-
1
-
-
0028360374
-
A mammalian protein targeted by G1-Arresting rapamycin-receptor complex
-
Brown EJ, Albers MW, Bum Shin T, ichikawa K, Keith CT, Lane WS et al A mammalian protein targeted by G1-Arresting rapamycin-receptor complex Nature 1994; 369: 756-758
-
(1994)
Nature
, vol.369
, pp. 756-758
-
-
Brown, E.J.1
Albers, M.W.2
Bum, S.T.3
Ichikawa, K.4
Keith, C.T.5
Lane, W.S.6
-
2
-
-
0028239893
-
RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs
-
Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 1994; 78: 35-43
-
(1994)
Cell
, vol.78
, pp. 35-43
-
-
Sabatini, D.M.1
Erdjument-Bromage, H.2
Lui, M.3
Tempst, P.4
Snyder, S.H.5
-
3
-
-
79952284127
-
Hallmarks of cancer: The next generation
-
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144: 646-674
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
4
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
-
Sarbassov DD, Ali SM, Kim D-H, Guertin DA, Latek RR, Erdjument-Bromage H et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004; 14: 1296-1302
-
(2004)
Curr Biol
, vol.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
Ali, S.M.2
Kim, D.-H.3
Guertin, D.A.4
Latek, R.R.5
Erdjument-Bromage, H.6
-
5
-
-
7944235758
-
Mammalian tor complex 2 controls the actin cytoskeleton and is rapamycin insensitive
-
Jacinto E, Loewith R, Schmidt A, Lin S, Röegg MA, Hall A et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004; 6: 1122-1128
-
(2004)
Nat Cell Biol
, vol.6
, pp. 1122-1128
-
-
Jacinto, E.1
Loewith, R.2
Schmidt, A.3
Lin, S.4
Röegg, M.A.5
Hall, A.6
-
6
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante M, Sabatini DM. mTOR signaling in growth control and disease Cell 2012; 149: 274-293
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
7
-
-
84877761058
-
MTOR kinase structure, mechanism and regulation
-
Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP. mTOR kinase structure, mechanism and regulation. Nature 2013; 497: 217-223
-
(2013)
Nature
, vol.497
, pp. 217-223
-
-
Yang, H.1
Rudge, D.G.2
Koos, J.D.3
Vaidialingam, B.4
Yang, H.J.5
Pavletich, N.P.6
-
8
-
-
84952950121
-
Architecture of human mTOR complex 1
-
Aylett CHS, Sauer E, Imseng S, Boehringer D, Hall MN, Ban N et al. Architecture of human mTOR complex 1. Science 2015; 351: 48-52
-
(2015)
Science
, vol.351
, pp. 48-52
-
-
Chs, A.1
Sauer, E.2
Imseng, S.3
Boehringer, D.4
Hall, M.N.5
Ban, N.6
-
9
-
-
84946216201
-
PtdIns 3 4, 5 P3-dependent activation of the mTORC2 kinase complex
-
Liu P, Gan W, Chin YR, Ogura K, Guo J, Zhang J et al. PtdIns(3, 4, 5)P3-dependent activation of the mTORC2 kinase complex. Cancer Discov 2015; 5: 1194-1209
-
(2015)
Cancer Discov
, vol.5
, pp. 1194-1209
-
-
Liu, P.1
Gan, W.2
Chin, Y.R.3
Ogura, K.4
Guo, J.5
Zhang, J.6
-
10
-
-
84937633778
-
Molecular basis of the rapamycin insensitivity of target of rapamycin complex 2
-
Gaubitz C, Oliveira TM, Prouteau M, Leitner A, Karuppasamy M, Konstantinidou G et al. Molecular basis of the rapamycin insensitivity of target of rapamycin complex 2. Mol Cell 2015; 58: 977-988
-
(2015)
Mol Cell
, vol.58
, pp. 977-988
-
-
Gaubitz, C.1
Oliveira, T.M.2
Prouteau, M.3
Leitner, A.4
Karuppasamy, M.5
Konstantinidou, G.6
-
11
-
-
79952293503
-
Activation of mTORC2 by association with the ribosome
-
Zinzalla V, Stracka D, Oppliger W, Hall MN. Activation of mTORC2 by association with the ribosome. Cell 2011; 144: 757-768
-
(2011)
Cell
, vol.144
, pp. 757-768
-
-
Zinzalla, V.1
Stracka, D.2
Oppliger, W.3
Hall, M.N.4
-
12
-
-
84925545317
-
PI3K in cancer: Divergent roles of isoforms, modes of activation and therapeutic targeting
-
Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 2014; 15: 7-24
-
(2014)
Nat Rev Cancer
, vol.15
, pp. 7-24
-
-
Thorpe, L.M.1
Yuzugullu, H.2
Zhao, J.J.3
-
13
-
-
0036713778
-
TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
-
Inoki K, Li Y, Zhu T, Wu J, Guan K-L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol Nature 2002; 4: 648-657
-
(2002)
Nat Cell Biol Nature
, vol.4
, pp. 648-657
-
-
Inoki, K.1
Li, Y.2
Zhu, T.3
Wu, J.4
Guan, K.-L.5
-
14
-
-
0036342294
-
Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway
-
Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway. Mol Cell 2002; 10: 151-162
-
(2002)
Mol Cell
, vol.10
, pp. 151-162
-
-
Manning, B.D.1
Tee, A.R.2
Logsdon, M.N.3
Blenis, J.4
Cantley, L.C.5
-
16
-
-
0043127125
-
Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
-
Inoki K, Li Y, Xu T, Guan K-L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003; 17: 1829-1834
-
(2003)
Genes Dev
, vol.17
, pp. 1829-1834
-
-
Inoki, K.1
Li, Y.2
Xu, T.3
Guan, K.-L.4
-
17
-
-
0042701991
-
Tuberous sclerosis complex gene products, tuberin and hamartin, control mtor signaling by acting as a gtpase-Activating protein complex toward rheb
-
Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-Activating protein complex toward rheb. Curr Biol 2003; 13: 1259-1268
-
(2003)
Curr Biol
, vol.13
, pp. 1259-1268
-
-
Tee, A.R.1
Manning, B.D.2
Roux, P.P.3
Cantley, L.C.4
Blenis, J.5
-
18
-
-
33947264077
-
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
-
Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E et al PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 2007; 25: 903-915
-
(2007)
Mol Cell
, vol.25
, pp. 903-915
-
-
Sancak, Y.1
Thoreen, C.C.2
Peterson, T.R.3
Lindquist, R.A.4
Kang, S.A.5
Spooner, E.6
-
19
-
-
43249124698
-
PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis
-
Thedieck K, Polak P, Kim ML, Molle KD, Cohen A, Jenö P et al. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS One 2007; 2: e1217
-
(2007)
PLoS One
, vol.2
, pp. e1217
-
-
Thedieck, K.1
Polak, P.2
Kim, M.L.3
Molle, K.D.4
Cohen, A.5
Jenö, P.6
-
20
-
-
33847397874
-
Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40
-
Vander Haar E, Lee S-I, Bandhakavi S, Griffin TJ, Kim D-H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 2007; 9: 316-323
-
(2007)
Nat Cell Biol
, vol.9
, pp. 316-323
-
-
Vander Haar, E.1
Lee, S.-I.2
Bandhakavi, S.3
Griffin, T.J.4
Kim, D.-H.5
-
21
-
-
34547099855
-
PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding
-
Wang L, Harris TE, Roth RA, Lawrence JC. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem 2007; 282: 20036-20044
-
(2007)
J Biol Chem
, vol.282
, pp. 20036-20044
-
-
Wang, L.1
Harris, T.E.2
Roth, R.A.3
Lawrence, J.C.4
-
22
-
-
17444431201
-
Phosphorylation and functional inactivation of TSC2 by Erk: Implications for tuberous sclerosisand cancer pathogenesis
