55 , pp. 274-281
    • Yanofsky, C.1    Cox, E.C.2    Horn, V.3
  • 182
    • 0023931846 scopus 로고
    • Studies on the mutator gene, mutT of Escherichia coli. Molecular cloning of the gene, purification of the gene product, and identification of a novel nucleoside triphosphatase
    • Bhatnagar SK, Bessman MJ. 1988. Studies on the mutator gene, mutT of Escherichia coli. Molecular cloning of the gene, purification of the gene product, and identification of a novel nucleoside triphosphatase. J Biol Chem 263:8953-8957.
    • (1988) J Biol Chem , vol.263 , pp. 8953-8957
    • Bhatnagar, S.K.1    Bessman, M.J.2
  • 183
    • 0028047580 scopus 로고
    • Dual divalent cation requirement of the MutT dGTPase. Kinetic and magnetic resonance studies of the metal and substrate complexes
    • Frick DN, Weber DJ, Gillespie JR, Bessman MJ, Mildvan AS. 1994. Dual divalent cation requirement of the MutT dGTPase. Kinetic and magnetic resonance studies of the metal and substrate complexes. J Biol Chem 269:1794-1803.
    • (1994) J Biol Chem , vol.269 , pp. 1794-1803
    • Frick, D.N.1    Weber, D.J.2    Gillespie, J.R.3    Bessman, M.J.4    Mildvan, A.S.5
  • 184
    • 0027184481 scopus 로고
    • A general two-metal-ion mechanism for catalytic RNA
    • Steitz TA, Steitz JA. 1993. A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci U S A 90:6498-6502. https://doi.org/ 10.1073/pnas.90.14.6498.
    • (1993) Proc Natl Acad Sci U S A , vol.90 , pp. 6498-6502
    • Steitz, T.A.1    Steitz, J.A.2
  • 185
    • 72549092945 scopus 로고    scopus 로고
    • Structural insight into translesion synthesis by DNA Pol II
    • Wang F, Yang W. 2009. Structural insight into translesion synthesis by DNA Pol II. Cell 139:1279-1289. https://doi.org/10.1016/j.cell .2009.11.043.
    • (2009) Cell , vol.139 , pp. 1279-1289
    • Wang, F.1    Yang, W.2
  • 186
    • 84899802668 scopus 로고    scopus 로고
    • Structure and mechanism of DNA polymerase beta
    • Beard WA, Wilson SH. 2014. Structure and mechanism of DNA polymerase beta. Biochemistry 53:2768-2780. https://doi.org/10.1021/ bi500139h.
    • (2014) Biochemistry , vol.53 , pp. 2768-2780
    • Beard, W.A.1    Wilson, S.H.2
  • 187
    • 79959431646 scopus 로고    scopus 로고
    • DNA replicases from a bacterial perspective
    • McHenry CS. 2011. DNA replicases from a bacterial perspective. Annu Rev Biochem 80:403-436. https://doi.org/10.1146/annurev-biochem -061208-091655.
    • (2011) Annu Rev Biochem , vol.80 , pp. 403-436
    • McHenry, C.S.1
  • 188
    • 20444414890 scopus 로고    scopus 로고
    • RNA polymerase structure and function at lac operon
    • Borukhov S, Lee J. 2005. RNA polymerase structure and function at lac operon. C R Biol 328:576-587. https://doi.org/10.1016/j.crvi.2005 .03.007.
    • (2005) C R Biol , vol.328 , pp. 576-587
    • Borukhov, S.1    Lee, J.2
  • 189
    • 33645962475 scopus 로고    scopus 로고
    • Making and breaking nucleic acids: Two-Mg2-ion catalysis and substrate specificity
    • Yang W, Lee JY, Nowotny M. 2006. Making and breaking nucleic acids: two-Mg2-ion catalysis and substrate specificity. Mol Cell 22:5-13. https://doi.org/10.1016/j.molcel.2006.03.013.
    • (2006) Mol Cell , vol.22 , pp. 5-13
    • Yang, W.1    Lee, J.Y.2    Nowotny, M.3
  • 190
    • 0030051742 scopus 로고    scopus 로고
    • Acetyltransfer precedes uridylyltransfer in the formation of UDP-Nacetylglucosamine in separable active sites of the bifunctional GlmU protein of Escherichia coli
    • Gehring AM, Lees WJ, Mindiola DJ, Walsh CT, Brown ED. 1996. Acetyltransfer precedes uridylyltransfer in the formation of UDP-Nacetylglucosamine in separable active sites of the bifunctional GlmU protein of Escherichia coli. Biochemistry 35:579-585. https://doi.org/ 10.1021/bi952275a.
    • (1996) Biochemistry , vol.35 , pp. 579-585
    • Gehring, A.M.1    Lees, W.J.2    Mindiola, D.J.3    Walsh, C.T.4    Brown, E.D.5
  • 191
    • 0035834665 scopus 로고    scopus 로고
    • Reflections on glycobiology
    • Roseman S. 2001. Reflections on glycobiology. J Biol Chem 276: 41527-41542. https://doi.org/10.1074/jbc.R100053200.
    • (2001) J Biol Chem , vol.276 , pp. 41527-41542
    • Roseman, S.1
  • 192
    • 84877576098 scopus 로고    scopus 로고
    • Crystal structures identify an atypical two-metal-ion mechanism for uridyltransfer in GlmU: Its significance to sugar nucleotidyl transferases
    • Jagtap PK, Verma SK, Vithani N, Bais VS, Prakash B. 2013. Crystal structures identify an atypical two-metal-ion mechanism for uridyltransfer in GlmU: its significance to sugar nucleotidyl transferases. J Mol Biol 425:1745-1759. https://doi.org/10.1016/j.jmb.2013.02.019.
    • (2013) J Mol Biol , vol.425 , pp. 1745-1759
    • Jagtap, P.K.1    Verma, S.K.2    Vithani, N.3    Bais, V.S.4    Prakash, B.5
  • 193
  • 194
    • 34250856427 scopus 로고    scopus 로고
    • Active site geometry of glucose-1- phosphate uridylyltransferase
    • Thoden JB, Holden HM. 2007. Active site geometry of glucose-1- phosphate uridylyltransferase. Protein Sci 16:1379-1388. https:// doi.org/10.1110/ps.072864707.
    • (2007) Protein Sci , vol.16 , pp. 1379-1388
    • Thoden, J.B.1    Holden, H.M.2
  • 196
    • 34447126347 scopus 로고    scopus 로고
    • Crystal structure of uridinediphospho- N-acetylglucosamine pyrophosphorylase from Candida albicans and catalytic reaction mechanism
    • Maruyama D, Nishitani Y, Nonaka T, Kita A, Fukami TA, Mio T, Yamada- Okabe H, Yamada-Okabe T, Miki K. 2007. Crystal structure of uridinediphospho- N-acetylglucosamine pyrophosphorylase from Candida albicans and catalytic reaction mechanism. J Biol Chem 282: 17221-17230. https://doi.org/10.1074/jbc.M611873200.
    • (2007) J Biol Chem , vol.282 , pp. 17221-17230
    • Maruyama, D.1    Nishitani, Y.2    Nonaka, T.3    Kita, A.4    Fukami, T.A.5    Mio, T.6    Yamada-Okabe, H.7    Yamada-Okabe, T.8    Miki, K.9
  • 197
    • 23944435947 scopus 로고    scopus 로고
    • The crystal structure of Pyrococcus furiosus UMP kinase provides insight into catalysis and regulation in microbial pyrimidine nucleotide biosynthesis
    • Marco-Marin C, Gil-Ortiz F, Rubio V. 2005. The crystal structure of Pyrococcus furiosus UMP kinase provides insight into catalysis and regulation in microbial pyrimidine nucleotide biosynthesis. J Mol Biol 352:438-454. https://doi.org/10.1016/j.jmb.2005.07.045.
    • (2005) J Mol Biol , vol.352 , pp. 438-454
    • Marco-Marin, C.1    Gil-Ortiz, F.2    Rubio, V.3
  • 198
    • 34547123127 scopus 로고    scopus 로고
    • Structures of Staphylococcus aureus D-tagatose-6-phosphate kinase implicate domain motions in specificity and mechanism
    • Miallau L, Hunter WN, McSweeney SM, Leonard GA. 2007. Structures of Staphylococcus aureus D-tagatose-6-phosphate kinase implicate domain motions in specificity and mechanism. J Biol Chem 282: 19948-19957. https://doi.org/10.1074/jbc.M701480200.
    • (2007) J Biol Chem , vol.282 , pp. 19948-19957
    • Miallau, L.1    Hunter, W.N.2    McSweeney, S.M.3    Leonard, G.A.4
  • 199
    • 84922470089 scopus 로고    scopus 로고
    • Open-close structural change upon ligand binding and two magnesium ions required for the catalysis of N-acetylhexosamine 1-kinase
    • Sato M, Arakawa T, Nam YW, Nishimoto M, Kitaoka M, Fushinobu S. 2015. Open-close structural change upon ligand binding and two magnesium ions required for the catalysis of N-acetylhexosamine 1-kinase. Biochim Biophys Acta 1854:333-340. https://doi.org/10.1016/ j.bbapap.2015.01.011.
    • (2015) Biochim Biophys Acta , vol.1854 , pp. 333-340
    • Sato, M.1    Arakawa, T.2    Nam, Y.W.3    Nishimoto, M.4    Kitaoka, M.5    Fushinobu, S.6
  • 200
    • 79955844083 scopus 로고    scopus 로고
    • Briefly bound to activate: Transient binding of a second catalytic magnesium activates the structure and dynamics of CDK2 kinase for catalysis
    • Bao ZQ, Jacobsen DM, Young MA. 2011. Briefly bound to activate: transient binding of a second catalytic magnesium activates the structure and dynamics of CDK2 kinase for catalysis. Structure 19:675-690. https://doi.org/10.1016/j.str.2011.02.016.
    • (2011) Structure , vol.19 , pp. 675-690
    • Bao, Z.Q.1    Jacobsen, D.M.2    Young, M.A.3
  • 201
    • 84875759348 scopus 로고    scopus 로고
    • Phosphoryl transfer by protein kinase A is captured in a crystal lattice
    • Bastidas AC, Deal MS, Steichen JM, Guo Y, Wu J, Taylor SS. 2013. Phosphoryl transfer by protein kinase A is captured in a crystal lattice. J Am Chem Soc 135:4788-4798. https://doi.org/10.1021/ja312237q.
    • (2013) J Am Chem Soc , vol.135 , pp. 4788-4798
    • Bastidas, A.C.1    Deal, M.S.2    Steichen, J.M.3    Guo, Y.4    Wu, J.5    Taylor, S.S.6
  • 202
    • 0036215864 scopus 로고    scopus 로고
    • Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase
    • Madhusudan Akamine P, Xuong NH, Taylor SS. 2002. Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase. Nat Struct Biol 9:273-277. https://doi.org/10.1038/ nsb780.
    • (2002) Nat Struct Biol , vol.9 , pp. 273-277
    • Madhusudan Akamine, P.1    Xuong, N.H.2    Taylor, S.S.3
  • 204
    • 0028338283 scopus 로고
    • The closed conformation of a highly flexible protein: The structure of E. Coli adenylate kinase with bound AMP and AMPPNP
    • Berry MB, Meador B, Bilderback T, Liang P, Glaser M, Phillips GN, Jr. 1994. The closed conformation of a highly flexible protein: the structure of E. coli adenylate kinase with bound AMP and AMPPNP. Proteins 19:183-198. https://doi.org/10.1002/prot.340190304.
    • (1994) Proteins , vol.19 , pp. 183-198
    • Berry, M.B.1    Meador, B.2    Bilderback, T.3    Liang, P.4    Glaser, M.5    Phillips, G.N.6
  • 205
    • 0026544877 scopus 로고
    • Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 Å resolution. A model for a catalytic transition state
    • Müller CW, Schulz GE. 1992. Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 Å resolution. A model for a catalytic transition state. J Mol Biol 224: 159-177.
    • (1992) J Mol Biol , vol.224 , pp. 159-177
    • Müller, C.W.1    Schulz, G.E.2
  • 206
    • 0032529583 scopus 로고    scopus 로고
    • Crystal structures of Bacillus stearothermophilus adenylate kinase with bound Ap5A, Mg2- Ap5A, and Mn2- Ap5A reveal an intermediate lid position and six coordinate octahedral geometry for bound Mg2- and Mn2
    • Berry MB, Phillips GN, Jr. 1998. Crystal structures of Bacillus stearothermophilus adenylate kinase with bound Ap5A, Mg2- Ap5A, and Mn2- Ap5A reveal an intermediate lid position and six coordinate octahedral geometry for bound Mg2- and Mn2-. Proteins 32:276-288. https:// doi.org/10.1002/(SICI)1097-0134(19980815)32:3276::AID -PROT3-3.0.CO;2-G.
    • (1998) Proteins , vol.32 , pp. 276-288
    • Berry, M.B.1    Phillips, G.N.2
  • 207
    • 10844273276 scopus 로고    scopus 로고
    • Associative mechanism for phosphoryl transfer: A molecular dynamics simulation of Escherichia coli adenylate kinase complexed with its substrates
    • Krishnamurthy H, Lou H, Kimple A, Vieille C, Cukier RI. 2005. Associative mechanism for phosphoryl transfer: a molecular dynamics simulation of Escherichia coli adenylate kinase complexed with its substrates. Proteins 58:88-100. https://doi.org/10.1002/prot.20301.
    • (2005) Proteins , vol.58 , pp. 88-100
    • Krishnamurthy, H.1    Lou, H.2    Kimple, A.3    Vieille, C.4    Cukier, R.I.5
  • 208
    • 33744501841 scopus 로고    scopus 로고
    • The crystal structure of Mycobacterium tuberculosis adenylate kinase in complex with two molecules of ADP and Mg2- supports an associative mechanism for phosphoryl transfer
    • Bellinzoni M, Haouz A, Grana M, Munier-Lehmann H, Shepard W, Alzari PM. 2006. The crystal structure of Mycobacterium tuberculosis adenylate kinase in complex with two molecules of ADP and Mg2- supports an associative mechanism for phosphoryl transfer. Protein Sci 15: 1489-1493. https://doi.org/10.1110/ps.062163406.
    • (2006) Protein Sci , vol.15 , pp. 1489-1493
    • Bellinzoni, M.1    Haouz, A.2    Grana, M.3    Munier-Lehmann, H.4    Shepard, W.5    Alzari, P.M.6
  • 209
    • 10844263403 scopus 로고    scopus 로고
    • Phosphoribosyltransferase mechanisms and roles in nucleic acid metabolism
    • Schramm VL, Grubmeyer C. 2004. Phosphoribosyltransferase mechanisms and roles in nucleic acid metabolism. Prog Nucleic Acid Res Mol Biol 78:261-304. https://doi.org/10.1016/S0079-6603(04)78007-1.
    • (2004) Prog Nucleic Acid Res Mol Biol , vol.78 , pp. 261-304
    • Schramm, V.L.1    Grubmeyer, C.2
  • 210
    • 0035690384 scopus 로고    scopus 로고
    • The PRT protein family
    • Sinha SC, Smith JL. 2001. The PRT protein family. Curr Opin Struct Biol 11:733-739. https://doi.org/10.1016/S0959-440X(01)00274-3.
    • (2001) Curr Opin Struct Biol , vol.11 , pp. 733-739
    • Sinha, S.C.1    Smith, J.L.2
  • 211
    • 0031568330 scopus 로고    scopus 로고
    • A new function for a common fold: The crystal structure of quinolinic acid phosphoribosyltransferase
    • Eads JC, Ozturk D, Wexler TB, Grubmeyer C, Sacchettini JC. 1997. A new function for a common fold: the crystal structure of quinolinic acid phosphoribosyltransferase. Structure 5:47-58. https://doi.org/10.1016/ S0969-2126(97)00165-2.
