메뉴 건너뛰기




Volumn 497, Issue 7448, 2013, Pages 217-223

MTOR kinase structure, mechanism and regulation

Author keywords

[No Author keywords available]

Indexed keywords

2 (4 AMINO 1 ISOPROPYL 1H PYRAZOLO[3,4 D]PYRIMIDIN 3 YL) 1H INDOL 5 OL; MAMMALIAN TARGET OF RAPAMYCIN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; PHOSPHATIDYLINOSITOL 3 KINASE;

EID: 84877761058     PISSN: 00280836     EISSN: 14764687     Source Type: Journal    
DOI: 10.1038/nature12122     Document Type: Article
Times cited : (843)

References (53)
  • 1
    • 78650510609 scopus 로고    scopus 로고
    • MTOR: From growth signal integration to cancer, diabetes and ageing
    • Zoncu, R., Efeyan, A. & Sabatini, D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Rev. Mol. Cell Biol. 12, 21-35 (2011).
    • (2011) Nature Rev. Mol. Cell Biol , vol.12 , pp. 21-35
    • Zoncu, R.1    Efeyan, A.2    Sabatini, D.M.3
  • 2
    • 33745307617 scopus 로고    scopus 로고
    • Ras, PI(3)K and mTOR signalling controls tumour cell growth
    • Shaw, R. J. & Cantley, L. C. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, 424-430 (2006).
    • (2006) Nature , vol.441 , pp. 424-430
    • Shaw, R.J.1    Cantley, L.C.2
  • 3
    • 0028800996 scopus 로고
    • PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints
    • Keith, C. T. & Schreiber, S. L. PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science 270, 50-51 (1995).
    • (1995) Science , vol.270 , pp. 50-51
    • Keith, C.T.1    Schreiber, S.L.2
  • 4
    • 0037178781 scopus 로고    scopus 로고
    • Raptor a binding partner of target of rapamycin (TOR) mediates TOR action
    • Hara, K. et al.Raptor, a binding partner of target of rapamycin (TOR),mediatesTOR action. Cell 110, 177-189 (2002).
    • (2002) Cell , vol.110 , pp. 177-189
    • Hara, K.1
  • 5
    • 0037178786 scopus 로고    scopus 로고
    • MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
    • Kim, D. H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163-175 (2002).
    • (2002) Cell , vol.110 , pp. 163-175
    • Kim, D.H.1
  • 6
    • 0036753494 scopus 로고    scopus 로고
    • Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
    • Loewith, R. et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457-468 (2002).
    • (2002) Mol. Cell , vol.10 , pp. 457-468
    • Loewith, R.1
  • 7
    • 3342895823 scopus 로고    scopus 로고
    • Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
    • Sarbassov, D. D. et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14, 1296-1302 (2004).
    • (2004) Curr. Biol , vol.14 , pp. 1296-1302
    • Sarbassov, D.D.1
  • 8
    • 0037732600 scopus 로고    scopus 로고
    • LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway
    • Chen, E. J. & Kaiser, C. A. LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway. J. Cell Biol. 161, 333-347 (2003).
    • (2003) J. Cell Biol , vol.161 , pp. 333-347
    • Chen, E.J.1    Kaiser, C.A.2
  • 9
    • 0037623417 scopus 로고    scopus 로고
    • GbL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR
    • Kim, D. H. et al. GbL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell 11, 895-904 (2003).
    • (2003) Mol. Cell , vol.11 , pp. 895-904
    • Kim, D.H.1
  • 10
    • 45849105156 scopus 로고    scopus 로고
    • The Rag GTPases bind raptor andmediateamino acid signaling to mTORC1
    • Sancak, Y. et al. The Rag GTPases bind raptor andmediateamino acid signaling to mTORC1. Science 320, 1496-1501 (2008).
