메뉴 건너뛰기




Volumn , Issue , 2018, Pages 6857-6866

Zero-Shot Recognition via Semantic Embeddings and Knowledge Graphs

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVOLUTION; EMBEDDINGS; FORECASTING; SEMANTICS;

EID: 85058639253     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2018.00717     Document Type: Conference Paper
Times cited : (740)

References (55)
  • 2
    • 84973882857 scopus 로고    scopus 로고
    • Predicting deep zero-shot convolutional neural networks using textual descriptions
    • J. L. Ba, K. Swersky, S. Fidler, and R. Salakhutdinov. Predicting Deep Zero-Shot Convolutional Neural Networks using Textual Descriptions. In ICCV, 2015.
    • (2015) ICCV
    • Ba, J.L.1    Swersky, K.2    Fidler, S.3    Salakhutdinov, R.4
  • 4
    • 84986274021 scopus 로고    scopus 로고
    • Synthesized classifiers for zero-shot learning
    • S. Changpinyo, W.-L. Chao, B. Gong, and F. Sha. Synthesized Classifiers for Zero-Shot Learning. In CVPR, 2016.
    • (2016) CVPR
    • Changpinyo, S.1    Chao, W.-L.2    Gong, B.3    Sha, F.4
  • 5
    • 85041928731 scopus 로고    scopus 로고
    • Predicting visual exemplars of unseen classes for zero-shot learning
    • S. Changpinyo, W.-L. Chao, and F. Sha. Predicting Visual Exemplars of Unseen Classes for Zero-Shot Learning. In ICCV, 2017.
    • (2017) ICCV
    • Changpinyo, S.1    Chao, W.-L.2    Sha, F.3
  • 6
    • 85041895800 scopus 로고    scopus 로고
    • An empirical study and analysis of generalized zero-shot learning for object recognition in the wild
    • W.-L. Chao, S. Changpinyo, B. Gong, and F. Sha. An Empirical Study and Analysis of Generalized Zero-Shot Learning for Object Recognition in the Wild. In ECCV, 2016.
    • (2016) ECCV
    • Chao, W.-L.1    Changpinyo, S.2    Gong, B.3    Sha, F.4
  • 7
    • 85072028231 scopus 로고    scopus 로고
    • Return of the devil in the details: Delving deep into convolutional nets
    • K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014.
    • (2014) BMVC
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 8
    • 84898803720 scopus 로고    scopus 로고
    • Neil: Extracting visual knowledge from web data
    • X. Chen, A. Shrivastava, and A. Gupta. Neil: Extracting visual knowledge from web data. ICCV, 2013.
    • (2013) ICCV
    • Chen, X.1    Shrivastava, A.2    Gupta, A.3
  • 10
    • 84898803425 scopus 로고    scopus 로고
    • Write a classifier: Zero-shot learning using purely textual descriptions
    • M. Elhoseiny, B. Saleh, and A. Elgammal. Write a Classifier: Zero-Shot Learning Using Purely Textual Descriptions. In ICCV, 2013.
    • (2013) ICCV
    • Elhoseiny, M.1    Saleh, B.2    Elgammal, A.3
  • 12
    • 80052894360 scopus 로고    scopus 로고
    • Semantic label sharing for learning with many categories
    • R. Fergus, H. Bernal, Y. Weiss, and A. Torralba. Semantic Label Sharing for Learning with Many Categories. In ECCV, 2010.
    • (2010) ECCV
    • Fergus, R.1    Bernal, H.2    Weiss, Y.3    Torralba, A.4
  • 14
    • 84986246085 scopus 로고    scopus 로고
    • Semi-supervised vocabulary-informed learning
    • Y. Fu and L. Sigal. Semi-supervised Vocabulary-informed Learning. In CVPR, 2016.
    • (2016) CVPR
    • Fu, Y.1    Sigal, L.2
  • 15
    • 84940993365 scopus 로고    scopus 로고
    • Zero-shot object recognition by semantic manifold distance
    • Z. Fu, T. Xiang, E. Kodirov, and S. Gong. Zero-Shot Object Recognition by Semantic Manifold Distance. In CVPR, 2015.
    • (2015) CVPR
    • Fu, Z.1    Xiang, T.2    Kodirov, E.3    Gong, S.4
  • 16
    • 85078801584 scopus 로고    scopus 로고
    • Low-shot visual recognition by shrinking and hallucinating features
    • B. Hariharan and R. Girshick. Low-shot Visual Recognition by Shrinking and Hallucinating Features. In CoRR, 2017.
    • (2017) CoRR
    • Hariharan, B.1    Girshick, R.2
  • 17
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 18
    • 85019222252 scopus 로고    scopus 로고
    • Local similarity-aware deep feature embedding
    • C. Huang, C. C. Loy, and X. Tang. Local similarity-aware deep feature embedding. In NIPS, 2016.
    • (2016) NIPS
    • Huang, C.1    Loy, C.C.2    Tang, X.3
  • 19
    • 84937954530 scopus 로고    scopus 로고
    • Zero-shot recognition with unreliable attributes
    • D. Jayaraman and K. Grauman. Zero-shot recognition with unreliable attributes. In NIPS, pages 3464-3472, 2014.
    • (2014) NIPS , pp. 3464-3472
