메뉴 건너뛰기




Volumn 53, Issue 3, 2020, Pages

Generalizing from a Few Examples: A Survey on Few-shot Learning

Author keywords

Few shot learning; low shot learning; meta learning; one shot learning; prior knowledge; small sample learning

Indexed keywords

MACHINE LEARNING;

EID: 85089438604     PISSN: 03600300     EISSN: 15577341     Source Type: Journal    
DOI: 10.1145/3386252     Document Type: Article
Times cited : (2451)

References (166)
  • 4
    • 85026486382 scopus 로고    scopus 로고
    • Low data drug discovery with one-shot learning
    • 2017
    • H. Altae-Tran, B. Ramsundar, A. S. Pappu, and V. Pande. 2017. Low data drug discovery with one-shot learning. ACS Central Sci. 3, 4 (2017), 283-293.
    • (2017) Acs Central Sci. , vol.3 , Issue.4 , pp. 283-293
    • Altae-Tran, H.1    Ramsundar, B.2    Pappu, A.S.3    Pande, V.4
  • 18
    • 85046649212 scopus 로고    scopus 로고
    • Optimization methods for large-scale machine learning
    • 2018
    • L. Bottou, F. E. Curtis, and J. Nocedal. 2018. Optimization methods for large-scale machine learning. SIAM Rev. 60, 2 (2018), 223-311.
    • (2018) Siam Rev. , vol.60 , Issue.2 , pp. 223-311
    • Bottou, L.1    Curtis, F.E.2    Nocedal, J.3
  • 23
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • 1997
    • R. Caruana. 1997. Multitask learning. Mach. Learn. 28, 1 (1997), 41-75.
    • (1997) Mach. Learn. , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 36
    • 84898963788 scopus 로고    scopus 로고
    • Object classification from a single example utilizing class relevance metrics
    • MIT Press
    • M. Fink. 2005. Object classification from a single example utilizing class relevance metrics. In Advances in Neural Information Processing Systems. MIT Press, 449-456.
    • (2005) Advances in Neural Information Processing Systems , pp. 449-456
    • Fink, M.1
  • 54
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • 2008
    • H. He and E. A. Garcia. 2008. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 9 (2008), 1263-1284.
    • (2008) Ieee Trans. Knowl. Data Eng. , vol.9 , pp. 1263-1284
    • He, H.1    Garcia, E.A.2
  • 57
    • 85059386002 scopus 로고    scopus 로고
    • The variational homoencoder: Learning to learn high capacity generative models from few examples
    • Elsevier/North Holland
    • L. B. Hewitt, M. I. Nye, A. Gane, T. Jaakkola, and J. B. Tenenbaum. 2018. The variational homoencoder: Learning to learn high capacity generative models from few examples. In Uncertainty in Artificial Intelligence. Elsevier/North Holland, 988-997.
    • (2018) Uncertainty in Artificial Intelligence , pp. 988-997
    • Hewitt, L.B.1    Nye, M.I.2    Gane, A.3    Jaakkola, T.4    Tenenbaum, J.B.5
  • 58
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • 1997
    • S. Hochreiter and J. Schmidhuber. 1997. Long short-term memory. Neural Comput. 9, 8 (1997), 1735-1780.
    • (1997) Neural Comput. , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 62
    • 84937837455 scopus 로고    scopus 로고
    • A unified semantic embedding: Relating taxonomies and attributes
    • MIT Press
    • S. J. Hwang and L. Sigal. 2014. A unified semantic embedding: Relating taxonomies and attributes. In Advances in Neural Information Processing Systems. MIT Press, 271-279.
    • (2014) Advances in Neural Information Processing Systems , pp. 271-279
    • Hwang, S.J.1    Sigal, L.2
  • 71
    • 85020694807 scopus 로고    scopus 로고
    • Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA
    • 2017
    • L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown. 2017. Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA. J. Mach. Learn. Res. 18, 1 (2017), 826-830.
    • (2017) J. Mach. Learn. Res. , vol.18 , Issue.1 , pp. 826-830
    • Kotthoff, L.1    Thornton, C.2    Hoos, H.H.3    Hutter, F.4    Leyton-Brown, K.5
