메뉴 건너뛰기




Volumn 2017-October, Issue , 2017, Pages 3037-3046

Low-Shot Visual Recognition by Shrinking and Hallucinating Features

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; LEARNING SYSTEMS;

EID: 85041907438     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2017.328     Document Type: Conference Paper
Times cited : (809)

References (48)
  • 1
    • 84973389608 scopus 로고    scopus 로고
    • Analyzing the performance of multilayer neural networks for object recognition
    • P. Agrawal, R. Girshick, and J. Malik. Analyzing the performance of multilayer neural networks for object recognition. In ECCV. 2014.
    • (2014) ECCV.
    • Agrawal, P.1    Girshick, R.2    Malik, J.3
  • 3
    • 33745139169 scopus 로고    scopus 로고
    • Cross-generalization: Learning novel classes from a single example by feature replacement
    • E. Bart and S. Ullman. Cross-generalization: Learning novel classes from a single example by feature replacement. In CVPR, 2005.
    • (2005) CVPR
    • Bart, E.1    Ullman, S.2
  • 5
    • 85041895800 scopus 로고    scopus 로고
    • An empirical study and analysis of generalized zero-shot learning for object recognition in the wild
    • W.-L. Chao, S. Changpinyo, B. Gong, and F. Sha. An empirical study and analysis of generalized zero-shot learning for object recognition in the wild. In ECCV, 2016.
    • (2016) ECCV
    • Chao, W.-L.1    Changpinyo, S.2    Gong, B.3    Sha, F.4
  • 7
    • 85083952121 scopus 로고    scopus 로고
    • Reducing overfitting in deep networks by decorrelating representations
    • M. Cogswell, F. Ahmed, R. Girshick, L. Zitnick, and D. Batra. Reducing overfitting in deep networks by decorrelating representations. In ICLR, 2016.
    • (2016) ICLR
    • Cogswell, M.1    Ahmed, F.2    Girshick, R.3    Zitnick, L.4    Batra, D.5
  • 11
    • 84898803425 scopus 로고    scopus 로고
    • Write a classifier: Zero-shot learning using purely textual descriptions
    • M. Elhoseiny, B. Saleh, and A. Elgammal. Write a classifier: Zero-shot learning using purely textual descriptions. In ICCV, 2013.
    • (2013) ICCV
    • Elhoseiny, M.1    Saleh, B.2    Elgammal, A.3
  • 12
    • 77956006784 scopus 로고    scopus 로고
    • Attribute-centric recognition for cross-category generalization
    • A. Farhadi, I. Endres, and D. Hoiem. Attribute-centric recognition for cross-category generalization. In CVPR, 2010.
    • (2010) CVPR
    • Farhadi, A.1    Endres, I.2    Hoiem, D.3
  • 13
    • 33144466753 scopus 로고    scopus 로고
    • One-shot learning of object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. TPAMI, 2006.
    • (2006) TPAMI
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 14
    • 84898963788 scopus 로고    scopus 로고
    • Object classification from a single example utilizing class relevance metrics
    • M. Fink. Object classification from a single example utilizing class relevance metrics. NIPS, 2005.
    • (2005) NIPS
    • Fink, M.1
  • 15
    • 85041899497 scopus 로고    scopus 로고
    • Model-agnostic metalearning for fast adaptation of deep networks
    • C. Finn, P. Abbeel, and S. Levine. Model-agnostic metalearning for fast adaptation of deep networks. In ICML, 2017.
    • (2017) ICML
    • Finn, C.1    Abbeel, P.2    Levine, S.3
  • 18
    • 33845594569 scopus 로고    scopus 로고
    • Dimensionality reduction by learning an invariant mapping
    • R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant mapping. In CVPR, 2006.
    • (2006) CVPR
    • Hadsell, R.1    Chopra, S.2    LeCun, Y.3
  • 19
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 21
    • 85017188384 scopus 로고    scopus 로고
    • Prototypical priors: From improving classification to zeroshot learning
    • S. Jetley, B. Romera-Paredes, S. Jayasumana, and P. Torr. Prototypical priors: From improving classification to zeroshot learning. In BMVC, 2015.
    • (2015) BMVC
    • Jetley, S.1    Romera-Paredes, B.2    Jayasumana, S.3    Torr, P.4
  • 22
    • 84898811584 scopus 로고    scopus 로고
    • Latent task adaptation with large-scale hierarchies
    • Y. Jia and T. Darrell. Latent task adaptation with large-scale hierarchies. In ICCV, 2013.
    • (2013) ICCV
    • Jia, Y.1    Darrell, T.2
  • 24
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 25
    • 84949683101 scopus 로고    scopus 로고
    • Humanlevel concept learning through probabilistic program induction
    • B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Humanlevel concept learning through probabilistic program induction. Science, 2015.
