-
1
-
-
85078065740
-
Adaptive stochastic natural gradient method for one-shot neural architecture search
-
Akimoto, Y.; Shirakawa, S.; Yoshinari, N.; Uchida, K.; Saito, S.; and Nishida, K. 2019. Adaptive stochastic natural gradient method for one-shot neural architecture search. In ICML, 171–180.
-
(2019)
ICML
, pp. 171-180
-
-
Akimoto, Y.1
Shirakawa, S.2
Yoshinari, N.3
Uchida, K.4
Saito, S.5
Nishida, K.6
-
2
-
-
85042820163
-
QSGD: Communication-efficient sgd via gradient quantization and encoding
-
Alistarh, D.; Grubic, D.; Li, J.; Tomioka, R.; and Vojnovic, M. 2017. QSGD: Communication-efficient sgd via gradient quantization and encoding. In NeurIPS, 1709–1720.
-
(2017)
NeurIPS
, pp. 1709-1720
-
-
Alistarh, D.1
Grubic, D.2
Li, J.3
Tomioka, R.4
Vojnovic, M.5
-
3
-
-
0000396062
-
Natural gradient works efficiently in learning
-
Amari, S. 1998. Natural gradient works efficiently in learning. Neural Computation 10(2):251–276.
-
(1998)
Neural Computation
, vol.10
, Issue.2
, pp. 251-276
-
-
Amari, S.1
-
4
-
-
85094271141
-
Proxquant: Quantized neural networks via proximal operators
-
Bai, Y.; Wang, Y.-X.; and Liberty, E. 2018. Proxquant: Quantized neural networks via proximal operators. In ICLR.
-
(2018)
ICLR
-
-
Bai, Y.1
Wang, Y.-X.2
Liberty, E.3
-
5
-
-
85079594941
-
Designing neural network architectures using reinforcement learning
-
Baker, B.; Gupta, O.; Naik, N.; and Raskar, R. 2017. Designing neural network architectures using reinforcement learning. In ICLR.
-
(2017)
ICLR
-
-
Baker, B.1
Gupta, O.2
Naik, N.3
Raskar, R.4
-
6
-
-
85083952043
-
ProxylessNAS: Direct neural architecture search on target task and hardware
-
Cai, H.; Zhu, L.; and Han, S. 2019. ProxylessNAS: Direct neural architecture search on target task and hardware. In ICLR.
-
(2019)
ICLR
-
-
Cai, H.1
Zhu, L.2
Han, S.3
-
7
-
-
84965117606
-
Binaryconnect: Training deep neural networks with binary weights during propagations
-
Courbariaux, M.; Bengio, Y.; and David, J.-P. 2015. Binaryconnect: Training deep neural networks with binary weights during propagations. In NeurIPS, 3123–3131.
-
(2015)
NeurIPS
, pp. 3123-3131
-
-
Courbariaux, M.1
Bengio, Y.2
David, J.-P.3
-
8
-
-
85074924550
-
Searching for a robust neural architecture in four GPU hours
-
Dong, X., and Yang, Y. 2019. Searching for a robust neural architecture in four GPU hours. In CVPR, 1761–1770.
-
(2019)
CVPR
, pp. 1761-1770
-
-
Dong, X.1
Yang, Y.2
-
9
-
-
85071194037
-
-
Technical report, Arvix
-
Guo, Z.; Zhang, X.; Mu, H.; Heng, W.; Liu, Z.; Wei, Y.; and Sun, J. 2019. Single path one-shot neural architecture search with uniform sampling. Technical report, Arvix.
-
(2019)
Single path one-shot neural architecture search with uniform sampling
-
-
Guo, Z.1
Zhang, X.2
Mu, H.3
Heng, W.4
Liu, Z.5
Wei, Y.6
Sun, J.7
-
10
-
-
85050926955
-
Loss-aware binarization of deep networks
-
Hou, L.; Yao, Q.; and Kwok, J. 2017. Loss-aware binarization of deep networks. In ICLR.
-
(2017)
ICLR
-
-
Hou, L.1
Yao, Q.2
Kwok, J.3
-
11
-
-
85039920700
-
Mobilenets: Efficient convolutional neural networks for mobile vision applications
-
Howard, A.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications. CVPR.