    • (1997) Structure , vol.5 , pp. 47-58
    • Eads, J.C.1    Ozturk, D.2    Wexler, T.B.3    Grubmeyer, C.4    Sacchettini, J.C.5
  • 212
    • 0034483903 scopus 로고    scopus 로고
    • Substrate deformation in a hypoxanthine-guanine phosphoribosyltransferase ternary complex: The structural basis for catalysis
    • Heroux A, White EL, Ross LJ, Kuzin AP, Borhani DW. 2000. Substrate deformation in a hypoxanthine-guanine phosphoribosyltransferase ternary complex: the structural basis for catalysis. Structure 8:1309-1318. https://doi.org/10.1016/S0969-2126(00)00546-3.
    • (2000) Structure , vol.8 , pp. 1309-1318
    • Heroux, A.1    White, E.L.2    Ross, L.J.3    Kuzin, A.P.4    Borhani, D.W.5
  • 213
    • 0034617303 scopus 로고    scopus 로고
    • Purine phosphoribosyltransferases
    • Craig SP, III, Eakin AE. 2000. Purine phosphoribosyltransferases. J Biol Chem 275:20231-20234. https://doi.org/10.1074/jbc.R000002200.
    • (2000) J Biol Chem , vol.275 , pp. 20231-20234
    • Craig, S.P.1    Eakin, A.E.2
  • 214
    • 0018786695 scopus 로고
    • Glutamine phosphoribosylpyrophosphate amidotransferase from Escherichia coli. Purification and properties
    • Messenger LJ, Zalkin H. 1979. Glutamine phosphoribosylpyrophosphate amidotransferase from Escherichia coli. Purification and properties. J Biol Chem 254:3382-3392.
    • (1979) J Biol Chem , vol.254 , pp. 3382-3392
    • Messenger, L.J.1    Zalkin, H.2
  • 215
    • 0342894815 scopus 로고    scopus 로고
    • Coupled formation of an amidotransferase interdomain ammonia channel and a phosphoribosyltransferase active site
    • Krahn JM, Kim JH, Burns MR, Parry RJ, Zalkin H, Smith JL. 1997. Coupled formation of an amidotransferase interdomain ammonia channel and a phosphoribosyltransferase active site. Biochemistry 36:11061-11068. https://doi.org/10.1021/bi9714114.
    • (1997) Biochemistry , vol.36 , pp. 11061-11068
    • Krahn, J.M.1    Kim, J.H.2    Burns, M.R.3    Parry, R.J.4    Zalkin, H.5    Smith, J.L.6
  • 216
    • 0032425445 scopus 로고    scopus 로고
    • Glutamine PRPP amidotransferase: Snapshots of an enzyme in action
    • Smith JL. 1998. Glutamine PRPP amidotransferase: snapshots of an enzyme in action. Curr Opin Struct Biol 8:686-694. https://doi.org/ 10.1016/S0959-440X(98)80087-0.
    • (1998) Curr Opin Struct Biol , vol.8 , pp. 686-694
    • Smith, J.L.1
  • 217
    • 84890569001 scopus 로고    scopus 로고
    • Specificities and pH profiles of adenine and hypoxanthine-guanine-xanthine phosphoribosyltransferases (nucleotide synthases) of the thermoacidophile archaeon Sulfolobus solfataricus
    • Hansen MR, Jensen KS, Rasmussen MS, Christoffersen S, Kadziola A, Jensen KF. 2014. Specificities and pH profiles of adenine and hypoxanthine-guanine-xanthine phosphoribosyltransferases (nucleotide synthases) of the thermoacidophile archaeon Sulfolobus solfataricus. Extremophiles 18:179-187. https://doi.org/10.1007/s00792-013-0595-8.
    • (2014) Extremophiles , vol.18 , pp. 179-187
    • Hansen, M.R.1    Jensen, K.S.2    Rasmussen, M.S.3    Christoffersen, S.4    Kadziola, A.5    Jensen, K.F.6
  • 218
    • 0037131284 scopus 로고    scopus 로고
    • Closed site complexes of adenine phosphoribosyltransferase from Giardia lamblia reveal a mechanism of ribosyl migration
    • Shi W, Sarver AE, Wang CC, Tanaka KS, Almo SC, Schramm VL. 2002. Closed site complexes of adenine phosphoribosyltransferase from Giardia lamblia reveal a mechanism of ribosyl migration. J Biol Chem 277:39981-39988. https://doi.org/10.1074/jbc.M205596200.
    • (2002) J Biol Chem , vol.277 , pp. 39981-39988
    • Shi, W.1    Sarver, A.E.2    Wang, C.C.3    Tanaka, K.S.4    Almo, S.C.5    Schramm, V.L.6
  • 219
    • 0035845646 scopus 로고    scopus 로고
    • Structural analysis of adenine phosphoribosyltransferase from Saccharomyces cerevisiae
    • Shi W, Tanaka KS, Crother TR, Taylor MW, Almo SC, Schramm VL. 2001. Structural analysis of adenine phosphoribosyltransferase from Saccharomyces cerevisiae. Biochemistry 40:10800-10809. https://doi.org/ 10.1021/bi010465h.
    • (2001) Biochemistry , vol.40 , pp. 10800-10809
    • Shi, W.1    Tanaka, K.S.2    Crother, T.R.3    Taylor, M.W.4    Almo, S.C.5    Schramm, V.L.6
  • 220
    • 43749109227 scopus 로고    scopus 로고
    • Structural complexes of human adenine phosphoribosyltransferase reveal novel features of the APRT catalytic mechanism
    • Silva CH, Silva M, Iulek J, Thiemann OH. 2008. Structural complexes of human adenine phosphoribosyltransferase reveal novel features of the APRT catalytic mechanism. J Biomol Struct Dyn 25:589-597. https:// doi.org/10.1080/07391102.2008.10507205.
    • (2008) J Biomol Struct Dyn , vol.25 , pp. 589-597
    • Silva, C.H.1    Silva, M.2    Iulek, J.3    Thiemann, O.H.4
  • 221
    • 0033168676 scopus 로고    scopus 로고
    • Crystal structures of adenine phosphoribosyltransferase from Leishmania donovani
    • Phillips CL, Ullman B, Brennan RG, Hill CP. 1999. Crystal structures of adenine phosphoribosyltransferase from Leishmania donovani. EMBO J 18:3533-3545. https://doi.org/10.1093/emboj/18.13.3533.
    • (1999) EMBO J , vol.18 , pp. 3533-3545
    • Phillips, C.L.1    Ullman, B.2    Brennan, R.G.3    Hill, C.P.4
  • 222
    • 84927727736 scopus 로고    scopus 로고
    • Adenine phosphoribosyltransferase from Sulfolobus solfataricus is an enzyme with unusual kinetic properties and a crystal structure that suggests it evolved from a 6-oxopurine phosphoribosyltransferase
    • Jensen KF, Hansen MR, Jensen KS, Christoffersen S, Poulsen JC, Molgaard A, Kadziola A. 2015. Adenine phosphoribosyltransferase from Sulfolobus solfataricus is an enzyme with unusual kinetic properties and a crystal structure that suggests it evolved from a 6-oxopurine phosphoribosyltransferase. Biochemistry 54:2323-2334. https://doi.org/ 10.1021/bi501334m.
    • (2015) Biochemistry , vol.54 , pp. 2323-2334
    • Jensen, K.F.1    Hansen, M.R.2    Jensen, K.S.3    Christoffersen, S.4    Poulsen, J.C.5    Molgaard, A.6    Kadziola, A.7
  • 223
    • 0029143903 scopus 로고
    • The crystal structure of the orotate phosphoribosyltransferase complexed with orotate and alpha-D-5-phosphoribosyl-1-pyrophosphate
    • Scapin G, Ozturk DH, Grubmeyer C, Sacchettini JC. 1995. The crystal structure of the orotate phosphoribosyltransferase complexed with orotate and alpha-D-5-phosphoribosyl-1-pyrophosphate. Biochemistry 34:10744-10754. https://doi.org/10.1021/bi00034a006.
    • (1995) Biochemistry , vol.34 , pp. 10744-10754
    • Scapin, G.1    Ozturk, D.H.2    Grubmeyer, C.3    Sacchettini, J.C.4
  • 224
    • 0029990345 scopus 로고    scopus 로고
    • A flexible loop at the dimer interface is a part of the active site of the adjacent monomer of Escherichia coli orotate phosphoribosyltransferase
    • Henriksen A, Aghajari N, Jensen KF, Gajhede M. 1996. A flexible loop at the dimer interface is a part of the active site of the adjacent monomer of Escherichia coli orotate phosphoribosyltransferase. Biochemistry 35: 3803-3809. https://doi.org/10.1021/bi952226y.
    • (1996) Biochemistry , vol.35 , pp. 3803-3809
    • Henriksen, A.1    Aghajari, N.2    Jensen, K.F.3    Gajhede, M.4
  • 226
    • 84929239118 scopus 로고    scopus 로고
    • Structure of Plasmodium falciparum orotate phosphoribosyltransferase with autologous inhibitory protein-protein interactions
    • Kumar S, Krishnamoorthy K, Mudeppa DG, Rathod PK. 2015. Structure of Plasmodium falciparum orotate phosphoribosyltransferase with autologous inhibitory protein-protein interactions. Acta Crystallogr Sect F Struct Biol Commun 71:600-608. https://doi.org/ 10.1107/S2053230X1500549X.
    • (2015) Acta Crystallogr Sect F Struct Biol Commun , vol.71 , pp. 600-608
    • Kumar, S.1    Krishnamoorthy, K.2    Mudeppa, D.G.3    Rathod, P.K.4
  • 227
    • 79957983975 scopus 로고    scopus 로고
    • The Leishmania donovani UMP synthase is essential for promastigote viability and has an unusual tetrameric structure that exhibits substrate-controlled oligomerization
    • French JB, Yates PA, Soysa DR, Boitz JM, Carter NS, Chang B, Ullman B, Ealick SE. 2011. The Leishmania donovani UMP synthase is essential for promastigote viability and has an unusual tetrameric structure that exhibits substrate-controlled oligomerization. J Biol Chem 286: 20930-20941. https://doi.org/10.1074/jbc.M111.228213.
    • (2011) J Biol Chem , vol.286 , pp. 20930-20941
    • French, J.B.1    Yates, P.A.2    Soysa, D.R.3    Boitz, J.M.4    Carter, N.S.5    Chang, B.6    Ullman, B.7    Ealick, S.E.8
  • 228
    • 84871694567 scopus 로고    scopus 로고
    • Structure of Salmonella typhimurium OMP synthase in a complete substrate complex
    • Grubmeyer C, Hansen MR, Fedorov AA, Almo SC. 2012. Structure of Salmonella typhimurium OMP synthase in a complete substrate complex. Biochemistry 51:4397-4405. https://doi.org/10.1021/bi300083p.
    • (2012) Biochemistry , vol.51 , pp. 4397-4405
    • Grubmeyer, C.1    Hansen, M.R.2    Fedorov, A.A.3    Almo, S.C.4
  • 229
    • 0029150167 scopus 로고
    • Locations and functional roles of conserved lysine residues in Salmonella typhimurium orotate phosphoribosyltransferase
    • Ozturk DH, Dorfman RH, Scapin G, Sacchettini JC, Grubmeyer C. 1995. Locations and functional roles of conserved lysine residues in Salmonella typhimurium orotate phosphoribosyltransferase. Biochemistry 34: 10755-10763. https://doi.org/10.1021/bi00034a007.
    • (1995) Biochemistry , vol.34 , pp. 10755-10763
    • Ozturk, D.H.1    Dorfman, R.H.2    Scapin, G.3    Sacchettini, J.C.4    Grubmeyer, C.5
  • 230
    • 37049009139 scopus 로고    scopus 로고
    • Ternary complex formation and induced asymmetry in orotate phosphoribosyltransferase
    • Gonzalez-Segura L, Witte JF, McClard RW, Hurley TD. 2007. Ternary complex formation and induced asymmetry in orotate phosphoribosyltransferase. Biochemistry 46:14075-14086. https://doi.org/10.1021/ bi701023z.
    • (2007) Biochemistry , vol.46 , pp. 14075-14086
    • Gonzalez-Segura, L.1    Witte, J.F.2    McClard, R.W.3    Hurley, T.D.4
  • 231
    • 33645963745 scopus 로고    scopus 로고
    • Half-of-sites binding of orotidine 5=-phosphate and alpha-D-5-phosphorylribose 1-diphosphate to orotate phosphoribosyltransferase from Saccharomyces cerevisiae supports a novel variant of the Theorell-Chance mechanism with alternating site catalysis
    • McClard RW, Holets EA, MacKinnon AL, Witte JF. 2006. Half-of-sites binding of orotidine 5=-phosphate and alpha-D-5-phosphorylribose 1-diphosphate to orotate phosphoribosyltransferase from Saccharomyces cerevisiae supports a novel variant of the Theorell-Chance mechanism with alternating site catalysis. Biochemistry 45:5330-5342. https://doi.org/10.1021/bi051650o.
    • (2006) Biochemistry , vol.45 , pp. 5330-5342
    • McClard, R.W.1    Holets, E.A.2    MacKinnon, A.L.3    Witte, J.F.4
  • 232
    • 0029768750 scopus 로고    scopus 로고
    • Different oligomeric states are involved in the allosteric behavior of uracil phosphoribosyltransferase from Escherichia coli
    • Jensen KF, Mygind B. 1996. Different oligomeric states are involved in the allosteric behavior of uracil phosphoribosyltransferase from Escherichia coli. Eur J Biochem 240:637-645. https://doi.org/10.1111/j.1432-1033.1996.0637h.x.
    • (1996) Eur J Biochem , vol.240 , pp. 637-645
    • Jensen, K.F.1    Mygind, B.2
  • 233
    • 0037039462 scopus 로고    scopus 로고
    • The structural mechanism of GTP stabilized oligomerization and catalytic activation of the Toxoplasma gondii uracil phosphoribosyltransferase
    • Schumacher MA, Bashor CJ, Song MH, Otsu K, Zhu S, Parry RJ, Ullman B, Brennan RG. 2002. The structural mechanism of GTP stabilized oligomerization and catalytic activation of the Toxoplasma gondii uracil phosphoribosyltransferase. Proc Natl Acad Sci U S A 99:78-83. https:// doi.org/10.1073/pnas.012399599.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 78-83
    • Schumacher, M.A.1    Bashor, C.J.2    Song, M.H.3    Otsu, K.4    Zhu, S.5    Parry, R.J.6    Ullman, B.7    Brennan, R.G.8
  • 234
    • 0030586769 scopus 로고    scopus 로고
    • Uracil phosphoribosyltransferase from the extreme thermoacidophilic archaebacterium Sulfolobus shibatae is an allosteric enzyme, activated by GTP and inhibited by CTP
    • Linde L, Jensen KF. 1996. Uracil phosphoribosyltransferase from the extreme thermoacidophilic archaebacterium Sulfolobus shibatae is an allosteric enzyme, activated by GTP and inhibited by CTP. Biochim Biophys Acta 1296:16-22. https://doi.org/10.1016/0167-4838(96)00045-3.
    • (1996) Biochim Biophys Acta , vol.1296 , pp. 16-22
    • Linde, L.1    Jensen, K.F.2
  • 235
    • 15944364698 scopus 로고    scopus 로고
    • Allosteric properties of the GTP activated and CTP inhibited uracil phosphoribosyltransferase from the thermoacidophilic archaeon Sulfolobus solfataricus
    • Jensen KF, Arent S, Larsen S, Schack L. 2005. Allosteric properties of the GTP activated and CTP inhibited uracil phosphoribosyltransferase from the thermoacidophilic archaeon Sulfolobus solfataricus. FEBS J 272: 1440-1453. https://doi.org/10.1111/j.1742-4658.2005.04576.x.
    • (2005) FEBS J , vol.272 , pp. 1440-1453
    • Jensen, K.F.1    Arent, S.2    Larsen, S.3    Schack, L.4
  • 236
    • 70349417705 scopus 로고    scopus 로고
    • Structural and kinetic studies of the allosteric transition in Sulfolobus solfataricus uracil phosphoribosyltransferase: Permanent activation by engineering of the C-terminus
    • Christoffersen S, Kadziola A, Johansson E, Rasmussen M, Willemoes M, Jensen KF. 2009. Structural and kinetic studies of the allosteric transition in Sulfolobus solfataricus uracil phosphoribosyltransferase: permanent activation by engineering of the C-terminus. J Mol Biol 393: 464-477. https://doi.org/10.1016/j.jmb.2009.08.019.
