-
1
-
-
33745139169
-
Cross-generalization: Learning novel classes from a single example by feature replacement
-
E. Bart and S. Ullman. Cross-generalization: Learning novel classes from a single example by feature replacement. In CVPR, 2005.
-
(2005)
CVPR
-
-
Bart, E.1
Ullman, S.2
-
2
-
-
85018918773
-
Learning feed-forward one-shot learners
-
L. Bertinetto, J. Henriques, J. Valmadre, P. Torr, and A. Vedaldi. Learning feed-forward one-shot learners. In NIPS, 2016.
-
(2016)
NIPS
-
-
Bertinetto, L.1
Henriques, J.2
Valmadre, J.3
Torr, P.4
Vedaldi, A.5
-
3
-
-
85041895800
-
An empirical study and analysis of generalized zero-shot learning for object recognition in the wild
-
W.-L. Chao, S. Changpinyo, B. Gong, and F. Sha. An empirical study and analysis of generalized zero-shot learning for object recognition in the wild. In ECCV, 2016.
-
(2016)
ECCV
-
-
Chao, W.-L.1
Changpinyo, S.2
Gong, B.3
Sha, F.4
-
4
-
-
85046999787
-
Good semi-supervised learning that requires a bad GAN
-
Z. Dai, Z. Yang, F. Yang, W. W. Cohen, and R. Salakhutdinov. Good semi-supervised learning that requires a bad GAN. In NIPS, 2017.
-
(2017)
NIPS
-
-
Dai, Z.1
Yang, Z.2
Yang, F.3
Cohen, W.W.4
Salakhutdinov, R.5
-
6
-
-
85112095815
-
Towards a neural statistician
-
H. Edwards and A. Storkey. Towards a neural statistician. In ICLR, 2017.
-
(2017)
ICLR
-
-
Edwards, H.1
Storkey, A.2
-
8
-
-
84898963788
-
Object classification from a single example utilizing class relevance metrics
-
M. Fink. Object classification from a single example utilizing class relevance metrics. NIPS, 2005.
-
(2005)
NIPS
-
-
Fink, M.1
-
9
-
-
85041899497
-
Model-agnostic metalearning for fast adaptation of deep networks
-
C. Finn, P. Abbeel, and S. Levine. Model-agnostic metalearning for fast adaptation of deep networks. In ICML, 2017.
-
(2017)
ICML
-
-
Finn, C.1
Abbeel, P.2
Levine, S.3
-
10
-
-
85032354846
-
A generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs
-
D. George, W. Lehrach, K. Kansky, M. Lázaro-Gredilla, C. Laan, B. Marthi, X. Lou, Z. Meng, Y. Liu, H. Wang, A. Lavin, and D. S. Phoenix. A generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs. Science, 2017.
-
(2017)
Science
-
-
George, D.1
Lehrach, W.2
Kansky, K.3
Lázaro-Gredilla, M.4
Laan, C.5
Marthi, B.6
Lou, X.7
Meng, Z.8
Liu, Y.9
Wang, H.10
Lavin, A.11
Phoenix, D.S.12
-
11
-
-
84937849144
-
Generative adversarial nets
-
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In NIPS, 2014.
-
(2014)
NIPS
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
12
-
-
33845594569
-
Dimensionality reduction by learning an invariant mapping
-
R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant mapping. In CVPR, 2006.
-
(2006)
CVPR
-
-
Hadsell, R.1
Chopra, S.2
LeCun, Y.3
-
13
-
-
85041907438
-
Low-shot visual recognition by shrinking and hallucinating features
-
B. Hariharan and R. Girshick. Low-shot visual recognition by shrinking and hallucinating features. In ICCV, 2017.
-
(2017)
ICCV
-
-
Hariharan, B.1
Girshick, R.2
-
14
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
15
-
-
85083952489
-
Auto-encoding variational Bayes
-
D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
17
-
-
84898998554
-
Oneshot learning by inverting a compositional causal process
-
B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Oneshot learning by inverting a compositional causal process. In NIPS. 2013.
-
(2013)
NIPS.
-
-
Lake, B.M.1
Salakhutdinov, R.2
Tenenbaum, J.B.3
-
18
-
-
84949683101
-
Humanlevel concept learning through probabilistic program induction
-
B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Humanlevel concept learning through probabilistic program induction. Science, 2015.