-
(2017)
CVPR
-
-
Howard, A.1
Zhu, M.2
Chen, B.3
Kalenichenko, D.4
Wang, W.5
Weyand, T.6
Andreetto, M.7
Adam, H.8
-
12
-
-
85013999932
-
Densely connected convolutional networks
-
Huang, G.; Liu, Z.; Van Der Maaten, L.; and Weinberger, K. 2017. Densely connected convolutional networks. In CVPR, 4700–4708.
-
(2017)
CVPR
, pp. 4700-4708
-
-
Huang, G.1
Liu, Z.2
Van Der Maaten, L.3
Weinberger, K.4
-
13
-
-
85065146640
-
-
eds. Springer
-
Hutter, F.; Kotthoff, L.; and Vanschoren, J., eds. 2018. Automated Machine Learning: Methods, Systems, Challenges. Springer.
-
(2018)
Automated Machine Learning: Methods, Systems, Challenges
-
-
Hutter, F.1
Kotthoff, L.2
Vanschoren, J.3
-
14
-
-
85029083521
-
Categorical reparameterization with gumbel-softmax
-
Jang, E.; Gu, S.; and Poole, B. 2016. Categorical reparameterization with gumbel-softmax. In ICLR.
-
(2016)
ICLR
-
-
Jang, E.1
Gu, S.2
Poole, B.3
-
16
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
Lee, D., and Seung, S. 1999. Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791.
-
(1999)
Nature
, vol.401
, pp. 788-791
-
-
Lee, D.1
Seung, S.2
-
17
-
-
85055111162
-
Progressive neural architecture search
-
Liu, C.; Zoph, B.; Shlens, J.; Hua, W.; Li, L.; Li, F.-F.; Yuille, A.; Huang, J.; and Murphy, K. 2018. Progressive neural architecture search. In ECCV.
-
(2018)
ECCV
-
-
Liu, C.1
Zoph, B.2
Shlens, J.3
Hua, W.4
Li, L.5
Li, F.-F.6
Yuille, A.7
Huang, J.8
Murphy, K.9
-
18
-
-
85083950041
-
DARTS: Differentiable architecture search
-
Liu, H.; Simonyan, K.; and Yang, Y. 2019. DARTS: Differentiable architecture search. In ICLR.
-
(2019)
ICLR
-
-
Liu, H.1
Simonyan, K.2
Yang, Y.3
-
19
-
-
85064807383
-
Neural architecture optimization
-
Luo, R.; Tian, F.; Qin, T.; Chen, E.; and Liu, T.-Y. 2018. Neural architecture optimization. In NeurIPS.
-
(2018)
NeurIPS
-
-
Luo, R.1
Tian, F.2
Qin, T.3
Chen, E.4
Liu, T.-Y.5
-
20
-
-
85055710432
-
ShuffleNet V2: Practical guidelines for efficient CNN architecture design
-
Ma, N.; Zhang, X.; Zheng, H.; and Sun, J. 2018. ShuffleNet V2: Practical guidelines for efficient CNN architecture design. ECCV 122–138.
-
(2018)
ECCV
, pp. 122-138
-
-
Ma, N.1
Zhang, X.2
Zheng, H.3
Sun, J.4
-
21
-
-
85080942128
-
-
Technical report, arXiv preprint arXiv:1904.04123
-
Noy, A.; Nayman, N.; Ridnik, T.; Zamir, N.; Doveh, S.; Friedman, I.; Giryes, R.; and Zelnik-Manor, L. 2019. ASAP: Architecture search, anneal and prune. Technical report, arXiv preprint arXiv:1904.04123.
-
(2019)
ASAP: Architecture search, anneal and prune
-
-
Noy, A.1
Nayman, N.2
Ridnik, T.3
Zamir, N.4
Doveh, S.5
Friedman, I.6
Giryes, R.7
Zelnik-Manor, L.8
-
23
-
-
85052977250
-
-
Technical report, arXiv preprint
-
Pham, H.; Guan, M.; Zoph, B.; Le, Q.; and Dean, J. 2018. Efficient neural architecture search via parameter sharing. Technical report, arXiv preprint.
-
(2018)
Efficient neural architecture search via parameter sharing
-
-
Pham, H.1
Guan, M.2
Zoph, B.3
Le, Q.4
Dean, J.5
-
26
-
-
84937522268
-
Going deeper with convolutions
-
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S. E.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich, A. 2015. Going deeper with convolutions. CVPR 1–9.