    • (2009) J Mol Biol , vol.393 , pp. 464-477
    • Christoffersen, S.1    Kadziola, A.2    Johansson, E.3    Rasmussen, M.4    Willemoes, M.5    Jensen, K.F.6
  • 237
    • 12344255727 scopus 로고    scopus 로고
    • Allosteric regulation and communication between subunits in uracil phosphoribosyltransferase from Sulfolobus solfataricus
    • Arent S, Harris P, Jensen KF, Larsen S. 2005. Allosteric regulation and communication between subunits in uracil phosphoribosyltransferase from Sulfolobus solfataricus. Biochemistry 44:883-892. https://doi.org/ 10.1021/bi048041l.
    • (2005) Biochemistry , vol.44 , pp. 883-892
    • Arent, S.1    Harris, P.2    Jensen, K.F.3    Larsen, S.4
  • 239
    • 84944737093 scopus 로고    scopus 로고
    • Structural basis of mapping the spontaneous mutations with 5-flurouracil in uracil phosphoribosyltransferase from Mycobacterium tuberculosis
    • Ghode P, Jobichen C, Ramachandran S, Bifani P, Sivaraman J. 2015. Structural basis of mapping the spontaneous mutations with 5-flurouracil in uracil phosphoribosyltransferase from Mycobacterium tuberculosis. Biochem Biophys Res Commun 467:577-582. https:// doi.org/10.1016/j.bbrc.2015.09.133.
    • (2015) Biochem Biophys Res Commun , vol.467 , pp. 577-582
    • Ghode, P.1    Jobichen, C.2    Ramachandran, S.3    Bifani, P.4    Sivaraman, J.5
  • 240
    • 0028925513 scopus 로고
    • Properties of uracil phosphoribosyltransferase from Giardia intestinalis
    • Dai YP, Lee CS, O'Sullivan WJ. 1995. Properties of uracil phosphoribosyltransferase from Giardia intestinalis. Int J Parasitol 25:207-214. https://doi.org/10.1016/0020-7519(94)00090-B.
    • (1995) Int J Parasitol , vol.25 , pp. 207-214
    • Dai, Y.P.1    Lee, C.S.2    O'Sullivan, W.J.3
  • 241
    • 0026529062 scopus 로고
    • Characterization of the upp gene encoding uracil phosphoribosyltransferase of Escherichia coli K12
    • Andersen PS, Smith JM, Mygind B. 1992. Characterization of the upp gene encoding uracil phosphoribosyltransferase of Escherichia coli K12. Eur J Biochem 204:51-56. https://doi.org/10.1111/j.1432-1033.1992 .tb16604.x.
    • (1992) Eur J Biochem , vol.204 , pp. 51-56
    • Andersen, P.S.1    Smith, J.M.2    Mygind, B.3
  • 242
    • 0025329022 scopus 로고
    • The FUR1 gene of Saccharomyces cerevisiae: Cloning, structure and expression of wildtype and mutant alleles
    • Kern L, de Montigny J, Jund R, Lacroute F. 1990. The FUR1 gene of Saccharomyces cerevisiae: cloning, structure and expression of wildtype and mutant alleles. Gene 88:149-157. https://doi.org/10.1016/ 0378-1119(90)90026-N.
    • (1990) Gene , vol.88 , pp. 149-157
    • Kern, L.1    De Montigny, J.2    Jund, R.3    Lacroute, F.4
  • 243
    • 0036615470 scopus 로고    scopus 로고
    • Structure of product-bound Bacillus caldolyticus uracil phosphoribosyltransferase confirms ordered sequential substrate binding
    • Kadziola A, Neuhard J, Larsen S. 2002. Structure of product-bound Bacillus caldolyticus uracil phosphoribosyltransferase confirms ordered sequential substrate binding. Acta Crystallogr D Biol Crystallogr 58: 936-945. https://doi.org/10.1107/S0907444902005024.
    • (2002) Acta Crystallogr D Biol Crystallogr , vol.58 , pp. 936-945
    • Kadziola, A.1    Neuhard, J.2    Larsen, S.3
  • 244
    • 0031214160 scopus 로고    scopus 로고
    • Recombinant uracil phosphoribosyltransferase from the thermophile Bacillus caldolyticus: Expression, purification, and partial characterization
    • Jensen HK, Mikkelsen N, Neuhard J. 1997. Recombinant uracil phosphoribosyltransferase from the thermophile Bacillus caldolyticus: expression, purification, and partial characterization. Protein Expr Purif 10:356-364. https://doi.org/10.1006/prep.1997.0755.
    • (1997) Protein Expr Purif , vol.10 , pp. 356-364
    • Jensen, H.K.1    Mikkelsen, N.2    Neuhard, J.3
  • 245
    • 0028152814 scopus 로고
    • Cloning and characterization of upp, a gene encoding uracil phosphoribosyltransferase from Lactococcus lactis
    • Martinussen J, Hammer K. 1994. Cloning and characterization of upp, a gene encoding uracil phosphoribosyltransferase from Lactococcus lactis. J Bacteriol 176:6457-6463.
    • (1994) J Bacteriol , vol.176 , pp. 6457-6463
    • Martinussen, J.1    Hammer, K.2
  • 246
    • 0033574207 scopus 로고    scopus 로고
    • Kinetic mechanism of uracil phosphoribosyltransferase from Escherichia coli and catalytic importance of the conserved proline in the PRPP binding site
    • Lundegaard C, Jensen KF. 1999. Kinetic mechanism of uracil phosphoribosyltransferase from Escherichia coli and catalytic importance of the conserved proline in the PRPP binding site. Biochemistry 38:3327-3334. https://doi.org/10.1021/bi982279q.
    • (1999) Biochemistry , vol.38 , pp. 3327-3334
    • Lundegaard, C.1    Jensen, K.F.2
  • 247
    • 0028244407 scopus 로고
    • The pyrimidine biosynthesis operon of the thermophile Bacillus caldolyticus includes genes for uracil phosphoribosyltransferase and uracil permease
    • Ghim SY, Neuhard J. 1994. The pyrimidine biosynthesis operon of the thermophile Bacillus caldolyticus includes genes for uracil phosphoribosyltransferase and uracil permease. J Bacteriol 176:3698-3707.
    • (1994) J Bacteriol , vol.176 , pp. 3698-3707
    • Ghim, S.Y.1    Neuhard, J.2
  • 248
    • 0028796567 scopus 로고
    • Two genes encoding uracil phosphoribosyltransferase are present in Bacillus subtilis
    • Martinussen J, Glaser P, Andersen PS, Saxild HH. 1995. Two genes encoding uracil phosphoribosyltransferase are present in Bacillus subtilis. J Bacteriol 177:271-274.
    • (1995) J Bacteriol , vol.177 , pp. 271-274
    • Martinussen, J.1    Glaser, P.2    Andersen, P.S.3    Saxild, H.H.4
  • 249
    • 85011618017 scopus 로고
    • 3-Ribosylpurines. I. Synthesis of (3- ribosyluric acid) 5=phosphate and (3-ribosylxanthine) 5=phosphate by a pyrimidine ribonucleotide pyrophosphorylase
    • Hatfield D, Wyngarden JB. 1964. 3-Ribosylpurines. I. Synthesis of (3- ribosyluric acid) 5=phosphate and (3-ribosylxanthine) 5=phosphate by a pyrimidine ribonucleotide pyrophosphorylase. J Biol Chem 239: 2680-2586.
    • (1964) J Biol Chem , vol.239 , pp. 2586-2680
    • Hatfield, D.1    Wyngarden, J.B.2
  • 250
    • 84959136111 scopus 로고    scopus 로고
    • Biogenesis and homeostasis of nicotinamide adenine dinucleotide cofactor
    • Osterman A. 2009. Biogenesis and homeostasis of nicotinamide adenine dinucleotide cofactor. EcoSal Plus https://doi.org/10.1128/ ecosalplus36310.
    • (2009) EcoSal Plus
    • Osterman, A.1
  • 251
    • 0030039403 scopus 로고    scopus 로고
    • The sequencing expression, purification, and steady-state kinetic analysis of quinolinate phosphoribosyl transferase from Escherichia coli
    • Bhatia R, Calvo KC. 1996. The sequencing expression, purification, and steady-state kinetic analysis of quinolinate phosphoribosyl transferase from Escherichia coli. Arch Biochem Biophys 325:270-278. https:// doi.org/10.1006/abbi.1996.0034.
    • (1996) Arch Biochem Biophys , vol.325 , pp. 270-278
    • Bhatia, R.1    Calvo, K.C.2
  • 252
    • 0027533303 scopus 로고
    • The Salmonella typhimurium nadC gene: Sequence determination by use of Mud-P22 and purification of quinolinate phosphoribosyltransferase
    • Hughes KT, Dessen A, Gray JP, Grubmeyer C. 1993. The Salmonella typhimurium nadC gene: sequence determination by use of Mud-P22 and purification of quinolinate phosphoribosyltransferase. J Bacteriol 175:479-486.
    • (1993) J Bacteriol , vol.175 , pp. 479-486
    • Hughes, K.T.1    Dessen, A.2    Gray, J.P.3    Grubmeyer, C.4
  • 253
    • 0027377059 scopus 로고
    • A new paradigm for biochemical energy coupling. Salmonella typhimurium nicotinate phosphoribosyltransferase
    • Vinitsky A, Grubmeyer C. 1993. A new paradigm for biochemical energy coupling. Salmonella typhimurium nicotinate phosphoribosyltransferase. J Biol Chem 268:26004-26010.
    • (1993) J Biol Chem , vol.268 , pp. 26004-26010
    • Vinitsky, A.1    Grubmeyer, C.2
  • 254
    • 0029975136 scopus 로고    scopus 로고
    • Energy coupling in Salmonella typhimurium nicotinic acid phosphoribosyltransferase: Identification of His-219 as site of phosphorylation
    • Gross J, Rajavel M, Segura E, Grubmeyer C. 1996. Energy coupling in Salmonella typhimurium nicotinic acid phosphoribosyltransferase: identification of His-219 as site of phosphorylation. Biochemistry 35: 3917-3924. https://doi.org/10.1021/bi9517906.
    • (1996) Biochemistry , vol.35 , pp. 3917-3924
    • Gross, J.1    Rajavel, M.2    Segura, E.3    Grubmeyer, C.4
  • 255
    • 0039301347 scopus 로고    scopus 로고
    • Kinetic mechanism of nicotinic acid phosphoribosyltransferase: Implications for energy coupling
    • Gross JW, Rajavel M, Grubmeyer C. 1998. Kinetic mechanism of nicotinic acid phosphoribosyltransferase: implications for energy coupling. Biochemistry 37:4189-4199. https://doi.org/10.1021/bi972014w.
    • (1998) Biochemistry , vol.37 , pp. 4189-4199
    • Gross, J.W.1    Rajavel, M.2    Grubmeyer, C.3
  • 256
    • 0000951067 scopus 로고    scopus 로고
    • Conversion of a cosubstrate to an inhibitor: Phosphorylation mutants of nicotinic acid phosphoribosyltransferase
    • Rajavel M, Lalo D, Gross JW, Grubmeyer C. 1998. Conversion of a cosubstrate to an inhibitor: phosphorylation mutants of nicotinic acid phosphoribosyltransferase. Biochemistry 37:4181-4188. https:// doi.org/10.1021/bi9720134.
    • (1998) Biochemistry , vol.37 , pp. 4181-4188
    • Rajavel, M.1    Lalo, D.2    Gross, J.W.3    Grubmeyer, C.4
  • 257
    • 0015522919 scopus 로고
    • Inhibition of nicotinamide phosphoribosyltransferase by pyridine nucleotides
    • Dietrich LS, Muniz O. 1972. Inhibition of nicotinamide phosphoribosyltransferase by pyridine nucleotides. Biochemistry 11:1691-1695. https://doi.org/10.1021/bi00759a025.
    • (1972) Biochemistry , vol.11 , pp. 1691-1695
    • Dietrich, L.S.1    Muniz, O.2
  • 258
    • 0038614824 scopus 로고
    • Enzymatic synthesis of nicotinamide mononucleotide
    • Preiss J, Handler P. 1957. Enzymatic synthesis of nicotinamide mononucleotide. J Biol Chem 225:759-770.
    • (1957) J Biol Chem , vol.225 , pp. 759-770
    • Preiss, J.1    Handler, P.2
  • 259
    • 0032534756 scopus 로고    scopus 로고
    • Crystal structure of quinolinic acid phosphoribosyltransferase from Mycobacterium tuberculosis: A potential TB drug target
    • Sharma V, Grubmeyer C, Sacchettini JC. 1998. Crystal structure of quinolinic acid phosphoribosyltransferase from Mycobacterium tuberculosis: a potential TB drug target. Structure 6:1587-1599. https:// doi.org/10.1016/S0969-2126(98)00156-7.
    • (1998) Structure , vol.6 , pp. 1587-1599
    • Sharma, V.1    Grubmeyer, C.2    Sacchettini, J.C.3
  • 260
    • 33645033773 scopus 로고    scopus 로고
    • Crystal structure of quinolinic acid phosphoribosyltransferase from Helicobacter pylori
    • Kim MK, Im YJ, Lee JH, Eom SH. 2006. Crystal structure of quinolinic acid phosphoribosyltransferase from Helicobacter pylori. Proteins 63: 252-255. https://doi.org/10.1002/prot.20834.
    • (2006) Proteins , vol.63 , pp. 252-255
    • Kim, M.K.1    Im, Y.J.2    Lee, J.H.3    Eom, S.H.4
  • 262
    • 41449101554 scopus 로고    scopus 로고
    • Comprehensive X-ray structural studies of the quinolinate phosphoribosyl transferase (BNA6) from Saccharomyces cerevisiae
    • di Luccio E, Wilson DK. 2008. Comprehensive X-ray structural studies of the quinolinate phosphoribosyl transferase (BNA6) from Saccharomyces cerevisiae. Biochemistry 47:4039-4050. https://doi.org/10.1021/ bi7020475.
    • (2008) Biochemistry , vol.47 , pp. 4039-4050
    • Di Luccio, E.1    Wilson, D.K.2
  • 263
    • 24044512630 scopus 로고    scopus 로고
    • Crystal structure of a nicotinate phosphoribosyltransferase from Thermoplasma acidophilum
    • Shin DH, Oganesyan N, Jancarik J, Yokota H, Kim R, Kim SH. 2005. Crystal structure of a nicotinate phosphoribosyltransferase from Thermoplasma acidophilum. J Biol Chem 280:18326-18335. https://doi.org/ 10.1074/jbc.M501622200.
    • (2005) J Biol Chem , vol.280 , pp. 18326-18335
    • Shin, D.H.1    Oganesyan, N.2    Jancarik, J.3    Yokota, H.4    Kim, R.5    Kim, S.H.6
  • 264
    • 0029971810 scopus 로고    scopus 로고
    • Limited proteolysis of Salmonella typhimurium nicotinic acid phosphoribosyltransferase reveals ATP-linked conformational change
    • Rajavel M, Gross J, Segura E, Moore WT, Grubmeyer C. 1996. Limited proteolysis of Salmonella typhimurium nicotinic acid phosphoribosyltransferase reveals ATP-linked conformational change. Biochemistry 35:3909-3916. https://doi.org/10.1021/bi951791y.
    • (1996) Biochemistry , vol.35 , pp. 3909-3916
    • Rajavel, M.1    Gross, J.2    Segura, E.3    Moore, W.T.4    Grubmeyer, C.5
  • 266
    • 33747624726 scopus 로고    scopus 로고
    • Crystal structure of visfatin/pre-B cell colony-enhancing factor 1/nicotinamide phosphoribosyltransferase, free and in complex with the anti-cancer agent FK-866
    • Kim MK, Lee JH, Kim H, Park SJ, Kim SH, Kang GB, Lee YS, Kim JB, Kim KK, Suh SW, Eom SH. 2006. Crystal structure of visfatin/pre-B cell colony-enhancing factor 1/nicotinamide phosphoribosyltransferase, free and in complex with the anti-cancer agent FK-866. J Mol Biol 362:66-77. https://doi.org/10.1016/j.jmb.2006.06.082.
