-
1
-
-
85075670920
-
Tensorflow: A system for large-scale machine learning
-
Berkeley, CA, USA,. USENIX Association
-
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI'16, pages 265-283, Berkeley, CA, USA, 2016. USENIX Association.
-
(2016)
Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI'16
, pp. 265-283
-
-
Abadi, M.1
Barham, P.2
Chen, J.3
Chen, Z.4
Davis, A.5
Dean, J.6
Devin, M.7
Ghemawat, S.8
Irving, G.9
Isard, M.10
Kudlur, M.11
Levenberg, J.12
Monga, R.13
Moore, S.14
Murray, D.G.15
Steiner, B.16
Tucker, P.17
Vasudevan, V.18
Warden, P.19
Wicke, M.20
Yu, Y.21
Zheng, X.22
more..
-
3
-
-
0002812089
-
Document image defect models
-
Springer
-
H. S. Baird. Document image defect models. In Structured Document Image Analysis, pages 546-556. Springer, 1992.
-
(1992)
Structured Document Image Analysis
, pp. 546-556
-
-
Baird, H.S.1
-
10
-
-
72249100259
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009.
-
(2009)
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
14
-
-
85030265487
-
Incorporating intra-class variance to fine-grained visual recognition
-
IEEE
-
Y. Em, F. Gag, Y. Lou, S. Wang, T. Huang, and L.-Y. Duan. Incorporating intra-class variance to fine-grained visual recognition. In Multimedia and Expo (ICME), 2017 IEEE International Conference on, pages 1452-1457. IEEE, 2017.
-
(2017)
Multimedia and Expo (ICME), 2017 IEEE International Conference on
, pp. 1452-1457
-
-
Em, Y.1
Gag, F.2
Lou, Y.3
Wang, S.4
Huang, T.5
Duan, L.-Y.6
-
15
-
-
34047174674
-
Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
-
L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. Computer vision and Image understanding, 106(1): 59-70, 2007.
-
(2007)
Computer Vision and Image Understanding
, vol.106
, Issue.1
, pp. 59-70
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
16
-
-
27744522225
-
Neocognitron: A selforganizing neural network model for a mechanism of visual pattern recognition
-
Springer
-
K. Fukushima and S. Miyake. Neocognitron: A selforganizing neural network model for a mechanism of visual pattern recognition. In Competition and cooperation in neural nets, pages 267-285. Springer, 1982.
-
(1982)
Competition and Cooperation in Neural Nets
, pp. 267-285
-
-
Fukushima, K.1
Miyake, S.2
-
18
-
-
84937849144
-
Generative adversarial nets
-
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages 2672-2680, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
20
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770-778, 2016.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
32
-
-
0032203257
-
Gradientbased learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86(11): 2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
33
-
-
85028050340
-
Smart augmentation learning an optimal data augmentation strategy
-
J. Lemley, S. Bazrafkan, and P. Corcoran. Smart augmentation learning an optimal data augmentation strategy. IEEE Access, 5: 5858-5869, 2017.
-
(2017)
IEEE Access
, vol.5
, pp. 5858-5869
-
-
Lemley, J.1
Bazrafkan, S.2
Corcoran, P.3
-
34
-
-
85055111162
-
-
arXiv preprint arXiv: 1712.00559
-
C. Liu, B. Zoph, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang, and K. Murphy. Progressive neural architecture search. arXiv preprint arXiv: 1712.00559, 2017.
-
(2017)
Progressive Neural Architecture Search
-
-
Liu, C.1
Zoph, B.2
Shlens, J.3
Hua, W.4
Li, L.-J.5
Fei-Fei, L.6
Yuille, A.7
Huang, J.8
Murphy, K.9
-
35
-
-
85083952289
-
Hierarchical representations for efficient architecture search
-
H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu. Hierarchical representations for efficient architecture search. In International Conference on Learning Representations, 2018.
-
(2018)
International Conference on Learning Representations
-
-
Liu, H.1
Simonyan, K.2
Vinyals, O.3
Fernando, C.4
Kavukcuoglu, K.5
-
37
-
-
85050472258
-
-
arXiv preprint arXiv: 1805.00932
-
D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe, and L. Van Der Maaten. Exploring the limits of weakly supervised pretraining. arXiv preprint arXiv: 1805.00932, 2018.
-
(2018)
Exploring the Limits of Weakly Supervised Pretraining
-
-
Mahajan, D.1
Girshick, R.2
Ramanathan, V.3
He, K.4
Paluri, M.5
Li, Y.6
Bharambe, A.7
Maaten Der L.Van8
-
38
-
-
84898816764
-
-
arXiv preprint arXiv: 1306. 5151
-
S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi. Fine-grained visual classification of aircraft. arXiv preprint arXiv: 1306.5151, 2013.
-
(2013)
Fine-grained Visual Classification of Aircraft
-
-
Maji, S.1
Rahtu, E.2
Kannala, J.3
Blaschko, M.4
Vedaldi, A.5
-
42
-
-
84865114495
-
Reading digits in natural images with unsupervised feature learning
-
Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsupervised Feature Learning, 2011.