-
Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactivation of TSC2 by Erk: implications for tuberous sclerosisand cancer pathogenesis. Cell 2005; 121: 179-193
-
(2005)
Cell
, vol.121
, pp. 179-193
-
-
Ma, L.1
Chen, Z.2
Erdjument-Bromage, H.3
Tempst, P.4
Pandolfi, P.P.5
-
23
-
-
4544384577
-
Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase
-
Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 2004; 101: 13489-13494
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 13489-13494
-
-
Roux, P.P.1
Ballif, B.A.2
Anjum, R.3
Gygi, S.P.4
Blenis, J.5
-
24
-
-
51049083138
-
Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation
-
Carrière A, Cargnello M, Julien L-A, Gao H, Bonneil É, Thibault P et al. Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr Biol 2008; 18: 1269-1277
-
(2008)
Curr Biol
, vol.18
, pp. 1269-1277
-
-
Carrière, A.1
Cargnello, M.2
Julien, L.-A.3
Gao, H.4
Bonneil, E.5
Thibault, P.6
-
25
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K, Zhu T, Guan K-L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115: 577-590
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.-L.3
-
26
-
-
0028899789
-
Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes
-
Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 1995; 270: 2320-2326
-
(1995)
J Biol Chem
, vol.270
, pp. 2320-2326
-
-
Blommaart, E.F.1
Luiken, J.J.2
Blommaart, P.J.3
Van Woerkom, G.M.4
Meijer, A.J.5
-
27
-
-
0032486268
-
Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism
-
Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 1998; 273: 14484-14494
-
(1998)
J Biol Chem
, vol.273
, pp. 14484-14494
-
-
Hara, K.1
Yonezawa, K.2
Weng, Q.P.3
Kozlowski, M.T.4
Belham, C.5
Avruch, J.6
-
28
-
-
84953357060
-
Multiple amino acid sensing inputs to mTORC1
-
Shimobayashi M, Hall MN. Multiple amino acid sensing inputs to mTORC1 Cell Res 2016; 26: 7-20
-
(2016)
Cell Res
, vol.26
, pp. 7-20
-
-
Shimobayashi, M.1
Hall, M.N.2
-
29
-
-
84922743269
-
Metabolism Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
-
Wang S, Tsun Z-Y, Wolfson RL, Shen K, Wyant GA, Plovanich ME et al. Metabolism Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 2015; 347: 188-194
-
(2015)
Science
, vol.347
, pp. 188-194
-
-
Wang, S.1
Tsun, Z.-Y.2
Wolfson, R.L.3
Shen, K.4
Wyant, G.A.5
Plovanich, M.E.6
-
30
-
-
84862777407
-
Leucyl-TRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway
-
Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK et al. Leucyl-TRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway Cell 2012; 149: 410-424
-
(2012)
Cell
, vol.149
, pp. 410-424
-
-
Han, J.M.1
Jeong, S.J.2
Park, M.C.3
Kim, G.4
Kwon, N.H.5
Kim, H.K.6
-
31
-
-
84859704385
-
Leucyl-Trna synthetase controls torc1 via the ego complex
-
Bonfils G, Jaquenoud M, Bontron S, Ostrowicz C, Ungermann C, De Virgilio C Leucyl-TRNA synthetase controls TORC1 via the EGO complex. Mol Cell 2012; 46: 105-110
-
(2012)
Mol Cell
, vol.46
, pp. 105-110
-
-
Bonfils, G.1
Jaquenoud, M.2
Bontron, S.3
Ostrowicz, C.4
Ungermann, C.5
De Virgilio, C.6
-
32
-
-
84952915479
-
Sestrin2 is a leucine sensor for the mTORC1 pathway
-
Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, Cantor JR et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 2015; 351: 43-48
-
(2015)
Science
, vol.351
, pp. 43-48
-
-
Wolfson, R.L.1
Chantranupong, L.2
Saxton, R.A.3
Shen, K.4
Scaria, S.M.5
Cantor, J.R.6
-
33
-
-
45849105156
-
The rag gtpases bind raptor and mediate amino acid signaling to mtorc1
-
Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320: 1496-1501
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
Bar-Peled, L.6
-
34
-
-
84906971940
-
Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins
-
Stracka D, Jozefczuk S, Rudroff F, Sauer U, Hall MN. Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins. J Biol Chem 2014; 289: 25010-25020
-
(2014)
J Biol Chem
, vol.289
, pp. 25010-25020
-
-
Stracka, D.1
Jozefczuk, S.2
Rudroff, F.3
Sauer, U.4
Hall, M.N.5
-
35
-
-
84922727084
-
Metabolism differential regulation of mtorc1 by leucine and glutamine
-
Jewell JL, Kim YC, Russell RC, Yu F-X, Park HW, Plouffe SW et al. Metabolism Differential regulation of mTORC1 by leucine and glutamine. Science 2015; 347: 194-198
-
(2015)
Science
, vol.347
, pp. 194-198
-
-
Jewell, J.L.1
Kim, Y.C.2
Russell, R.C.3
Yu, F.-X.4
Park, H.W.5
Plouffe, S.W.6
-
36
-
-
0037097863
-
Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E
-
Fingar DC, Salama S, Tsou C, Harlow E, Blenis J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 2002; 16: 1472-1487
-
(2002)
Genes Dev
, vol.16
, pp. 1472-1487
-
-
Fingar, D.C.1
Salama, S.2
Tsou, C.3
Harlow, E.4
Blenis, J.5
-
37
-
-
77952967459
-
MTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs
-
Dowling RJO, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E et al mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 2010; 328: 1172-1176
-
(2010)
Science
, vol.328
, pp. 1172-1176
-
-
Rjo, D.1
Topisirovic, I.2
Alain, T.3
Bidinosti, M.4
Fonseca, B.D.5
Petroulakis, E.6
-
38
-
-
67349217986
-
Molecular mechanisms of mTOR-mediated translational control
-
Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control Nat Rev Mol Cell Biol 2009; 10: 307-318
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 307-318
-
-
Ma, X.M.1
Blenis, J.2
-
39
-
-
27744569843
-
MTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events
-
Holz MK, Ballif BA, Gygi SP, Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 2005; 123: 569-580
-
(2005)
Cell
, vol.123
, pp. 569-580
-
-
Holz, M.K.1
Ballif, B.A.2
Gygi, S.P.3
Blenis, J.4
-
40
-
-
1642355123
-
A novel mTOR-regulated phosphorylation site in elongation factor 2 kinase modulates the activity of the kinase and its binding to calmodulin
-
Browne GJ, Proud CG. A novel mTOR-regulated phosphorylation site in elongation factor 2 kinase modulates the activity of the kinase and its binding to calmodulin. Mol Cell Biol 2004; 24: 2986-2997
-
(2004)
Mol Cell Biol
, vol.24
, pp. 2986-2997
-
-
Browne, G.J.1
Proud, C.G.2
-
41
-
-
84862777192
-
The translational landscape of mTOR signalling steers cancer initiation and metastasis
-
Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature; 2012; 485: 55-61
-
(2012)
Nature
, vol.485
, pp. 55-61
-
-
Hsieh, A.C.1
Liu, Y.2
Edlind, M.P.3
Ingolia, N.T.4
Janes, M.R.5
Sher, A.6
-
42
-
-
1542343973
-
MTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability
-
Mayer C, Zhao J, Yuan X, Grummt I. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev 2004; 18: 423-434
-
(2004)
Genes Dev
, vol.18
, pp. 423-434
-
-
Mayer, C.1
Zhao, J.2
Yuan, X.3
Grummt, I.4
-
43
-
-
77955287244
-
MTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1
-
Kantidakis T, Ramsbottom BA, Birch JL, Dowding SN, White RJ. mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1. Proc Natl Acad Sci USA 2010; 107: 11823-11828
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 11823-11828
-
-
Kantidakis, T.1
Ramsbottom, B.A.2
Birch, J.L.3
Dowding, S.N.4
White, R.J.5
-
44
-
-
77952036652
-
Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells
-
Shor B, Wu J, Shakey Q, Toral-Barza L, Shi C, Follettie M et al. Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells. J Biol Chem 2010; 285: 15380-15392
-
(2010)
J Biol Chem
, vol.285
, pp. 15380-15392
-
-
Shor, B.1
Wu, J.2
Shakey, Q.3
Toral-Barza, L.4
Shi, C.5
Follettie, M.6
-
45
-
-
3342958797
-
The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins
-
Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H et al The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 2004; 166: 213-223
-
(2004)
J Cell Biol
, vol.166
, pp. 213-223
-
-
Harrington, L.S.1
Findlay, G.M.2
Gray, A.3
Tolkacheva, T.4
Wigfield, S.5
Rebholz, H.6
-
46
-
-
4544220704
-
Absence of S6K1 protects against age-And diet-induced obesity while enhancing insulin sensitivity
-
Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M et al. Absence of S6K1 protects against age-And diet-induced obesity while enhancing insulin sensitivity. Nature 2004; 431: 200-205
-
(2004)
Nature
, vol.431
, pp. 200-205
-
-
Um, S.H.1
Frigerio, F.2
Watanabe, M.3
Picard, F.4
Joaquin, M.5
Sticker, M.6
-
47
-
-
4544343980
-
Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion insulin resistance, and cell survival deficiencies
-
Shah OJ, Wang Z, Hunter T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies Curr Biol 2004; 14: 1650-1656
-
(2004)
Curr Biol
, vol.14
, pp. 1650-1656
-
-
Shah, O.J.1
Wang, Z.2
Hunter, T.3
-
48
-
-
79958696694
-
The mTORregulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
-
Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D et al. The mTORregulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 2011; 332: 1317-1322
-
(2011)
Science
, vol.332
, pp. 1317-1322
-
-
Hsu, P.P.1
Kang, S.A.2
Rameseder, J.3
Zhang, Y.4
Ottina, K.A.5
Lim, D.6
-
49
-
-
79958696336
-
Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling
-
Yu Y, Yoon S-O, Poulogiannis G, Yang Q, Ma XM, Villén J et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 2011; 332: 1322-1326
-
(2011)
Science
, vol.332
, pp. 1322-1326
-
-
Yu, Y.1
Yoon, S.-O.2
Poulogiannis, G.3
Yang, Q.4
Ma, X.M.5
Villén, J.6
-
50
-
-
2942724235
-
MTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways
-
Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 2004; 10: 594-601
-
(2004)
Nat Med
, vol.10
, pp. 594-601
-
-
Majumder, P.K.1
Febbo, P.G.2
Bikoff, R.3
Berger, R.4
Xue, Q.5
McMahon, L.M.6
-
51
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Dövel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010; 39: 171-183
-
(2010)
Mol Cell
, vol.39
, pp. 171-183
-
-
Dövel, K.1
Yecies, J.L.2
Menon, S.3
Raman, P.4
Lipovsky, A.I.5
Souza, A.L.6
-
52
-
-
79961165137
-
MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
-
Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011; 146: 408-420
-
(2011)
Cell
, vol.146
, pp. 408-420
-
-
Peterson, T.R.1
Sengupta, S.S.2
Harris, T.E.3
Carmack, A.E.4
Kang, S.A.5
Balderas, E.6
-
53
-
-
50049116472
-
-
Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth Cell Metab 2008; 8: 224-236
-
(2008)
SREBP Activity Is Regulated by mTORC1 and Contributes to Akt-dependent Cell Growth Cell Metab
, vol.8
, pp. 224-236
-
-
Porstmann, T.1
Santos, C.R.2
Griffiths, B.3
Cully, M.4
Wu, M.5
Leevers, S.6
-
54
-
-
84930328718
-
Oncogenic pi3k and k-ras stimulate de novo lipid synthesis through mtorc1 and srebp
-
Ricoult SJH, Yecies JL, Ben-Sahra I, Manning BD. Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP. Oncogene 2016; 35: 1250-1260
-
(2016)
Oncogene
, vol.35
, pp. 1250-1260
-
-
Sjh, R.1
Yecies, J.L.2
Ben-Sahra, I.3
Manning, B.D.4
-
55
-
-
84874995247
-
Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1
-
Ben-Sahra I, Howell JJ, Asara JM, Manning BD. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 2013; 339: 1323-1328
-
(2013)
Science
, vol.339
, pp. 1323-1328
-
-
Ben-Sahra, I.1
Howell, J.J.2
Asara, J.M.3
Manning, B.D.4
-
56
-
-
84874961313
-
Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis
-
Robitaille AM, Christen S, Shimobayashi M, Cornu M, Fava LL, Moes S et al Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 2013; 339: 1320-1323
-
(2013)
Science
, vol.339
, pp. 1320-1323
-
-
Robitaille, A.M.1
Christen, S.2
Shimobayashi, M.3
Cornu, M.4
Fava, L.L.5
Moes, S.6
-
57
-
-
84957899529
-
Manning BD. MTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle
-
Ben-Sahra I, Hoxhaj G, Ricoult SJH, Asara JM, Manning BD. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle Science 2016; 351: 728-733
-
(2016)
Science
, vol.351
, pp. 728-733
-
-
Ben-Sahra, I.1
Hoxhaj, G.2
Sjh, R.3
Asara, J.M.4
-
58
-
-
84874116164
-
A phase i dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors
-
Raez LE, Papadopoulos K, Ricart AD, Chiorean EG, Dipaola RS, Stein MN et al A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol 2013; 71: 523-530
-
(2013)
Cancer Chemother Pharmacol
, vol.71
, pp. 523-530
-
-
Raez, L.E.1
Papadopoulos, K.2
Ricart, A.D.3
Chiorean, E.G.4
Dipaola, R.S.5
Stein, M.N.6
-
59
-
-
84962670514
-
MTORC1-dependent metabolic reprogramming underlies escape from glycolysis addiction in cancer cells
-
Pusapati RV, Daemen A, Wilson C, Sandoval W, Gao M, Haley B et al. mTORC1-dependent metabolic reprogramming underlies escape from glycolysis addiction in cancer cells. Cancer Cell Elsevier 2016; 29: 548-562
-
(2016)
Cancer Cell Elsevier
, vol.29
, pp. 548-562
-
-
Pusapati, R.V.1
Daemen, A.2
Wilson, C.3
Sandoval, W.4
Gao, M.5
Haley, B.6
-
60
-
-
84937253537
-
The utilization of extracellular proteins as nutrients is suppressed by mTORC1
-
Palm W, Park Y, Wright K, Pavlova NN, Tuveson DA, Thompson CB. The utilization of extracellular proteins as nutrients is suppressed by mTORC1. Cell 2015; 162: 259-270
-
(2015)
Cell
, vol.162
, pp. 259-270
-
-
Palm, W.1
