메뉴 건너뛰기




Volumn , Issue , 2018, Pages 54-62

Fast parameter adaptation for few-shot image captioning and visual question answering

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; DEEP NEURAL NETWORKS; LINEAR TRANSFORMATIONS; MATHEMATICAL TRANSFORMATIONS; NATURAL LANGUAGE PROCESSING SYSTEMS; NEURAL NETWORKS; SEMANTICS;

EID: 85058215742     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/3240508.3240527     Document Type: Conference Paper
Times cited : (54)

References (52)
  • 4
    • 84961291190 scopus 로고    scopus 로고
    • Learning phrase representations using RNN encoder-decoder for statistical machine translation
    • Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. In EMNLP.
    • (2014) EMNLP
    • Cho, K.1    Van Merrienboer, B.2    Gulcehre, C.3    Bahdanau, D.4    Bougares, F.5    Schwenk, H.6    Bengio, Y.7
  • 5
    • 85035226122 scopus 로고    scopus 로고
    • More is less: A more complicated network with less inference complexity
    • Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan. 2017. More Is Less: A More Complicated Network With Less Inference Complexity. In CVPR.
    • (2017) CVPR
    • Dong, X.1    Huang, J.2    Yang, Y.3    Yan, S.4
  • 6
    • 85035243254 scopus 로고    scopus 로고
    • A dual-network progressive approach to weakly supervised object detection
    • Xuanyi Dong, Deyu Meng, Fan Ma, and Yi Yang. 2017. A dual-network progressive approach to weakly supervised object detection. In ACM on Multimedia.
    • (2017) ACM on Multimedia
    • Dong, X.1    Meng, D.2    Ma, F.3    Yang, Y.4
  • 7
    • 85055682668 scopus 로고    scopus 로고
    • Supervision-by-registration: An unsupervised approach to improve the precision of facial landmark detectors
    • Xuanyi Dong, Shoou-I Yu, Xinshuo Weng, Shih-En Wei, Yi Yang, and Yaser Sheikh. 2018. Supervision-by-Registration: An Unsupervised Approach to Improve the Precision of Facial Landmark Detectors. In CVPR.
    • (2018) CVPR
    • Dong, X.1    Yu, S.-I.2    Weng, X.3    Wei, S.-E.4    Yang, Y.5    Sheikh, Y.6
  • 10
    • 85041899497 scopus 로고    scopus 로고
    • Model-agnostic meta-learning for fast adaptation of deep networks
    • Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. In ICML.
    • (2017) ICML
    • Finn, C.1    Abbeel, P.2    Levine, S.3
  • 11
    • 85041900002 scopus 로고    scopus 로고
    • Making the V in VQA matter: Elevating the role of image understanding in Visual Question Answering
    • Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. 2017. Making the V in VQA matter: Elevating the role of image understanding in Visual Question Answering. In CVPR.
    • (2017) CVPR
    • Goyal, Y.1    Khot, T.2    Summers-Stay, D.3    Batra, D.4    Parikh, D.5
  • 12
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on imageNet classification
    • Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep into Rectifiers: Surpassing Human-level Performance on ImageNet Classification. In ICCV.
    • (2015) ICCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 13
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In CVPR.
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 15
    • 85041904328 scopus 로고    scopus 로고
    • Learning to reason: End-to-end module networks for visual question answering
    • Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko. 2017. Learning to Reason: End-To-End Module Networks for Visual Question Answering. In ICCV.
    • (2017) ICCV
    • Hu, R.1    Andreas, J.2    Rohrbach, M.3    Darrell, T.4    Saenko, K.5
  • 17
    • 85041925505 scopus 로고    scopus 로고
    • Arbitrary style transfer in real-time with adaptive instance normalization
    • Xun Huang and Serge Belongie. 2017. Arbitrary Style Transfer in Real-Time With Adaptive Instance Normalization. In ICCV.
    • (2017) ICCV
    • Huang, X.1    Belongie, S.2
  • 18
    • 85083951076 scopus 로고    scopus 로고
    • ADaM: A method for stochastic optimization
    • Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In ICLR.
    • (2015) ICLR
    • Kingma, D.P.1    Ba, J.2
  • 20
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classification with Deep Convolutional Neural Networks. In NIPS.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 22
    • 85016291927 scopus 로고    scopus 로고
    • Multimodal word meaning induction from minimal exposure to natural text
    • 2017
    • Angeliki Lazaridou, Marco Marelli, and Marco Baroni. 2017. Multimodal Word Meaning Induction from Minimal Exposure to Natural Text. Cognitive Science (2017).
    • (2017) Cognitive Science
    • Lazaridou, A.1    Marelli, M.2    Baroni, M.3
  • 23
    • 85030216293 scopus 로고    scopus 로고
    • Temporal convolutional networks for action segmentation and detection
    • Colin Lea, Michael D. Flynn, Rene Vidal, Austin Reiter, and Gregory D. Hager. 2017. Temporal Convolutional Networks for Action Segmentation and Detection. In CVPR.
    • (2017) CVPR
    • Lea, C.1    Flynn, M.D.2    Vidal, R.3    Reiter, A.4    Hager, G.D.5
  • 25
    • 85058225480 scopus 로고    scopus 로고
    • Exploring disentangled feature representation beyond face identification
    • Yu Liu, Fangyin Wei, Jing Shao, Lu Sheng, Junjie Yan, and Xiaogang Wang. 2018. Exploring Disentangled Feature Representation beyond Face Identification. In CVPR.
    • (2018) CVPR
    • Liu, Y.1    Wei, F.2    Shao, J.3    Sheng, L.4    Yan, J.5    Wang, X.6
  • 27
    • 84973863256 scopus 로고    scopus 로고
    • Learning like a child: Fast novel visual concept learning from sentence descriptions of images
    • Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, and Alan Yuille. 2015. Learning Like a Child: Fast Novel Visual Concept Learning from Sentence Descriptions of Images. In ICCV.
    • (2015) ICCV
    • Mao, J.1    Xu, W.2    Yang, Y.3    Wang, J.4    Huang, Z.5    Yuille, A.6
  • 29
  • 30
    • 84986261711 scopus 로고    scopus 로고
    • Image question answering using convolutional neural network with dynamic parameter prediction
    • Hyeonwoo Noh, Paul Hongsuck Seo, and Bohyung Han. 2016. Image Question Answering using Convolutional Neural Network with Dynamic Parameter Prediction. In CVPR.
    • (2016) CVPR
    • Noh, H.1    Seo, P.H.2    Han, B.3
  • 31
  • 32
    • 0032983160 scopus 로고    scopus 로고
    • On the momentum term in gradient descent learning algorithms
    • 1999
    • Ning Qian. 1999. On the momentum term in gradient descent learning algorithms. Neural Networks (1999).
    • (1999) Neural Networks
    • Qian, N.1
  • 33
    • 85044297988 scopus 로고    scopus 로고
    • An empirical evaluation of visual question answering for novel objects
    • Santhosh K Ramakrishnan, Ambar Pal, Gaurav Sharma, and Anurag Mittal. 2017. An Empirical Evaluation of Visual Question Answering for Novel Objects. In CVPR.
    • (2017) CVPR
    • Ramakrishnan, S.K.1    Pal, A.2    Sharma, G.3    Mittal, A.4
  • 34
    • 85041901997 scopus 로고    scopus 로고
    • Optimization as a Model for Few-shot Learning
    • Sachin Ravi and Hugo Larochelle. 2017. Optimization as a Model for Few-shot Learning. In ICLR.
    • (2017) ICLR
    • Ravi, S.1    Larochelle, H.2
  • 35
    • 84965170394 scopus 로고    scopus 로고
    • Exploring models and data for image question answering
    • Mengye Ren, Ryan Kiros, and Richard Zemel. 2015. Exploring Models and Data for Image Question Answering. In NIPS.
    • (2015) NIPS
    • Ren, M.1    Kiros, R.2    Zemel, R.3
  • 36
    • 84986327457 scopus 로고    scopus 로고
    • Where to look: Focus regions for visual question answering
    • Kevin J Shih, Saurabh Singh, and Derek Hoiem. 2016. Where to Look: Focus Regions for Visual Question Answering. In CVPR.
    • (2016) CVPR
    • Shih, K.J.1    Singh, S.2    Hoiem, D.3
  • 37
    • 85046993347 scopus 로고    scopus 로고
    • Prototypical Networks for Few-shot Learning
    • Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical Networks for Few-shot Learning. In NIPS.
    • (2017) NIPS
    • Snell, J.1    Swersky, K.2    Zemel, R.3
  • 39
    • 85040312182 scopus 로고    scopus 로고
    • Graph-structured representations for visual question answering
    • Damien Teney, Lingqiao Liu, and Anton van den Hengel. 2017. Graph-Structured Representations for Visual Question Answering. In CVPR.
    • (2017) CVPR
    • Teney, D.1    Liu, L.2    Van Den Hengel, A.3
  • 41
    • 85058211108 scopus 로고    scopus 로고
    • Distributional modeling on a diet: One-shot Word Learning from Text only
    • Su Wang, Stephen Roller, and Katrin Erk. 2017. Distributional Modeling on a Diet: One-shot Word Learning from Text only. In IJCNLP.
    • (2017) IJCNLP
    • Wang, S.1    Roller, S.2    Erk, K.3
  • 42
    • 85058224842 scopus 로고    scopus 로고
    • Exploit the unknown gradually: One-shot video-based person re-identification by stepwise learning
    • Yu Wu, Yutian Lin, Xuanyi Dong, Yan Yan, Wanli Ouyang, and Yi Yang. 2018. Exploit the Unknown Gradually: One-Shot Video-Based Person Re-Identification by Stepwise Learning. In CVPR.
    • (2018) CVPR
    • Wu, Y.1    Lin, Y.2    Dong, X.3    Yan, Y.4    Ouyang, W.5    Yang, Y.6
  • 45
    • 85044454030 scopus 로고    scopus 로고
    • Few-shot object recognition from machine-labeled web images
    • Zhongwen Xu, Linchao Zhu, and Yi Yang. 2017. Few-shot object recognition from machine-labeled web images. In CVPR.
    • (2017) CVPR
    • Xu, Z.1    Zhu, L.2    Yang, Y.3
  • 46
    • 84986334021 scopus 로고    scopus 로고
    • Stacked attention networks for image question answering
    • Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola. 2016. Stacked Attention Networks for Image Question Answering. In CVPR.
    • (2016) CVPR
    • Yang, Z.1    He, X.2    Gao, J.3    Deng, L.4    Smola, A.5
  • 47
    • 85029391966 scopus 로고    scopus 로고
    • Incorporating copying mechanism in image captioning for learning novel objects
    • Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. 2017. Incorporating Copying Mechanism in Image Captioning for Learning Novel Objects. In CVPR.
    • (2017) CVPR
    • Yao, T.1    Pan, Y.2    Li, Y.3    Mei, T.4
  • 48
    • 84986317307 scopus 로고    scopus 로고
    • Image captioning with semantic attention
    • Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and Jiebo Luo. 2016. Image Captioning with Semantic Attention. In CVPR.
    • (2016) CVPR
    • You, Q.1    Jin, H.2    Wang, Z.3    Fang, C.4    Luo, J.5
  • 49
    • 84973892583 scopus 로고    scopus 로고
    • Visual madlibs: Fill in the blank description generation and question answering
    • Licheng Yu, Eunbyung Park, Alexander C Berg, and Tamara L Berg. 2015. Visual Madlibs: Fill in the Blank Description Generation and Question Answering. In ICCV.
    • (2015) ICCV
    • Yu, L.1    Park, E.2    Berg, A.C.3    Berg, T.L.4
  • 50
    • 85083950177 scopus 로고    scopus 로고
    • Learning to count objects in natural images for visual question answering
    • Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett. 2018. Learning to Count Objects in Natural Images for Visual Question Answering. In ICLR.
    • (2018) ICLR
    • Zhang, Y.1    Hare, J.2    Prügel-Bennett, A.3
  • 51
    • 85053373905 scopus 로고    scopus 로고
    • Camera style adaptation for person re-identification
    • Zhun Zhong, Liang Zheng, Zhedong Zheng, Shaozi Li, and Yi Yang. 2018. Camera Style Adaptation for Person Re-Identification. In CVPR.
    • (2018) CVPR
    • Zhong, Z.1    Zheng, L.2    Zheng, Z.3    Li, S.4    Yang, Y.5
  • 52
    • 84986275767 scopus 로고    scopus 로고
    • Visual7W: Grounded question answering in images
    • Yuke Zhu, Oliver Groth, Michael Bernstein, and Li Fei-Fei. 2016. Visual7w: Grounded question answering in images. In CVPR.
    • (2016) CVPR
    • Zhu, Y.1    Groth, O.2    Bernstein, M.3    Fei-Fei, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.