    • Jayaraman, D.1    Grauman, K.2
  • 21
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • D. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.
    • (2014) CoRR, abs/1412.6980
    • Kingma, D.1    Ba, J.2
  • 22
    • 85086180249 scopus 로고    scopus 로고
    • Semi-supervised classification with graph convolutional networks
    • T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. ICLR, 2017.
    • (2017) ICLR
    • Kipf, T.N.1    Welling, M.2
  • 23
    • 85044294853 scopus 로고    scopus 로고
    • Semantic autoencoder for zero-shot learning
    • E. Kodirov, T. Xiang, and S. Gong. Semantic Autoencoder for Zero-Shot Learning. In CVPR, 2017.
    • (2017) CVPR
    • Kodirov, E.1    Xiang, T.2    Gong, S.3
  • 24
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In CVPR, 2009.
    • (2009) CVPR
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 25
    • 84894522762 scopus 로고    scopus 로고
    • Attribute-based classification for zero-shot visual object categorization
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-Based Classification for Zero-Shot Visual Object Categorization. In TPAMI, 2014.
    • (2014) TPAMI
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 26
    • 85006110312 scopus 로고    scopus 로고
    • Unsupervised learning on neural network outputs: With application in zero-shot learning
    • Y. Lu. Unsupervised learning on neural network outputs: With application in zero-shot learning. In IJCAI, 2016.
    • (2016) IJCAI
    • Lu, Y.1
  • 27
    • 84893676344 scopus 로고    scopus 로고
    • Rectifier nonlinearities improve neural network acoustic models
    • A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural network acoustic models. In ICML, 2013.
    • (2013) ICML
    • Maas, A.L.1    Hannun, A.Y.2    Ng, A.Y.3
  • 29
    • 85041905615 scopus 로고    scopus 로고
    • The more you know: Using knowledge graphs for image classification
    • K. Marino, R. Salakhutdinov, and A. Gupta. The More You Know: Using Knowledge Graphs for Image Classification. In CVPR, 2017.
    • (2017) CVPR
    • Marino, K.1    Salakhutdinov, R.2    Gupta, A.3
  • 30
    • 84883488616 scopus 로고    scopus 로고
    • Metric learning for large scale image classification: Generalizing to new classes at near-zero cost
    • T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Metric Learning for Large Scale Image Classification: Generalizing to New Classes at Near-Zero Cost. In ECCV, 2012.
    • (2012) ECCV
    • Mensink, T.1    Verbeek, J.2    Perronnin, F.3    Csurka, G.4
  • 31
    • 85083951332 scopus 로고    scopus 로고
    • Efficient estimation of word representations in vector space
    • T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space. ICLR, 2013.
    • (2013) ICLR
    • Mikolov, T.1    Chen, K.2    Corrado, G.3    Dean, J.4
  • 32
    • 84976702763 scopus 로고
    • Wordnet: A lexical database for english
    • G. A. Miller. Wordnet: A lexical database for english. Communications of the ACM, 38(11):39-41, 1995.
    • (1995) Communications of the ACM , vol.38 , Issue.11 , pp. 39-41
    • Miller, G.A.1
  • 33
    • 85044323744 scopus 로고    scopus 로고
    • From red wine to red tomato: Composition with context
    • I. Misra, A. Gupta, and M. Hebert. From Red Wine to Red Tomato: Composition with Context. In CVPR, 2017.
    • (2017) CVPR
    • Misra, I.1    Gupta, A.2    Hebert, M.3
  • 36
    • 84961289992 scopus 로고    scopus 로고
    • Glove: Global vectors for word representation
    • J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In EMNLP, pages 1532-1543, 2014.
    • (2014) EMNLP , pp. 1532-1543
    • Pennington, J.1    Socher, R.2    Manning, C.D.3
  • 37
    • 84986290328 scopus 로고    scopus 로고
    • Less is more: Zero-shot learning from online textual documents with noise suppression
    • R. Qiao, L. Liu, C. Shen, and A. van den Hengel. Less is more: Zero-shot learning from online textual documents with noise suppression. In CVPR, 2016.
    • (2016) CVPR
    • Qiao, R.1    Liu, L.2    Shen, C.3    Vanden Hengel, A.4
  • 38
    • 84899001511 scopus 로고    scopus 로고
    • Transfer learning in a transductive setting
    • M. Rohrbach, S. Ebert, and B. Schiele. Transfer learning in a transductive setting. In NIPS, 2013.
    • (2013) NIPS
    • Rohrbach, M.1    Ebert, S.2    Schiele, B.3
  • 39
    • 80052892795 scopus 로고    scopus 로고
    • Evaluating knowledge transfer and zero-shot learning in a large-scale setting