Park, Y.2
Wright, K.3
Pavlova, N.N.4
Tuveson, D.A.5
Thompson, C.B.6
-
61
-
-
84920504512
-
MTOR a pharmacologic target for autophagy regulation
-
Kim YC, Guan K-L. mTOR: A pharmacologic target for autophagy regulation J Clin Invest 2015; 125: 25-32
-
(2015)
J Clin Invest
, vol.125
, pp. 25-32
-
-
Kim, Y.C.1
Guan, K.-L.2
-
62
-
-
84920415711
-
The role for autophagy in cancer
-
White E. The role for autophagy in cancer. J Clin Invest 2015; 125: 42-46
-
(2015)
J Clin Invest
, vol.125
, pp. 42-46
-
-
White, E.1
-
63
-
-
0345166111
-
Beclin 1 an autophagy gene essential for early embryonic development is a haploinsufficient tumor suppressor
-
Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor Proc Natl Acad Sci USA 2003; 100: 15077-15082
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 15077-15082
-
-
Yue, Z.1
Jin, S.2
Yang, C.3
Levine, A.J.4
Heintz, N.5
-
64
-
-
9144240441
-
Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene
-
Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene J Clin Invest 2003; 112: 1809-1820
-
(2003)
J Clin Invest
, vol.112
, pp. 1809-1820
-
-
Qu, X.1
Yu, J.2
Bhagat, G.3
Furuya, N.4
Hibshoosh, H.5
Troxel, A.6
-
65
-
-
33745713171
-
Autophagy promotes tumor cell survival and restricts necrosis inflammation and tumorigenesis
-
Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G et al Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006; 10: 51-64
-
(2006)
Cancer Cell
, vol.10
, pp. 51-64
-
-
Degenhardt, K.1
Mathew, R.2
Beaudoin, B.3
Bray, K.4
Anderson, D.5
Chen, G.6
-
66
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
-
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307: 1098-1101
-
(2005)
Science
, vol.307
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
Sabatini, D.M.4
-
67
-
-
84878796897
-
Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2
-
Humphrey SJ, Yang G, Yang P, Fazakerley DJ, Stöckli J, Yang JY et al. Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2 Cell Metab 2013; 17: 1009-1020
-
(2013)
Cell Metab
, vol.17
, pp. 1009-1020
-
-
Humphrey, S.J.1
Yang, G.2
Yang, P.3
Fazakerley, D.J.4
Stöckli, J.5
Yang, J.Y.6
-
68
-
-
84947023702
-
A positive feedback loop between akt and mtorc2 via sin1 phosphorylation
-
Yang G, Murashige DS, Humphrey SJ, James DE. A positive feedback loop between Akt and mTORC2 via SIN1 phosphorylation. Cell Rep 2015; 12: 937-943
-
(2015)
Cell Rep
, vol.12
, pp. 937-943
-
-
Yang, G.1
Murashige, D.S.2
Humphrey, S.J.3
James, D.E.4
-
69
-
-
84887228819
-
Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signalling to suppress tumorigenesis
-
Liu P, Gan W, Inuzuka H, Lazorchak AS, Gao D, Arojo O et al. Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signalling to suppress tumorigenesis. Nat Cell Biol 2013; 15: 1340-1350
-
(2013)
Nat Cell Biol
, vol.15
, pp. 1340-1350
-
-
Liu, P.1
Gan, W.2
Inuzuka, H.3
Lazorchak, A.S.4
Gao, D.5
Arojo, O.6
-
70
-
-
84970023716
-
Inhibition of Rb phosphorylation leads to mTORC2-mediated activation of Akt
-
Zhang J, Xu K, Liu P, Geng Y, Wang B, Gan W et al. Inhibition of Rb phosphorylation leads to mTORC2-mediated activation of Akt. Mol Cell 2016; 62: 929-942
-
(2016)
Mol Cell
, vol.62
, pp. 929-942
-
-
Zhang, J.1
Xu, K.2
Liu, P.3
Geng, Y.4
Wang, B.5
Gan, W.6
-
71
-
-
58649114084
-
MTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice
-
Guertin DA, Stevens DM, Saitoh M, Kinkel S, Crosby K, Sheen J-H et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 2009; 15: 148-159
-
(2009)
Cancer Cell
, vol.15
, pp. 148-159
-
-
Guertin, D.A.1
Stevens, D.M.2
Saitoh, M.3
Kinkel, S.4
Crosby, K.5
Sheen, J.-H.6
-
72
-
-
84860816141
-
Oncogenic EGFR signaling activates an mTORC2-NF-KB pathway that promotes chemotherapy resistance
-
Tanaka K, Babic I, Nathanson D, Akhavan D, Guo D, Gini B et al. Oncogenic EGFR signaling activates an mTORC2-NF-KB pathway that promotes chemotherapy resistance. Cancer Discov 2011; 1: 524-538
-
(2011)
Cancer Discov
, vol.1
, pp. 524-538
-
-
Tanaka, K.1
Babic, I.2
Nathanson, D.3
Akhavan, D.4
Guo, D.5
Gini, B.6
-
73
-
-
84887430714
-
MTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc
-
Masui K, Tanaka K, Akhavan D, Babic I, Gini B, Matsutani T et al. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab 2013; 18: 726-739
-
(2013)
Cell Metab
, vol.18
, pp. 726-739
-
-
Masui, K.1
Tanaka, K.2
Akhavan, D.3
Babic, I.4
Gini, B.5
Matsutani, T.6
-
74
-
-
84912100879
-
SGK3 mediates INPP4B-dependent PI3K signaling in breast cancer
-
Gasser JA, Inuzuka H, Lau AW, Wei W, Beroukhim R, Toker A. SGK3 mediates INPP4B-dependent PI3K signaling in breast cancer. Mol Cell 2014; 56: 595-607
-
(2014)
Mol Cell
, vol.56
, pp. 595-607
-
-
Gasser, J.A.1
Inuzuka, H.2
Lau, A.W.3
Wei, W.4
Beroukhim, R.5
Toker, A.6
-
75
-
-
84891948402
-
MTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy
-
Weiler M, Blaes J, Pusch S, Sahm F, Czabanka M, Luger S et al. mTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy Proc Natl Acad Sci USA 2014; 111: 409-414
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 409-414
-
-
Weiler, M.1
Blaes, J.2
Pusch, S.3
Sahm, F.4
Czabanka, M.5
Luger, S.6
-
76
-
-
84878389598
-
Elevated SGK1 predicts resistance of breast cancer cells to Akt inhibitors
-
Sommer EM, Dry H, Cross D, Guichard S, Davies BR, Alessi DR. Elevated SGK1 predicts resistance of breast cancer cells to Akt inhibitors. Biochem J 2013; 452: 499-508
-
(2013)
Biochem J
, vol.452
, pp. 499-508
-
-
Sommer, E.M.1
Dry, H.2
Cross, D.3
Guichard, S.4
Davies, B.R.5
Alessi, D.R.6
-
77
-
-
37349025432
-
FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2
-
Bakker WJ, Harris IS, Mak TW. FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2. Mol Cell 2007; 28: 941-953
-
(2007)
Mol Cell
, vol.28
, pp. 941-953
-
-
Bakker, W.J.1
Harris, I.S.2
Mak, T.W.3
-
78
-
-
84938800080
-
Mtor directs breast morphogenesis through the pkc-Alpha-rac1 signaling
-
Morrison MM, Young CD, Wang S, Sobolik T, Sanchez VM, Hicks DJ et al. mTOR Directs Breast Morphogenesis through the PKC-Alpha-Rac1 Signaling Axis PLoS Genet 2015; 11: e1005291
-
(2015)
Axis PLoS Genet
, vol.11
, pp. e1005291
-
-
Morrison, M.M.1
Young, C.D.2
Wang, S.3
Sobolik, T.4
Sanchez, V.M.5
Hicks, D.J.6
-
79
-
-
84861719535
-
Vital roles of mTOR complex 2 in Notch-driven thymocyte differentiation and leukemia
-
Lee K, Nam KT, Cho SH, Gudapati P, Hwang Y, Park D-S et al. Vital roles of mTOR complex 2 in Notch-driven thymocyte differentiation and leukemia. J Exp Med 2012; 209: 713-728