    • (2006) J Mol Biol , vol.362 , pp. 66-77
    • Kim, M.K.1    Lee, J.H.2    Kim, H.3    Park, S.J.4    Kim, S.H.5    Kang, G.B.6    Lee, Y.S.7    Kim, J.B.8    Kim, K.K.9    Suh, S.W.10    Eom, S.H.11
  • 267
    • 33745817828 scopus 로고    scopus 로고
    • Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents
    • Khan JA, Tao X, Tong L. 2006. Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents. Nat Struct Mol Biol 13:582-588. https://doi.org/10.1038/nsmb1105.
    • (2006) Nat Struct Mol Biol , vol.13 , pp. 582-588
    • Khan, J.A.1    Tao, X.2    Tong, L.3
  • 268
    • 24344464365 scopus 로고    scopus 로고
    • The structure of a eukaryotic nicotinic acid phosphoribosyltransferase reveals structural heterogeneity among type II PRTases
    • Chappie JS, Canaves JM, Han GW, Rife CL, Xu Q, Stevens RC. 2005. The structure of a eukaryotic nicotinic acid phosphoribosyltransferase reveals structural heterogeneity among type II PRTases. Structure 13: 1385-1396. https://doi.org/10.1016/j.str.2005.05.016.
    • (2005) Structure , vol.13 , pp. 1385-1396
    • Chappie, J.S.1    Canaves, J.M.2    Han, G.W.3    Rife, C.L.4    Xu, Q.5    Stevens, R.C.6
  • 269
    • 84939570142 scopus 로고    scopus 로고
    • Physiological and pathophysiological roles of NAMPT and NAD metabolism
    • Garten A, Schuster S, Penke M, Gorski T, de Giorgis T, Kiess W. 2015. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat Rev Endocrinol 11:535-546. https://doi.org/10.1038/ nrendo.2015.117.
    • (2015) Nat Rev Endocrinol , vol.11 , pp. 535-546
    • Garten, A.1    Schuster, S.2    Penke, M.3    Gorski, T.4    De Giorgis, T.5    Kiess, W.6
  • 270
    • 84901503705 scopus 로고    scopus 로고
    • Structural and biochemical analyses of the catalysis and potency impact of inhibitor phosphoribosylation by human nicotinamide phosphoribosyltransferase
    • Oh A, Ho YC, Zak M, Liu Y, Chen X, Yuen PW, Zheng X, Liu Y, Dragovich PS, Wang W. 2014. Structural and biochemical analyses of the catalysis and potency impact of inhibitor phosphoribosylation by human nicotinamide phosphoribosyltransferase. Chembiochem 15:1121-1130. https://doi.org/10.1002/cbic.201402023.
    • (2014) Chembiochem , vol.15 , pp. 1121-1130
    • Oh, A.1    Ho, Y.C.2    Zak, M.3    Liu, Y.4    Chen, X.5    Yuen, P.W.6    Zheng, X.7    Liu, Y.8    Dragovich, P.S.9    Wang, W.10
  • 271
    • 0000794107 scopus 로고
    • The first step of histidine biosynthesis
    • Ames BN, Martin RG, Garry BJ. 1961. The first step of histidine biosynthesis. J Biol Chem 236:2019-2026.
    • (1961) J Biol Chem , vol.236 , pp. 2019-2026
    • Ames, B.N.1    Martin, R.G.2    Garry, B.J.3
  • 272
    • 0018960692 scopus 로고
    • Structural and physiological studies of the Escherichia coli histidine operon inserted into plasmid vectors
    • Bruni CB, Musti AM, Frunzio R, Blasi F. 1980. Structural and physiological studies of the Escherichia coli histidine operon inserted into plasmid vectors. J Bacteriol 142:32-42.
    • (1980) J Bacteriol , vol.142 , pp. 32-42
    • Bruni, C.B.1    Musti, A.M.2    Frunzio, R.3    Blasi, F.4
  • 273
    • 0014216625 scopus 로고
    • Purification and composition studies of phosphoribosyladenosine triphosphate:pyrophosphate phosphoribosyltransferase, the first enzyme of histidine biosynthesis
    • Voll MJ, Appella E, Martin RG. 1967. Purification and composition studies of phosphoribosyladenosine triphosphate:pyrophosphate phosphoribosyltransferase, the first enzyme of histidine biosynthesis. J Biol Chem 242:1760-1767.
    • (1967) J Biol Chem , vol.242 , pp. 1760-1767
    • Voll, M.J.1    Appella, E.2    Martin, R.G.3
  • 274
    • 0036785254 scopus 로고    scopus 로고
    • The quaternary structure of the HisZ-HisG N-1-(5=-phosphoribosyl)-ATP transferase from Lactococcus lactis
    • Bovee ML, Champagne KS, Demeler B, Francklyn CS. 2002. The quaternary structure of the HisZ-HisG N-1-(5=-phosphoribosyl)-ATP transferase from Lactococcus lactis. Biochemistry 41:11838-11846. https:// doi.org/10.1021/bi020243z.
    • (2002) Biochemistry , vol.41 , pp. 11838-11846
    • Bovee, M.L.1    Champagne, K.S.2    Demeler, B.3    Francklyn, C.S.4
  • 275
    • 0033529860 scopus 로고    scopus 로고
    • An aminoacyl-tRNA synthetase paralog with a catalytic role in histidine biosynthesis
    • Sissler M, Delorme C, Bond J, Ehrlich SD, Renault P, Francklyn C. 1999. An aminoacyl-tRNA synthetase paralog with a catalytic role in histidine biosynthesis. Proc Natl Acad Sci U S A 96:8985-8990. https://doi.org/ 10.1073/pnas.96.16.8985.
    • (1999) Proc Natl Acad Sci U S A , vol.96 , pp. 8985-8990
    • Sissler, M.1    Delorme, C.2    Bond, J.3    Ehrlich, S.D.4    Renault, P.5    Francklyn, C.6
  • 276
    • 0033750795 scopus 로고    scopus 로고
    • Purification, crystallization and preliminary X-ray crystallographic analysis of ATPphosphoribosyltransferase from Escherichia coli
    • Lohkamp B, Coggins JR, Lapthorn AJ. 2000. Purification, crystallization and preliminary X-ray crystallographic analysis of ATPphosphoribosyltransferase from Escherichia coli. Acta Crystallogr D Biol Crystallogr 56:1488-1491. https://doi.org/10.1107/ S0907444900011306.
    • (2000) Acta Crystallogr D Biol Crystallogr , vol.56 , pp. 1488-1491
    • Lohkamp, B.1    Coggins, J.R.2    Lapthorn, A.J.3
  • 277
    • 0345869701 scopus 로고    scopus 로고
    • The structure of Escherichia coli ATP-phosphoribosyltransferase: Identification of substrate binding sites and mode of AMP inhibition
    • Lohkamp B, McDermott G, Campbell SA, Coggins JR, Lapthorn AJ. 2004. The structure of Escherichia coli ATP-phosphoribosyltransferase: identification of substrate binding sites and mode of AMP inhibition. J Mol Biol 336:131-144. https://doi.org/10.1016/j.jmb.2003.12.020.
    • (2004) J Mol Biol , vol.336 , pp. 131-144
    • Lohkamp, B.1    McDermott, G.2    Campbell, S.A.3    Coggins, J.R.4    Lapthorn, A.J.5
  • 278
    • 0017374390 scopus 로고
    • Inhibition of ATP phosphoribosyltransferase by AMP and ADP in the absence and presence of histidine
    • Morton DP, Parsons SM. 1977. Inhibition of ATP phosphoribosyltransferase by AMP and ADP in the absence and presence of histidine. Arch Biochem Biophys 181:643-648. https://doi.org/10.1016/0003-9861(77)90270-3.
    • (1977) Arch Biochem Biophys , vol.181 , pp. 643-648
    • Morton, D.P.1    Parsons, S.M.2
  • 279
    • 0017577475 scopus 로고
    • Synergistic inhibition of ATP phosphoribosyltransferase by guanosine tetraphosphate and histidine
    • Morton DP, Parsons SM. 1977. Synergistic inhibition of ATP phosphoribosyltransferase by guanosine tetraphosphate and histidine. Biochem Biophys Res Commun 74:172-177. https://doi.org/10.1016/0006-291X(77)91390-0.
    • (1977) Biochem Biophys Res Commun , vol.74 , pp. 172-177
    • Morton, D.P.1    Parsons, S.M.2
  • 280
    • 0037424269 scopus 로고    scopus 로고
    • Crystal structure of ATP phosphoribosyltransferase from Mycobacterium tuberculosis
    • Cho Y, Sharma V, Sacchettini JC. 2003. Crystal structure of ATP phosphoribosyltransferase from Mycobacterium tuberculosis. J Biol Chem 278:8333-8339. https://doi.org/10.1074/jbc.M212124200.
    • (2003) J Biol Chem , vol.278 , pp. 8333-8339
    • Cho, Y.1    Sharma, V.2    Sacchettini, J.C.3
  • 281
    • 26644460421 scopus 로고    scopus 로고
    • Activation of the hetero-octameric ATP phosphoribosyl transferase through subunit interface rearrangement by a tRNA synthetase paralog
    • Champagne KS, Sissler M, Larrabee Y, Doublie S, Francklyn CS. 2005. Activation of the hetero-octameric ATP phosphoribosyl transferase through subunit interface rearrangement by a tRNA synthetase paralog. J Biol Chem 280:34096-34104. https://doi.org/10.1074/ jbc.M505041200.
    • (2005) J Biol Chem , vol.280 , pp. 34096-34104
    • Champagne, K.S.1    Sissler, M.2    Larrabee, Y.3    Doublie, S.4    Francklyn, C.S.5
  • 282
    • 13444311996 scopus 로고    scopus 로고
    • Regulation of the hetero-octameric ATP phosphoribosyl transferase complex from Thermotoga maritima by a tRNA synthetase-like subunit
    • Vega MC, Zou P, Fernandez FJ, Murphy GE, Sterner R, Popov A, Wilmanns M. 2005. Regulation of the hetero-octameric ATP phosphoribosyl transferase complex from Thermotoga maritima by a tRNA synthetase-like subunit. Mol Microbiol 55:675-686. https://doi.org/ 10.1111/j.1365-2958.2004.04422.x.
    • (2005) Mol Microbiol , vol.55 , pp. 675-686
    • Vega, M.C.1    Zou, P.2    Fernandez, F.J.3    Murphy, G.E.4    Sterner, R.5    Popov, A.6    Wilmanns, M.7
  • 283
    • 33845572244 scopus 로고    scopus 로고
    • Substrate recognition by the hetero-octameric ATP phosphoribosyltransferase from Lactococcus lactis
    • Champagne KS, Piscitelli E, Francklyn CS. 2006. Substrate recognition by the hetero-octameric ATP phosphoribosyltransferase from Lactococcus lactis. Biochemistry 45:14933-14943. https://doi.org/10.1021/ bi061802v.
    • (2006) Biochemistry , vol.45 , pp. 14933-14943
    • Champagne, K.S.1    Piscitelli, E.2    Francklyn, C.S.3
  • 284
    • 0036645661 scopus 로고    scopus 로고
    • Structural analysis of two enzymes catalysing reverse metabolic reactions implies common ancestry
    • Mayans O, Ivens A, Nissen LJ, Kirschner K, Wilmanns M. 2002. Structural analysis of two enzymes catalysing reverse metabolic reactions implies common ancestry. EMBO J 21:3245-3254. https://doi.org/10.1093/ emboj/cdf298.
    • (2002) EMBO J , vol.21 , pp. 3245-3254
    • Mayans, O.1    Ivens, A.2    Nissen, L.J.3    Kirschner, K.4    Wilmanns, M.5
  • 285
    • 29144495844 scopus 로고    scopus 로고
    • The crystal structure of TrpD, a metabolic enzyme essential for lung colonization by Mycobacterium tuberculosis, in complex with its substrate phosphoribosylpyrophosphate
    • Lee CE, Goodfellow C, Javid-Majd F, Baker EN, Shaun Lott J. 2006. The crystal structure of TrpD, a metabolic enzyme essential for lung colonization by Mycobacterium tuberculosis, in complex with its substrate phosphoribosylpyrophosphate. J Mol Biol 355:784-797. https:// doi.org/10.1016/j.jmb.2005.11.016.
    • (2006) J Mol Biol , vol.355 , pp. 784-797
    • Lee, C.E.1    Goodfellow, C.2    Javid-Majd, F.3    Baker, E.N.4    Shaun Lott, J.5
  • 286
    • 0037125240 scopus 로고    scopus 로고
    • The crystal structure of anthranilate phosphoribosyltransferase from the enterobacterium Pectobacterium carotovorum
    • Kim C, Xuong NH, Edwards S, Madhusudan Yee MC, Spraggon G, Mills SE. 2002. The crystal structure of anthranilate phosphoribosyltransferase from the enterobacterium Pectobacterium carotovorum. FEBS Lett 523:239-246. https://doi.org/10.1016/S0014-5793(02)02905-8.
    • (2002) FEBS Lett , vol.523 , pp. 239-246
    • Kim, C.1    Xuong, N.H.2    Edwards, S.3    Madhusudan Yee, M.C.4    Spraggon, G.5    Mills, S.E.6
  • 288
    • 0035012406 scopus 로고    scopus 로고
    • Purification, characterization and crystallization of thermostable anthranilate phosphoribosyltransferase from Sulfolobus solfataricus
    • Ivens A, Mayans O, Szadkowski H, Wilmanns M, Kirschner K. 2001. Purification, characterization and crystallization of thermostable anthranilate phosphoribosyltransferase from Sulfolobus solfataricus. Eur J Biochem 268:2246-2252. https://doi.org/10.1046/j.1432-1327 .2001.02102.x.
    • (2001) Eur J Biochem , vol.268 , pp. 2246-2252
    • Ivens, A.1    Mayans, O.2    Szadkowski, H.3    Wilmanns, M.4    Kirschner, K.5
  • 289
    • 33746371711 scopus 로고    scopus 로고
    • Structural and mutational analysis of substrate complexation by anthranilate phosphoribosyltransferase from Sulfolobus solfataricus
    • Marino M, Deuss M, Svergun DI, Konarev PV, Sterner R, Mayans O. 2006. Structural and mutational analysis of substrate complexation by anthranilate phosphoribosyltransferase from Sulfolobus solfataricus. J Biol Chem 281:21410-21421. https://doi.org/10.1074/jbc.M601403200.
    • (2006) J Biol Chem , vol.281 , pp. 21410-21421
    • Marino, M.1    Deuss, M.2    Svergun, D.I.3    Konarev, P.V.4    Sterner, R.5    Mayans, O.6
  • 290
    • 84902344182 scopus 로고    scopus 로고
    • Alternative substrates reveal catalytic cycle and key binding events in the reaction catalysed by anthranilate phosphoribosyltransferase from Mycobacterium tuberculosis
    • Cookson TV, Castell A, Bulloch EM, Evans GL, Short FL, Baker EN, Lott JS, Parker EJ. 2014. Alternative substrates reveal catalytic cycle and key binding events in the reaction catalysed by anthranilate phosphoribosyltransferase from Mycobacterium tuberculosis. Biochem J 461:87-98. https://doi.org/10.1042/BJ20140209.
    • (2014) Biochem J , vol.461 , pp. 87-98
    • Cookson, T.V.1    Castell, A.2    Bulloch, E.M.3    Evans, G.L.4    Short, F.L.5    Baker, E.N.6    Lott, J.S.7    Parker, E.J.8
  • 291
    • 0035145539 scopus 로고    scopus 로고
    • Characterization of auxotrophic mutants of Mycobacterium tuberculosis and their potential as vaccine candidates
    • Smith DA, Parish T, Stoker NG, Bancroft GJ. 2001. Characterization of auxotrophic mutants of Mycobacterium tuberculosis and their potential as vaccine candidates. Infect Immun 69:1142-1150. https://doi.org/ 10.1128/IAI.69.2.1442-1150.2001.