    • (2015) Science
    • Lake, B.M.1    Salakhutdinov, R.2    Tenenbaum, J.B.3
  • 26
    • 84898998554 scopus 로고    scopus 로고
    • Oneshot learning by inverting a compositional causal process
    • B. M. Lake, R. R. Salakhutdinov, and J. Tenenbaum. Oneshot learning by inverting a compositional causal process. In NIPS. 2013.
    • (2013) NIPS.
    • Lake, B.M.1    Salakhutdinov, R.R.2    Tenenbaum, J.3
  • 27
    • 84894522762 scopus 로고    scopus 로고
    • Attributebased classification for zero-shot visual object categorization
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Attributebased classification for zero-shot visual object categorization. TPAMI, 2014.
    • (2014) TPAMI
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 29
    • 84973882857 scopus 로고    scopus 로고
    • Predicting deep zero-shot convolutional neural networks using textual descriptions
    • J. Lei Ba, K. Swersky, S. Fidler, and R. salakhutdinov. Predicting deep zero-shot convolutional neural networks using textual descriptions. In ICCV, 2015.
    • (2015) ICCV
    • Lei Ba, J.1    Swersky, K.2    Fidler, S.3    Salakhutdinov, R.4
  • 32
    • 33845573438 scopus 로고    scopus 로고
    • Incremental learning of object detectors using a visual shape alphabet
    • A. Opelt, A. Pinz, and A. Zisserman. Incremental learning of object detectors using a visual shape alphabet. In CVPR, 2006.
    • (2006) CVPR
    • Opelt, A.1    Pinz, A.2    Zisserman, A.3
  • 33
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In CVPR, 2014.
    • (2014) CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 35
    • 85041901997 scopus 로고    scopus 로고
    • Optimization as a model for fewshot learning
    • S. Ravi and H. Larochelle. Optimization as a model for fewshot learning. In ICLR, 2017.
    • (2017) ICLR
    • Ravi, S.1    Larochelle, H.2
  • 36
    • 85083950568 scopus 로고    scopus 로고
    • Metric learning with adaptive density discrimination
    • O. Rippel, M. Paluri, P. Dollar, and L. Bourdev. Metric learning with adaptive density discrimination. In ICLR, 2016.
    • (2016) ICLR
    • Rippel, O.1    Paluri, M.2    Dollar, P.3    Bourdev, L.4
  • 37
    • 84969931523 scopus 로고    scopus 로고
    • An embarrassingly simple approach to zero-shot learning
    • B. Romera-Paredes and P. Torr. An embarrassingly simple approach to zero-shot learning. In ICML, 2015.
    • (2015) ICML
    • Romera-Paredes, B.1    Torr, P.2
  • 40
    • 84946751287 scopus 로고    scopus 로고
    • FaceNet: A unified embedding for face recognition and clustering
    • F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A unified embedding for face recognition and clustering. In CVPR, 2015.
    • (2015) CVPR
    • Schroff, F.1    Kalenichenko, D.2    Philbin, J.3
  • 42
    • 84898938559 scopus 로고    scopus 로고
    • Zero-shot learning through cross-modal transfer
    • R. Socher, M. Ganjoo, C. D. Manning, and A. Ng. Zero-shot learning through cross-modal transfer. In NIPS, 2013.
    • (2013) NIPS
    • Socher, R.1    Ganjoo, M.2    Manning, C.D.3    Ng, A.4
  • 43
    • 84959194885 scopus 로고    scopus 로고
    • Web-scale training for face identification
    • Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Web-scale training for face identification. In CVPR, 2015.
    • (2015) CVPR
    • Taigman, Y.1    Yang, M.2    Ranzato, M.3    Wolf, L.4
  • 44
    • 0041494227 scopus 로고    scopus 로고
    • Is learning the n-th thing any easier than learning the first?
    • S. Thrun. Is learning the n-th thing any easier than learning the first? NIPS, 1996.
    • (1996) NIPS
    • Thrun, S.1
  • 46
    • 85018929847 scopus 로고    scopus 로고
    • Learning to learn: Model regression networks for easy small sample learning
    • Y.-X. Wang and M. Hebert. Learning to learn: Model regression networks for easy small sample learning. In ECCV, 2016.
    • (2016) ECCV
    • Wang, Y.-X.1    Hebert, M.2
  • 47
    • 84973910975 scopus 로고    scopus 로고
    • One shot learning via compositions of meaningful patches
    • A. Wong and A. L. Yuille. One shot learning via compositions of meaningful patches. In ICCV, 2015.
    • (2015) ICCV
    • Wong, A.1    Yuille, A.L.2
  • 48
    • 84973910934 scopus 로고    scopus 로고
    • Zero-shot learning via semantic similarity embedding
    • Z. Zhang and V. Saligrama. Zero-shot learning via semantic similarity embedding. In ICCV, 2015.
    • (2015) ICCV
    • Zhang, Z.1    Saligrama, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.