-
(2012)
J Exp Med
, vol.209
, pp. 713-728
-
-
Lee, K.1
Nam, K.T.2
Cho, S.H.3
Gudapati, P.4
Hwang, Y.5
Park, D.-S.6
-
80
-
-
84960131361
-
RICTOR amplification defines a novel subset of lung cancer patients who may benefit from treatment with mTOR1/2 inhibitors
-
Cheng H, Zou Y, Ross JS, Wang K, Liu X, Halmos B et al. RICTOR amplification defines a novel subset of lung cancer patients who may benefit from treatment with mTOR1/2 inhibitors. Cancer Discov 2015; 5: 1262-1270
-
(2015)
Cancer Discov
, vol.5
, pp. 1262-1270
-
-
Cheng, H.1
Zou, Y.2
Ross, J.S.3
Wang, K.4
Liu, X.5
Halmos, B.6
-
81
-
-
84982126613
-
Rictor/mTORC2 drives progression and therapeutic resistance of HER2-Amplified breast cancers
-
Morrison-Joly M, Hicks DJ, Jones B, Sanchez V, Estrada M V, Young C et al. Rictor/mTORC2 drives progression and therapeutic resistance of HER2-Amplified breast cancers. Cancer Res 2016; 76: 4752-4764
-
(2016)
Cancer Res
, vol.76
, pp. 4752-4764
-
-
Morrison-Joly, M.1
Hicks, D.J.2
Jones, B.3
Sanchez, V.4
Estrada, M.V.5
Young, C.6
-
82
-
-
84896689570
-
Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets
-
Balko JM, Giltnane JM, Wang K, Schwarz LJ, Young CD, Cook RS et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov 2014; 4: 232-245
-
(2014)
Cancer Discov
, vol.4
, pp. 232-245
-
-
Balko, J.M.1
Giltnane, J.M.2
Wang, K.3
Schwarz, L.J.4
Young, C.D.5
Cook, R.S.6
-
83
-
-
37549048521
-
MTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor
-
Masri J, Bernath A, Martin J, Jo OD, Vartanian R, Funk A et al. mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. Cancer Res 2007; 67: 11712-11720
-
(2007)
Cancer Res
, vol.67
, pp. 11712-11720
-
-
Masri, J.1
Bernath, A.2
Martin, J.3
Jo, O.D.4
Vartanian, R.5
Funk, A.6
-
84
-
-
33646023695
-
Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
-
Sarbassov DD, Ali SM, Sengupta S, Sheen J-H, Hsu PP, Bagley AF et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006; 22: 159-168
-
(2006)
Mol Cell
, vol.22
, pp. 159-168
-
-
Sarbassov, D.D.1
Ali, S.M.2
Sengupta, S.3
Sheen, J.-H.4
Hsu, P.P.5
Bagley, A.F.6
-
86
-
-
34249779568
-
Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma
-
Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 2007; 356: 2271-2281
-
(2007)
N Engl J Med
, vol.356
, pp. 2271-2281
-
-
Hudes, G.1
Carducci, M.2
Tomczak, P.3
Dutcher, J.4
Figlin, R.5
Kapoor, A.6
-
87
-
-
68049137608
-
Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin
-
Yu K, Toral-Barza L, Shi C, Zhang W-G, Lucas J, Shor B et al. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 2009; 69: 6232-6240
-
(2009)
Cancer Res
, vol.69
, pp. 6232-6240
-
-
Yu, K.1
Toral-Barza, L.2
Shi, C.3
Zhang, W.-G.4
Lucas, J.5
Shor, B.6
-
88
-
-
23844438209
-
Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition
-
Sun S-Y, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H et al. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res 2005; 65: 7052-7058
-
(2005)
Cancer Res
, vol.65
, pp. 7052-7058
-
-
Sun, S.-Y.1
Rosenberg, L.M.2
Wang, X.3
Zhou, Z.4
Yue, P.5
Fu, H.6
-
89
-
-
32944457518
-
MTOR inhibition induces upstream receptor tyrosine kinase signaling and activates
-
OReilly KE, Rojo F, She Q-B, Solit D, Mills GB, Smith D et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 2006; 66: 1500-1508
-
(2006)
Akt Cancer Res
, vol.66
, pp. 1500-1508
-
-
Oreilly, K.E.1
Rojo, F.2
She, Q.-B.3
Solit, D.4
Mills, G.B.5
Smith, D.6
-
90
-
-
84866928171
-
Safety, tolerability, pharmacokinetics and pharmacodynamics of AZD8055 in advanced solid tumours and lymphoma
-
Naing A, Aghajanian C, Raymond E, Olmos D, Schwartz G, Oelmann E et al Safety, tolerability, pharmacokinetics and pharmacodynamics of AZD8055 in advanced solid tumours and lymphoma. Br J Cancer 2012; 107: 1093-1099
-
(2012)
Br J Cancer
, vol.107
, pp. 1093-1099
-
-
Naing, A.1
Aghajanian, C.2
Raymond, E.3
Olmos, D.4
Schwartz, G.5
Oelmann, E.6
-
91
-
-
84937815039
-
First-in-human pharmacokinetic and pharmacodynamic study of the dual m-TORC 1/2 inhibitor AZD2014
-
Basu B, Dean E, Puglisi M, Greystoke A, Ong M, Burke W et al. First-in-human pharmacokinetic and pharmacodynamic study of the dual m-TORC 1/2 inhibitor AZD2014. Clin Cancer Res 2015; 21: 3412-3419
-
(2015)
Clin Cancer Res
, vol.21
, pp. 3412-3419
-
-
Basu, B.1
Dean, E.2
Puglisi, M.3
Greystoke, A.4
Ong, M.5
Burke, W.6
-
92
-
-
84969872786
-
Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor
-
Rodrik-Outmezguine VS, Okaniwa M, Yao Z, Novotny CJ, McWhirter C, Banaji A et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature 2016; 534: 272-276
-
(2016)
Nature
, vol.534
, pp. 272-276
-
-
Rodrik-Outmezguine, V.S.1
Okaniwa, M.2
Yao, Z.3
Novotny, C.J.4
McWhirter, C.5
Banaji, A.6
-
93
-
-
84904622446
-
Phase i study of pf-04691502, a small-molecule, oral, dual inhibitor of pi3k and mtor, in patients with advanced cancer
-
Britten CD, Adjei AA, Millham R, Houk BE, Borzillo G, Pierce K et al. Phase I study of PF-04691502, a small-molecule, oral, dual inhibitor of PI3K and mTOR, in patients with advanced cancer. Invest New Drugs 2014; 32: 510-517
-
(2014)
Invest New Drugs
, vol.32
, pp. 510-517
-
-
Britten, C.D.1
Adjei, A.A.2
Millham, R.3
Houk, B.E.4
Borzillo, G.5
Pierce, K.6
-
94
-
-
84894589324
-
Phase i safety and pharmacokinetic study of the PI3K/mTOR inhibitor SAR245409 (XL765) combination with erlotinib in patients with advanced solid tumors
-
Jänne PA, Cohen RB, Laird AD, Macé S, Engelman JA, Ruiz-Soto R et al. Phase I safety and pharmacokinetic study of the PI3K/mTOR inhibitor SAR245409 (XL765) in combination with erlotinib in patients with advanced solid tumors J Thorac Oncol 2014; 9: 316-323
-
(2014)
J Thorac Oncol
, vol.9
, pp. 316-323
-
-
Jänne, P.A.1
Cohen, R.B.2
Laird, A.D.3
Macé, S.4
Engelman, J.A.5
Ruiz-Soto, R.6
-
95
-
-
0039700194
-
P70 S6 kinase-mediated protein synthesis is a critical step for vascular endothelial cell proliferation
-
Viñals F, Chambard JC, Pouysségur J. p70 S6 kinase-mediated protein synthesis is a critical step for vascular endothelial cell proliferation. J Biol Chem 1999; 274: 26776-26782
-
(1999)
J Biol Chem
, vol.274
, pp. 26776-26782
-
-
Viñals, F.1
Chambard, J.C.2
Pouysségur, J.3
-
96
-
-
0036174289
-
Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: Involvement of vascular endothelial growth factor
-
Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M et al Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 2002; 8: 128-135