    • (2001) Infect Immun , vol.69 , pp. 1142-1150
    • Smith, D.A.1    Parish, T.2    Stoker, N.G.3    Bancroft, G.J.4
  • 292
    • 84898540107 scopus 로고    scopus 로고
    • Repurposing the chemical scaffold of the anti-arthritic drug Lobenzarit to target tryptophan biosynthesis in Mycobacterium tuberculosis
    • Evans GL, Gamage SA, Bulloch EM, Baker EN, Denny WA, Lott JS. 2014. Repurposing the chemical scaffold of the anti-arthritic drug Lobenzarit to target tryptophan biosynthesis in Mycobacterium tuberculosis. Chembiochem 15:852-864. https://doi.org/10.1002/cbic.201300628.
    • (2014) Chembiochem , vol.15 , pp. 852-864
    • Evans, G.L.1    Gamage, S.A.2    Bulloch, E.M.3    Baker, E.N.4    Denny, W.A.5    Lott, J.S.6
  • 293
    • 0028237621 scopus 로고
    • The cobT gene of Salmonella typhimurium encodes the NaMN:5, 6-dimethylbenzimidazole phosphoribosyltransferase responsible for the synthesis of N1-(5-phosphoalpha- D-ribosyl)-5, 6-dimethylbenzimidazole, an intermediate in the synthesis of the nucleotide loop of cobalamin
    • Trzebiatowski JR, O'Toole GA, Escalante-Semerena JC. 1994. The cobT gene of Salmonella typhimurium encodes the NaMN:5, 6-dimethylbenzimidazole phosphoribosyltransferase responsible for the synthesis of N1-(5-phosphoalpha- D-ribosyl)-5, 6-dimethylbenzimidazole, an intermediate in the synthesis of the nucleotide loop of cobalamin. J Bacteriol 176:3568-3575.
    • (1994) J Bacteriol , vol.176 , pp. 3568-3575
    • Trzebiatowski, J.R.1    O'Toole, G.A.2    Escalante-Semerena, J.C.3
  • 294
    • 0028970502 scopus 로고
    • The cobalamin (coenzyme B12) biosynthetic genes of Escherichia coli
    • Lawrence JG, Roth JR. 1995. The cobalamin (coenzyme B12) biosynthetic genes of Escherichia coli. J Bacteriol 177:6371-6380.
    • (1995) J Bacteriol , vol.177 , pp. 6371-6380
    • Lawrence, J.G.1    Roth, J.R.2
  • 295
    • 80051576390 scopus 로고    scopus 로고
    • ArsAB, a novel enzyme from Sporomusa ovata activates phenolic bases for adenosylcobamide biosynthesis
    • Chan CH, Escalante-Semerena JC. 2011. ArsAB, a novel enzyme from Sporomusa ovata activates phenolic bases for adenosylcobamide biosynthesis. Mol Microbiol 81:952-967. https://doi.org/10.1111/j.1365-2958.2011.07741.x.
    • (2011) Mol Microbiol , vol.81 , pp. 952-967
    • Chan, C.H.1    Escalante-Semerena, J.C.2
  • 296
    • 0025280836 scopus 로고
    • Unusual coenzymes of methanogenesis
    • DiMarco AA, Bobik TA, Wolfe RS. 1990. Unusual coenzymes of methanogenesis. Annu Rev Biochem 59:355-594. https://doi.org/10.1146/ annurev.bi.59.070190.002035.
    • (1990) Annu Rev Biochem , vol.59 , pp. 355-594
    • DiMarco, A.A.1    Bobik, T.A.2    Wolfe, R.S.3
  • 297
    • 0034664991 scopus 로고    scopus 로고
    • Tetrahydrofolate and tetrahydromethanopterin compared: Functionally distinct carriers in C1 metabolism
    • Maden BE. 2000. Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism. Biochem J 350:609-629. https://doi.org/10.1042/bj3500609.
    • (2000) Biochem J , vol.350 , pp. 609-629
    • Maden, B.E.1
  • 298
    • 0032834938 scopus 로고    scopus 로고
    • Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases
    • Vorholt JA, Chistoserdova L, Stolyar SM, Thauer RK, Lidstrom ME. 1999. Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases. J Bacteriol 181:5750-5757.
    • (1999) J Bacteriol , vol.181 , pp. 5750-5757
    • Vorholt, J.A.1    Chistoserdova, L.2    Stolyar, S.M.3    Thauer, R.K.4    Lidstrom, M.E.5
  • 299
    • 0036335358 scopus 로고    scopus 로고
    • Purification, overproduction, and partial characterization of beta-RFAP synthase, a key enzyme in the methanopterin biosynthesis pathway
    • Scott JW, Rasche ME. 2002. Purification, overproduction, and partial characterization of beta-RFAP synthase, a key enzyme in the methanopterin biosynthesis pathway. J Bacteriol 184:4442-4448. https:// doi.org/10.1128/JB.184.16.4442-4448.2002.
    • (2002) J Bacteriol , vol.184 , pp. 4442-4448
    • Scott, J.W.1    Rasche, M.E.2
  • 300
    • 0025341266 scopus 로고
    • Biosynthesis of methanopterin
    • White RH. 1990. Biosynthesis of methanopterin. Biochemistry 29: 5397-5404. https://doi.org/10.1021/bi00474a027.
    • (1990) Biochemistry , vol.29 , pp. 5397-5404
    • White, R.H.1
  • 301
    • 0029923835 scopus 로고    scopus 로고
    • Biosynthesis of methanopterin
    • White RH. 1996. Biosynthesis of methanopterin. Biochemistry 35: 3447-3456. https://doi.org/10.1021/bi952308m.
    • (1996) Biochemistry , vol.35 , pp. 3447-3456
    • White, R.H.1
  • 302
    • 0032502820 scopus 로고    scopus 로고
    • Methanopterin biosyn thesis: Methylation of the biosynthetic intermediates
    • White RH. 1998. Methanopterin biosynthesis: methylation of the biosynthetic intermediates. Biochim Biophys Acta 1380:257-267. https:// doi.org/10.1016/S0304-4165(97)00148-7.
    • (1998) Biochim Biophys Acta , vol.1380 , pp. 257-267
    • White, R.H.1
  • 303
    • 0027404845 scopus 로고
    • Structures of the modified folates in the thermophilic archaebacteria Pyrococcus furiosus
    • White RH. 1993. Structures of the modified folates in the thermophilic archaebacteria Pyrococcus furiosus. Biochemistry 32:745-753. https:// doi.org/10.1021/bi00054a003.
    • (1993) Biochemistry , vol.32 , pp. 745-753
    • White, R.H.1
  • 304
    • 79959942911 scopus 로고    scopus 로고
    • The conversion of a phenol to an aniline occurs in the biochemical formation of the 1-(4-aminophenyl)-1-deoxy-D-ribitol moiety in methanopterin
    • White RH. 2011. The conversion of a phenol to an aniline occurs in the biochemical formation of the 1-(4-aminophenyl)-1-deoxy-D-ribitol moiety in methanopterin. Biochemistry 50:6041-6052. https://doi.org/ 10.1021/bi200362w.
    • (2011) Biochemistry , vol.50 , pp. 6041-6052
    • White, R.H.1
  • 305
    • 0032508349 scopus 로고    scopus 로고
    • Mechanism for the enzymatic formation of 4-(beta-D-ribofuranosyl)aminobenzene 5=-phosphate during the biosynthesis of methanopterin
    • Rasche ME, White RH. 1998. Mechanism for the enzymatic formation of 4-(beta-D-ribofuranosyl)aminobenzene 5=-phosphate during the biosynthesis of methanopterin. Biochemistry 37:11343-11351. https:// doi.org/10.1021/bi973086q.
    • (1998) Biochemistry , vol.37 , pp. 11343-11351
    • Rasche, M.E.1    White, R.H.2
  • 306
    • 4544359293 scopus 로고    scopus 로고
    • Mechanism of 4-(beta-D-ribofuranosyl) aminobenzene 5=-phosphate synthase, a key enzyme in the methanopterin biosynthetic pathway
    • Dumitru RV, Ragsdale SW. 2004. Mechanism of 4-(beta-D-ribofuranosyl) aminobenzene 5=-phosphate synthase, a key enzyme in the methanopterin biosynthetic pathway. J Biol Chem 279:39389-39395. https:// doi.org/10.1074/jbc.M406442200.
    • (2004) J Biol Chem , vol.279 , pp. 39389-39395
    • Dumitru, R.V.1    Ragsdale, S.W.2
  • 307
    • 0347930814 scopus 로고    scopus 로고
    • Application of a colorimetric assay to identify putative ribofuranosylaminobenzene 5=- phosphate synthase genes expressed with activity in Escherichia coli
    • Bechard ME, Chhatwal S, Garcia RE, Rasche ME. 2003. Application of a colorimetric assay to identify putative ribofuranosylaminobenzene 5=- phosphate synthase genes expressed with activity in Escherichia coli. Biol Proced Online 5:69-77. https://doi.org/10.1251/bpo48.
    • (2003) Biol Proced Online , vol.5 , pp. 69-77
    • Bechard, M.E.1    Chhatwal, S.2    Garcia, R.E.3    Rasche, M.E.4
  • 308
    • 0034770036 scopus 로고    scopus 로고
    • Biosynthesis of the arabinogalactan-peptidoglycan complex of Mycobacterium tuberculosis
    • Crick DC, Mahapatra S, Brennan PJ. 2001. Biosynthesis of the arabinogalactan-peptidoglycan complex of Mycobacterium tuberculosis. Glycobiology 11:107R-118R. https://doi.org/10.1093/glycob/ 11.9.107R.
    • (2001) Glycobiology , vol.11 , pp. 107R-118R
    • Crick, D.C.1    Mahapatra, S.2    Brennan, P.J.3
  • 310
    • 0029977936 scopus 로고    scopus 로고
    • Polyprenylphosphate-pentoses in mycobacteria are synthesized from 5-phosphoribose pyrophosphate
    • Scherman MS, Kalbe-Bournonville L, Bush D, Xin Y, Deng L, McNeil M. 1996. Polyprenylphosphate-pentoses in mycobacteria are synthesized from 5-phosphoribose pyrophosphate. J Biol Chem 271:29652-29658. https://doi.org/10.1074/jbc.271.47.29652.
    • (1996) J Biol Chem , vol.271 , pp. 29652-29658
    • Scherman, M.S.1    Kalbe-Bournonville, L.2    Bush, D.3    Xin, Y.4    Deng, L.5    McNeil, M.6
  • 311
    • 21644453614 scopus 로고    scopus 로고
    • Identification and active expression of the Mycobacterium tuberculosis gene encoding 5-phospho-alpha-D-ribose-1- diphosphate: Decaprenyl-phosphate 5-phosphoribosyltransferase, the first enzyme committed to decaprenylphosphoryl-D-arabinose synthesis
    • Huang H, Scherman MS, D'Haeze W, Vereecke D, Holsters M, Crick DC, McNeil MR. 2005. Identification and active expression of the Mycobacterium tuberculosis gene encoding 5-phospho-alpha-D-ribose-1- diphosphate: decaprenyl-phosphate 5-phosphoribosyltransferase, the first enzyme committed to decaprenylphosphoryl-D-arabinose synthesis. J Biol Chem 280:24539-24543. https://doi.org/10.1074/ jbc.M504068200.
    • (2005) J Biol Chem , vol.280 , pp. 24539-24543
    • Huang, H.1    Scherman, M.S.2    D'Haeze, W.3    Vereecke, D.4    Holsters, M.5    Crick, D.C.6    McNeil, M.R.7
  • 312
    • 42949142248 scopus 로고    scopus 로고
    • Identification of amino acids and domains required for catalytic activity of DPPR synthase, a cell wall biosynthetic enzyme of Mycobacterium tuberculosis
    • Huang H, Berg S, Spencer JS, Vereecke D, D'Haeze W, Holsters M, McNeil MR. 2008. Identification of amino acids and domains required for catalytic activity of DPPR synthase, a cell wall biosynthetic enzyme of Mycobacterium tuberculosis. Microbiology 154:736-743. https:// doi.org/10.1099/mic.0.2007/013532-0.
    • (2008) Microbiology , vol.154 , pp. 736-743
    • Huang, H.1    Berg, S.2    Spencer, J.S.3    Vereecke, D.4    D'Haeze, W.5    Holsters, M.6    McNeil, M.R.7
  • 314
    • 22444443704 scopus 로고    scopus 로고
    • Extended sequence and functional analysis of the butirosin biosynthetic gene cluster in Bacillus circulans SANK 72073
    • Kudo F, Numakura M, Tamegai H, Yamamoto H, Eguchi T, Kakinuma K. 2005. Extended sequence and functional analysis of the butirosin biosynthetic gene cluster in Bacillus circulans SANK 72073. J Antibiot (Tokyo) 58:373-379. https://doi.org/10.1038/ja.2005.47.
    • (2005) J Antibiot (Tokyo) , vol.58 , pp. 373-379
    • Kudo, F.1    Numakura, M.2    Tamegai, H.3    Yamamoto, H.4    Eguchi, T.5    Kakinuma, K.6
  • 316
    • 34248652943 scopus 로고    scopus 로고
    • Unique O-ribosylation in the biosynthesis of butirosin
    • Kudo F, Fujii T, Kinoshita S, Eguchi T. 2007. Unique O-ribosylation in the biosynthesis of butirosin. Bioorg Med Chem 15:4360-4368. https:// doi.org/10.1016/j.bmc.2007.04.040.
    • (2007) Bioorg Med Chem , vol.15 , pp. 4360-4368
    • Kudo, F.1    Fujii, T.2    Kinoshita, S.3    Eguchi, T.4
  • 317
    • 18444380853 scopus 로고    scopus 로고
    • The neomycin biosynthetic gene cluster of Streptomyces fradiae NCIMB 8233: Characterisation of an aminotransferase involved in the formation of 2-deoxystreptamine
    • Huang F, Haydock SF, Mironenko T, Spiteller D, Li Y, Spencer JB. 2005. The neomycin biosynthetic gene cluster of Streptomyces fradiae NCIMB 8233: characterisation of an aminotransferase involved in the formation of 2-deoxystreptamine. Org Biomol Chem 3:1410-1418. https:// doi.org/10.1039/b501199j.
    • (2005) Org Biomol Chem , vol.3 , pp. 1410-1418
    • Huang, F.1    Haydock, S.F.2    Mironenko, T.3    Spiteller, D.4    Li, Y.5    Spencer, J.B.6
  • 318
    • 70349596297 scopus 로고    scopus 로고
    • Biosynthetic genes for aminoglycoside antibiotics
    • Kudo F, Eguchi T. 2009. Biosynthetic genes for aminoglycoside antibiotics. J Antibiot (Tokyo) 62:471-481. https://doi.org/10.1038/ja.2009.76.
    • (2009) J Antibiot (Tokyo) , vol.62 , pp. 471-481
    • Kudo, F.1    Eguchi, T.2
  • 319
    • 4544272017 scopus 로고    scopus 로고
    • Modified pathway to synthesize ribulose 1, 5-bisphosphate in methanogenic archaea
    • Finn MW, Tabita FR. 2004. Modified pathway to synthesize ribulose 1, 5-bisphosphate in methanogenic archaea. J Bacteriol 186:6360-6366. https://doi.org/10.1128/JB.186.19.6360-6366.2004.
    • (2004) J Bacteriol , vol.186 , pp. 6360-6366
    • Finn, M.W.1    Tabita, F.R.2
  • 320
    • 0346668345 scopus 로고    scopus 로고
    • Nudix hydrolases that degrade dinucleoside and diphosphoinositol polyphosphates also have 5-phosphoribosyl 1-pyrophosphate (PRPP) pyrophosphatase activity that generates the glycolytic activator ribose 1, 5- bisphosphate
    • Fisher DI, Safrany ST, Strike P, McLennan AG, Cartwright JL. 2002. Nudix hydrolases that degrade dinucleoside and diphosphoinositol polyphosphates also have 5-phosphoribosyl 1-pyrophosphate (PRPP) pyrophosphatase activity that generates the glycolytic activator ribose 1, 5- bisphosphate. J Biol Chem 277:47313-47317. https://doi.org/10.1074/ jbc.M209795200.
