-
1
-
-
85011954517
-
Globally normalized transition-based neural networks
-
3, 6
-
D. Andor, C. Alberti, D. Weiss, A. Severyn, A. Presta, K. Ganchev, S. Petrov, and M. Collins. Globally normalized transition-based neural networks. In ACL, 2016. 3, 6
-
(2016)
ACL
-
-
Andor, D.1
Alberti, C.2
Weiss, D.3
Severyn, A.4
Presta, A.5
Ganchev, K.6
Petrov, S.7
Collins, M.8
-
2
-
-
84885880085
-
Object detection using stronglysupervised deformable part models
-
3
-
H. Azizpour and I. Laptev. Object detection using stronglysupervised deformable part models. In ECCV, 2012. 3
-
(2012)
ECCV
-
-
Azizpour, H.1
Laptev, I.2
-
3
-
-
85019329399
-
What's the point: Semantic segmentation with point supervision
-
6
-
A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-Fei. What's the point: Semantic segmentation with point supervision. In ECCV, 2016. 6
-
(2016)
ECCV
-
-
Bearman, A.1
Russakovsky, O.2
Ferrari, V.3
Fei-Fei, L.4
-
4
-
-
24644437539
-
Signature verification using a "siamese" time delay neural network
-
3
-
J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore, E. Säckinger, and R. Shah. Signature Verification Using A "Siamese" Time Delay Neural Network. In NIPS, 1993. 3
-
(1993)
NIPS
-
-
Bromley, J.1
Bentz, J.W.2
Bottou, L.3
Guyon, I.4
LeCun, Y.5
Moore, C.6
Säckinger, E.7
Shah, R.8
-
5
-
-
84969930631
-
Learning deep structured models
-
D. Blei and F. Bach, editors JMLR Workshop and Conference Proceedings 3
-
L.-C. Chen, A. Schwing, A. Yuille, and R. Urtasun. Learning deep structured models. In D. Blei and F. Bach, editors, Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages 1785-1794. JMLR Workshop and Conference Proceedings, 2015. 3
-
(2015)
Proceedings of the 32nd International Conference on Machine Learning (ICML-15)
, pp. 1785-1794
-
-
Chen, L.-C.1
Schwing, A.2
Yuille, A.3
Urtasun, R.4
-
6
-
-
84911421600
-
Detect what you can: Detecting and representing objects using holistic models and body parts
-
2, 3, 6
-
X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille. Detect What You Can: Detecting and Representing Objects using Holistic Models and Body Parts. In CVPR, 2014. 2, 3, 6
-
(2014)
CVPR
-
-
Chen, X.1
Mottaghi, R.2
Liu, X.3
Fidler, S.4
Urtasun, R.5
Yuille, A.6
-
7
-
-
24644436425
-
-
3
-
S. Chopra, R. Hadsell, and Y. LeCun. Learning a Similarity Metric Discriminatively, with Application to Face Verification. 1: 539-546, 2005. 3
-
(2005)
Learning A Similarity Metric Discriminatively, with Application to Face Verification
, vol.1
, pp. 539-546
-
-
Chopra, S.1
Hadsell, R.2
LeCun, Y.3
-
8
-
-
85011257554
-
Universal correspondence network
-
3, 7
-
C. B. Choy, J. Gwak, S. Savarese, and M. K. Chandraker. Universal correspondence network. In NIPS, 2016. 3, 7
-
(2016)
NIPS
-
-
Choy, C.B.1
Gwak, J.2
Savarese, S.3
Chandraker, M.K.4
-
9
-
-
85116919751
-
Incremental parsing with the perceptron algorithm
-
Barcelona, Spain, July, Main Volume 3
-
M. Collins and B. Roark. Incremental parsing with the perceptron algorithm. In Proceedings of the 42nd Meeting of the Association for Computational Linguistics (ACL'04), Main Volume, pages 111-118, Barcelona, Spain, July 2004. 3
-
(2004)
Proceedings of the 42nd Meeting of the Association for Computational Linguistics (ACL'04)
, pp. 111-118
-
-
Collins, M.1
Roark, B.2
-
10
-
-
31844433245
-
Learning as search optimization: Approximate large margin methods for structured prediction
-
New York, NY, USA, 2005. ACM. 3, 5
-
H. Daumé, III and D. Marcu. Learning as search optimization: Approximate large margin methods for structured prediction. In Proceedings of the 22Nd International Conference on Machine Learning, ICML '05, pages 169-176, New York, NY, USA, 2005. ACM. 3, 5
-
Proceedings of the 22Nd International Conference on Machine Learning, ICML '05
, pp. 169-176
-
-
Daumé, H.1
Marcu, D.2
-
14
-
-
84872227693
-
Sketch-based shape retrieval
-
2
-
M. Eitz, R. Richter, T. Boubekeur, K. Hildebrand, and M. Alexa. Sketch-based shape retrieval. ACM Trans. Graph., 31: 31: 1-31: 10, 2012. 2
-
(2012)
ACM Trans. Graph.