-
(2002)
Nat Med
, vol.8
, pp. 128-135
-
-
Guba, M.1
Von Breitenbuch, P.2
Steinbauer, M.3
Koehl, G.4
Flegel, S.5
Hornung, M.6
-
97
-
-
0036789574
-
Regulation of hypoxia-inducible factor 1 expression and function by the mammalian target of rapamycin
-
Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F et al Regulation of hypoxia-inducible factor 1 expression and function by the mammalian target of rapamycin. Mol Cell Biol 2002; 22: 7004-7014
-
(2002)
Mol Cell Biol
, vol.22
, pp. 7004-7014
-
-
Hudson, C.C.1
Liu, M.2
Chiang, G.G.3
Otterness, D.M.4
Loomis, D.C.5
Kaper, F.6
-
98
-
-
33747488399
-
PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR
-
Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, Teruya-Feldstein J et al PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature 2006; 442: 779-785
-
(2006)
Nature
, vol.442
, pp. 779-785
-
-
Bernardi, R.1
Guernah, I.2
Jin, D.3
Grisendi, S.4
Alimonti, A.5
Teruya-Feldstein, J.6
-
99
-
-
84959088866
-
Constitutive activation of mTORC1 in endothelial cells leads to the development and progression of lymphangiosarcoma through VEGF autocrine signaling
-
Sun S, Chen S, Liu F, Wu H, McHugh J, Bergin IL et al. Constitutive activation of mTORC1 in endothelial cells leads to the development and progression of lymphangiosarcoma through VEGF autocrine signaling. Cancer Cell 2015; 28: 758-772
-
(2015)
Cancer Cell
, vol.28
, pp. 758-772
-
-
Sun, S.1
Chen, S.2
Liu, F.3
Wu, H.4
McHugh, J.5
Bergin, I.L.6
-
100
-
-
84924863743
-
Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways
-
Wang S, Amato KR, Song W, Youngblood V, Lee K, Boothby M et al. Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways. Mol Cell Biol 2015; 35: 1299-1313
-
(2015)
Mol Cell Biol
, vol.35
, pp. 1299-1313
-
-
Wang, S.1
Amato, K.R.2
Song, W.3
Youngblood, V.4
Lee, K.5
Boothby, M.6
-
101
-
-
33751348056
-
Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1
-
Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J et al Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1 Dev Cell 2006; 11: 859-871
-
(2006)
Dev Cell
, vol.11
, pp. 859-871
-
-
Guertin, D.A.1
Stevens, D.M.2
Thoreen, C.C.3
Burds, A.A.4
Kalaany, N.Y.5
Moffat, J.6
-
102
-
-
84943154401
-
Endothelial cell mTOR complex-2 regulates sprouting angiogenesis
-
Farhan MA, Carmine-Simmen K, Lewis JD, Moore RB, Murray AG. Endothelial cell mTOR complex-2 regulates sprouting angiogenesis. PLoS One 2015; 10: e0135245
-
(2015)
PLoS One
, vol.10
, pp. e0135245
-
-
Farhan, M.A.1
Carmine-Simmen, K.2
Lewis, J.D.3
Moore, R.B.4
Murray, A.G.5
-
103
-
-
84958603422
-
CXCL12/CXCR4: A symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks
-
Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W. CXCL12/CXCR4: A symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 2016; 35: 816-826
-
(2016)
Oncogene
, vol.35
, pp. 816-826
-
-
Guo, F.1
Wang, Y.2
Liu, J.3
Mok, S.C.4
Xue, F.5
Zhang, W.6
-
104
-
-
33746800144
-
Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin
-
Phung TL, Ziv K, Dabydeen D, Eyiah-Mensah G, Riveros M, Perruzzi C et al Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell 2006; 10: 159-170
-
(2006)
Cancer Cell
, vol.10
, pp. 159-170
-
-
Phung, T.L.1
Ziv, K.2
Dabydeen, D.3
Eyiah-Mensah, G.4
Riveros, M.5
Perruzzi, C.6
-
105
-
-
84876586696
-
Phosphoproteomic analysis implicates the mTORC2-FoxO1 axis in VEGF signaling and feedback activation of receptor tyrosine kinases
-
Zhuang G, Yu K, Jiang Z, Chung A, Yao J, Ha C et al. Phosphoproteomic analysis implicates the mTORC2-FoxO1 axis in VEGF signaling and feedback activation of receptor tyrosine kinases. Sci Signal 2013; 6: ra25
-
(2013)
Sci Signal
, vol.6
, pp. 25
-
-
Zhuang, G.1
Yu, K.2
Jiang, Z.3
Chung, A.4
Yao, J.5
Ha, C.6
-
106
-
-
33846295218
-
FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis
-
Paik J-H, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis Cell 2007; 128: 309-323
-
(2007)
Cell
, vol.128
, pp. 309-323
-
-
Paik, J.-H.1
Kollipara, R.2
Chu, G.3
Ji, H.4
Xiao, Y.5
Ding, Z.6
-
107
-
-
84955112522
-
FOXO1 couples metabolic activity and growth state in the vascular endothelium
-
advance on
-
Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich MF, Lim R et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016, advance on
-
(2016)
Nature Nature Publishing Group, A Division of Macmillan Publishers Limited. All Rights Reserved
-
-
Wilhelm, K.1
Happel, K.2
Eelen, G.3
Schoors, S.4
Oellerich, M.F.5
Lim, R.6
-
108
-
-
84875973051
-
MTOR inhibitors block Kaposi sarcoma growth by inhibiting essential autocrine growth factors and tumor angiogenesis
-
Roy D, Sin S-H, Lucas A, Venkataramanan R, Wang L, Eason A et al. mTOR inhibitors block Kaposi sarcoma growth by inhibiting essential autocrine growth factors and tumor angiogenesis. Cancer Res 2013; 73: 2235-2246
-
(2013)
Cancer Res
, vol.73
, pp. 2235-2246
-
-
Roy, D.1
Sin, S.-H.2
Lucas, A.3
Venkataramanan, R.4
Wang, L.5
Eason, A.6
-
109
-
-
84875846289
-
Tumor VEGF:VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer
-
Chatterjee S, Heukamp LC, Siobal M, Schöttle J, Wieczorek C, Peifer M et al Tumor VEGF:VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer. J Clin Invest 2013; 123: 1732-1740
-
(2013)
J Clin Invest
, vol.123
, pp. 1732-1740
-
-
Chatterjee, S.1
Heukamp, L.C.2
Siobal, M.3
Schöttle, J.4
Wieczorek, C.5
Peifer, M.6
-
110
-
-
63449098382
-
MTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor
-
Lane HA, Wood JM, McSheehy PMJ, Allegrini PR, Boulay A, Brueggen J et al mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor. Clin Cancer Res 2009; 15: 1612-1622
-
(2009)
Clin Cancer Res
, vol.15
, pp. 1612-1622
-
-
Lane, H.A.1
Wood, J.M.2
Pmj, M.3
Allegrini, P.R.4
Boulay, A.5
Brueggen, J.6
-
111
-
-
24644447853
-
Enhanced radiation damage of tumor vasculature by mTOR inhibitors
-
Shinohara ET, Cao C, Niermann K, Mu Y, Zeng F, Hallahan DE et al. Enhanced radiation damage of tumor vasculature by mTOR inhibitors. Oncogene 2005; 24: 5414-5422
-
(2005)
Oncogene
, vol.24
, pp. 5414-5422
-
-
Shinohara, E.T.1
Cao, C.2
Niermann, K.3
Mu, Y.4
Zeng, F.5
Hallahan, D.E.6
-
112
-
-
84855371890
-
Dual inhibition of the PI3K/mTOR pathway increases tumor radiosensitivity by normalizing tumor vasculature
-
Fokas E, Im JH, Hill S, Yameen S, Stratford M, Beech J et al. Dual inhibition of the PI3K/mTOR pathway increases tumor radiosensitivity by normalizing tumor vasculature. Cancer Res 2012; 72: 239-248