    • (2008) Science , vol.320 , pp. 1496-1501
    • Sancak, Y.1
  • 12
    • 0038643484 scopus 로고    scopus 로고
    • Rheb promotes cell growth as a component of the insulin/TOR signalling network
    • Saucedo, L. J. et al. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nature Cell Biol. 5, 566-571 (2003).
    • (2003) Nature Cell Biol , vol.5 , pp. 566-571
    • Saucedo, L.J.1
  • 13
    • 0038304516 scopus 로고    scopus 로고
    • Rheb is an essential regulator of S6K in controlling cell growth in Drosophila
    • Stocker, H. et al. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nature Cell Biol. 5, 559-566 (2003).
    • (2003) Nature Cell Biol , vol.5 , pp. 559-566
    • Stocker, H.1
  • 15
    • 67649823420 scopus 로고    scopus 로고
    • Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein
    • Sato, T., Nakashima, A., Guo, L. & Tamanoi, F. Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J. Biol. Chem. 284, 12783-12791 (2009).
    • (2009) J. Biol. Chem , vol.284 , pp. 12783-12791
    • Sato, T.1    Nakashima, A.2    Guo, L.3    Tamanoi, F.4
  • 16
    • 33947264077 scopus 로고    scopus 로고
    • PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
    • Sancak, Y. et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 25, 903-915 (2007).
    • (2007) Mol. Cell , vol.25 , pp. 903-915
    • Sancak, Y.1
  • 17
    • 0038141979 scopus 로고    scopus 로고
    • Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins
    • Zhang, Y. et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nature Cell Biol. 5, 578-581 (2003).
    • (2003) Nature Cell Biol , vol.5 , pp. 578-581
    • Zhang, Y.1
  • 18
    • 67349217986 scopus 로고    scopus 로고
    • Molecular mechanisms of mTOR-mediated translational control
    • Ma, X. M. & Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nature Rev. Mol. Cell Biol. 10, 307-318 (2009).
    • (2009) Nature Rev. Mol. Cell Biol , vol.10 , pp. 307-318
    • Ma, X.M.1    Blenis, J.2
  • 19
    • 0037718389 scopus 로고    scopus 로고
    • TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function
    • Schalm, S. S., Fingar, D. C., Sabatini, D. M. & Blenis, J. TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr. Biol. 13, 797-806 (2003).
    • (2003) Curr. Biol , vol.13 , pp. 797-806
    • Schalm, S.S.1    Fingar, D.C.2    Sabatini, D.M.3    Blenis, J.4
  • 20
    • 0037507252 scopus 로고    scopus 로고
    • The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif
    • Nojima, H. et al. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J. Biol. Chem. 278, 15461-15464 (2003).
    • (2003) J. Biol. Chem , vol.278 , pp. 15461-15464
    • Nojima, H.1
  • 21
    • 34547133519 scopus 로고    scopus 로고
    • The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1
    • Oshiro, N. et al. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J. Biol. Chem. 282, 20329-20339 (2007).
    • (2007) J. Biol. Chem , vol.282 , pp. 20329-20339
    • Oshiro, N.1
  • 22
    • 34548359244 scopus 로고    scopus 로고
    • PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex
    • Fonseca, B. D., Smith, E. M., Lee, V. H., MacKintosh, C. & Proud, C. G. PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. J. Biol. Chem. 282, 24514-24524 (2007).
    • (2007) J. Biol. Chem , vol.282 , pp. 24514-24524
    • Fonseca, B.D.1    Smith, E.M.2    Lee, V.H.3    MacKintosh, C.4    Proud, C.G.5
  • 23
    • 7944235758 scopus 로고    scopus 로고
    • Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
    • Jacinto, E. et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nature Cell Biol. 6, 1122-1128 (2004).
    • (2004) Nature Cell Biol , vol.6 , pp. 1122-1128
    • Jacinto, E.1
  • 24
    • 0029842109 scopus 로고    scopus 로고
    • Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP
    • Choi, J., Chen, J., Schreiber, S. L. & Clardy, J. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 273, 239-242 (1996).