-
(2015)
CVPR
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S. E.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
27
-
-
85058173451
-
-
Technical report, arXiv
-
Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; and Le, Q. 2018. Mnasnet: Platform-aware neural architecture search for mobile. Technical report, arXiv.
-
(2018)
Mnasnet: Platform-aware neural architecture search for mobile
-
-
Tan, M.1
Chen, B.2
Pang, R.3
Vasudevan, V.4
Le, Q.5
-
28
-
-
78649396336
-
Dual averaging methods for regularized stochastic learning and online optimization
-
Xiao, L. 2010. Dual averaging methods for regularized stochastic learning and online optimization. JMLR 11(Oct):2543–2596.
-
(2010)
JMLR
, vol.11
, Issue.Oct
, pp. 2543-2596
-
-
Xiao, L.1
-
30
-
-
85083952021
-
SNAS: stochastic neural architecture search
-
Xie, S.; Zheng, H.; Liu, C.; and Lin, L. 2019. SNAS: stochastic neural architecture search. In ICLR.
-
(2019)
ICLR
-
-
Xie, S.1
Zheng, H.2
Liu, C.3
Lin, L.4
-
31
-
-
85083953332
-
Breaking the softmax bottleneck: A high-rank rnn language model
-
Yang, Z.; Dai, Z.; Salakhutdinov, R.; and Cohen, W. 2018. Breaking the softmax bottleneck: A high-rank rnn language model. In ICLR.
-
(2018)
ICLR
-
-
Yang, Z.1
Dai, Z.2
Salakhutdinov, R.3
Cohen, W.4
-
32
-
-
85031901795
-
Efficient inexact proximal gradient algorithm for nonconvex problems
-
AAAI Press
-
Yao, Q.; Kwok, J.; Gao, F.; Chen, W.; and Liu, T.-Y. 2017. Efficient inexact proximal gradient algorithm for nonconvex problems. In IJCAI, 3308–3314. AAAI Press.
-
(2017)
IJCAI
, pp. 3308-3314
-
-
Yao, Q.1
Kwok, J.2
Gao, F.3
Chen, W.4
Liu, T.-Y.5
-
33
-
-
85066352605
-
-
Technical report, arXiv preprint
-
Yao, Q.; Wang, M.; Chen, Y.; Dai, W.; Hu, Y.; Li, Y.; Tu, W.W.; Yang, Q.; and Yu, Y. 2018. Taking human out of learning applications: A survey on automated machine learning. Technical report, arXiv preprint.
-
(2018)
Taking human out of learning applications: A survey on automated machine learning
-
-
Yao, Q.1
Wang, M.2
Chen, Y.3
Dai, W.4
Hu, Y.5
Li, Y.6
Tu, W.W.7
Yang, Q.8
Yu, Y.9
-
34
-
-
85062863340
-
Practical block-wise neural network architecture generation
-
Zhong, Z.; Yan, J.; Wu, W.; Shao, J.; and Liu, C.-L. 2018. Practical block-wise neural network architecture generation. In CVPR.
-
(2018)
CVPR
-
-
Zhong, Z.1
Yan, J.2
Wu, W.3
Shao, J.4
Liu, C.-L.5
-
35
-
-
85079713477
-
BayesNAS: A bayesian approach for neural architecture search
-
Zhou, H.; Yang, M.; Wang, J.; and Pan, W. 2019. BayesNAS: A bayesian approach for neural architecture search. In ICML, 7603–7613.
-
(2019)
ICML
, pp. 7603-7613
-
-
Zhou, H.1
Yang, M.2
Wang, J.3
Pan, W.4
-
36
-
-
85068717703
-
Neural architecture search with reinforcement learning
-
Zoph, B., and Le, Q. 2017. Neural architecture search with reinforcement learning. In ICLR.
-
(2017)
ICLR
-
-
Zoph, B.1
Le, Q.2
-
37
-
-
85048802871
-
Learning transferable architectures for scalable image recognition
-
Zoph, B.; Vasudevan, V.; Shlens, J.; and Le, Q. 2017. Learning transferable architectures for scalable image recognition. In CVPR.
-
(2017)
CVPR
-
-
Zoph, B.1
Vasudevan, V.2
Shlens, J.3
Le, Q.4
|