, pp. 31311-33110
-
-
Eitz, M.1
Richter, R.2
Boubekeur, T.3
Hildebrand, K.4
Alexa, M.5
-
15
-
-
0344983284
-
A Bayesian approach to unsupervised one-shot learning of object categories
-
2
-
L. Fei-Fei, R. Fergus, and P. Perona. A Bayesian approach to unsupervised one-shot learning of object categories. In ICCV, 2003. 2
-
(2003)
ICCV
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
17
-
-
77955422240
-
Object detection with discriminatively trained partbased models
-
3
-
P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained partbased models. IEEE transactions on pattern analysis and machine intelligence, 32 (9): 1627-1645, 2010. 3
-
(2010)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.32
, Issue.9
, pp. 1627-1645
-
-
Felzenszwalb, P.F.1
Girshick, R.B.2
McAllester, D.3
Ramanan, D.4
-
18
-
-
85044386583
-
-
1, 3 CoRR, abs/1609. 09444
-
A. Ghosh, V. Kulharia, A. Mukerjee, V. P. Namboodiri, and M. Bansal. Contextual rnn-gans for abstract reasoning diagram generation. CoRR, abs/1609. 09444, 2017. 1, 3
-
(2017)
Contextual Rnn-gans for Abstract Reasoning Diagram Generation
-
-
Ghosh, A.1
Kulharia, V.2
Mukerjee, A.3
Namboodiri, V.P.4
Bansal, M.5
-
21
-
-
85041907470
-
SCNet: Learning semantic correspondence
-
3
-
K. Han, R. S. Rezende, B. Ham, K.-Y. K. Wong, M. Cho, C. Schmid, and J. Ponce. SCNet: Learning Semantic Correspondence. In ICCV, 2017. 3
-
(2017)
ICCV
-
-
Han, K.1
Rezende, R.S.2
Ham, B.3
Wong, K.-Y.K.4
Cho, M.5
Schmid, C.6
Ponce, J.7
-
24
-
-
85044483025
-
A diagram is worth a dozen images
-
1, 2, 3
-
A. Kembhavi, M. Salvato, E. Kolve, M. J. Seo, H. Hajishirzi, and A. Farhadi. A diagram is worth a dozen images. In ECCV, 2016. 1, 2, 3
-
(2016)
ECCV
-
-
Kembhavi, A.1
Salvato, M.2
Kolve, E.3
Seo, M.J.4
Hajishirzi, H.5
Farhadi, A.6
-
25
-
-
85020183301
-
Siamese neural networks for one-shot image recognition
-
2
-
G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural networks for one-shot image recognition. In ICML, 2015. 2
-
(2015)
ICML
-
-
Koch, G.1
Zemel, R.2
Salakhutdinov, R.3
-
26
-
-
85040936429
-
Semantic parsing to probabilistic programs for situated question answering
-
1, 3
-
J. Krishnamurthy, O. Tafjord, and A. Kembhavi. Semantic parsing to probabilistic programs for situated question answering. In EMNLP, 2016. 1, 3
-
(2016)
EMNLP
-
-
Krishnamurthy, J.1
Tafjord, O.2
Kembhavi, A.3
-
27
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
2, 3, 4, 5
-
J. Lafferty, A. McCallum, F. Pereira, et al. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of the eighteenth international conference on machine learning, ICML, volume 1, pages 282-289, 2001. 2, 3, 4, 5
-
(2001)
Proceedings of the Eighteenth International Conference on Machine Learning, ICML
, vol.1
, pp. 282-289
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.3
-
28
-
-
84959207269
-
Rent3d: Floor-plan priors for monocular layout estimation
-
1
-
C. Liu, A. G. Schwing, K. Kundu, R. Urtasun, and S. Fidler. Rent3d: Floor-plan priors for monocular layout estimation. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015. 1
-
(2015)
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
-
-
Liu, C.1
Schwing, A.G.2