-
(2015)
Science
-
-
Lake, B.M.1
Salakhutdinov, R.2
Tenenbaum, J.B.3
-
20
-
-
0033712893
-
Learning from one example through shared densities on transforms
-
E. G. Miller, N. E. Matsakis, and P. A. Viola. Learning from one example through shared densities on transforms. In CVPR, 2000.
-
(2000)
CVPR
-
-
Miller, E.G.1
Matsakis, N.E.2
Viola, P.A.3
-
21
-
-
33845573438
-
Incremental learning of object detectors using a visual shape alphabet
-
A. Opelt, A. Pinz, and A. Zisserman. Incremental learning of object detectors using a visual shape alphabet. In CVPR, 2006.
-
(2006)
CVPR
-
-
Opelt, A.1
Pinz, A.2
Zisserman, A.3
-
22
-
-
85083950271
-
Unsupervised representation learning with deep convolutional generative adversarial networks
-
A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2016.
-
(2016)
ICLR
-
-
Radford, A.1
Metz, L.2
Chintala, S.3
-
23
-
-
85041901997
-
Optimization as a model for fewshot learning
-
S. Ravi and H. Larochelle. Optimization as a model for fewshot learning. In ICLR, 2017.
-
(2017)
ICLR
-
-
Ravi, S.1
Larochelle, H.2
-
26
-
-
85018875486
-
Improved techniques for training GANs
-
T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training GANs. In NIPS, 2016.
-
(2016)
NIPS
-
-
Salimans, T.1
Goodfellow, I.2
Zaremba, W.3
Cheung, V.4
Radford, A.5
Chen, X.6
-
27
-
-
84998717754
-
Meta-learning with memory-augmented neural networks
-
A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with memory-augmented neural networks. In ICML, 2016.
-
(2016)
ICML
-
-
Santoro, A.1
Bartunov, S.2
Botvinick, M.3
Wierstra, D.4
Lillicrap, T.5
-
29
-
-
84946751287
-
FaceNet: A unified embedding for face recognition and clustering
-
F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A unified embedding for face recognition and clustering. In CVPR, 2015.
-
(2015)
CVPR
-
-
Schroff, F.1
Kalenichenko, D.2
Philbin, J.3
-
30
-
-
85046993347
-
Prototypical networks for few-shot learning
-
J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks for few-shot learning. In NIPS, 2017.
-
(2017)
NIPS
-
-
Snell, J.1
Swersky, K.2
Zemel, R.S.3
-
32
-
-
0041494227
-
Is learning the n-th thing any easier than learning the first?
-
S. Thrun. Is learning the n-th thing any easier than learning the first? NIPS, 1996.
-
(1996)
NIPS
-
-
Thrun, S.1
-
33
-
-
0010687621
-
Lifelong learning algorithms
-
S. Thrun. Lifelong learning algorithms. Learning to learn, 8:181-209, 1998.
-
(1998)
Learning to Learn
, vol.8
, pp. 181-209
-
-
Thrun, S.1
-
34
-
-
57249084011
-
Visualizing data using t-SNE
-
L. van der Maaten and G. Hinton. Visualizing data using t-SNE. JMLR, 9:2579-2605, 2008.
-
(2008)
JMLR
, vol.9
, pp. 2579-2605
-
-
Van Der Maaten, L.1
Hinton, G.2
-
35
-
-
85018863845
-
Matching networks for one shot learning
-
O. Vinyals, C. Blundell, T. P. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching networks for one shot learning. In NIPS, 2016.
-
(2016)
NIPS
-
-
Vinyals, O.1
Blundell, C.2
Lillicrap, T.P.3
Kavukcuoglu, K.4
Wierstra, D.5
-
36
-
-
85018930461
-
Learning from small sample sets by combining unsupervised meta-training with CNNs
-
Y.-X. Wang and M. Hebert. Learning from small sample sets by combining unsupervised meta-training with CNNs. In NIPS, 2016.
-
(2016)
NIPS
-
-
Wang, Y.-X.1
Hebert, M.2
-
37
-
-
85018929847
-
Learning to learn: Model regression networks for easy small sample learning
-
Y.-X. Wang and M. Hebert. Learning to learn: Model regression networks for easy small sample learning. In ECCV, 2016.
-
(2016)
ECCV
-
-
Wang, Y.-X.1
Hebert, M.2
-
39
-
-
84973910975
-
One shot learning via compositions of meaningful patches
-
A. Wong and A. L. Yuille. One shot learning via compositions of meaningful patches. In ICCV, 2015.
-
(2015)
ICCV
-
-
Wong, A.1
Yuille, A.L.2
|