  • 76
    • 84949683101 scopus 로고    scopus 로고
    • Human-level concept learning through probabilistic program induction
    • 2015
    • B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. 2015. Human-level concept learning through probabilistic program induction. Science 350, 6266 (2015), 1332-1338.
    • (2015) Science , vol.350 , Issue.6266 , pp. 1332-1338
    • Lake, B.M.1    Salakhutdinov, R.2    Tenenbaum, J.B.3
  • 86
    • 0028531585 scopus 로고
    • Quantifying prior determination knowledge using the PAC learning model
    • 1994
    • S. Mahadevan and P. Tadepalli. 1994. Quantifying prior determination knowledge using the PAC learning model. Mach. Learn. 17, 1 (1994), 69-105.
    • (1994) Mach. Learn. , vol.17 , Issue.1 , pp. 69-105
    • Mahadevan, S.1    Tadepalli, P.2
  • 101
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • 2010
    • S. J. Pan and Q. Yang. 2010. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 10, 22 (2010), 1345-1359.
    • (2010) Ieee Trans. Knowl. Data Eng. , vol.10 , Issue.22 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 117
    • 68949137209 scopus 로고    scopus 로고
    • Technical Report. University of Wisconsin-Madison Department of Computer Sciences
    • B. Settles. 2009. Active Learning Literature Survey. Technical Report. University of Wisconsin-Madison Department of Computer Sciences.
    • (2009) Active Learning Literature Survey
    • Settles, B.1
  • 134
    • 0002988210 scopus 로고
    • Computing machinery and intelligence
    • 1950
    • M. A. Turing. 1950. Computing machinery and intelligence. Mind 59, 236 (1950), 433-433.
    • (1950) Mind , vol.59 , Issue.236 , pp. 433-433
    • Turing, M.A.1
  • 142
    • 85018930461 scopus 로고    scopus 로고
    • Learning from small sample sets by combining unsupervised meta-training with CNNs
    • MIT Press
    • Y.-X. Wang and M. Hebert. 2016. Learning from small sample sets by combining unsupervised meta-training with CNNs. In Advances in Neural Information Processing Systems. MIT Press, 244-252.
    • (2016) Advances in Neural Information Processing Systems , pp. 244-252
    • Wang, Y.-X.1    Hebert, M.2
  • 150
    • 85042208215 scopus 로고    scopus 로고
    • Few-shot learning for short text classification
    • 2018
    • L. Yan, Y. Zheng, and J. Cao. 2018. Few-shot learning for short text classification. Multimedia Tools Appl. 77, 22 (2018), 29799-29810.
    • (2018) Multimedia Tools Appl. , vol.77 , Issue.22 , pp. 29799-29810
    • Yan, L.1    Zheng, Y.2    Cao, J.3
  • 160
    • 85074222465 scopus 로고    scopus 로고
    • Fine-grained visual categorization using meta-learning optimization with sample selection of auxiliary data
    • Y. Zhang, H. Tang, and K. Jia. 2018. Fine-grained visual categorization using meta-learning optimization with sample selection of auxiliary data. In Proceedings of the European Conference on Computer Vision. 233-248.
    • (2018) Proceedings of the European Conference on Computer Vision , pp. 233-248
    • Zhang, Y.1    Tang, H.2    Jia, K.3
  • 163
    • 85042566177 scopus 로고    scopus 로고
    • A brief introduction to weakly supervised learning
    • 2017
    • Z.-H. Zhou. 2017. A brief introduction to weakly supervised learning. Natl. Sci. Rev. 5, 1 (2017), 44-53.
    • (2017) Natl. Sci. Rev. , vol.5 , Issue.1 , pp. 44-53
    • Zhou, Z.-H.1
  • 165
    • 33745456231 scopus 로고    scopus 로고
    • Technical Report. University of Wisconsin-Madison Department of Computer Sciences
    • X. J. Zhu. 2005. Semi-supervised Learning Literature Survey. Technical Report. University of Wisconsin-Madison Department of Computer Sciences.
    • (2005) Semi-supervised Learning Literature Survey
    • Zhu, X.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.