-
1
-
-
85075670920
-
TensorFlow: A system for large-scale Machine learning
-
USENIX Association
-
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: A system for large-scale machine learning. In OSDI. USENIX Association, 2016.
-
(2016)
OSDI
-
-
Abadi, M.1
Barham, P.2
Chen, J.3
Chen, Z.4
Davis, A.5
Dean, J.6
Devin, M.7
Ghemawat, S.8
Irving, G.9
Isard, M.10
Kudlur, M.11
Levenberg, J.12
Monga, R.13
Moore, S.14
Murray, D.G.15
Steiner, B.16
Tucker, P.17
Vasudevan, V.18
Warden, P.19
Wicke, M.20
Yu, Y.21
Zheng, X.22
more..
-
3
-
-
85083953689
-
Neural Machine translation by jointly learning to align and translate
-
D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. In ICLR, 2015.
-
(2015)
ICLR
-
-
Bahdanau, D.1
Cho, K.2
Bengio, Y.3
-
4
-
-
0028392483
-
Learning longterm dependencies with gradient descent is difficult
-
Y. Bengio, P. Simard, and P. Frasconi. Learning longterm dependencies with gradient descent is difficult. TNN, 5(2):157-166, 1994.
-
(1994)
TNN
, vol.5
, Issue.2
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
6
-
-
84990066096
-
NEIL: Extracting visual knowledge from web data
-
X. Chen, A. Shrivastava, and A. Gupta. NEIL: Extracting visual knowledge from web data. In CVPR, 2013.
-
(2013)
CVPR
-
-
Chen, X.1
Shrivastava, A.2
Gupta, A.3
-
7
-
-
72249100259
-
ImageNet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. FeiFei. ImageNet: A large-scale hierarchical image database. In CVPR.
-
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
FeiFei, L.6
-
8
-
-
84911368326
-
Learning everything about anything: Webly-supervised visual concept learning
-
S. K. Divvala, A. Farhadi, and C. Guestrin. Learning everything about anything: Webly-supervised visual concept learning. In CVPR, 2014.
-
(2014)
CVPR
-
-
Divvala, S.K.1
Farhadi, A.2
Guestrin, C.3
-
9
-
-
33144466753
-
One-shot learning of object categories
-
L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. TPAMI, 28(4):594-611, 2006.
-
(2006)
TPAMI
, vol.28
, Issue.4
, pp. 594-611
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
10
-
-
79951563340
-
Understanding the difficulty of training deep feedforward neural networks
-
X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In AISTATS, 2010.
-
(2010)
AISTATS
-
-
Glorot, X.1
Bengio, Y.2
-
12
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
13
-
-
84990056336
-
Identity mappings in deep residual networks
-
K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In ECCV, 2016.
-
(2016)
ECCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
17
-
-
84946734827
-
Deep visual-semantic alignments for generating image descriptions
-
A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In CVPR, 2015.
-
(2015)
CVPR
-
-
Karpathy, A.1
Fei-Fei, L.2
-
18
-
-
85083951076
-
Adam: A method for stochastic optimization
-
D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
-
(2015)
ICLR
-
-
Kingma, D.1
Ba, J.2
-
19
-
-
85037809135
-
-
I. Krasin, T. Duerig, N. Alldrin, A. Veit, S. Abu-El-Haija, S. Belongie, D. Cai, Z. Feng, V. Ferrari, V. Gomes, A. Gupta, D. Narayanan, C. Sun, G. Chechik, and K. Murphy. OpenImages: A public dataset for large-scale multi-label and multiclass image classification. Dataset available from https://github.com/openimages, 2016.
-
(2016)
OpenImages: A Public Dataset for Large-Scale Multi-Label and Multiclass Image Classification
-
-
Krasin, I.1
Duerig, T.2
Alldrin, N.3
Veit, A.4
Abu-El-Haija, S.5
Belongie, S.6
Cai, D.7
Feng, Z.8
Ferrari, V.9
Gomes, V.10
Gupta, A.11
Narayanan, D.12
Sun, C.13
Chechik, G.14
Murphy, K.15
-
20
-
-
84949683101
-
Humanlevel concept learning through probabilistic program induction
-
B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Humanlevel concept learning through probabilistic program induction. Science, 350(6266):1332-1338, 2015.