    • (2002) J Biol Chem , vol.277 , pp. 47313-47317
    • Fisher, D.I.1    Safrany, S.T.2    Strike, P.3    McLennan, A.G.4    Cartwright, J.L.5
  • 321
    • 0035958961 scopus 로고    scopus 로고
    • Regulation of energy metabolism in macrophages during hypoxia. Roles of fructose 2, 6- bisphosphate and ribose 1, 5-bisphosphate
    • Kawaguchi T, Veech RL, Uyeda K. 2001. Regulation of energy metabolism in macrophages during hypoxia. Roles of fructose 2, 6- bisphosphate and ribose 1, 5-bisphosphate. J Biol Chem 276: 28554-28561. https://doi.org/10.1074/jbc.M101396200.
    • (2001) J Biol Chem , vol.276 , pp. 28554-28561
    • Kawaguchi, T.1    Veech, R.L.2    Uyeda, K.3
  • 324
    • 84959099349 scopus 로고    scopus 로고
    • Biosynthesis of riboflavin
    • Fischer M, Bacher A. 2010. Biosynthesis of riboflavin. EcoSal Plus https:// doi.org/10.1128/ecosalplus.3.6.3.2.
    • (2010) EcoSal Plus
    • Fischer, M.1    Bacher, A.2
  • 325
    • 0035219754 scopus 로고    scopus 로고
    • Biosynthesis of the methanogenic cofactors
    • White RH. 2001. Biosynthesis of the methanogenic cofactors. Vitam Horm 61:299-337. https://doi.org/10.1016/S0083-6729(01)61010-0.
    • (2001) Vitam Horm , vol.61 , pp. 299-337
    • White, R.H.1
  • 326
    • 84940929012 scopus 로고    scopus 로고
    • Folate biosyn thesis, reduction, and polyglutamylation and the interconversion of folate derivatives
    • Green JM, Matthews RG. 2007. Folate biosynthesis, reduction, and polyglutamylation and the interconversion of folate derivatives. EcoSal Plus https://doi.org/10.1128/ecosalplus.3.6.3.6.
    • (2007) EcoSal Plus
    • Green, J.M.1    Matthews, R.G.2
  • 327
    • 84936750757 scopus 로고    scopus 로고
    • The biosynthesis of the molybdenum cofactors
    • Mendel RR, Leimkühler S. 2014. The biosynthesis of the molybdenum cofactors. J Biol Inorg Chem 20:337-347. https://doi.org/10.1007/ s00775-014-1173-y.
    • (2014) J Biol Inorg Chem , vol.20 , pp. 337-347
    • Mendel, R.R.1    Leimkühler, S.2
  • 328
    • 84961306763 scopus 로고    scopus 로고
    • Microbial transformations in phosphonate biosynthesis and catabolism, and their importance in nutrient cycling
    • Chin JP, McGrath JW, Quinn JP. 2016. Microbial transformations in phosphonate biosynthesis and catabolism, and their importance in nutrient cycling. Curr Opin Chem Biol 31:50-57. https://doi.org/ 10.1016/j.cbpa.2016.01.010.
    • (2016) Curr Opin Chem Biol , vol.31 , pp. 50-57
    • Chin, J.P.1    McGrath, J.W.2    Quinn, J.P.3
  • 329
    • 1542319732 scopus 로고    scopus 로고
    • Relationship between growth rate and ATP concentration in Escherichia coli: A bioassay for available cellular ATP
    • Schneider DA, Gourse RL. 2004. Relationship between growth rate and ATP concentration in Escherichia coli: a bioassay for available cellular ATP. J Biol Chem 279:8262-8268. https://doi.org/10.1074/ jbc.M311996200.
    • (2004) J Biol Chem , vol.279 , pp. 8262-8268
    • Schneider, D.A.1    Gourse, R.L.2
  • 330
    • 84923352091 scopus 로고    scopus 로고
    • Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging
    • Yaginuma H, Kawai S, Tabata KV, Tomiyama K, Kakizuka A, Komatsuzaki T, Noji H, Imamura H. 2014. Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging. Sci Rep 4:6522. https://doi.org/10.1038/srep06522.
    • (2014) Sci Rep , vol.4 , pp. 6522
    • Yaginuma, H.1    Kawai, S.2    Tabata, K.V.3    Tomiyama, K.4    Kakizuka, A.5    Komatsuzaki, T.6    Noji, H.7    Imamura, H.8
  • 331
    • 84880871430 scopus 로고    scopus 로고
    • Cell cycle regulation of purine synthesis by phosphoribosyl pyrophosphate and inorganic phosphate
    • Fridman A, Saha A, Chan A, Casteel DE, Pilz RB, Boss GR. 2013. Cell cycle regulation of purine synthesis by phosphoribosyl pyrophosphate and inorganic phosphate. Biochem J 454:91-99. https://doi.org/10.1042/ BJ20130153.
    • (2013) Biochem J , vol.454 , pp. 91-99
    • Fridman, A.1    Saha, A.2    Chan, A.3    Casteel, D.E.4    Pilz, R.B.5    Boss, G.R.6
  • 333
    • 44949214942 scopus 로고    scopus 로고
    • Regulation of pyrimidine biosynthetic gene expression in bacteria: Repression without repressors
    • Turnbough CL, Jr, Switzer RL. 2008. Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors. Microbiol Mol Biol Rev 72:266-300. https://doi.org/10.1128/MMBR .00001-08.
    • (2008) Microbiol Mol Biol Rev , vol.72 , pp. 266-300
    • Turnbough, C.L.1    Switzer, R.L.2
  • 334
    • 0032601488 scopus 로고    scopus 로고
    • Regulation of the Bacillus subtilis pyrimidine biosynthetic operon by transcriptional attenuation: Control of gene expression by an mRNA-binding protein
    • Switzer RL, Turner RJ, Lu Y. 1998. Regulation of the Bacillus subtilis pyrimidine biosynthetic operon by transcriptional attenuation: control of gene expression by an mRNA-binding protein. Prog Nucleic Acid Res Mol Biol 62:329-367. https://doi.org/10.1016/S0079-6603(08)60512-7.
    • (1998) Prog Nucleic Acid Res Mol Biol , vol.62 , pp. 329-367
    • Switzer, R.L.1    Turner, R.J.2    Lu, Y.3
  • 335
    • 23944452544 scopus 로고    scopus 로고
    • Nucleotide metabolism and its control in lactic acid bacteria
    • Kilstrup M, Hammer K, Ruhdal Jensen P, Martinussen J. 2005. Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiol Rev 29:555-590. https://doi.org/10.1016/j.fmrre.2005.04.006.
    • (2005) FEMS Microbiol Rev , vol.29 , pp. 555-590
    • Kilstrup, M.1    Hammer, K.2    Ruhdal Jensen, P.3    Martinussen, J.4
  • 336
    • 0032521544 scopus 로고    scopus 로고
    • Adaptation of an enzyme to regulatory function: Structure of Bacillus subtilis PyrR, a pyr RNA-binding attenuation protein and uracil phosphoribosyltransferase
    • Tomchick DR, Turner RJ, Switzer RL, Smith JL. 1998. Adaptation of an enzyme to regulatory function: structure of Bacillus subtilis PyrR, a pyr RNA-binding attenuation protein and uracil phosphoribosyltransferase. Structure 6:337-350. https://doi.org/10.1016/S0969-2126(98)00036-7.
    • (1998) Structure , vol.6 , pp. 337-350
    • Tomchick, D.R.1    Turner, R.J.2    Switzer, R.L.3    Smith, J.L.4
  • 337
    • 14244250169 scopus 로고    scopus 로고
    • Structure of the nucleotide complex of PyrR, the pyr attenuation protein from Bacillus caldolyticus, suggests dual regulation by pyrimidine and purine nucleotides
    • Chander P, Halbig KM, Miller JK, Fields CJ, Bonner HK, Grabner GK, Switzer RL, Smith JL. 2005. Structure of the nucleotide complex of PyrR, the pyr attenuation protein from Bacillus caldolyticus, suggests dual regulation by pyrimidine and purine nucleotides. J Bacteriol 187: 1773-1782. https://doi.org/10.1128/JB.187.5.1773-1782.2005.
    • (2005) J Bacteriol , vol.187 , pp. 1773-1782
    • Chander, P.1    Halbig, K.M.2    Miller, J.K.3    Fields, C.J.4    Bonner, H.K.5    Grabner, G.K.6    Switzer, R.L.7    Smith, J.L.8
  • 340
    • 38549113372 scopus 로고    scopus 로고
    • Pyr RNA binding to the Bacillus caldolyticus PyrR attenuation protein: Characterization and regulation by uridine and guanosine nucleotides
    • Jorgensen CM, Fields CJ, Chander P, Watt D, Burgner JW, II, Smith JL, Switzer RL. 2008. pyr RNA binding to the Bacillus caldolyticus PyrR attenuation protein: characterization and regulation by uridine and guanosine nucleotides. FEBS J 275:655-670. https://doi.org/10.1111/ j.1742-4658.2007.06227.x.
    • (2008) FEBS J , vol.275 , pp. 655-670
    • Jorgensen, C.M.1    Fields, C.J.2    Chander, P.3    Watt, D.4    Burgner, I.I.J.W.5    Smith, J.L.6    Switzer, R.L.7
  • 341
    • 0032489441 scopus 로고    scopus 로고
    • Purification and characterization of Bacillus subtilis PyrR, a bifunctional pyr mRNAbinding attenuation protein/uracil phosphoribosyltransferase
    • Turner RJ, Bonner ER, Grabner GK, Switzer RL. 1998. Purification and characterization of Bacillus subtilis PyrR, a bifunctional pyr mRNAbinding attenuation protein/uracil phosphoribosyltransferase. J Biol Chem 273:5932-5938. https://doi.org/10.1074/jbc.273.10.5932.
    • (1998) J Biol Chem , vol.273 , pp. 5932-5938
    • Turner, R.J.1    Bonner, E.R.2    Grabner, G.K.3    Switzer, R.L.4
  • 342
    • 0028243808 scopus 로고
    • Regulation of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster by an autogenous transcriptional attenuation mechanism
    • Turner RJ, Lu Y, Switzer RL. 1994. Regulation of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster by an autogenous transcriptional attenuation mechanism. J Bacteriol 176:3708-3722.
    • (1994) J Bacteriol , vol.176 , pp. 3708-3722
    • Turner, R.J.1    Lu, Y.2    Switzer, R.L.3
  • 343
    • 0035581084 scopus 로고    scopus 로고
    • Molecular recognition of pyr mRNA by the Bacillus subtilis attenuation regulatory protein PyrR
    • Bonner ER, D'Elia JN, Billips BK, Switzer RL. 2001. Molecular recognition of pyr mRNA by the Bacillus subtilis attenuation regulatory protein PyrR. Nucleic Acids Res 29:4851-4865. https://doi.org/10.1093/nar/ 29.23.4851.
    • (2001) Nucleic Acids Res , vol.29 , pp. 4851-4865
    • Bonner, E.R.1    D'Elia, J.N.2    Billips, B.K.3    Switzer, R.L.4
  • 344
    • 0029744581 scopus 로고    scopus 로고
    • Sequence analysis and identification of the pyrKDbF operon from Lactococcus lactis including a novel gene, pyrK
    • Andersen PS, Martinussen J, Hammer K. 1996. Sequence analysis and identification of the pyrKDbF operon from Lactococcus lactis including a novel gene, pyrK, involved in pyrimidine biosynthesis J Bacteriol 178:5005-5012.
    • (1996) Involved in Pyrimidine Biosynthesis J Bacteriol , vol.178 , pp. 5005-5012
    • Andersen, P.S.1    Martinussen, J.2    Hammer, K.3
  • 345
    • 0031754134 scopus 로고    scopus 로고
    • The carB gene encoding the large subunit of carbamoylphosphate synthetase from Lactococcus lactis is transcribed monocistronically
    • Martinussen J, Hammer K. 1998. The carB gene encoding the large subunit of carbamoylphosphate synthetase from Lactococcus lactis is transcribed monocistronically. J Bacteriol 180:4380-4386.
    • (1998) J Bacteriol , vol.180 , pp. 4380-4386
    • Martinussen, J.1    Hammer, K.2
  • 346
    • 0035050038 scopus 로고    scopus 로고
    • The pyrimidine operon pyrRPB-carA from Lactococcus lactis
    • Martinussen J, Schallert J, Andersen B, Hammer K. 2001. The pyrimidine operon pyrRPB-carA from Lactococcus lactis. J Bacteriol 183:2785-2794. https://doi.org/10.1128/JB.183.9.2785-2794.2001.
    • (2001) J Bacteriol , vol.183 , pp. 2785-2794
    • Martinussen, J.1    Schallert, J.2    Andersen, B.3    Hammer, K.4
  • 347
    • 84903639083 scopus 로고    scopus 로고
    • Towards in vivo regulon kinetics: PurR activation by 5-phosphoribosyl-alpha-1-pyrophosphate during purine depletion in Lactococcus lactis
    • Jendresen CB, Dimitrov P, Gautier L, Liu M, Martinussen J, Kilstrup M. 2014. Towards in vivo regulon kinetics: PurR activation by 5-phosphoribosyl-alpha-1-pyrophosphate during purine depletion in Lactococcus lactis. Microbiology 160:1321-1331. https://doi.org/ 10.1099/mic.0.077933-0.
    • (2014) Microbiology , vol.160 , pp. 1321-1331
    • Jendresen, C.B.1    Dimitrov, P.2    Gautier, L.3    Liu, M.4    Martinussen, J.5    Kilstrup, M.6
  • 348
    • 0020679402 scopus 로고
    • Role of hypoxanthine and guanine in regulation of Salmonella typhimurium pur gene expression
    • Houlberg U, Jensen KF. 1983. Role of hypoxanthine and guanine in regulation of Salmonella typhimurium pur gene expression. J Bacteriol 153:837-845.
    • (1983) J Bacteriol , vol.153 , pp. 837-845
    • Houlberg, U.1    Jensen, K.F.2
  • 349
    • 0026665031 scopus 로고
    • Structural characterization and corepressor binding of the Escherichia coli purine repressor
    • Choi KY, Zalkin H. 1992. Structural characterization and corepressor binding of the Escherichia coli purine repressor. J Bacteriol 174: 6207-6214.
    • (1992) J Bacteriol , vol.174 , pp. 6207-6214
    • Choi, K.Y.1    Zalkin, H.2
  • 350
    • 0029116343 scopus 로고
    • Identification of the Bacillus subtilis pur operon repressor
    • Weng M, Nagy PL, Zalkin H. 1995. Identification of the Bacillus subtilis pur operon repressor. Proc Natl Acad Sci U S A 92:7455-7749. https:// doi.org/10.1073/pnas.92.16.7455.
    • (1995) Proc Natl Acad Sci U S A , vol.92 , pp. 7455-7749
    • Weng, M.1    Nagy, P.L.2    Zalkin, H.3
  • 351
    • 0037924464 scopus 로고    scopus 로고
    • The purine repressor of Bacillus subtilis: A novel combination of domains adapted for transcription regulation
    • Sinha SC, Krahn J, Shin BS, Tomchick DR, Zalkin H, Smith JL. 2003. The purine repressor of Bacillus subtilis: a novel combination of domains adapted for transcription regulation. J Bacteriol 185:4087-4098. https://doi.org/10.1128/JB.185.14.4087-4098.2003.
    • (2003) J Bacteriol , vol.185 , pp. 4087-4098
    • Sinha, S.C.1    Krahn, J.2    Shin, B.S.3    Tomchick, D.R.4    Zalkin, H.5    Smith, J.L.6
  • 352
    • 0034121240 scopus 로고    scopus 로고
    • Mutations in the Bacillus subtilis purine repressor that perturb PRPP effector function in vitro and in vivo
    • Weng M, Zalkin H. 2000. Mutations in the Bacillus subtilis purine repressor that perturb PRPP effector function in vitro and in vivo. Curr Microbiol 41:56-59. https://doi.org/10.1007/s002840010091.
    • (2000) Curr Microbiol , vol.41 , pp. 56-59
    • Weng, M.1    Zalkin, H.2
  • 353
    • 0038261974 scopus 로고    scopus 로고
    • Functional dissection of the Bacillus subtilis pur operator site
    • Bera AK, Zhu J, Zalkin H, Smith JL. 2003. Functional dissection of the Bacillus subtilis pur operator site. J Bacteriol 185:4099-4109. https:// doi.org/10.1128/JB.185.14.4099-4109.2003.