    • (1996) Science , vol.273 , pp. 239-242
    • Choi, J.1    Chen, J.2    Schreiber, S.L.3    Clardy, J.4
  • 25
    • 61449235398 scopus 로고    scopus 로고
    • Not all substrates are treated equally: Implications for mTOR, rapamycin-resistance and cancer therapy
    • Choo, A. Y. & Blenis, J. Not all substrates are treated equally: implications for mTOR, rapamycin-resistance and cancer therapy. Cell Cycle 8, 567-572 (2009).
    • (2009) Cell Cycle , vol.8 , pp. 567-572
    • Choo, A.Y.1    Blenis, J.2
  • 26
    • 79953298958 scopus 로고    scopus 로고
    • Next-generationmTORinhibitors in clinical oncology: How pathway complexity informs therapeutic strategy
    • Wander, S. A., Hennessy, B. T. & Slingerland, J. M.Next- generationmTORinhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J. Clin. Invest. 121, 1231-1241 (2011).
    • (2011) J. Clin. Invest , vol.121 , pp. 1231-1241
    • Wander, S.A.1    Hennessy, B.T.2    Slingerland, J.M.3
  • 27
    • 68249113593 scopus 로고    scopus 로고
    • Common mechanisms of PIKK regulation
    • Lovejoy, C. A. & Cortez, D. Common mechanisms of PIKK regulation. DNA Repair (Amst.) 8, 1004-1008 (2009).
    • (2009) DNA Repair (Amst.) , vol.8 , pp. 1004-1008
    • Lovejoy, C.A.1    Cortez, D.2
  • 29
    • 0033581886 scopus 로고    scopus 로고
    • Structural insights into phosphoinositide 3-kinase catalysis and signalling
    • Walker, E. H., Perisic, O., Ried, C., Stephens, L. & Williams, R. L. Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature 402, 313-320 (1999).
    • (1999) Nature , vol.402 , pp. 313-320
    • Walker, E.H.1    Perisic, O.2    Ried, C.3    Stephens, L.4    Williams, R.L.5
  • 30
    • 73849140503 scopus 로고    scopus 로고
    • Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats
    • Sibanda, B. L., Chirgadze, D. Y. & Blundell, T. L. Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised ofHEAT repeats.Nature 463, 118-121 (2010).
    • (2010) Nature , vol.463 , pp. 118-121
    • Sibanda, B.L.1    Chirgadze, D.Y.2    Blundell, T.L.3
  • 31
    • 4444353636 scopus 로고    scopus 로고
    • Regulation of protein kinases; Controlling activity through activation segment conformation
    • Nolen, B., Taylor, S. & Ghosh, G. Regulation of protein kinases; controlling activity through activation segment conformation. Mol. Cell 15, 661-675 (2004).
    • (2004) Mol. Cell , vol.15 , pp. 661-675
    • Nolen, B.1    Taylor, S.2    Ghosh, G.3
  • 32
    • 77950212231 scopus 로고    scopus 로고
    • Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34
    • Miller, S. et al. Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science 327, 1638-1642 (2010).
    • (2010) Science , vol.327 , pp. 1638-1642
    • Miller, S.1
  • 33
    • 0036837863 scopus 로고    scopus 로고
    • The rapamycin-binding domain governs substrate selectivity by the mammalian target of rapamycin
    • McMahon, L. P., Choi, K. M., Lin, T. A., Abraham, R. T. & Lawrence, J. C. Jr. The rapamycin-binding domain governs substrate selectivity by the mammalian target of rapamycin. Mol. Cell. Biol. 22, 7428-7438 (2002).
    • (2002) Mol. Cell. Biol , vol.22 , pp. 7428-7438
    • McMahon, L.P.1    Choi, K.M.2    Lin, T.A.3    Abraham, R.T.4    Lawrence Jr., J.C.5
  • 34
    • 0034234924 scopus 로고    scopus 로고
    • A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and themammalian target of rapamycin in mitogen-stimulated and transformed cells
    • Sekulic, A. et al. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and themammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 60, 3504-3513 (2000).
