메뉴 건너뛰기




Volumn , Issue , 2020, Pages 6664-6671

Efficient neural architecture search via proximal iterations

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATION COSTS; DISCRETE CONSTRAINTS; HIGH PERFORMANCE ARCHITECTURES; MODELING COMPLEXITY; NEURAL ARCHITECTURES; OPTIMIZATION PROBLEMS; PERFORMANCE; SEARCH METHOD; SEARCH PROCESS; STATE OF THE ART;

EID: 85106416134     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1609/aaai.v34i04.6143     Document Type: Conference Paper
Times cited : (119)

References (37)
  • 1
    • 85078065740 scopus 로고    scopus 로고
    • Adaptive stochastic natural gradient method for one-shot neural architecture search
    • Akimoto, Y.; Shirakawa, S.; Yoshinari, N.; Uchida, K.; Saito, S.; and Nishida, K. 2019. Adaptive stochastic natural gradient method for one-shot neural architecture search. In ICML, 171–180.
    • (2019) ICML , pp. 171-180
    • Akimoto, Y.1    Shirakawa, S.2    Yoshinari, N.3    Uchida, K.4    Saito, S.5    Nishida, K.6
  • 2
    • 85042820163 scopus 로고    scopus 로고
    • QSGD: Communication-efficient sgd via gradient quantization and encoding
    • Alistarh, D.; Grubic, D.; Li, J.; Tomioka, R.; and Vojnovic, M. 2017. QSGD: Communication-efficient sgd via gradient quantization and encoding. In NeurIPS, 1709–1720.
    • (2017) NeurIPS , pp. 1709-1720
    • Alistarh, D.1    Grubic, D.2    Li, J.3    Tomioka, R.4    Vojnovic, M.5
  • 3
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • Amari, S. 1998. Natural gradient works efficiently in learning. Neural Computation 10(2):251–276.
    • (1998) Neural Computation , vol.10 , Issue.2 , pp. 251-276
    • Amari, S.1
  • 4
    • 85094271141 scopus 로고    scopus 로고
    • Proxquant: Quantized neural networks via proximal operators
    • Bai, Y.; Wang, Y.-X.; and Liberty, E. 2018. Proxquant: Quantized neural networks via proximal operators. In ICLR.
    • (2018) ICLR
    • Bai, Y.1    Wang, Y.-X.2    Liberty, E.3
  • 5
    • 85079594941 scopus 로고    scopus 로고
    • Designing neural network architectures using reinforcement learning
    • Baker, B.; Gupta, O.; Naik, N.; and Raskar, R. 2017. Designing neural network architectures using reinforcement learning. In ICLR.
    • (2017) ICLR
    • Baker, B.1    Gupta, O.2    Naik, N.3    Raskar, R.4
  • 6
    • 85083952043 scopus 로고    scopus 로고
    • ProxylessNAS: Direct neural architecture search on target task and hardware
    • Cai, H.; Zhu, L.; and Han, S. 2019. ProxylessNAS: Direct neural architecture search on target task and hardware. In ICLR.
    • (2019) ICLR
    • Cai, H.1    Zhu, L.2    Han, S.3
  • 7
    • 84965117606 scopus 로고    scopus 로고
    • Binaryconnect: Training deep neural networks with binary weights during propagations
    • Courbariaux, M.; Bengio, Y.; and David, J.-P. 2015. Binaryconnect: Training deep neural networks with binary weights during propagations. In NeurIPS, 3123–3131.
    • (2015) NeurIPS , pp. 3123-3131
    • Courbariaux, M.1    Bengio, Y.2    David, J.-P.3
  • 8
    • 85074924550 scopus 로고    scopus 로고
    • Searching for a robust neural architecture in four GPU hours
    • Dong, X., and Yang, Y. 2019. Searching for a robust neural architecture in four GPU hours. In CVPR, 1761–1770.
    • (2019) CVPR , pp. 1761-1770
    • Dong, X.1    Yang, Y.2
  • 10
    • 85050926955 scopus 로고    scopus 로고
    • Loss-aware binarization of deep networks
    • Hou, L.; Yao, Q.; and Kwok, J. 2017. Loss-aware binarization of deep networks. In ICLR.
    • (2017) ICLR
    • Hou, L.1    Yao, Q.2    Kwok, J.3
  • 12
  • 14
    • 85029083521 scopus 로고    scopus 로고
    • Categorical reparameterization with gumbel-softmax
