메뉴 건너뛰기




Volumn 2019-June, Issue , 2019, Pages 113-123

Autoaugment: Learning augmentation strategies from data

Author keywords

Deep Learning

Indexed keywords

COMPUTER VISION; DEEP LEARNING;

EID: 85078722683     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2019.00020     Document Type: Conference Paper
Times cited : (2861)

References (72)
  • 15
    • 34047174674 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. Computer vision and Image understanding, 106(1): 59-70, 2007.
    • (2007) Computer Vision and Image Understanding , vol.106 , Issue.1 , pp. 59-70
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 16
    • 27744522225 scopus 로고
    • Neocognitron: A selforganizing neural network model for a mechanism of visual pattern recognition
    • Springer
    • K. Fukushima and S. Miyake. Neocognitron: A selforganizing neural network model for a mechanism of visual pattern recognition. In Competition and cooperation in neural nets, pages 267-285. Springer, 1982.
    • (1982) Competition and Cooperation in Neural Nets , pp. 267-285
    • Fukushima, K.1    Miyake, S.2
  • 32
    • 0032203257 scopus 로고    scopus 로고
    • Gradientbased learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86(11): 2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 33
    • 85028050340 scopus 로고    scopus 로고
    • Smart augmentation learning an optimal data augmentation strategy
    • J. Lemley, S. Bazrafkan, and P. Corcoran. Smart augmentation learning an optimal data augmentation strategy. IEEE Access, 5: 5858-5869, 2017.
    • (2017) IEEE Access , vol.5 , pp. 5858-5869
    • Lemley, J.1    Bazrafkan, S.2    Corcoran, P.3
  • 51
    • 85019203095 scopus 로고    scopus 로고
    • Regularization with stochastic transformations and perturbations for deep semi-supervised learning
    • M. Sajjadi, M. Javanmardi, and T. Tasdizen. Regularization with stochastic transformations and perturbations for deep semi-supervised learning. In Advances in Neural Information Processing Systems, pages 1163-1171, 2016.
    • (2016) Advances in Neural Information Processing Systems , pp. 1163-1171
    • Sajjadi, M.1    Javanmardi, M.2    Tasdizen, T.3
  • 58
    • 85028013193 scopus 로고    scopus 로고
    • Inception-v4, inception-resnet and the impact of residual connections on learning
    • C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4, inception-resnet and the impact of residual connections on learning. In AAAI, 2017.
    • (2017) AAAI
    • Szegedy, C.1    Ioffe, S.2    Vanhoucke, V.3    Alemi, A.A.4
  • 60
    • 85047012665 scopus 로고    scopus 로고
    • Mean teachers are better role models: Weight-averaged consistency targets improve semisupervised deep learning results
    • A. Tarvainen and H. Valpola. Mean teachers are better role models: Weight-averaged consistency targets improve semisupervised deep learning results. In Advances in neural information processing systems, pages 1195-1204, 2017.
    • (2017) Advances in Neural Information Processing Systems , pp. 1195-1204
    • Tarvainen, A.1    Valpola, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.