    • (2003) J Bacteriol , vol.185 , pp. 4099-4109
    • Bera, A.K.1    Zhu, J.2    Zalkin, H.3    Smith, J.L.4
  • 354
    • 0035684981 scopus 로고    scopus 로고
    • Definition of the Bacillus subtilis PurR operator using genetic and bioinformatic tools and expansion of the PurR regulon with glyA, guaC, pbuG, xptpbuX, yqhZ-folD, and pbuO
    • Saxild HH, Brunstedt K, Nielsen KI, Jarmer H, Nygaard P. 2001. Definition of the Bacillus subtilis PurR operator using genetic and bioinformatic tools and expansion of the PurR regulon with glyA, guaC, pbuG, xptpbuX, yqhZ-folD, and pbuO. J Bacteriol 183:6175-6183. https://doi.org/ 10.1128/JB.183.21.6175-6183.2001.
    • (2001) J Bacteriol , vol.183 , pp. 6175-6183
    • Saxild, H.H.1    Brunstedt, K.2    Nielsen, K.I.3    Jarmer, H.4    Nygaard, P.5
  • 355
    • 0024566701 scopus 로고
    • Bacillus subtilis pur operon expression and regulation
    • Ebbole DJ, Zalkin H. 1989. Bacillus subtilis pur operon expression and regulation. J Bacteriol 171:2136-2141.
    • (1989) J Bacteriol , vol.171 , pp. 2136-2141
    • Ebbole, D.J.1    Zalkin, H.2
  • 356
    • 0026080088 scopus 로고
    • Regulation of levels of purine biosynthetic enzymes in Bacillus subtilis: Effects of changing purine nucleotide pools
    • Saxild HH, Nygaard P. 1991. Regulation of levels of purine biosynthetic enzymes in Bacillus subtilis: effects of changing purine nucleotide pools. J Gen Microbiol 137:2387-2394. https://doi.org/10.1099/ 00221287-137-10-2387.
    • (1991) J Gen Microbiol , vol.137 , pp. 2387-2394
    • Saxild, H.H.1    Nygaard, P.2
  • 357
    • 0038207623 scopus 로고    scopus 로고
    • Interaction of Bacillus subtilis purine repressor with DNA
    • Shin BS, Stein A, Zalkin H. 1997. Interaction of Bacillus subtilis purine repressor with DNA. J Bacteriol 179:7394-7402.
    • (1997) J Bacteriol , vol.179 , pp. 7394-7402
    • Shin, B.S.1    Stein, A.2    Zalkin, H.3
  • 358
    • 0031877250 scopus 로고    scopus 로고
    • A transcriptional activator, homologous to the Bacillus subtilis PurR repressor, is required for expression of purine biosynthetic genes in Lactococcus lactis
    • Kilstrup M, Martinussen J. 1998. A transcriptional activator, homologous to the Bacillus subtilis PurR repressor, is required for expression of purine biosynthetic genes in Lactococcus lactis. J Bacteriol 180: 3907-3916.
    • (1998) J Bacteriol , vol.180 , pp. 3907-3916
    • Kilstrup, M.1    Martinussen, J.2
  • 359
    • 0023737007 scopus 로고
    • Detection of pur operon-attenuated mRNA and accumulated degradation intermediates in Bacillus subtilis
    • Ebbole DJ, Zalkin H. 1988. Detection of pur operon-attenuated mRNA and accumulated degradation intermediates in Bacillus subtilis. J Biol Chem 263:10894-10902.
    • (1988) J Biol Chem , vol.263 , pp. 10894-10902
    • Ebbole, D.J.1    Zalkin, H.2
  • 360
    • 0038210214 scopus 로고    scopus 로고
    • Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria
    • Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR. 2003. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113:577-586. https://doi.org/10.1016/S0092-8674(03)00391-X.
    • (2003) Cell , vol.113 , pp. 577-586
    • Mandal, M.1    Boese, B.2    Barrick, J.E.3    Winkler, W.C.4    Breaker, R.R.5
  • 362
    • 2942560804 scopus 로고    scopus 로고
    • Gene regulation by riboswitches
    • Mandal M, Breaker RR. 2004. Gene regulation by riboswitches. Nat Rev Mol Cell Biol 5:451-463. https://doi.org/10.1038/nrm1403.
    • (2004) Nat Rev Mol Cell Biol , vol.5 , pp. 451-463
    • Mandal, M.1    Breaker, R.R.2
  • 363
    • 84865652195 scopus 로고    scopus 로고
    • The PurR regulon in Lactococcus lactis: Transcriptional regulation of the purine nucleotide metabolism and translational machinery
    • Jendresen CB, Martinussen J, Kilstrup M. 2012. The PurR regulon in Lactococcus lactis: transcriptional regulation of the purine nucleotide metabolism and translational machinery. Microbiology 158:2026-2038. https://doi.org/10.1099/mic.0.059576-0.
    • (2012) Microbiology , vol.158 , pp. 2026-2038
    • Jendresen, C.B.1    Martinussen, J.2    Kilstrup, M.3
  • 364
    • 0031857910 scopus 로고    scopus 로고
    • Activation control of pur gene expression in Lactococcus lactis: Proposal for a consensus activator binding sequence based on deletion analysis and site-directed mutagenesis of purC and purD promoter regions
    • Kilstrup M, Jessing SG, Wichmand-Jorgensen SB, Madsen M, Nilsson D. 1998. Activation control of pur gene expression in Lactococcus lactis: proposal for a consensus activator binding sequence based on deletion analysis and site-directed mutagenesis of purC and purD promoter regions. J Bacteriol 180:3900-3906.
    • (1998) J Bacteriol , vol.180 , pp. 3900-3906
    • Kilstrup, M.1    Jessing, S.G.2    Wichmand-Jorgensen, S.B.3    Madsen, M.4    Nilsson, D.5
  • 365
    • 33644700003 scopus 로고    scopus 로고
    • Toward automatic reconstruction of a highly resolved tree of life
    • Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P. 2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283-1287. https://doi.org/10.1126/science.1123061.
    • (2006) Science , vol.311 , pp. 1283-1287
    • Ciccarelli, F.D.1    Doerks, T.2    Von Mering, C.3    Creevey, C.J.4    Snel, B.5    Bork, P.6
  • 366
    • 33744760238 scopus 로고    scopus 로고
    • The extraordinary specificity of xanthine phosphoribosyltransferase from Bacillus subtilis elucidated by reaction kinetics, ligand binding, and crystallography
    • Arent S, Kadziola A, Larsen S, Neuhard J, Jensen KF. 2006. The extraordinary specificity of xanthine phosphoribosyltransferase from Bacillus subtilis elucidated by reaction kinetics, ligand binding, and crystallography. Biochemistry 45:6615-6627. https://doi.org/10.1021/bi060287y.
    • (2006) Biochemistry , vol.45 , pp. 6615-6627
    • Arent, S.1    Kadziola, A.2    Larsen, S.3    Neuhard, J.4    Jensen, K.F.5
  • 367
    • 0016741229 scopus 로고
    • Carbamyl phosphate synthesis in Bacillus subtilis
    • Potvin B, Gooder H. 1975. Carbamyl phosphate synthesis in Bacillus subtilis. Biochem Genet 13:125-143. https://doi.org/10.1007/ BF00486011.
    • (1975) Biochem Genet , vol.13 , pp. 125-143
    • Potvin, B.1    Gooder, H.2
  • 368
    • 0018345520 scopus 로고
    • Characterization of pyrimidine-repressible and arginine-repressible carbamyl phosphate synthetases from Bacillus subtilis
    • Paulus TJ, Switzer RL. 1979. Characterization of pyrimidine-repressible and arginine-repressible carbamyl phosphate synthetases from Bacillus subtilis. J Bacteriol 137:82-91.
    • (1979) J Bacteriol , vol.137 , pp. 82-91
    • Paulus, T.J.1    Switzer, R.L.2
  • 369
    • 0018823799 scopus 로고
    • Pyrimidine nucleotide biosynthesis in animals: Genes, enzymes, and regulation of UMP biosynthesis
    • Jones ME. 1980. Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis. Annu Rev Biochem 49:253-279. https://doi.org/10.1146/annurev.bi.49.070180.001345.
    • (1980) Annu Rev Biochem , vol.49 , pp. 253-279
    • Jones, M.E.1
  • 370
    • 4043064372 scopus 로고    scopus 로고
    • Mammalian pyrimidine biosyn thesis: Fresh insights into an ancient pathway
    • Evans DR, Guy HI. 2004. Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J Biol Chem 279:33035-33038. https://doi.org/ 10.1074/jbc.R400007200.
    • (2004) J Biol Chem , vol.279 , pp. 33035-33038
    • Evans, D.R.1    Guy, H.I.2
  • 371
    • 0015895748 scopus 로고
    • Uridylic acid synthesis in Ehrlich ascites carcinoma. Properties, subcellular distribution, and nature of enzyme complexes of the six biosynthetic enzymes
    • Shoaf WT, Jones ME. 1973. Uridylic acid synthesis in Ehrlich ascites carcinoma. Properties, subcellular distribution, and nature of enzyme complexes of the six biosynthetic enzymes. Biochemistry 12: 4039-4051.
    • (1973) Biochemistry , vol.12 , pp. 4039-4051
    • Shoaf, W.T.1    Jones, M.E.2
  • 372
    • 0037013259 scopus 로고    scopus 로고
    • Growth-dependent regulation of mammalian pyrimidine biosynthesis by the protein kinase A and MAPK signaling cascades
    • Sigoillot FD, Evans DR, Guy HI. 2002. Growth-dependent regulation of mammalian pyrimidine biosynthesis by the protein kinase A and MAPK signaling cascades. J Biol Chem 277:15745-15751. https://doi.org/ 10.1074/jbc.M201112200.
    • (2002) J Biol Chem , vol.277 , pp. 15745-15751
    • Sigoillot, F.D.1    Evans, D.R.2    Guy, H.I.3
  • 373
    • 84874995247 scopus 로고    scopus 로고
    • Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1
    • Ben-Sahra I, Howell JJ, Asara JM, Manning BD. 2013. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339:1323-1328. https://doi.org/10.1126/science .1228792.
    • (2013) Science , vol.339 , pp. 1323-1328
    • Ben-Sahra, I.1    Howell, J.J.2    Asara, J.M.3    Manning, B.D.4
  • 374
    • 0028930840 scopus 로고
    • An E-box-mediated increase in cad transcription at the G1/S-phase boundary is suppressed by inhibitory c-Myc mutants
    • Miltenberger RJ, Sukow KA, Farnham PJ. 1995. An E-box-mediated increase in cad transcription at the G1/S-phase boundary is suppressed by inhibitory c-Myc mutants. Mol Cell Biol 15:2527-2535. https:// doi.org/10.1128/MCB.15.5.2527.
    • (1995) Mol Cell Biol , vol.15 , pp. 2527-2535
    • Miltenberger, R.J.1    Sukow, K.A.2    Farnham, P.J.3
  • 375
    • 0024361644 scopus 로고
    • Characterization of the Escherichia coli prsA1-encoded mutant phosphoribosylpyrophosphate synthetase identifies a divalent cation-nucleotide binding site
    • Bower SG, Harlow KW, Switzer RL, Hove-Jensen B. 1989. Characterization of the Escherichia coli prsA1-encoded mutant phosphoribosylpyrophosphate synthetase identifies a divalent cation-nucleotide binding site. J Biol Chem 264:10287-10291.
    • (1989) J Biol Chem , vol.264 , pp. 10287-10291
    • Bower, S.G.1    Harlow, K.W.2    Switzer, R.L.3    Hove-Jensen, B.4
  • 376
    • 0030046463 scopus 로고    scopus 로고
    • The defective phosphoribosyl diphosphate synthase in a temperature-sensitive prs-2 mutant of Escherichia coli is compensated by increased enzyme synthesis
    • Post DA, Switzer RL, Hove-Jensen B. 1996. The defective phosphoribosyl diphosphate synthase in a temperature-sensitive prs-2 mutant of Escherichia coli is compensated by increased enzyme synthesis. Microbiology 142:359-365. https://doi.org/10.1099/13500872-142-2-359.
    • (1996) Microbiology , vol.142 , pp. 359-365
    • Post, D.A.1    Switzer, R.L.2    Hove-Jensen, B.3
  • 377
    • 0018851537 scopus 로고
    • Nicotinamide adenine dinucleotide biosynthesis and pyridine nucleotide cycle metabolism in microbial systems
    • Foster JW, Moat AG. 1980. Nicotinamide adenine dinucleotide biosynthesis and pyridine nucleotide cycle metabolism in microbial systems. Microbiol Rev 44:83-105.
    • (1980) Microbiol Rev , vol.44 , pp. 83-105
    • Foster, J.W.1    Moat, A.G.2
  • 378
    • 0033605268 scopus 로고    scopus 로고
    • Inhibition of cellular growth by increased guanine nucleotide pools. Characterization of an Escherichia coli mutant with a guanosine kinase that is insensitive to feedback inhibition by GTP
    • Petersen C. 1999. Inhibition of cellular growth by increased guanine nucleotide pools. Characterization of an Escherichia coli mutant with a guanosine kinase that is insensitive to feedback inhibition by GTP. J Biol Chem 274:5348-5356.
    • (1999) J Biol Chem , vol.274 , pp. 5348-5356
    • Petersen, C.1
  • 379
    • 0026491152 scopus 로고
    • DnaR function of the prs gene of Escherichia coli in initiation of chromosome replication
    • Sakakibara Y. 1992. dnaR function of the prs gene of Escherichia coli in initiation of chromosome replication. J Mol Biol 226:989-996. https:// doi.org/10.1016/0022-2836(92)91047-S.
    • (1992) J Mol Biol , vol.226 , pp. 989-996
    • Sakakibara, Y.1
  • 380
    • 0026473173 scopus 로고
    • Novel Escherichia coli mutant, dnaR, thermosensitive in initiation of chromosome replication
    • Sakakibara Y. 1992. Novel Escherichia coli mutant, dnaR, thermosensitive in initiation of chromosome replication. J Mol Biol 226:979-987. https://doi.org/10.1016/0022-2836(92)91046-R.
    • (1992) J Mol Biol , vol.226 , pp. 979-987
    • Sakakibara, Y.1
  • 381
    • 0027164652 scopus 로고
    • Cooperation of the prs and dnaA gene products for initiation of chromosome replication in Escherichia coli
    • Sakakibara Y. 1993. Cooperation of the prs and dnaA gene products for initiation of chromosome replication in Escherichia coli. J Bacteriol 175:5559-5565.
    • (1993) J Bacteriol , vol.175 , pp. 5559-5565
    • Sakakibara, Y.1
  • 382
    • 0028918082 scopus 로고
    • Suppression of thermosensitive initiation of DNA replication in a dnaR mutant of Escherichia coli by a rifampin resistance mutation in the rpoB gene
    • Sakakibara Y. 1995. Suppression of thermosensitive initiation of DNA replication in a dnaR mutant of Escherichia coli by a rifampin resistance mutation in the rpoB gene. J Bacteriol 177:733-737.
    • (1995) J Bacteriol , vol.177 , pp. 733-737
    • Sakakibara, Y.1
  • 383
    • 0030916256 scopus 로고    scopus 로고
    • Involvement of the ribulosephosphate epimerase gene in the dnaA and dnaR functions for initiation of chromosome replication in Escherichia coli
    • Sakakibara Y. 1997. Involvement of the ribulosephosphate epimerase gene in the dnaA and dnaR functions for initiation of chromosome replication in Escherichia coli. Mol Microbiol 24:793-801. https:// doi.org/10.1046/j.1365-2958.1997.3851746.x.
    • (1997) Mol Microbiol , vol.24 , pp. 793-801
    • Sakakibara, Y.1
  • 384
    • 0028884775 scopus 로고
    • Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12
    • Sprenger GA. 1995. Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12. Arch Microbiol 164:324-330. https://doi.org/ 10.1007/BF02529978.