Kundu, K.3
Urtasun, R.4
Fidler, S.5
-
33
-
-
84979979971
-
The sketchy database: Learning to retrieve badly drawn bunnies
-
1, 2
-
P. Sangkloy, N. Burnell, C. Ham, and J. Hays. The sketchy database: Learning to retrieve badly drawn bunnies. ACM Transactions on Graphics (proceedings of SIGGRAPH), 2016. 1, 2
-
(2016)
ACM Transactions on Graphics (Proceedings of SIGGRAPH)
-
-
Sangkloy, P.1
Burnell, N.2
Ham, C.3
Hays, J.4
-
35
-
-
84959207415
-
Diagram understanding in geometry questions
-
1, 3
-
M. J. Seo, H. Hajishirzi, A. Farhadi, and O. Etzioni. Diagram understanding in geometry questions. In AAAI, 2014. 1, 3
-
(2014)
AAAI
-
-
Seo, M.J.1
Hajishirzi, H.2
Farhadi, A.3
Etzioni, O.4
-
36
-
-
84959864838
-
Solving geometry problems: Combining text and diagram interpretation
-
1, 3
-
M. J. Seo, H. Hajishirzi, A. Farhadi, O. Etzioni, and C. Malcolm. Solving geometry problems: Combining text and diagram interpretation. In EMNLP, 2015. 1, 3
-
(2015)
EMNLP
-
-
Seo, M.J.1
Hajishirzi, H.2
Farhadi, A.3
Etzioni, O.4
Malcolm, C.5
-
39
-
-
84986266755
-
Deep metric learning via lifted structured feature embedding
-
3
-
H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep Metric Learning via Lifted Structured Feature Embedding. In CVPR, 2016. 3
-
(2016)
CVPR
-
-
Song, H.O.1
Xiang, Y.2
Jegelka, S.3
Savarese, S.4
-
42
-
-
84930634156
-
Joint training of a convolutional network and a graphical model for human pose estimation
-
3
-
J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a convolutional network and a graphical model for human pose estimation. In Advances in neural information processing systems, pages 1799-1807, 2014. 3
-
(2014)
Advances in Neural Information Processing Systems
, pp. 1799-1807
-
-
Tompson, J.J.1
Jain, A.2
LeCun, Y.3
Bregler, C.4
-
43
-
-
14344250451
-
Support vector machine learning for interdependent and structured output spaces
-
5
-
I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for interdependent and structured output spaces. In ICML, 2004. 5
-
(2004)
ICML
-
-
Tsochantaridis, I.1
Hofmann, T.2
Joachims, T.3
Altun, Y.4
-
44
-
-
84973926486
-
Learning common sense through visual abstraction
-
3
-
R. Vedantam, X. Lin, T. Batra, C. L. Zitnick, and D. Parikh. Learning common sense through visual abstraction. In 2015 IEEE International Conference on Computer Vision (ICCV), 2015. 3
-
(2015)
2015 IEEE International Conference on Computer Vision (ICCV)
-
-
Vedantam, R.1
Lin, X.2
Batra, T.3
Zitnick, C.L.4
Parikh, D.5
-
45
-
-
85083951885
-
Order matters: Sequence to sequence for sets
-
5
-
O. Vinyals, S. Bengio, and M. Kudlur. Order matters: Sequence to sequence for sets. In ICLR, 2016. 5
-
(2016)
ICLR
-
-
Vinyals, O.1
Bengio, S.2
Kudlur, M.3
-
46
-
-
85018863845
-
Matching networks for one shot learning
-
2, 5, 7, 8
-
O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching Networks for One Shot Learning. In NIPS, 2016. 2, 5, 7, 8
-
(2016)
NIPS
-
-
Vinyals, O.1
Blundell, C.2
Lillicrap, T.3
Kavukcuoglu, K.4
Wierstra, D.5
-
47
-
-
84980002050
-
-
1, 2 CoRR, abs/1504. 03504
-
F. Wang, L. Kang, and Y. Li. Sketch-based 3D shape retrieval using convolutional neural networks. CoRR, abs/1504. 03504, 2015. 1, 2