-
(2015)
Science
, vol.350
, Issue.6266
, pp. 1332-1338
-
-
Lake, B.M.1
Salakhutdinov, R.2
Tenenbaum, J.B.3
-
21
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
22
-
-
84863411575
-
Ensemble of exemplar-SVMs for object detection and beyond
-
T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of exemplar-SVMs for object detection and beyond. In ICCV, 2011.
-
(2011)
ICCV
-
-
Malisiewicz, T.1
Gupta, A.2
Efros, A.A.3
-
23
-
-
84898956512
-
Distributed representations of words and phrases and their compositionality
-
T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, 2013.
-
(2013)
NIPS
-
-
Mikolov, T.1
Sutskever, I.2
Chen, K.3
Corrado, G.S.4
Dean, J.5
-
24
-
-
85072822252
-
Key-value memory networks for directly reading documents
-
A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and J. Weston. Key-value memory networks for directly reading documents. EMNLP, 2016.
-
(2016)
EMNLP
-
-
Miller, A.1
Fisch, A.2
Dodge, J.3
Karimi, A.-H.4
Bordes, A.5
Weston, J.6
-
25
-
-
84986290372
-
Hierarchical recurrent neural encoder for video representation with application to captioning
-
P. Pan, Z. Xu, Y. Yang, F. Wu, and Y. Zhuang. Hierarchical recurrent neural encoder for video representation with application to captioning. In CVPR, 2016.
-
(2016)
CVPR
-
-
Pan, P.1
Xu, Z.2
Yang, Y.3
Wu, F.4
Zhuang, Y.5
-
26
-
-
84998717754
-
One-shot learning with memory-augmented neural networks
-
A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. One-shot learning with memory-augmented neural networks. In ICML, 2016.
-
(2016)
ICML
-
-
Santoro, A.1
Bartunov, S.2
Botvinick, M.3
Wierstra, D.4
Lillicrap, T.5
-
27
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
29
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In NIPS, 2014.
-
(2014)
NIPS
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.V.3
-
30
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015.
-
(2015)
CVPR
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
31
-
-
84973882730
-
Sequence to sequence-video to text
-
S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, and K. Saenko. Sequence to sequence-video to text. In ICCV, 2015.
-
(2015)
ICCV
-
-
Venugopalan, S.1
Rohrbach, M.2
Donahue, J.3
Mooney, R.4
Darrell, T.5
Saenko, K.6
-
32
-
-
85083951885
-
Order matters: Sequence to sequence for sets
-
O. Vinyals, S. Bengio, and M. Kudlur. Order matters: Sequence to sequence for sets. In ICLR, 2016.
-
(2016)
ICLR
-
-
Vinyals, O.1
Bengio, S.2
Kudlur, M.3
-
33
-
-
85018863845
-
Matching networks for one shot learning
-
O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching networks for one shot learning. In NIPS, 2016.
-
(2016)
NIPS
-
-
Vinyals, O.1
Blundell, C.2
Lillicrap, T.3
Kavukcuoglu, K.4
Wierstra, D.5
-
35
-
-
84930622674
-
-
J. Weston, A. Bordes, S. Chopra, A. M. Rush, B. van Merriënboer, A. Joulin, and T. Mikolov. Towards AI-complete question answering: A set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698 2015.
-
(2015)
Towards AI-complete Question Answering: A Set of Prerequisite Toy Tasks
-
-
Weston, J.1
Bordes, A.2
Chopra, S.3
Rush, A.M.4
Van Merriënboer, B.5
Joulin, A.6
Mikolov, T.7
-
37
-
-
84970002232
-
Show, attend and tell: Neural image caption generation with visual attention
-
K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural image caption generation with visual attention. In ICML, 2015.
-
(2015)
ICML
-
-
Xu, K.1
Ba, J.2
Kiros, R.3
Cho, K.4
Courville, A.5
Salakhudinov, R.6
Zemel, R.7
Bengio, Y.8
-
38
-
-
84959228762
-
Beyond short snippets: Deep networks for video classification
-
J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici. Beyond short snippets: Deep networks for video classification. In CVPR, 2015.
-
(2015)
CVPR
-
-
Yue-Hei, J.1
Ng, M.H.2
Vijayanarasimhan, S.3
Vinyals, O.4
Monga, R.5
Toderici, G.6
|