-
4
-
-
85128779854
-
Learning algorithms for active learning
-
D. Precup and Y. W. Teh, editors International Convention Centre, Sydney, Australia, 06-11 Aug PMLR
-
P. Bachman, A. Sordoni, and A. Trischler. Learning algorithms for active learning. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference on Machine Learning, Volume 70 of Proceedings of Machine Learning Research, pages 301-310, International Convention Centre, Sydney, Australia, 06-11 Aug 2017. PMLR.
-
(2017)
Proceedings of the 34th International Conference on Machine Learning, Volume 70 of Proceedings of Machine Learning Research
, pp. 301-310
-
-
Bachman, P.1
Sordoni, A.2
Trischler, A.3
-
7
-
-
35348914807
-
Google news personalization: Scalable online collaborative filtering
-
ACM
-
A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: scalable online collaborative filtering. In Proceedings of the 16th international conference on World Wide Web, pages 271-280. ACM, 2007.
-
(2007)
Proceedings of the 16th International Conference on World Wide Web
, pp. 271-280
-
-
Das, A.S.1
Datar, M.2
Garg, A.3
Rajaram, S.4
-
8
-
-
85146698994
-
Practical lessons from predicting clicks on ads at facebook
-
ACM
-
X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Herbrich, S. Bowers, et al. Practical lessons from predicting clicks on ads at facebook. In Proceedings of the Eighth International Workshop on Data Mining for Online Advertising, pages 1-9. ACM, 2014.
-
(2014)
Proceedings of the Eighth International Workshop on Data Mining for Online Advertising
, pp. 1-9
-
-
He, X.1
Pan, J.2
Jin, O.3
Xu, T.4
Liu, B.5
Xu, T.6
Shi, Y.7
Atallah, A.8
Herbrich, R.9
Bowers, S.10
-
10
-
-
84991217793
-
Parallel recurrent neural network architectures for feature-rich session-based recommendations
-
ACM
-
B. Hidasi, M. Quadrana, A. Karatzoglou, and D. Tikk. Parallel recurrent neural network architectures for feature-rich session-based recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems, pages 241-248. ACM, 2016.
-
(2016)
Proceedings of the 10th ACM Conference on Recommender Systems
, pp. 241-248
-
-
Hidasi, B.1
Quadrana, M.2
Karatzoglou, A.3
Tikk, D.4
-
12
-
-
84991251321
-
Convolutional matrix factorization for document context-aware recommendation
-
ACM
-
D. Kim, C. Park, J. Oh, S. Lee, and H. Yu. Convolutional matrix factorization for document context-aware recommendation. In Proceedings of the 10th ACM Conference on Recommender Systems, pages 233-240. ACM, 2016.
-
(2016)
Proceedings of the 10th ACM Conference on Recommender Systems
, pp. 233-240
-
-
Kim, D.1
Park, C.2
Oh, J.3
Lee, S.4
Yu, H.5
-
15
-
-
85008044987
-
Matrix factorization techniques for recommender systems
-
Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8), 2009.
-
(2009)
Computer
, vol.42
, Issue.8
-
-
Koren, Y.1
Bell, R.2
Volinsky, C.3
-
16
-
-
84949683101
-
Human-level concept learning through probabilistic program induction
-
B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through probabilistic program induction. Science, 350(6266): 1332-1338, 2015.
-
(2015)
Science
, vol.350
, Issue.6266
, pp. 1332-1338
-
-
Lake, B.M.1
Salakhutdinov, R.2
Tenenbaum, J.B.3
-
17
-
-
70349824268
-
Addressing cold-start problem in recommendation systems
-
ACM
-
X. N. Lam, T. Vu, T. D. Le, and A. D. Duong. Addressing cold-start problem in recommendation systems. In Proceedings of the 2nd international conference on Ubiquitous information management and communication, pages 208-211. ACM, 2008.
-
(2008)
Proceedings of the 2nd International Conference on Ubiquitous Information Management and Communication
, pp. 208-211
-
-
Lam, X.N.1
Vu, T.2
Le, T.D.3
Duong, A.D.4
-
18
-
-
84929521403
-
Metalearning: A survey of trends and technologies
-
C. Lemke, M. Budka, and B. Gabrys. Metalearning: a survey of trends and technologies. Artificial intelligence review, 44(1): 117-130, 2015.
-
(2015)
Artificial Intelligence Review
, vol.44
, Issue.1
, pp. 117-130
-
-
Lemke, C.1
Budka, M.2
Gabrys, B.3
-
19
-
-
0037252945
-
Amazon.com recommendations: Item-to-item collaborative filtering
-
G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet computing, 7(1): 76-80, 2003.
-
(2003)
IEEE Internet Computing
, vol.7
, Issue.1
, pp. 76-80
-
-
Linden, G.1
Smith, B.2
York, J.3
-
21
-
-
80052881372
-
Content-based recommender systems: State of the art and trends
-
Springer
-
P. Lops, M. De Gemmis, and G. Semeraro. Content-based recommender systems: State of the art and trends. In Recommender systems handbook, pages 73-105. Springer, 2011.
-
(2011)
Recommender Systems Handbook
, pp. 73-105
-
-
Lops, P.1
De Gemmis, M.2
Semeraro, G.3
-
22
-
-
84867864557
-
Metric learning for large scale image classification: Generalizing to new classes at near-zero cost
-
T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Metric learning for large scale image classification: Generalizing to new classes at near-zero cost. Computer Vision-ECCV 2012, pages 488-501, 2012.
-
(2012)
Computer Vision-ECCV 2012
, pp. 488-501
-
-
Mensink, T.1
Verbeek, J.2
Perronnin, F.3
Csurka, G.4
-
24
-
-
85041901997
-
Optimization as a model for few-shot learning
-
S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. ICLR, 2017.
-
(2017)
ICLR
-
-
Ravi, S.1
Larochelle, H.2
-
25
-
-
85040308896
-
Meta-learning with memory-augmented neural networks
-
A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with memory-augmented neural networks. In International conference on machine learning, pages 1842-1850, 2016.
-
(2016)
International Conference on Machine Learning
, pp. 1842-1850
-
-
Santoro, A.1
Bartunov, S.2
Botvinick, M.3
Wierstra, D.4
Lillicrap, T.5
-
26
-
-
85046273312
-
Prototypical networks for few-shot learning
-
J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks for few-shot learning. CoRR, abs/1703.05175, 2017.
-
(2017)
CoRR
-
-
Snell, J.1
Swersky, K.2
Zemel, R.S.3
-
28
-
-
0036791948
-
A perspective view and survey of meta-learning
-
R. Vilalta and Y. Drissi. A perspective view and survey of meta-learning. Artificial Intelligence Review, 18(2): 77-95, 2002.
-
(2002)
Artificial Intelligence Review
, vol.18
, Issue.2
, pp. 77-95
-
-
Vilalta, R.1
Drissi, Y.2
-
29
-
-
85018863845
-
Matching networks for one shot learning
-
O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for one shot learning. In Advances in Neural Information Processing Systems, pages 3630-3638, 2016.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 3630-3638
-
-
Vinyals, O.1
Blundell, C.2
Lillicrap, T.3
Wierstra, D.4
-
31
-
-
85047020954
-
Deep sets
-
M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Póczos, R. Salakhutdinov, and A. J. Smola. Deep sets. CoRR, abs/1703.06114, 2017.
-
(2017)
CoRR
-
-
Zaheer, M.1
Kottur, S.2
Ravanbakhsh, S.3
Póczos, B.4
Salakhutdinov, R.5
Smola, A.J.6
|