-
(2015)
Sketch-based 3D Shape Retrieval Using Convolutional Neural Networks
-
-
Wang, F.1
Kang, L.2
Li, Y.3
-
48
-
-
85019203971
-
Proximal deep structured models
-
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors Curran Associates, Inc. 3
-
S. Wang, S. Fidler, and R. Urtasun. Proximal deep structured models. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages 865-873. Curran Associates, Inc., 2016. 3
-
(2016)
Advances in Neural Information Processing Systems 29
, pp. 865-873
-
-
Wang, S.1
Fidler, S.2
Urtasun, R.3
-
49
-
-
85072835005
-
Sequence-to-sequence learning as beam-search optimization
-
3, 6
-
S. Wiseman and A. M. Rush. Sequence-to-sequence learning as beam-search optimization. In EMNLP, 2016. 3, 6
-
(2016)
EMNLP
-
-
Wiseman, S.1
Rush, A.M.2
-
51
-
-
84986309864
-
Sketch me that shoe
-
1, 2
-
Q. Yu, F. Liu, Y.-Z. Song, T. Xiang, T. M. Hospedales, and C. C. Loy. Sketch me that shoe. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. 1, 2
-
(2016)
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
-
-
Yu, Q.1
Liu, F.2
Song, Y.-Z.3
Xiang, T.4
Hospedales, T.M.5
Loy, C.C.6
-
52
-
-
85019535707
-
Sketch-a-net: A deep neural network that beats humans
-
1, 2, 4, 8
-
Q. Yu, Y. Yang, F. Liu, Y.-Z. Song, T. Xiang, and T. M. Hospedales. Sketch-a-net: A deep neural network that beats humans. In International Journal of Computer Vision, 2016. 1, 2, 4, 8
-
(2016)
International Journal of Computer Vision
-
-
Yu, Q.1
Yang, Y.2
Liu, F.3
Song, Y.-Z.4
Xiang, T.5
Hospedales, T.M.6
-
53
-
-
84959179619
-
Learning to compare image patches via convolutional neural networks
-
3
-
S. Zagoruyko and N. Komodakis. Learning to compare image patches via convolutional neural networks. CVPR, 2015. 3
-
(2015)
CVPR
-
-
Zagoruyko, S.1
Komodakis, N.2
-
54
-
-
84952674245
-
Computing the stereo matching cost with a convolutional neural network
-
3
-
J. Zbontar and Y. LeCun. Computing the stereo matching cost with a convolutional neural network. CVPR, 2015. 3
-
(2015)
CVPR
-
-
Zbontar, J.1
LeCun, Y.2
-
55
-
-
80052900525
-
Coupled informationtheoretic encoding for face photo-sketch recognition
-
1, 2
-
W. Zhang, X. Wang, and X. Tang. Coupled informationtheoretic encoding for face photo-sketch recognition. In CVPR, 2011. 1, 2
-
(2011)
CVPR
-
-
Zhang, W.1
Wang, X.2
Tang, X.3
-
56
-
-
84973861983
-
Conditional random fields as recurrent neural networks
-
Washington, DC, USA. IEEE Computer Society. 3
-
S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. H. S. Torr. Conditional random fields as recurrent neural networks. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), ICCV '15, pages 1529-1537, Washington, DC, USA, 2015. IEEE Computer Society. 3
-
(2015)
Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), ICCV '15
, pp. 1529-1537
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, P.H.S.8
-
57
-
-
77955986466
-
Latent hierarchical structural learning for object detection
-
3
-
L. Zhu, Y. Chen, A. L. Yuille, and W. T. Freeman. Latent hierarchical structural learning for object detection. In CVPR, 2010. 3
-
(2010)
CVPR
-
-
Zhu, L.1
Chen, Y.2
Yuille, A.L.3
Freeman, W.T.4
|