-
(2012)
Cancer Res
, vol.72
, pp. 239-248
-
-
Fokas, E.1
Im, J.H.2
Hill, S.3
Yameen, S.4
Stratford, M.5
Beech, J.6
-
113
-
-
84928774156
-
The future of immune checkpoint therapy
-
Sharma P, Allison JP, Curtin JA, Fridlyand J, Kageshita T, Patel HN et al. The future of immune checkpoint therapy. Science 2015; 348: 56-61
-
(2015)
Science
, vol.348
, pp. 56-61
-
-
Sharma, P.1
Allison, J.P.2
Curtin, J.A.3
Fridlyand, J.4
Kageshita, T.5
Patel, H.N.6
-
114
-
-
84958963164
-
Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer
-
Lastwika KJ, Wilson W, Li QK, Norris J, Xu H, Ghazarian SR et al. Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res 2016; 76: 227-238
-
(2016)
Cancer Res
, vol.76
, pp. 227-238
-
-
Lastwika, K.J.1
Wilson, W.2
Li, Q.K.3
Norris, J.4
Xu, H.5
Ghazarian, S.R.6
-
115
-
-
84941367700
-
Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth
-
Kleffel S, Posch C, Barthel SR, Mueller H, Schlapbach C, Guenova E et al Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth Cell 2015; 162: 1242-1256
-
(2015)
Cell
, vol.162
, pp. 1242-1256
-
-
Kleffel, S.1
Posch, C.2
Barthel, S.R.3
Mueller, H.4
Schlapbach, C.5
Guenova, E.6
-
116
-
-
84946592868
-
Plasticity beyond cancer cells and the immunosuppressive switch
-
Granot Z, Fridlender ZG. Plasticity beyond cancer cells and the immunosuppressive switch. Cancer Res 2015; 75: 4441-4445
-
(2015)
Cancer Res
, vol.75
, pp. 4441-4445
-
-
Granot, Z.1
Fridlender, Z.G.2
-
117
-
-
66949173728
-
The mTOR kinase differentially regulates effector and regulatory
-
Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment Immunity 2009; 30: 832-844
-
(2009)
T Cell Lineage Commitment Immunity
, vol.30
, pp. 832-844
-
-
Delgoffe, G.M.1
Kole, T.P.2
Zheng, Y.3
Zarek, P.E.4
Matthews, K.L.5
Xiao, B.6
-
118
-
-
77953897189
-
Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways
-
Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S, Killeen N et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 2010; 32: 743-753
-
(2010)
Immunity
, vol.32
, pp. 743-753
-
-
Lee, K.1
Gudapati, P.2
Dragovic, S.3
Spencer, C.4
Joyce, S.5
Killeen, N.6
-
119
-
-
84899094151
-
The agc kinase sgk1 regulates th1 and th2 differentiation downstream of the mtorc2 complex
-
Heikamp EB, Patel CH, Collins S, Waickman A, Oh M-H, Sun I-H et al. The AGC kinase SGK1 regulates TH1 and TH2 differentiation downstream of the mTORC2 complex. Nat Immunol 2014; 15: 457-464
-
(2014)
Nat Immunol
, vol.15
, pp. 457-464
-
-
Heikamp, E.B.1
Patel, C.H.2
Collins, S.3
Waickman, A.4
Oh, M.-H.5
Sun, I.-H.6
-
120
-
-
84929008302
-
MTORC1 and mTORC2 selectively regulate CD8+ T cell differentiation
-
Pollizzi KN, Patel CH, Sun I-H, Oh M-H, Waickman AT, Wen J et al. mTORC1 and mTORC2 selectively regulate CD8+ T cell differentiation. J Clin Invest 2015; 125: 2090-2108
-
(2015)
J Clin Invest
, vol.125
, pp. 2090-2108
-
-
Pollizzi, K.N.1
Patel, C.H.2
Sun, I.-H.3
Oh, M.-H.4
Waickman, A.T.5
Wen, J.6
-
121
-
-
67650074206
-
MTOR regulates memory CD8 T-cell differentiation
-
Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF et al mTOR regulates memory CD8 T-cell differentiation. Nature 2009; 460: 108-112
-
(2009)
Nature
, vol.460
, pp. 108-112
-
-
Araki, K.1
Turner, A.P.2
Shaffer, V.O.3
Gangappa, S.4
Keller, S.A.5
Bachmann, M.F.6
-
122
-
-
84957963858
-
Mammalian target of rapamycin complex 2 controls CD8 T cell memory differentiation in a Foxo1-dependent manner
-
Zhang L, Tschumi BO, Lopez-Mejia IC, Oberle SG, Meyer M, Samson G et al Mammalian target of rapamycin complex 2 controls CD8 T cell memory differentiation in a Foxo1-dependent manner. Cell Rep 2016; 14: 1206-1217
-
(2016)
Cell Rep
, vol.14
, pp. 1206-1217
-
-
Zhang, L.1
Tschumi, B.O.2
Lopez-Mejia, I.C.3
Oberle, S.G.4
Meyer, M.5
Samson, G.6
-
123
-
-
84889249320
-
The tsc-mtor pathway regulates macrophage polarization
-
Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD et al. The TSC-mTOR pathway regulates macrophage polarization. Nat Commun 2013; 4: 2834
-
(2013)
Nat Commun
, vol.4
, pp. 2834
-
-
Byles, V.1
Covarrubias, A.J.2
Ben-Sahra, I.3
Lamming, D.W.4
Sabatini, D.M.5
Manning, B.D.6
-
124
-
-
84887729393
-
Requirement for rictor in homeostasis and function of mature b lymphoid cells
-
Lee K, Heffington L, Jellusova J, Nam KT, Raybuck A, Cho SH et al. Requirement for Rictor in homeostasis and function of mature B lymphoid cells. Blood 2013; 122: 2369-2379
-
(2013)
Blood
, vol.122
, pp. 2369-2379
-
-
Lee, K.1
Heffington, L.2
Jellusova, J.3
Nam, K.T.4
Raybuck, A.5
Cho, S.H.6
-
125
-
-
84961393725
-
A first in man, dose-finding study of the mtorc1/mtorc2 inhibitor osi-027 in patients with advanced solid malignancies
-
Mateo J, Olmos D, Dumez H, Poondru S, Samberg NL, Barr S et al. A first in man, dose-finding study of the mTORC1/mTORC2 inhibitor OSI-027 in patients with advanced solid malignancies. Br J Cancer 2016; 114: 889-896
-
(2016)
Br J Cancer
, vol.114
, pp. 889-896
-
-
Mateo, J.1
Olmos, D.2
Dumez, H.3
Poondru, S.4
Samberg, N.L.5
Barr, S.6
-
126
-
-
84941236891
-
A randomised phase 2 study of AZD2014 versus everolimus in patients with VEGF-refractory metastatic clear cell renal cancer
-
Powles T, Wheater M, Din O, Geldart T, Boleti E, Stockdale A et al. A randomised phase 2 study of AZD2014 versus everolimus in patients with VEGF-refractory metastatic clear cell renal cancer. Eur Urol 2016; 69: 450-456
-
(2016)
Eur Urol
, vol.69
, pp. 450-456
-
-
Powles, T.1
Wheater, M.2
Din, O.3
Geldart, T.4
Boleti, E.5
Stockdale, A.6
-
127
-
-
84937706014
-
A phase i dose-escalation study to assess safety, tolerability, pharmacokinetics, and preliminary efficacy of the dual mTORC1/mTORC2 kinase inhibitor CC-223 in patients with advanced solid tumors or multiple myeloma
-
Bendell JC, Kelley RK, Shih KC, Grabowsky JA, Bergsland E, Jones S et al. A phase I dose-escalation study to assess safety, tolerability, pharmacokinetics, and preliminary efficacy of the dual mTORC1/mTORC2 kinase inhibitor CC-223 in patients with advanced solid tumors or multiple myeloma. Cancer 2015; 121: 3481-3490
-
(2015)
Cancer
, vol.121
, pp. 3481-3490
-
-
Bendell, J.C.1
Kelley, R.K.2
Shih, K.C.3
Grabowsky, J.A.4
Bergsland, E.5
Jones, S.6
-
128
-
-
84939949523
-
A phase 1 study of the sachet formulation of the oral dual PI3K/mTOR inhibitor BEZ235 given twice daily (BID) in patients with advanced solid tumors