    • M. Rohrbach, M. Stark, and B. Schiele. Evaluating Knowledge Transfer and Zero-Shot Learning in a Large-Scale Setting. In CVPR, 2011.
    • (2011) CVPR
    • Rohrbach, M.1    Stark, M.2    Schiele, B.3
  • 40
    • 77955989949 scopus 로고    scopus 로고
    • What helps where-And why? Semantic relatedness for knowledge transfer
    • M. Rohrbach, M. Stark, G. Szarvas, I. Gurevych, and B. Schiele. What helps where-and why? semantic relatedness for knowledge transfer. In CVPR, 2010.
    • (2010) CVPR
    • Rohrbach, M.1    Stark, M.2    Szarvas, G.3    Gurevych, I.4    Schiele, B.5
  • 41
    • 84969931523 scopus 로고    scopus 로고
    • An embarrassingly simple approach to zero-shot learning
    • B. Romera-Paredes and P. H. S. Torr. An embarrassingly simple approach to zero-shot learning. In ICML, 2015.
    • (2015) ICML
    • Romera-Paredes, B.1    Torr, P.H.S.2
  • 43
    • 80052905403 scopus 로고    scopus 로고
    • Learning to share visual appearance for multiclass object detection
    • R. Salakhutdinov, A. Torralba, and J. Tenenbaum. Learning to Share Visual Appearance for Multiclass Object Detection. In CVPR, 2011.
    • (2011) CVPR
    • Salakhutdinov, R.1    Torralba, A.2    Tenenbaum, J.3
  • 44
    • 85083954315 scopus 로고    scopus 로고
    • Zero-shot learning through cross-modal transfer
    • R. Socher, M. Ganjoo, C. D. Manning, and A. Y. Ng. Zero-Shot Learning Through Cross-Modal Transfer. In ICLR, 2013.
    • (2013) ICLR
    • Socher, R.1    Ganjoo, M.2    Manning, C.D.3    Ng, A.Y.4
  • 45
    • 85041923826 scopus 로고    scopus 로고
    • Revisiting unreasonable effectiveness of data in deep learning era
    • C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting unreasonable effectiveness of data in deep learning era. In ICCV, 2017.
    • (2017) ICCV
    • Sun, C.1    Shrivastava, A.2    Singh, S.3    Gupta, A.4
  • 48
    • 77955654853 scopus 로고    scopus 로고
    • Large scale image annotation: Learning to rank with joint word-image embeddings
    • J. Weston, S. Bengio, and N. Usunier. Large Scale Image Annotation: Learning to Rank with Joint Word-Image Embeddings. In ECML, 2010.
    • (2010) ECML
    • Weston, J.1    Bengio, S.2    Usunier, N.3
  • 49
    • 84986320870 scopus 로고    scopus 로고
    • Ask me anything: Free-form visual question answering based on knowledge from external sources
    • Q. Wu, P. Wang, C. Shen, A. Dick, and A. van den Hengel. Ask me anything: Free-form visual question answering based on knowledge from external sources. In CVPR, 2016.
    • (2016) CVPR
    • Wu, Q.1    Wang, P.2    Shen, C.3    Dick, A.4    Van Den Hengel, A.5
  • 50
    • 85041909958 scopus 로고    scopus 로고
    • Zero-shot learning-The good, the bad and the ugly
    • Y. Xian, B. Schiele, and Z. Akata. Zero-Shot Learning-The Good, the Bad and the Ugly. In CVPR, 2017.
    • (2017) CVPR
    • Xian, Y.1    Schiele, B.2    Akata, Z.3
  • 51
    • 85013858782 scopus 로고    scopus 로고
    • Empirical evaluation of rectified activations in convolutional network
    • B. Xu, N. Wang, T. Chen, and M. Li. Empirical evaluation of rectified activations in convolutional network. CoRR, abs/1505.00853, 2015.
    • (2015) CoRR, abs/1505.00853
    • Xu, B.1    Wang, N.2    Chen, T.3    Li, M.4
  • 52
    • 84997706245 scopus 로고    scopus 로고
    • Revisiting semisupervised learning with graph embeddings
    • Z. Yang, W. Cohen, and R. Salakhutdinov. Revisiting semisupervised learning with graph embeddings. In ICML, 2016.
    • (2016) ICML
    • Yang, Z.1    Cohen, W.2    Salakhutdinov, R.3
  • 53
    • 85041928291 scopus 로고    scopus 로고
    • Learning a deep embedding model for zero-shot learning
    • L. Zhang, T. Xiang, and S. Gong. Learning a deep embedding model for zero-shot learning. In CVPR, 2017.
    • (2017) CVPR
    • Zhang, L.1    Xiang, T.2    Gong, S.3
  • 54
    • 84973910934 scopus 로고    scopus 로고
    • Zero-shot learning via semantic similarity embedding
    • Z. Zhang and V. Saligrama. Zero-shot learning via semantic similarity embedding. In ICCV, 2015.
    • (2015) ICCV
    • Zhang, Z.1    Saligrama, V.2
  • 55
    • 84986292720 scopus 로고    scopus 로고
    • Zero-shot learning via joint latent similarity embedding
    • Z. Zhang and V. Saligrama. Zero-shot learning via joint latent similarity embedding. In CVPR, 2016.
    • (2016) CVPR
    • Zhang, Z.1    Saligrama, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.