    • (2000) Cancer Res , vol.60 , pp. 3504-3513
    • Sekulic, A.1
  • 35
    • 3342931591 scopus 로고    scopus 로고
    • An activated mTOR mutant supports growth factor-independent, nutrient-dependent cell survival
    • Edinger, A. L. & Thompson, C. B. An activated mTOR mutant supports growth factor-independent, nutrient-dependent cell survival. Oncogene 23, 5654-5663 (2004).
    • (2004) Oncogene , vol.23 , pp. 5654-5663
    • Edinger, A.L.1    Thompson, C.B.2
  • 36
    • 79955844083 scopus 로고    scopus 로고
    • Briefly bound to activate: Transient binding of a second catalytic magnesiumactivates the structure and dynamics of CDK2 kinase for catalysis
    • Bao, Z. Q., Jacobsen, D. M. & Young, M. A. Briefly bound to activate: transient binding of a second catalytic magnesiumactivates the structure and dynamics of CDK2 kinase for catalysis. Structure 19, 675-690 (2011).
    • (2011) Structure , vol.19 , pp. 675-690
    • Bao, Z.Q.1    Jacobsen, D.M.2    Young, M.A.3
  • 37
    • 0036215864 scopus 로고    scopus 로고
    • Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase
    • Madhusudan, A. P. Xuong, N. H.& Taylor, S. S. Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase. Nature Struct. Biol. 9, 273-277 (2002).
    • (2002) Nature Struct. Biol , vol.9 , pp. 273-277
    • Madhusudan, A.P.1    Xuong, N.H.2    Taylor, S.S.3
  • 38
    • 0029103330 scopus 로고
    • Control of p70 s6 kinase by kinase activity of FRAP in vivo
    • Brown, E. J. et al. Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature 377, 441-446 (1995).
    • (1995) Nature , vol.377 , pp. 441-446
    • Brown, E.J.1
  • 39
    • 79958696694 scopus 로고    scopus 로고
    • The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
    • Hsu, P. P. et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-1322 (2011).
    • (2011) Science , vol.332 , pp. 1317-1322
    • Hsu, P.P.1
  • 40
    • 0033548071 scopus 로고    scopus 로고
    • The FKBP12-rapamycin-binding domain is required for FKBP12-rapamycin- associated protein kinase activity and G1 progression
    • Vilella-Bach, M., Nuzzi, P., Fang, Y. & Chen, J. The FKBP12-rapamycin-binding domain is required for FKBP12-rapamycin-associated protein kinase activity and G1 progression. J. Biol. Chem. 274, 4266-4272 (1999).
    • (1999) J. Biol. Chem , vol.274 , pp. 4266-4272
    • Vilella-Bach, M.1    Nuzzi, P.2    Fang, Y.3    Chen, J.4
  • 41
    • 42349113247 scopus 로고    scopus 로고
    • A new pharmacologic action of CCI-779 involves FKBP12-independent inhibition ofmTOR kinase activity and profound repression of global protein synthesis
    • Shor, B. et al. A new pharmacologic action of CCI-779 involves FKBP12-independent inhibition ofmTOR kinase activity and profound repression of global protein synthesis. Cancer Res. 68, 2934-2943 (2008).
    • (2008) Cancer Res , vol.68 , pp. 2934-2943
    • Shor, B.1
  • 42
    • 61649121557 scopus 로고    scopus 로고
    • A conserved docking surface on calcineurin mediates interaction with substrates and immunosuppressants
    • Rodr?́guez, A. et al. A conserved docking surface on calcineurin mediates interaction with substrates and immunosuppressants. Mol. Cell 33, 616-626 (2009).