    • Jang, E.; Gu, S.; and Poole, B. 2016. Categorical reparameterization with gumbel-softmax. In ICLR.
    • (2016) ICLR
    • Jang, E.1    Gu, S.2    Poole, B.3
  • 16
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee, D., and Seung, S. 1999. Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.1    Seung, S.2
  • 18
    • 85083950041 scopus 로고    scopus 로고
    • DARTS: Differentiable architecture search
    • Liu, H.; Simonyan, K.; and Yang, Y. 2019. DARTS: Differentiable architecture search. In ICLR.
    • (2019) ICLR
    • Liu, H.1    Simonyan, K.2    Yang, Y.3
  • 20
    • 85055710432 scopus 로고    scopus 로고
    • ShuffleNet V2: Practical guidelines for efficient CNN architecture design
    • Ma, N.; Zhang, X.; Zheng, H.; and Sun, J. 2018. ShuffleNet V2: Practical guidelines for efficient CNN architecture design. ECCV 122–138.
    • (2018) ECCV , pp. 122-138
    • Ma, N.1    Zhang, X.2    Zheng, H.3    Sun, J.4
  • 28
    • 78649396336 scopus 로고    scopus 로고
    • Dual averaging methods for regularized stochastic learning and online optimization
    • Xiao, L. 2010. Dual averaging methods for regularized stochastic learning and online optimization. JMLR 11(Oct):2543–2596.
    • (2010) JMLR , vol.11 , Issue.Oct , pp. 2543-2596
    • Xiao, L.1
  • 30
    • 85083952021 scopus 로고    scopus 로고
    • SNAS: stochastic neural architecture search
    • Xie, S.; Zheng, H.; Liu, C.; and Lin, L. 2019. SNAS: stochastic neural architecture search. In ICLR.
    • (2019) ICLR
    • Xie, S.1    Zheng, H.2    Liu, C.3    Lin, L.4
  • 31
    • 85083953332 scopus 로고    scopus 로고
    • Breaking the softmax bottleneck: A high-rank rnn language model
    • Yang, Z.; Dai, Z.; Salakhutdinov, R.; and Cohen, W. 2018. Breaking the softmax bottleneck: A high-rank rnn language model. In ICLR.
    • (2018) ICLR
    • Yang, Z.1    Dai, Z.2    Salakhutdinov, R.3    Cohen, W.4
  • 32
    • 85031901795 scopus 로고    scopus 로고
    • Efficient inexact proximal gradient algorithm for nonconvex problems
    • AAAI Press
    • Yao, Q.; Kwok, J.; Gao, F.; Chen, W.; and Liu, T.-Y. 2017. Efficient inexact proximal gradient algorithm for nonconvex problems. In IJCAI, 3308–3314. AAAI Press.
    • (2017) IJCAI , pp. 3308-3314
    • Yao, Q.1    Kwok, J.2    Gao, F.3    Chen, W.4    Liu, T.-Y.5
  • 34
    • 85062863340 scopus 로고    scopus 로고
    • Practical block-wise neural network architecture generation
    • Zhong, Z.; Yan, J.; Wu, W.; Shao, J.; and Liu, C.-L. 2018. Practical block-wise neural network architecture generation. In CVPR.
    • (2018) CVPR
    • Zhong, Z.1    Yan, J.2    Wu, W.3    Shao, J.4    Liu, C.-L.5
  • 35
    • 85079713477 scopus 로고    scopus 로고
    • BayesNAS: A bayesian approach for neural architecture search
    • Zhou, H.; Yang, M.; Wang, J.; and Pan, W. 2019. BayesNAS: A bayesian approach for neural architecture search. In ICML, 7603–7613.
    • (2019) ICML , pp. 7603-7613
    • Zhou, H.1    Yang, M.2    Wang, J.3    Pan, W.4
  • 36
    • 85068717703 scopus 로고    scopus 로고
    • Neural architecture search with reinforcement learning
    • Zoph, B., and Le, Q. 2017. Neural architecture search with reinforcement learning. In ICLR.
    • (2017) ICLR
    • Zoph, B.1    Le, Q.2
  • 37
    • 85048802871 scopus 로고    scopus 로고
    • Learning transferable architectures for scalable image recognition
    • Zoph, B.; Vasudevan, V.; Shlens, J.; and Le, Q. 2017. Learning transferable architectures for scalable image recognition. In CVPR.
    • (2017) CVPR
    • Zoph, B.1    Vasudevan, V.2    Shlens, J.3    Le, Q.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.