메뉴 건너뛰기




Volumn , Issue , 2019, Pages

Meta-learning with latent embedding optimization

Author keywords

[No Author keywords available]

Indexed keywords

EMBEDDINGS; ORBITS; UNCERTAINTY ANALYSIS;

EID: 85083951643     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (883)

References (53)
  • 4
    • 84921940378 scopus 로고    scopus 로고
    • Learning phrase representations using RNN encoder-decoder for statistical machine translation
    • abs/1406.1078
    • Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR, abs/1406.1078, 2014. URL http://arxiv.org/abs/1406.1078.
    • (2014) CoRR
    • Cho, K.1    Van Merrienboer, B.2    Gülçehre, Ç.3    Bougares, F.4    Schwenk, H.5    Bengio, Y.6
  • 12
    • 85093634879 scopus 로고    scopus 로고
    • Dynamic few-shot visual learning without forgetting
    • abs/1804.09458
    • Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. CoRR, abs/1804.09458, 2018. URL http://arxiv.org/abs/1804.09458.
    • (2018) CoRR
    • Gidaris, S.1    Komodakis, N.2
  • 20
    • 85083951076 scopus 로고    scopus 로고
    • ADaM: A method for stochastic optimization
    • abs/1412.6980
    • Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.
    • (2014) CoRR
    • Kingma, D.P.1    Ba, J.2
  • 25
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436, 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 27
    • 85057313683 scopus 로고    scopus 로고
    • Meta-SGD: Learning to learn quickly for few shot learning
    • abs/1707.09835
    • Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for few shot learning. CoRR, abs/1707.09835, 2017. URL http://arxiv.org/abs/1707.09835.
    • (2017) CoRR
    • Li, Z.1    Zhou, F.2    Chen, F.3    Li, H.4
  • 31
    • 85064820720 scopus 로고    scopus 로고
    • Learning rapid-temporal adaptations
    • abs/1712.09926
    • Tsendsuren Munkhdalai, Xingdi Yuan, Soroush Mehri, Tong Wang, and Adam Trischler. Learning rapid-temporal adaptations. CoRR, abs/1712.09926, 2017. URL http://arxiv.org/abs/1712.09926.
    • (2017) CoRR
    • Munkhdalai, T.1    Yuan, X.2    Mehri, S.3    Wang, T.4    Trischler, A.5
  • 40
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85-117, 2015.
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 43
    • 85046273312 scopus 로고    scopus 로고
    • Prototypical networks for few-shot learning
    • abs/1703.05175
    • Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning. CoRR, abs/1703.05175, 2017. URL http://arxiv.org/abs/1703.05175.
    • (2017) CoRR
    • Snell, J.1    Swersky, K.2    Zemel, R.S.3
  • 44
    • 85063581516 scopus 로고    scopus 로고
    • Learning to compare: Relation network for few-shot learning
    • abs/1711.06025
    • Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H. S. Torr, and Timothy M. Hospedales. Learning to compare: Relation network for few-shot learning. CoRR, abs/1711.06025, 2017. URL http://arxiv.org/abs/1711.06025.
    • (2017) CoRR
    • Sung, F.1    Yang, Y.2    Zhang, L.3    Xiang, T.4    Torr, P.H.S.5    Hospedales, T.M.6
  • 45
    • 84910597353 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • abs/1409.3215
    • Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks. CoRR, abs/1409.3215, 2014. URL http://arxiv.org/abs/1409.3215.
    • (2014) CoRR
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 47
    • 0003901612 scopus 로고    scopus 로고
    • Learning to learn: Introduction and overview
    • Springer
    • Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In Learning to learn, pp. 3-17. Springer, 1998.
    • (1998) Learning to Learn , pp. 3-17
    • Thrun, S.1    Pratt, L.2
  • 50
    • 84952032150 scopus 로고    scopus 로고
    • How transferable are features in deep neural networks?
    • abs/1411.1792
    • Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep neural networks? CoRR, abs/1411.1792, 2014. URL http://arxiv.org/abs/1411.1792.
    • (2014) CoRR
    • Yosinski, J.1    Clune, J.2    Bengio, Y.3    Lipson, H.4
  • 52
    • 85040702414 scopus 로고    scopus 로고
    • Wide residual networks
    • abs/1605.07146
    • Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016b. URL http://arxiv.org/abs/1605.07146.
    • (2016) CoRR
    • Zagoruyko, S.1    Komodakis, N.2
  • 53
    • 85064813739 scopus 로고    scopus 로고
    • Deep meta-learning: Learning to learn in the concept space
    • abs/1802.03596
    • Fengwei Zhou, Bin Wu, and Zhenguo Li. Deep meta-learning: Learning to learn in the concept space. CoRR, abs/1802.03596, 2018. URL http://arxiv.org/abs/1802.03596.
    • (2018) CoRR
    • Zhou, F.1    Wu, B.2    Li, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.