-
(2011)
NIPS Workshop on Deep Learning and Unsupervised Feature Learning
-
-
Netzer, Y.1
Wang, T.2
Coates, A.3
Bissacco, A.4
Wu, B.5
Ng, A.Y.6
-
44
-
-
85058032554
-
-
arXiv preprint arXiv: 1804.09170
-
A. Oliver, A. Odena, C. Raffel, E. D. Cubuk, and I. J. Goodfellow. Realistic evaluation of deep semi-supervised learning algorithms. arXiv preprint arXiv: 1804.09170, 2018.
-
(2018)
Realistic Evaluation of Deep Semi-supervised Learning Algorithms
-
-
Oliver, A.1
Odena, A.2
Raffel, C.3
Cubuk, E.D.4
Goodfellow, I.J.5
-
46
-
-
85057232755
-
Efficient neural architecture search via parameter sharing
-
H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. Efficient neural architecture search via parameter sharing. In International Conference on Machine Learning, 2018.
-
(2018)
International Conference on Machine Learning
-
-
Pham, H.1
Guan, M.Y.2
Zoph, B.3
Le, Q.V.4
Dean, J.5
-
47
-
-
85047002950
-
Learning to compose domain-specific transformations for data augmentation
-
A. J. Ratner, H. Ehrenberg, Z. Hussain, J. Dunnmon, and C. Ré. Learning to compose domain-specific transformations for data augmentation. In Advances in Neural Information Processing Systems, pages 3239-3249, 2017.
-
(2017)
Advances in Neural Information Processing Systems
, pp. 3239-3249
-
-
Ratner, A.J.1
Ehrenberg, H.2
Hussain, Z.3
Dunnmon, J.4
Ré, C.5
-
49
-
-
85048592974
-
Large-scale evolution of image classifiers
-
E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. Le, and A. Kurakin. Large-scale evolution of image classifiers. In International Conference on Machine Learning, 2017.
-
(2017)
International Conference on Machine Learning
-
-
Real, E.1
Moore, S.2
Selle, A.3
Saxena, S.4
Suematsu, Y.L.5
Tan, J.6
Le, Q.7
Kurakin, A.8
-
51
-
-
85019203095
-
Regularization with stochastic transformations and perturbations for deep semi-supervised learning
-
M. Sajjadi, M. Javanmardi, and T. Tasdizen. Regularization with stochastic transformations and perturbations for deep semi-supervised learning. In Advances in Neural Information Processing Systems, pages 1163-1171, 2016.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 1163-1171
-
-
Sajjadi, M.1
Javanmardi, M.2
Tasdizen, T.3
-
53
-
-
85041194636
-
-
arXiv preprint arXiv: 1707.06347
-
J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms. arXiv preprint arXiv: 1707.06347, 2017.
-
(2017)
Proximal Policy Optimization Algorithms
-
-
Schulman, J.1
Wolski, F.2
Dhariwal, P.3
Radford, A.4
Klimov, O.5
-
58
-
-
85028013193
-
Inception-v4, inception-resnet and the impact of residual connections on learning
-
C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4, inception-resnet and the impact of residual connections on learning. In AAAI, 2017.
-
(2017)
AAAI
-
-
Szegedy, C.1
Ioffe, S.2
Vanhoucke, V.3
Alemi, A.A.4
-
59
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, et al. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
60
-
-
85047012665
-
Mean teachers are better role models: Weight-averaged consistency targets improve semisupervised deep learning results
-
A. Tarvainen and H. Valpola. Mean teachers are better role models: Weight-averaged consistency targets improve semisupervised deep learning results. In Advances in neural information processing systems, pages 1195-1204, 2017.
-
(2017)
Advances in Neural Information Processing Systems
, pp. 1195-1204
-
-
Tarvainen, A.1
Valpola, H.2
-
61
-
-
85047015651
-
A Bayesian data augmentation approach for learning deep models
-
T. Tran, T. Pham, G. Carneiro, L. Palmer, and I. Reid. A Bayesian data augmentation approach for learning deep models. In Advances in Neural Information Processing Systems, pages 2794-2803, 2017.
-
(2017)
Advances in Neural Information Processing Systems
, pp. 2794-2803
-
-
Tran, T.1
Pham, T.2
Carneiro, G.3
Palmer, L.4
Reid, I.5
-
62
-
-
84899064374
-
Regularization of neural networks using dropconnect
-
L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus. Regularization of neural networks using dropconnect. In International Conference on Machine Learning, pages 1058-1066, 2013.
-
(2013)
International Conference on Machine Learning
, pp. 1058-1066
-
-
Wan, L.1
Zeiler, M.2
Zhang, S.3
Le Cun, Y.4
Fergus, R.5
-
64
-
-
85043777453
-
Aggregated residual transformations for deep neural networks
-
S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations for deep neural networks. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5987-5995, 2017.
-
(2017)
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR
, pp. 5987-5995
-
-
Xie, S.1
Girshick, R.2
Dollár, P.3
Tu, Z.4
He, K.5
-
69
-
-
85047101351
-
-
arXiv preprint arXiv: 1708.04896
-
Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang. Random erasing data augmentation. arXiv preprint arXiv: 1708.04896, 2017.
-
(2017)
Random Erasing Data Augmentation
-
-
Zhong, Z.1
Zheng, L.2
Kang, G.3
Li, S.4
Yang, Y.5
|