메뉴 건너뛰기




Volumn , Issue , 2019, Pages

Learning to propagate labels: Transductive propagation network for few-shot learning

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARK DATASETS; CLASSIFICATION TASKS; GRAPH CONSTRUCTION; MANIFOLD STRUCTURES; META-LEARNING APPROACH; META-LEARNING FRAMEWORKS; MULTI-CLASS CLASSIFICATION; TRANSDUCTIVE INFERENCE;

EID: 85083950649     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (463)

References (36)
  • 2
  • 6
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning, pages 448-456, 2015.
    • (2015) International Conference on Machine Learning , pp. 448-456
    • Ioffe, S.1    Szegedy, C.2
  • 8
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Thorsten Joachims. Transductive inference for text classification using support vector machines. In International Conference on Machine Learning, volume 99, pages 200-209, 1999.
    • (1999) International Conference on Machine Learning , vol.99 , pp. 200-209
    • Joachims, T.1
  • 12
    • 85071171488 scopus 로고    scopus 로고
    • Gradient-based meta-learning with learned layerwise metric and subspace
    • Yoonho Lee and Seungjin Choi. Gradient-based meta-learning with learned layerwise metric and subspace. In International Conference on Machine Learning, pages 2933-2942, 2018.
    • (2018) International Conference on Machine Learning , pp. 2933-2942
    • Lee, Y.1    Choi, S.2
  • 13
    • 85052097133 scopus 로고    scopus 로고
    • Lightweight label propagation for large-scale network data
    • De-Ming Liang and Yu-Feng Li. Lightweight label propagation for large-scale network data. In IJCAI, pages 3421-3427, 2018.
    • (2018) IJCAI , pp. 3421-3427
    • Liang, D.-M.1    Li, Y.-F.2
  • 25
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
    • Masashi Sugiyama. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. Journal of Machine Learning Research, 8:1027-1061, 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 27
    • 0003901612 scopus 로고    scopus 로고
    • Springer Science & Business Media
    • Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media, 2012.
    • (2012) Learning to Learn
    • Thrun, S.1    Pratt, L.2
  • 28
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vladimir Naumovich Vapnik. An overview of statistical learning theory. IEEE transactions on neural networks, 10(5):988-999, 1999.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 36
    • 26444592207 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data with label propagation
    • Technical Report CMU-CALD-02-107, Carnegie Mellon University
    • Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propagation. Tech. Rep., Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002.
    • (2002) Tech. Rep.
    • Zhu, X.1    Ghahramani, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.