메뉴 건너뛰기




Volumn , Issue , 2018, Pages

Continuous adaptation via meta-learning in nonstationary and competitive environments

Author keywords

[No Author keywords available]

Indexed keywords

MULTI AGENT SYSTEMS;

EID: 85083954262     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (257)

References (52)
  • 5
    • 84921824478 scopus 로고
    • Université de Montréal, Département d’informatique et de recherche opérationnelle
    • Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule. Université de Montréal, Département d’informatique et de recherche opérationnelle, 1990.
    • (1990) Learning A Synaptic Learning Rule
    • Bengio, Y.1    Bengio, S.2    Cloutier, J.3
  • 7
    • 84871781883 scopus 로고    scopus 로고
    • An overview of recent progress in the study of distributed multi-agent coordination
    • Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. An overview of recent progress in the study of distributed multi-agent coordination. IEEE Transactions on Industrial informatics, 9(1): 427–438, 2013.
    • (2013) IEEE Transactions on Industrial Informatics , vol.9 , Issue.1 , pp. 427-438
    • Cao, Y.1    Yu, W.2    Ren, W.3    Chen, G.4
  • 8
    • 1942470793 scopus 로고    scopus 로고
    • Multitask learning
    • Springer
    • Rich Caruana. Multitask learning. In Learning to learn, pp. 95–133. Springer, 1998.
    • (1998) Learning to Learn , pp. 95-133
    • Caruana, R.1
  • 9
    • 34147159616 scopus 로고    scopus 로고
    • Awesome: A general multiagent learning algorithm that converges in self-play and learns a best response against stationary opponents
    • Vincent Conitzer and Tuomas Sandholm. Awesome: A general multiagent learning algorithm that converges in self-play and learns a best response against stationary opponents. Machine Learning, 67(1-2):23–43, 2007.
    • (2007) Machine Learning , vol.67 , Issue.1-2 , pp. 23-43
    • Conitzer, V.1    Sandholm, T.2
  • 10
    • 84930637712 scopus 로고    scopus 로고
    • Robots that can adapt like animals
    • Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots that can adapt like animals. Nature, 521(7553):503–507, 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 503-507
    • Cully, A.1    Clune, J.2    Tarapore, D.3    Mouret, J.-B.4
  • 26
    • 77957064197 scopus 로고
    • Catastrophic interference in connectionist networks: The sequential learning problem
    • Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential learning problem. Psychology of learning and motivation, 24:109–165, 1989.
    • (1989) Psychology of Learning and Motivation , vol.24 , pp. 109-165
    • McCloskey, M.1    Cohen, N.J.2
  • 33
    • 0031189347 scopus 로고    scopus 로고
    • Child: A first step towards continual learning
    • Mark B Ring. CHILD: A first step towards continual learning. Machine Learning, 28(1):77–104, 1997.
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 77-104
    • Ring, M.B.1
  • 35
    • 0008006333 scopus 로고
    • Evolutionary principles in self-referential learning
    • Diploma thesis, Institut f. Informatik, Tech. Univ. Munich
    • Jurgen Schmidhuber. Evolutionary principles in self-referential learning. On learning how to learn: The meta-meta-... hook.) Diploma thesis, Institut f. Informatik, Tech. Univ. Munich, 1987.
    • (1987) On Learning How to Learn: The Meta-Meta-... Hook
    • Schmidhuber, J.1
  • 36
    • 0346377064 scopus 로고
    • Learning to control fast-weight memories: An alternative to dynamic recurrent networks
    • Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent networks. Learning, 4(1), 1992.
    • (1992) Learning , vol.4 , Issue.1
    • Schmidhuber, J.1
  • 46
    • 0010687621 scopus 로고    scopus 로고
    • Lifelong learning algorithms
    • Sebastian Thrun. Lifelong learning algorithms. Learning to learn, 8:181–209, 1998.
    • (1998) Learning to Learn , vol.8 , pp. 181-209
    • Thrun, S.1
  • 51
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.
    • (1992) Machine Learning , vol.8 , Issue.3-4 , pp. 229-256
    • Williams, R.J.1
  • 52
    • 85099723578 scopus 로고    scopus 로고
    • Multi-agent learning with policy prediction
    • Chongjie Zhang and Victor R Lesser. Multi-agent learning with policy prediction. In AAAI, 2010.
    • (2010) AAAI
    • Zhang, C.1    Lesser, V.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.