    • (1995) Arch Microbiol , vol.164 , pp. 324-330
    • Sprenger, G.A.1
  • 385
    • 0031939779 scopus 로고    scopus 로고
    • A bacterial RNA that functions as both a tRNA and an mRNA
    • Muto A, Ushida C, Himeno H. 1998. A bacterial RNA that functions as both a tRNA and an mRNA. Trends Biochem Sci 23:25-29. https:// doi.org/10.1016/S0968-0004(97)01159-6.
    • (1998) Trends Biochem Sci , vol.23 , pp. 25-29
    • Muto, A.1    Ushida, C.2    Himeno, H.3
  • 386
    • 84855896806 scopus 로고    scopus 로고
    • The tmRNA ribosome-rescue system
    • Janssen BD, Hayes CS. 2012. The tmRNA ribosome-rescue system. Adv Protein Chem Struct Biol 86:151-191. https://doi.org/10.1016/B978-0-12-386497-0.00005-0.
    • (2012) Adv Protein Chem Struct Biol , vol.86 , pp. 151-191
    • Janssen, B.D.1    Hayes, C.S.2
  • 387
    • 0029824009 scopus 로고    scopus 로고
    • 10Sa RNA complements the temperature-sensitive phenotype caused by a mutation in the phosphoribosyl pyrophosphate synthetase (prs) gene in Escherichia coli
    • Ando H, Kitabatake M, Inokuchi H. 1996. 10Sa RNA complements the temperature-sensitive phenotype caused by a mutation in the phosphoribosyl pyrophosphate synthetase (prs) gene in Escherichia coli. Genes Genet Syst 71:47-50. https://doi.org/10.1266/ggs.71.47.
    • (1996) Genes Genet Syst , vol.71 , pp. 47-50
    • Ando, H.1    Kitabatake, M.2    Inokuchi, H.3
  • 388
    • 0034893387 scopus 로고    scopus 로고
    • Temperaturesensitive mutations in various genes of Escherichia coli K12 can be suppressed by the ssrA gene for 10Sa RNA (tmRNA)
    • Nakano H, Goto S, Nakayashiki T, Inokuchi H. 2001. Temperaturesensitive mutations in various genes of Escherichia coli K12 can be suppressed by the ssrA gene for 10Sa RNA (tmRNA). Mol Genet Genomics 265:615-621. https://doi.org/10.1007/s004380100453.
    • (2001) Mol Genet Genomics , vol.265 , pp. 615-621
    • Nakano, H.1    Goto, S.2    Nakayashiki, T.3    Inokuchi, H.4
  • 389
    • 0035853072 scopus 로고    scopus 로고
    • Protein factors associated with the SsrASmpB tagging and ribosome rescue complex
    • Karzai AW, Sauer RT. 2001. Protein factors associated with the SsrASmpB tagging and ribosome rescue complex. Proc Natl Acad Sci U S A 98:3040-3044. https://doi.org/10.1073/pnas.051628298.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , pp. 3040-3044
    • Karzai, A.W.1    Sauer, R.T.2
  • 390
    • 0020287338 scopus 로고
    • Mutant strains of Salmonella typhimurium with defective phosphoribosylpyrophosphate synthetase activity
    • Pandey NK, Switzer RL. 1982. Mutant strains of Salmonella typhimurium with defective phosphoribosylpyrophosphate synthetase activity. J Gen Microbiol 128:1863-1871.
    • (1982) J Gen Microbiol , vol.128 , pp. 1863-1871
    • Pandey, N.K.1    Switzer, R.L.2
  • 391
    • 77749301851 scopus 로고    scopus 로고
    • Phosphoribosylpyrophosphate synthetase (PrsA) variants alter cellular pools of ribose 5-phosphate and influence thiamine synthesis in Salmonella enterica
    • Koenigsknecht MJ, Fenlon LA, Downs DM. 2010. Phosphoribosylpyrophosphate synthetase (PrsA) variants alter cellular pools of ribose 5-phosphate and influence thiamine synthesis in Salmonella enterica. Microbiology 156:950-959. https://doi.org/10.1099/mic.0.033050-0.
    • (2010) Microbiology , vol.156 , pp. 950-959
    • Koenigsknecht, M.J.1    Fenlon, L.A.2    Downs, D.M.3
  • 392
    • 0027243123 scopus 로고
    • Regulation of Escherichia coli glnB, prsA, and speA by the purine repressor
    • He B, Choi KY, Zalkin H. 1993. Regulation of Escherichia coli glnB, prsA, and speA by the purine repressor. J Bacteriol 175:3598-3606.
    • (1993) J Bacteriol , vol.175 , pp. 3598-3606
    • He, B.1    Choi, K.Y.2    Zalkin, H.3
  • 393
    • 0015137520 scopus 로고
    • Regulation and mechanism of phosphoribosylpyrophosphate synthetase: Repression by end products
    • White MN, Olszowy J, Switzer RL. 1971. Regulation and mechanism of phosphoribosylpyrophosphate synthetase: repression by end products. J Bacteriol 108:122-131.
    • (1971) J Bacteriol , vol.108 , pp. 122-131
    • White, M.N.1    Olszowy, J.2    Switzer, R.L.3
  • 394
    • 0015319356 scopus 로고
    • Specific repression of phosphoribosylpyrophosphate synthetase by uridine compounds in Salmonella typhimurium
    • Olszowy J, Switzer RL. 1972. Specific repression of phosphoribosylpyrophosphate synthetase by uridine compounds in Salmonella typhimurium. J Bacteriol 110:450-451.
    • (1972) J Bacteriol , vol.110 , pp. 450-451
    • Olszowy, J.1    Switzer, R.L.2
  • 395
    • 0030663775 scopus 로고    scopus 로고
    • A novel outer membrane lipoprotein, LolB (HemM), involved in the LolA (p20)-dependent localization of lipoproteins to the outer membrane of Escherichia coli
    • Matsuyama S, Yokota N, Tokuda H. 1997. A novel outer membrane lipoprotein, LolB (HemM), involved in the LolA (p20)-dependent localization of lipoproteins to the outer membrane of Escherichia coli. EMBO J 16:6947-6955. https://doi.org/10.1093/emboj/16.23.6947.
    • (1997) EMBO J , vol.16 , pp. 6947-6955
    • Matsuyama, S.1    Yokota, N.2    Tokuda, H.3
  • 396
    • 0033598845 scopus 로고    scopus 로고
    • Isopentenyl diphosphate biosynthesis via a mevalonate-independent pathway: Isopentenyl monophosphate kinase catalyzes the terminal enzymatic step
    • Lange BM, Croteau R. 1999. Isopentenyl diphosphate biosynthesis via a mevalonate-independent pathway: isopentenyl monophosphate kinase catalyzes the terminal enzymatic step. Proc Natl Acad Sci U S A 96:13714-13719. https://doi.org/10.1073/pnas.96.24.13714.
    • (1999) Proc Natl Acad Sci U S A , vol.96 , pp. 13714-13719
    • Lange, B.M.1    Croteau, R.2
  • 397
    • 0027410624 scopus 로고
    • Characterization of the hemA-prs region of the Escherichia coli and Salmonella typhimurium chromosomes: Identification of two open reading frames and implications for prs expression
    • Post DA, Hove-Jensen B, Switzer RL. 1993. Characterization of the hemA-prs region of the Escherichia coli and Salmonella typhimurium chromosomes: identification of two open reading frames and implications for prs expression. J Gen Microbiol 139:259-266. https://doi.org/ 10.1099/00221287-139-2-259.
    • (1993) J Gen Microbiol , vol.139 , pp. 259-266
    • Post, D.A.1    Hove-Jensen, B.2    Switzer, R.L.3
  • 398
    • 0024044556 scopus 로고
    • Structure of the gene encoding phosphoribosylpyrophosphate synthetase (prsA) in Salmonella typhimurium
    • Bower SG, Hove-Jensen B, Switzer RL. 1988. Structure of the gene encoding phosphoribosylpyrophosphate synthetase (prsA) in Salmonella typhimurium. J Bacteriol 170:3243-3248.
    • (1988) J Bacteriol , vol.170 , pp. 3243-3248
    • Bower, S.G.1    Hove-Jensen, B.2    Switzer, R.L.3
  • 399
    • 0022383365 scopus 로고
    • Cloning and characterization of the prs gene encoding phosphoribosylpyrophosphate synthetase of Escherichia coli
    • Hove-Jensen B. 1985. Cloning and characterization of the prs gene encoding phosphoribosylpyrophosphate synthetase of Escherichia coli. Mol Gen Genet 201:269-276. https://doi.org/10.1007/BF00425670.
    • (1985) Mol Gen Genet , vol.201 , pp. 269-276
    • Hove-Jensen, B.1
  • 400
    • 0020340172 scopus 로고
    • RNA polymerase involvement in the regulation of expression of Salmonella typhimurium pyr genes. Isolation and characterization of a fluorouracil-resistant mutant with high, constitutive expression of the pyrB and pyrE genes due to a mutation in rpoBC
    • Jensen KF, Neuhard J, Schack L. 1982. RNA polymerase involvement in the regulation of expression of Salmonella typhimurium pyr genes. Isolation and characterization of a fluorouracil-resistant mutant with high, constitutive expression of the pyrB and pyrE genes due to a mutation in rpoBC. EMBO J 1:69-74.
    • (1982) EMBO J , vol.1 , pp. 69-74
    • Jensen, K.F.1    Neuhard, J.2    Schack, L.3
  • 401
    • 0022619087 scopus 로고
    • Association of RNA polymerase having increased Km for ATP and UTP with hyperexpression of the pyrB and pyrE genes of Salmonella typhimurium
    • Jensen KF, Fast R, Karlstrom O, Larsen JN. 1986. Association of RNA polymerase having increased Km for ATP and UTP with hyperexpression of the pyrB and pyrE genes of Salmonella typhimurium. J Bacteriol 166:857-865.
    • (1986) J Bacteriol , vol.166 , pp. 857-865
    • Jensen, K.F.1    Fast, R.2    Karlstrom, O.3    Larsen, J.N.4
  • 402
    • 0021104916 scopus 로고
    • Nucleotide sequence of the Escherichia coli pyrE gene and of the DNA in front of the protein-coding region
    • Poulsen P, Jensen KF, Valentin-Hansen P, Carlsson P, Lundberg LG. 1983. Nucleotide sequence of the Escherichia coli pyrE gene and of the DNA in front of the protein-coding region. Eur J Biochem 135:223-229. https://doi.org/10.1111/j.1432-1033.1983.tb07641.x.
    • (1983) Eur J Biochem , vol.135 , pp. 223-229
    • Poulsen, P.1    Jensen, K.F.2    Valentin-Hansen, P.3    Carlsson, P.4    Lundberg, L.G.5
  • 404
    • 0027938707 scopus 로고
    • Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine- 1-phosphate uridyltransferase activities of Escherichia coli: Characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis
    • Mengin-Lecreulx D, van Heijenoort J. 1994. Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine- 1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis. J Bacteriol 176:5788-5795.
    • (1994) J Bacteriol , vol.176 , pp. 5788-5795
    • Mengin-Lecreulx, D.1    Van Heijenoort, J.2
  • 405
    • 0036754289 scopus 로고    scopus 로고
    • The general stress protein Ctc of Bacillus subtilis is a ribosomal protein
    • Schmalisch M, Langbein I, Stulke J. 2002. The general stress protein Ctc of Bacillus subtilis is a ribosomal protein. J Mol Microbiol Biotechnol 4:495-501.
    • (2002) J Mol Microbiol Biotechnol , vol.4 , pp. 495-501
    • Schmalisch, M.1    Langbein, I.2    Stulke, J.3
  • 406
    • 0028842936 scopus 로고
    • Tricistronic operon expression of the genes gcaD (tms), which encodes N-acetylglucosamine 1-phosphate uridyltransferase, prs, which encodes phosphoribosyl diphosphate synthetase, and ctc in vegetative cells of Bacillus subtilis
    • Hilden I, Krath BN, Hove-Jensen B. 1995. Tricistronic operon expression of the genes gcaD (tms), which encodes N-acetylglucosamine 1-phosphate uridyltransferase, prs, which encodes phosphoribosyl diphosphate synthetase, and ctc in vegetative cells of Bacillus subtilis. J Bacteriol 177:7280-7284.
    • (1995) J Bacteriol , vol.177 , pp. 7280-7284
    • Hilden, I.1    Krath, B.N.2    Hove-Jensen, B.3
  • 407
    • 84941893490 scopus 로고    scopus 로고
    • Crystallization and preliminary X-ray diffraction study of phosphoribosyl pyrophosphate synthetase from e coli
    • Timofeev VI, Abramchik YA, Zhukhlistova NE, Kuranova IP. 2015. Crystallization and preliminary X-ray diffraction study of phosphoribosyl pyrophosphate synthetase from E. coli. Crystallogr Rep 60:683-688.
    • (2015) Crystallogr Rep , vol.60 , pp. 683-688
    • Timofeev, V.I.1    Abramchik, Y.A.2    Zhukhlistova, N.E.3    Kuranova, I.P.4
  • 414
    • 78650516239 scopus 로고    scopus 로고
    • A simplified method for rapid quantification of intracellular nucleoside triphosphates by onedimensional thin-layer chromatography
    • Jendresen CB, Kilstrup M, Martinussen J. 2011. A simplified method for rapid quantification of intracellular nucleoside triphosphates by onedimensional thin-layer chromatography. Anal Biochem 409:249-259. https://doi.org/10.1016/j.ab.2010.10.029.
    • (2011) Anal Biochem , vol.409 , pp. 249-259
    • Jendresen, C.B.1    Kilstrup, M.2    Martinussen, J.3
  • 415
    • 0027167459 scopus 로고
    • Evidence for a novel glycinamide ribonucleotide transformylase in Escherichia coli
    • Nygaard P, Smith JM. 1993. Evidence for a novel glycinamide ribonucleotide transformylase in Escherichia coli. J Bacteriol 175:3591-3597.
    • (1993) J Bacteriol , vol.175 , pp. 3591-3597
    • Nygaard, P.1    Smith, J.M.2
  • 416
    • 85011568290 scopus 로고    scopus 로고
    • Biosynthesis of 5-phosphoribosyl-1-pyrophosphate in plants: A review
    • Ashihara H. 2016. Biosynthesis of 5-phosphoribosyl-1-pyrophosphate in plants: a review. Eur Chem Bull 5:314-323.
    • (2016) Eur Chem Bull , vol.5 , pp. 314-323
    • Ashihara, H.1
  • 418
    • 85016999702 scopus 로고    scopus 로고
    • Metabolic gene products have evolved to interact with the cell wall integrity pathway in Saccharomyces cerevisiae
    • fow092
    • Ugbogu EA, Wang K, Schweizer LM, Schweizer M. 2016. Metabolic gene products have evolved to interact with the cell wall integrity pathway in Saccharomyces cerevisiae. FEMS Yeast Res pii:fow092. https://doi.org/ 10.1093/femsyr/fow092.
    • (2016) FEMS Yeast Res
    • Ugbogu, E.A.1    Wang, K.2    Schweizer, L.M.3    Schweizer, M.4
  • 421
    • 0345150714 scopus 로고
    • Regulatory properties of a plant phosphoribosylpyrophosphate synthetase
    • Ashihara H, Komamine A. 1974. Regulatory properties of a plant phosphoribosylpyrophosphate synthetase. Plant Sci Lett 2:119-123.
    • (1974) Plant Sci Lett , vol.2 , pp. 119-123
    • Ashihara, H.1    Komamine, A.2
  • 422
    • 84982124635 scopus 로고    scopus 로고
    • Pcal-1127, a highly stable and efficient ribose-5-phosphate pyrophosphokinase from Pyrobaculum calidifontis
    • Bibi T, Perveen S, Aziz I, Bashir Q, Rashid N, Imanaka T, Akhtar M. 2016. Pcal-1127, a highly stable and efficient ribose-5-phosphate pyrophosphokinase from Pyrobaculum calidifontis. Extremophiles 20:821-830. https://doi.org/10.1007/s00792-016-0869-z.
    • (2016) Extremophiles , vol.20 , pp. 821-830
    • Bibi, T.1    Perveen, S.2    Aziz, I.3    Bashir, Q.4    Rashid, N.5    Imanaka, T.6    Akhtar, M.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.