-
Bendell JC, Kurkjian C, Infante JR, Bauer TM, Burris HA, Greco FA et al. A phase 1 study of the sachet formulation of the oral dual PI3K/mTOR inhibitor BEZ235 given twice daily (BID) in patients with advanced solid tumors. Invest New Drugs 2015; 33: 463-471
-
(2015)
Invest New Drugs
, vol.33
, pp. 463-471
-
-
Bendell, J.C.1
Kurkjian, C.2
Infante, J.R.3
Bauer, T.M.4
Burris, H.A.5
Greco, F.A.6
-
129
-
-
84982084226
-
Phase II study of dual phosphoinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR0 inhibitor BEZ235 in patients with locally advanced or metastatic transitional cell carcinoma (TCC)
-
Seront E, Rottey S, Filleul B, Glorieux P, Goeminne J, Verschaeve V et al. Phase II study of dual phosphoinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitor BEZ235 in patients with locally advanced or metastatic transitional cell carcinoma (TCC). BJU Int 2016; 118: 408-415
-
(2016)
BJU Int
, vol.118
, pp. 408-415
-
-
Seront, E.1
Rottey, S.2
Filleul, B.3
Glorieux, P.4
Goeminne, J.5
Verschaeve, V.6
-
130
-
-
84961831124
-
A phase II study of BEZ235 in patients with everolimus-resistant, advanced pancreatic neuroendocrine tumours
-
Fazio N, Buzzoni R, Baudin E, Antonuzzo L, Hubner RA, Lahner H et al. A phase II study of BEZ235 in patients with everolimus-resistant, advanced pancreatic neuroendocrine tumours. Anticancer Res 2016; 36: 713-719
-
(2016)
Anticancer Res
, vol.36
, pp. 713-719
-
-
Fazio, N.1
Buzzoni, R.2
Baudin, E.3
Antonuzzo, L.4
Hubner, R.A.5
Lahner, H.6
-
131
-
-
84940739005
-
Phase i dose-escalation study of the PI3K/mTOR inhibitor voxtalisib (SAR245409, XL765) plus temozolomide with or without radiotherapy in patients with high-grade glioma
-
Wen PY, Omuro A, Ahluwalia MS, Fathallah-Shaykh HM, Mohile N, Lager JJ et al. Phase I dose-escalation study of the PI3K/mTOR inhibitor voxtalisib (SAR245409, XL765) plus temozolomide with or without radiotherapy in patients with high-grade glioma. Neuro Oncol 2015; 17: 1275-1283
-
(2015)
Neuro Oncol
, vol.17
, pp. 1275-1283
-
-
Wen, P.Y.1
Omuro, A.2
Ahluwalia, M.S.3
Fathallah-Shaykh, H.M.4
Mohile, N.5
Lager, J.J.6
-
132
-
-
84932147143
-
Efficacy, safety, pharmacokinetics and pharmacodynamics of SAR245409 (voxtalisib, XL765), an orally administered phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor: A phase 1 expansion cohort in patients with relapsed or refractory lymphoma
-
Papadopoulos KP, Egile C, Ruiz-Soto R, Jiang J, Shi W, Bentzien F et al. Efficacy, safety, pharmacokinetics and pharmacodynamics of SAR245409 (voxtalisib, XL765), an orally administered phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor: A phase 1 expansion cohort in patients with relapsed or refractory lymphoma. Leuk Lymphoma 2015; 56: 1763-1770
-
(2015)
Leuk Lymphoma
, vol.56
, pp. 1763-1770
-
-
Papadopoulos, K.P.1
Egile, C.2
Ruiz-Soto, R.3
Jiang, J.4
Shi, W.5
Bentzien, F.6
-
133
-
-
84899750348
-
Phase i safety, pharmacokinetic, and pharmacodynamic study of SAR245409 (XL765), a novel, orally administered PI3K/mTOR inhibitor in patients with advanced solid tumors
-
Papadopoulos KP, Tabernero J, Markman B, Patnaik A, Tolcher AW, Baselga J et al. Phase I safety, pharmacokinetic, and pharmacodynamic study of SAR245409 (XL765), a novel, orally administered PI3K/mTOR inhibitor in patients with advanced solid tumors. Clin Cancer Res 2014; 20: 2445-2456
-
(2014)
Clin Cancer Res
, vol.20
, pp. 2445-2456
-
-
Papadopoulos, K.P.1
Tabernero, J.2
Markman, B.3
Patnaik, A.4
Tolcher, A.W.5
Baselga, J.6
-
134
-
-
84975089435
-
Phase i study of apitolisib (GDC-0980), dual phosphatidylinositol-3-kinase and mammalian target of rapamycin kinase inhibitor, in patients with advanced solid tumors
-
Dolly SO, Wagner AJ, Bendell JC, Kindler HL, Krug LM, Seiwert TY et al. Phase I study of apitolisib (GDC-0980), dual phosphatidylinositol-3-kinase and mammalian target of rapamycin kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res 2016; 22: 2874-2884
-
(2016)
Clin Cancer Res
, vol.22
, pp. 2874-2884
-
-
Dolly, S.O.1
Wagner, A.J.2
Bendell, J.C.3
Kindler, H.L.4
Krug, L.M.5
Seiwert, T.Y.6
-
135
-
-
84970024646
-
Randomized open-label phase II trial of apitolisib (GDC-0980), a novel inhibitor of the PI3K/mammalian target of rapamycin pathway, versus everolimus in patients with metastatic renal cell carcinoma
-
Powles T, Lackner MR, Oudard S, Escudier B, Ralph C, Brown JE et al. Randomized open-label phase II trial of apitolisib (GDC-0980), a novel inhibitor of the PI3K/mammalian target of rapamycin pathway, versus everolimus in patients with metastatic renal cell carcinoma. J Clin Oncol 2016; 34: 1660-1668
-
(2016)
J Clin Oncol
, vol.34
, pp. 1660-1668
-
-
Powles, T.1
Lackner, M.R.2
Oudard, S.3
Escudier, B.4
Ralph, C.5
Brown, J.E.6
-
136
-
-
84927624149
-
First-inhuman study of PF-05212384 (PKI-587), a small-molecule, intravenous, dual inhibitor of PI3K and mTOR in patients with advanced cancer
-
Shapiro GI, Bell-McGuinn KM, Molina JR, Bendell J, Spicer J, Kwak EL et al. First-inhuman study of PF-05212384 (PKI-587), a small-molecule, intravenous, dual inhibitor of PI3K and mTOR in patients with advanced cancer. Clin Cancer Res 2015; 21: 1888-1895
-
(2015)
Clin Cancer Res
, vol.21
, pp. 1888-1895
-
-
Shapiro, G.I.1
Bell-McGuinn, K.M.2
Molina, J.R.3
Bendell, J.4
Spicer, J.5
Kwak, E.L.6
-
137
-
-
84966292102
-
First-in-human phase i study of GSK2126458, an oral pan-class i phosphatidylinositol-3-kinase inhibitor, in patients with advanced solid tumor malignancies
-
Munster P, Aggarwal R, Hong D, Schellens JHM, van der Noll R, Specht J et al First-in-human phase I study of GSK2126458, an oral pan-class I phosphatidylinositol-3-kinase inhibitor, in patients with advanced solid tumor malignancies. Clin Cancer Res 2015; 22: 1932-1939
-
(2015)
Clin Cancer Res
, vol.22
, pp. 1932-1939
-
-
Munster, P.1
Aggarwal, R.2
Hong, D.3
Jhm, S.4
Van Der Noll, R.5
Specht, J.6
-
138
-
-
84964388892
-
A randomized phase II non-comparative study of PF-04691502 and gedatolisib (PF-05212384) in patients with recurrent endometrial cancer
-
Del Campo JM, Birrer M, Davis C, Fujiwara K, Gollerkeri A, Gore M et al A randomized phase II non-comparative study of PF-04691502 and gedatolisib (PF-05212384) in patients with recurrent endometrial cancer. Gynecol Oncol 2016; 142: 62-69
-
(2016)
Gynecol Oncol
, vol.142
, pp. 62-69
-
-
Del Campo, J.M.1
Birrer, M.2
Davis, C.3
Fujiwara, K.4
Gollerkeri, A.5
Gore, M.6
|