    • (2009) Mol. Cell , vol.33 , pp. 616-626
    • Rodŕguez, A.1
  • 43
    • 57649137958 scopus 로고    scopus 로고
    • Isolation of hyperactivemutants ofmammalian target of rapamycin
    • Ohne, Y. et al. Isolation of hyperactivemutants ofmammalian target of rapamycin. J. Biol. Chem. 283, 31861-31870 (2008).
    • (2008) J. Biol. Chem , vol.283 , pp. 31861-31870
    • Ohne, Y.1
  • 44
    • 33846024055 scopus 로고    scopus 로고
    • Caffeine targets TOR complex i and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p
    • Reinke, A., Chen, J. C., Aronova, S. & Powers, T. Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. J. Biol. Chem. 281, 31616-31626 (2006).
    • (2006) J. Biol. Chem , vol.281 , pp. 31616-31626
    • Reinke, A.1    Chen, J.C.2    Aronova, S.3    Powers, T.4
  • 45
    • 33847651745 scopus 로고    scopus 로고
    • Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells
    • Urano, J. et al. Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells. Proc. Natl Acad. Sci. USA 104, 3514-3519 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 3514-3519
    • Urano, J.1
  • 46
    • 79952265072 scopus 로고    scopus 로고
    • Discovery of 9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl) phenyl)benzo[h][ 1,6]naphthyridin-2(1H)-one (Torin2) as a potent, selective, and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer
    • Liu, Q. et al. Discovery of 9-(6-aminopyridin-3-yl)-1-(3- (trifluoromethyl) phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2) as a potent, selective, and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer. J. Med. Chem. 54, 1473-1480 (2011).
    • (2011) J. Med. Chem , vol.54 , pp. 1473-1480
    • Liu, Q.1
  • 47
    • 54249162351 scopus 로고    scopus 로고
    • Targeted polypharmacology: Discovery of dual inhibitors of tyrosine and phosphoinositide kinases
    • Apsel, B. et al. Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nature Chem. Biol. 4, 691-699 (2008).
    • (2008) Nature Chem. Biol , vol.4 , pp. 691-699
    • Apsel, B.1
  • 48
    • 33646383684 scopus 로고    scopus 로고
    • A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling
    • Knight, Z. A. et al. A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125, 733-747 (2006).
    • (2006) Cell , vol.125 , pp. 733-747
    • Knight, Z.A.1
  • 49
    • 0031059866 scopus 로고    scopus 로고
    • Processing of X-ray diffraction data collected in oscillation mode
    • Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326 (1997).
    • (1997) Methods Enzymol , vol.276 , pp. 307-326
    • Otwinowski, Z.1    Minor, W.2
  • 50
    • 0242460576 scopus 로고    scopus 로고
    • Generation, representation and flow of phase information in structure determination: Recent developments in and around SHARP 2.0
    • Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D 59, 2023-2030 (2003).
    • (2003) Acta Crystallogr. D , vol.59 , pp. 2023-2030
    • Bricogne, G.1    Vonrhein, C.2    Flensburg, C.3    Schiltz, M.4    Paciorek, W.5
  • 51
    • 0028103275 scopus 로고
    • The CCP4 suite: Programs for protein crystallography
    • Collaborative Computational Project, Number 4
    • Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760-763 (1994).
    • (1994) Acta Crystallogr. D , vol.50 , pp. 760-763
  • 52
    • 84889120137 scopus 로고
    • Improved methods for building protein models in electron density maps and the location of errors in these models
    • Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110-119 (1991).
    • (1991) Acta Crystallogr. A , vol.47 , pp. 110-119
    • Jones, T.A.1    Zou, J.Y.2    Cowan, S.W.3    Kjeldgaard, M.4
  • 53
    • 76449098262 scopus 로고    scopus 로고
    • PHENIX: A comprehensive Python-based system for macromolecular structure solution
    • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213-221 (2010).
    • (2010) Acta Crystallogr. D , vol.66 , pp. 213-221
    • Adams, P.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.